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Both the constructive and predicative approaches to mathemat-

ics arose during the period of what was felt to be a foundational

crisis in the early part of this century. Each critiqued an essential

logical aspect of classical mathematics, namely concerning the unre-

stricted use of the law of excluded middle on the one hand, and of

apparently circular \impredicative" de�nitions on the other. But the

positive redevelopment of mathematics along constructive, resp. pred-

icative grounds did not emerge as really viable alternatives to classical,

set-theoretically based mathematics until the 1960s. Now we have a

massive amount of information, to which this lecture will constitute

an introduction, about what can be done by what means, and about

the theoretical interrelationships between various formal systems for

constructive, predicative and classical analysis.

In this �nal lecture I will be sketching some redevelopments of classical

analysis on both constructive and predicative grounds, with an emphasis

on modern approaches. In the case of constructivity, I have very little to

say about Brouwerian intuitionism, which has been discussed extensively in

other lectures at this conference, and concentrate instead on the approach

since 1967 of Errett Bishop and his school. In the case of predicativity, I

concentrate on developments|also since the 1960s|which take up where

Weyl's work left o�, as described in my second lecture. In both cases, I �rst

look at these redevelopments from a more informal, mathematical, point

�This is the last of my three lectures for the conference, Proof Theory: History and

Philosophical Signi�cance, held at the University of Roskilde, Denmark, Oct. 31{Nov.

1, 1997. See the footnote * to the �rst lecture, \Highlights in Proof Theory" for my

acknowledgements.
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of view (Part I) and then from a formal, metamathematical point of view

(Part II), with each part devoted �rst to the constructive and then to the

predicative redevelopments.

I Informal Mathematical Part

A. Constructive redevelopments of mathematics. In Brouwerian in-

tuitionism the real numbers are treated in some way or another as Cauchy

sequences of rationals, understood as (free-) choice sequences. Brouwer's idea

concerning these seems to be that one has only a �nite amount of information

about such sequences at any given time. That was a kind of argument for

the continuity conclusion, namely, that any constructive function of choice-

sequences must be continuous. Even more:

Brouwer's Theorem. Every function on a closed interval [a; b] is

uniformly continuous.

This, on the face of it, is in direct contradiction to classical mathematics,

but once it is understood that Brouwer's theorem must be explained di�er-

ently via the intuitionistic interpretation of the notions involved, an actual

contradiction is avoided. Perhaps if di�erent terminology had been used,

classical mathematicians would not have found the intuitionistic redevelop-

ment of analysis so o�-putting, if not downright puzzling.

In contrast, the Bishop style constructive development of mathematics,

which I abbreviate BCM|for Bishop Constructive Mathematics, can be

read as a part of classical analysis, though developed in more re�ned terms.

This was put on the map by Errett Bishop in 1967 with the publication of

his book, Foundations of Constructive Analysis (Bishop 1967). Bishop had

been working in classical analysis and had made important contributions to

that subject over a long period of time. But then he had some radical change

of views about classical analysis and felt that it had to be redeveloped on

entirely constructive grounds. In a moment I will explain features of his

position, as it relates to earlier approaches to constructive analysis. Douglas

Bridges joined Bishop in the preparation of a second edition of his book, when

Bishop decided that some parts needed reworking, especially the theory of

measure. Bridges had published a book on constructive functional analysis

in the 1970s (Bridges 1979), and was eminently suited to help in this way.

Unfortunately Bishop died of leukemia before the second edition (Bishop and
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Bridges 1985) appeared, but Bridges was pretty faithful to Bishop's original

conception in completing the work.

Besides these works in constructive analysis, a substantial amount of

classical algebra has been redeveloped in the Bishop style approach; the

main reference there is A Course in Constructive Algebra (Mines, Richman

and Ruitenberg 1988).

Bishop criticized both non-constructive classical mathematics and intu-

itionism. He called non-constructive mathematics a \scandal", particularly

because of its \de�ciency in numerical meaning". What he simply meant

was that if you say something exists you ought to be able to produce it, and

if you say there is a function which does something on the natural numbers

then you ought to be able to produce a machine which calculates it out at

each number. His criticism of intuitionism was its failure, simply, to convince

mathematicians that there is a workable alternative to classical mathemat-

ics which provides this kind of numerical information (though intuitionistic

reasoning also provides that in principle).

General style of BCM. Since, as I said, Bishop's redevelopment of anal-

ysis is part of classical analysis, several re�nements of classical notions had

to be made in order to give it constructive content (or \numerical mean-

ing"). Bishop explained in general terms how this was to be done, using the

following dicta.

First of all, use only \a�rmative" or \positive" concepts. For example,

the inequality relation between real numbers is rede�ned to mean that you

have a rational witness which separates the two numbers by being greater

than one and less than the other.

Second, avoid \irrelevant" de�nitions. For example, the idea of an ar-

bitrary function of real numbers is irrelevant for Bishop because there is

nothing useful you can do with it. Instead, he begins by dealing with a very

special class of functions of real numbers, namely those which are uniformly

continuous on very compact interval. In this way, he �nesses the whole issue

of how one arrives at Brouwer's theorem by saying that those are the only

functions, at least initially, that one is going to talk about. (So, the question

is: if you just talk about those kinds of functions, are you going to be able

to do a lot of interesting mathematics? That is, in fact, the case!)

Third, avoid \pseudo-generality". An example of avoiding \pseudo-gener-

ality" is that Bishop never works on non-separable spaces. Every space he
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works with is separable|that is, has a countable dense subset. One has the

same restriction in predicative mathematics, but Bishop uses it in a special

way.

Bishop's language of sets and functions is very close to everyday math-

ematical language. He does not use the concept of \choice sequence". A

sequence, for Bishop, is a sequence, a set is a set, and a function is a func-

tion, though in each case with some added structure or constraints. So if a

classical mathematician reads Bishop's book he can say: well, I do not see

what is very special about this. But what is special is the way in which con-

cepts are chosen and the way in which arguments are carried out. Concepts

are chosen so that there is a lot of witnessing information introduced in a

way that is not customary in classical mathematics, where it is hidden, for

instance, by implicit use of the Axiom of Choice. What Bishop does is to

take that kind of information and make it a part of his explicit package of

what his concepts are up to. We shall see what that means in a moment.

I have a footnote here: Bishop refuses to identify his functions,

f : N!N, with recursive functions. Nevertheless, as we shall see, there

is an interpretation of his language in which the functions on N are recursive

functions. By leaving this open, Bishop's results have generality, so that

they can be read by the classical mathematician as applying to arbitrary

functions, while the constructive mathematician can read them as applying

to computable functions in an informal sense.

Foundations of real analysis in BCM, compared to classical anal-

ysis. Classically a Cauchy sequence is simply a sequence hxnin of rational

numbers xn(n 2 N) such that for any degree of accuracy, 1=p + 1, where p

is a natural number, you can get within that by going su�ciently far out in

the Cauchy sequence, i.e. such that

8p 9k 8n; m � k

�
jxn � xmj <

1

p + 1

�
:

Now, for Bishop, a Cauchy sequence is one where you tell how far out in

the sequence, hxnin, you have to go in order to get within degree of accuracy,

1=p + 1. That is given by a function K(p) satisfying

8p 8n;m � K(p)

�
jxn � xmj <

1

p+ 1

�
:
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K is called a modulus-of-convergence-function for that sequence. (This is a

mild modi�cation of the way Bishop does it.1) Now the setR of real numbers

in BCM is not de�ned as the set of Cauchy sequences, but rather as the set

of pairs

(hxnin;K) where xn 2 Q

and K is an associated modulus-of-convergence-function. It is those pairs

that you operate on when you are working with real numbers. You have to

have explicit information about how far you need to go out in the sequence

in order to be within 1=p + 1 of the answer.

Equality, =R, of real numbers is de�ned as usual, which means that two

real numbers (hxnin;K) and (hynin; L) are equal if they have the same limit.

But we do not take the real numbers in the classical way to be equivalence

classes of Cauchy sequences. What we have to do instead is be sure that

when we are dealing with a function on R as de�ned above, it preserves =R.

One next has straightforward de�nitions of addition, subtraction, mul-

tiplication and absolute value of real numbers. For example, (hxni;K) +R
(hyni; L) = (hxn + ynin;M) where M(p) = max(K (2p + 1) ; L (2p + 1)). To

computeM for the case of division, (hxni;K)�R (hyni; L), one must explic-

itly incorporate a bit of information q that shows the limit of the jynjs to be

at least 1=q + 1 (where q 2 N).

Bishop makes systematic use of sets A with an equivalence relation =A

on them, rather than the corresponding sets of equivalence classes, and also

of functions preserving the equivalence relations rather than functions on

the equivalence classes. In that way you can truly talk about numerical or

computational implementation of his notions. For example, a computational

implementation of a function on real numbers will take for each argument a

sequence of rationals which is given computationally, and a function K that

is given computationally, with both given by algorithms as data for which

we compute the value of the function, represented by certain output data.

We might have a di�erent presentation of that same real number and we will

get a computation which gives a di�erent answer in the way it is represented

but which has to be equal to it in the sense of equality on the real numbers.

Taking the de�nition of real numbers to be modi�ed in this way, you end

up with a constructive version of the real number system. For instance, a

form of the Cauchy Completeness Theorem holds: every Cauchy sequence

1He takes these to be sequences hxnin such that 8n;m � 1
�
jxn � xmj <

1

n
+ 1

m

�
, so

that K(p) = 2(p+ 1) works in this case.
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of reals with a modulus-of-convergence function will converge to a real in

Bishop's sense.

What is a continuous function? Classically, such f : [a; b] ! R on a

closed interval is a function satisfying

8x 2 [a; b] 8" > 0 9� > 0 8y 2 [a; b] f jx� yj < � ! jf(x)� f(y)j < " g

where " and � are rational numbers. And, again classically, a uniformly

continuous function, f : [a; b]! R, is one where we can give � uniformly in

terms of ", independently of where x and y are in the interval [a; b], i.e.

8" > 0 9� > 0 8x; y 2 [a; b] f jx� yj < � ! jf(x)� f(y)j < " g :

Classically we have that if a function is continuous on [a; b], then it is

uniformly continuous on [a; b]. This goes back to the Heine-Borel Covering

Theorem.

Now, as explained above, Bishop starts out by saying that we are not

going to talk about arbitrary functions, we are only going to talk about

uniformly continuous functions on compact intervals. He thus de�nes the

class of functions from the closed interval [a; b] into real numbers, C([a; b];R),

to consist of all pairs (f;D), where f : [a; b]! R is a function which preserves

the equality =R on the real numbers and for which D : Q+
! Q+ is a

function which tells you how � depends uniformly on ". That is, D is a

modulus-of-uniform-convergence function for f , in the sense that

8" > 0 8x; y 2 [a; b] f jx� yj < D(") ! jf(x)� f(y)j < " g

This is generalized to more abstract classes of spaces. To begin with,

Bishop works with separable metric spaces, and he de�nes compactness for

these in a very particular way as follows. A metric space is called totally

bounded if for every " it can be covered by a �nite number of "-neighborhoods.

That means that given any " you can �nd a �nite set of points x1; : : : ; xn such

that any point of the space is within a distance less than " of one of these

points, i.e. you have a function of " which actually produces the required

points. Then a separable metric space is de�ned to be compact if it is totally

bounded and every Cauchy sequence (in his sense) converges. Finally, the

function spaces C(X;Y ) are de�ned wheneverX is compact in this sense and

Y is a separable metric space. Again that is the class of uniformly continuous

functions f : X ! Y with a uniform-modulus-of-continuity function given

as witnessing information.
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On the basis of this kind of systematic re�nement of classical concepts, the

BCM school redevelops substantial tracts of 19th and 20th century analysis

and algebra constructively. To be fully convinced of that you just have to

go through the expositions referred to above to see for yourself. It is an

impressive body of work, and it is not o�-putting to the working (classical)

mathematician in the way that Brouwerian intuitionism was. If you are

willing to be interested in the development at all as a mathematician, you can

read it, and you can take in what all these concepts are. It does not conict

with your ordinary mathematical feelings about what these notions are, and

once you get the style of using witnessing information systematically, you see

how it goes and you get a feeling for why it is constructive. Moreover, you

can see the relation with classical mathematics in the following way. Bishop

formulates what he calls the Limited Principle of Omniscience, LPO, about

natural numbers, as follows

LPO 8n(f(n) = 0) _ 9n(f(n) 6= 0)

which is just a special case of the Law of the Excluded Middle. Bishop asserts

that each theorem of BCM is a constructive substitute �� for a classical the-

orem �, and you can get back the classical theorem, �, from the constructive

version ��, simply by adding the principle LPO, i.e.

LPO ^ �
�
! �

In that sense too, BCM is just a re�nement of classical mathematics, a

re�nement which in an intuitive sense has constructive content. What that

comes to from a logical point of view will be taken up in Part IIA below.

Before that, we turn next to comparisons with the predicative program.

B. Predicative redevelopments of classical mathematics. Although

a great deal of work has been done since the 1960s as a continuation of Weyl's

program there are, unfortunately, no texts one can point to for a systematic

exposition, at least none comparable to those referred to above for BCM.

One book that people mention in this respect is Paul Lorenzen's Di�erential

und Integral (Lorenzen 1965); while signi�cant portions of that are based on

predicative grounds, it is not restricted to such. The monograph of Gaisi

Takeuti, Two Applications of Logic to Mathematics (Takeuti 1978) is, on the

other hand, clearly predicative; that presents a �nite-type extension of the

system ACA0 (de�ned in my second lecture), and shows how various parts

of classical analysis can be formalized there. For predicative developments

7



of classical and modern analysis, one can point to substantial portions of

Stephen Simpson's book, Subsystems of Second Order Arithmetic (Simpson

1998); see especially Chs. III and IV. I shall be concentrating in the following,

instead, on my own approach which has been outlined in several articles

(references below) and elaborated in unpublished notes.

Before going into that, a brief comparison with the work in the Reverse

Mathematics program established by Harvey Friedman and carried on by

Steve Simpson and his students, is in order; that is what (Simpson 1998) is

devoted to. In the Reverse Mathematics program one studies certain second

order formal systems, such as ACA0, where you have variables for natu-

ral numbers and variables for sets of natural numbers, or for functions of

natural numbers. (Concepts of analysis such as real numbers are naturally

represented at the second-order level, but things become a bit more awkward

as soon as one ascends to various kinds of sets and functions of real numbers

and function spaces used in analysis.) It is shown in the Reverse Mathe-

matics program that there are �ve basic set existence principles from which

many results of classical and modern analysis, topology, and algebra follow.

It happens that many of these results are equivalent to the basic set existence

principles from which they follow, i.e. the implications can be reversed, and

that is the main concern in Reverse Mathematics.

By comparison, my own main interest is in consequences rather than

equivalences, and my concern is to have formal systems justi�ed on basic

grounds of one kind or another, in which the mathematics in question can be

developed in as direct a way as possible; this generally means going beyond

second-order systems. In particular, I have developed such systems in which

you can redevelop substantial portions of classical and modern analysis on

predicatively justi�ed grounds. One such is a system I call W, in honor of

Weyl, which is in a certain sense a variable �nite type extension of ACA0.

I will describe that later in the �nal logical part of this article.

In W you can decide, in a sense that I will describe, questions of the

form: 9nf(n) = 0; in other words the Limit Principle of Omniscience, LPO,

holds. Moreover, all the work of (Bishop and Bridges 1985) can be directly

represented withinW. Recall that for each classical theorem � considered in

the Bishop and Bridges text, a constructive substitute �� is found such that

�
�
^LPO implies �. So you could say: let us put these two together. We go

to their book, see all the theorems �� that they get, add LPO, which is inW,

and thus obtain the classical theorem � inW. There is of course an immediate

conviction about how much can be done in this way, but we might like to
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see|without going through this detour which involves additional complexity

of various kinds|just what can be done directly in W. So we start again:

how do we treat the real numbers, how do we treat functions of real numbers,

and so on through the whole business. As I said in Lecture 2, the way Weyl

presented the real numbers was via Dedekind sections. But it is actually

more convenient to work with Cauchy sequences. Unlike the approach in

BCM where a modulus-of-convergence function is part of what constitutes

a Cauchy sequence, in the system W, these are de�ned just as they are

classically. That follows from the fact that the formula

8n;m � k

�
jxn � xmj <

1

p+ 1

�

is arithmetical, hence it can be decided by LPO, and the least such k can be

determined without building it in as additional information. Thus, I do not

have to change the de�nition of Cauchy sequence from its classical de�nition.

Among the theorems that you can prove inW are the Bolzano-Weierstrass

Theorem saying that the real numbers are locally sequentially compact. In

particular it follows that R is Cauchy complete, because any Cauchy se-

quence is bounded, therefore it has a convergent subsequence and therefore

it must converge. However, we cannot prove the LUB axiom for sets in W,

for the same reason, basically, that it is not provable in ACA0.

The argument for the Bolzano-Weierstrass Theorem is by subdivision: if

we have an in�nite sequence in the interval [a; b] then divide this interval in

half and ask if there are in�nitely many terms of the sequence which lie in

the left-hand half; if there are, we are then going to continue on that left-

hand half; if not, then there must be in�nitely many terms on the right-hand

half and we will work on the right-hand side. Whichever half we choose, we

divide it again, and ask which half has in�nitely many, and so on. But the

question whether \there are in�nitely many �'s" is of the form

8n [ �(n)! (9k > n) �(k) ] :

That is an arithmetical formula when � is arithmetical and it is then a ques-

tion which is decided by LPO. Hence, the subdivision argument proceeds

in W as it does classically.

Beyond R, as in BCM, we work within separable metric spaces, where

again a countable sub-basis is explicitly given. One then veri�es that many

familiar spaces such as �nite dimensional real and complex spaces, as well as
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Baire space, are locally sequentially compact. One of the consequences for

such spaces is the Stone-Weierstrass Theorem, which tells us that arbitrary

continuous functions can be approximated in a very nice way.

It was not obvious how to do measure theory in Weyl's setup. Standard

classical presentations of measure theory start out with the de�nition of

measure of a measurable subset, say, of a �nite interval, via the de�nition

of outer measure. Now, outer measure looks at the shrinking of open covers

of the given set and takes the greatest lower bound of the measures of those

open sets. We can de�ne measures of open sets of reals very nicely because

they decompose into a countable union of disjoint open intervals. But for

outer measure we must then apply the GLB axiom, which is not provable

in W. Instead, measurable sets are there taken to be ones that are well

approximated, both themselves and their complements, by sequences of open

covers. You simply use the approximations from both sides in order to deal

with measurable sets directly without going through outer measure. It turns

out in this development that we cannot prove the existence of non-measurable

sets. It is consistent with W that all sets of real numbers are measurable,

but we do not assume that. What can be done in W is a kind of \positive"

development of measure theory.

Following that, one develops the theory of Lebesgue integration, measur-

able functions, and Lebesgue integrable functions and proceeds into func-

tional analysis in a fairly standard way. One can deal in W with linear

operators on separable Banach and Hilbert spaces and carry out the spec-

tral theory of bounded operators. All of this has been worked out by me

in unpublished notes. One further thing I started to work on was how to

do the spectral theory of unbounded operators. One way of doing that is

to approximate unbounded operators by bounded operators in a systematic

way, and that looked like it should go through.2

As a result of such work, I proposed in (Feferman 1988, 1993) the following

Conjecture All (or almost all) scienti�cally applicable analysis can be

carried out in W.

Of course, that is by no means all of analysis. There is a lot of analysis which

goes beyond any potential scienti�c application, including analysis on non-

2While preparing the texts of these lectures for publication, I learned of relevant Ph.D.

thesis work by Feng Ye at Princeton University. According to this work, he shows, among

other things, how to develop the spectral theory of unbounded operators in a system based

on �nitary constructive reasoning that is much weaker thanW.
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separable spaces and analysis which involves non-measurable sets, neither

of which can be done in W. So one must consider test cases in the appli-

cations of analysis to science in which those kinds of things might �gure.

For example, Itamar Pitowsky has proposed a use of non-measurable sets in

quantum mechanics, but there is considerable dispute as to whether that is

a reasonable model. Possible uses of non-separable spaces in other aspects of

quantum theory have been suggested by G. G. Emch|and again those are

very speculative models, which are by no means generally accepted.3 Other-

wise my working conjecture is at least corroborated in the settled scienti�c

applications of analysis.

II Metamathematical Part

Now I want to turn to the metamathematics of both constructive and pred-

icative systems of the sort I've just described. Let us start by going back to

Bishop Constructive Mathematics (BCM) and see what kinds of things are

available here.

A. Formal systems for BCM. I shall concentrate on two papers of my

own, A language and axioms for explicit mathematics (Feferman 1975) which

covers both constructive and predicative mathematics and, more speci�cally

for constructive mathematics, Constructive theories of functions and classes

(Feferman 1988). But let me refer you also to a few other approaches to

formal systems for BCM, including: H. Friedman, Set-theoretic foundations

for constructive analysis (Friedman 1977), and P. Martin-L�of, Intuitionistic

Type Theory (Martin-L�of 1984). As to the latter, Martin-L�of came to his

concepts of intuitionistic type theory on more or less philosophical grounds;

he was not motivated by the question whether you could formalize BCM in

it, and I do not think he was particularly concerned about that. But people

have said that it is in fact one way in which you can look at BCM and rep-

resent it formally. A lot of information can be found in the book by Michael

Beeson, Foundations of Constructive Mathematics (Beeson 1985) compar-

ing di�erent formal approaches, including the ones that I have mentioned.

A very good further source, the two volumes by A.S. Troelstra and D. van

3In a postscript to my 1998 paper in (Feferman 1998), pp. 281{283, I have presented

some negative evidence concerning the Emch and Pitowsky proposals in the literature and

from further discussions with several mathematical physicists and applied mathematicians.
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Dalen, Constructivism in Mathematics I, II, (Troelstra and van Dalen 1988)

also presents various di�erent approaches. Naturally, I favor my own, and I

will sketch that now.

What I did in (Feferman 1975) was to introduce some formal systems of

\Explicit Mathematics", to begin with, a theory T0 which is constructive in

a suitable sense of the word, and then an extension T1 which incorporates

predicative systems. The paper (Feferman 1979) elaborates on the uses of T0

and its metamathematical properties. We conceive its universe of discourse,

V to be rather rich: it includes the natural numbers, is closed under pairing,

and includes elements which are regarded as partial functions. Then partial

functions can apply to natural numbers or n-tuples of natural numbers or n-

tuples of other objects of the universe, and they can also apply to themselves.

But then you have the possibility of functionals, because functions applied

to functions are simply functionals. There are some basic axioms which

govern how these work, the Applicative Axioms, APP, which are essentially

like the axioms for Lambda Calculus, but modi�ed to a form where we are

dealing, not with total functions, but with partial functions. So it is a Partial

Applicative Lambda Calculus. There is a range of models M of APP from

the recursive to the set-theoretical. In the former case, V is taken to be the

natural numbers and functions are taken to be (codes for) partial recursive

functions. In the latter case, V is taken to be the cumulative hierarchy and

functions are generated from ordinary set-theoretic functions to satisfyAPP.

Every modelM of APP can be expanded to a model of the remaining axioms

of T0, all of which concern classes.

We deal with classes either regarded as elements of V in an intensional

way or as represented by elements of V . In the latter case they are named

by elements of V , so we can operate constructively on the names, and we

may regard the classes themselves as extensional objects. There is a choice

there, but it is an inessential di�erence, it is just a formal di�erence whether

you take them at the outset as intensional objects, that is as predicates,

or as extensional objects represented in possibly di�erent ways. For these

you have an Elementary Comprehension Axiom (ECA) which is elementary

in the sense that you do not have quanti�ers ranging over classes in the

statement of which classes are asserted to exist, only over the elements of the

universe, V . But since V is very rich you may have quanti�cation not only

over numbers but also over partial functions in ECA.

Examples of constructions of classes which follow from ECA are: X�Y ,

X
n and X ! Y (the class of all functions which are total on X to Y .) In ad-

12



dition to APP and ECA, the system T0 further contains: usual axioms for

the class of natural numbers N, including the full induction scheme; induc-

tively generated classes in general (IG), and a Join Axiom (J) which allows

us to perform the following operations on sequences (or families) hBxix2A of

classes, [
x2A

Bx;

\
x2A

Bx;

X
x2A

Bx;

Y
x2A

Bx;

among others. It turns out that it is su�cient in J to posit the disjoint union

construction
P

x2A
Bx, from which the others are constructed by ECA.

All of BCM may be comfortably formalized in T0. But that system is

proof-theoretically very strong, and goes far beyond what is needed to do

so. For that purpose, I introduced a relatively (proof-theoretically) weak

subsystem EM0 � of T0 in the 1979 paper referenced above. It omits the

J and IG axioms, and restricts the induction scheme for N to classes, as

in ACA0; that is called Restricted Induction, as is indicated by the sign

�. (`EM' is just an acronym for `Explicit Mathematics'.) Though the join

operation is not available in this system, the above operations on sequences

of classes hBxix2A can still be carried out for \pre-joined" families, i.e. for

which the class f(x; y) j y 2 Bxg is given in advance.

These systems are presented within the classical two sorted predicate

calculus, but, if we want to, we can certainly consider intuitionistic versions

by omitting the Law of the Excluded Middle; then we put an i to indicate

that: Ti

0, (EM0�)
i

:

The main meta-theorems obtained for EM0�, are �rst of all that in clas-

sical logic the system is a conservative extension of Peano Arithmetic, PA;

I showed that by a simple model-theoretic argument. Then for intuitionistic

logic, Beeson showed by using Kripke-models, instead, that (EM0 �)i is a

conservative extension of Heyting Arithmetic,HA, which is PA without the

Law of the Excluded Middle.

Let us go back to what Bishop and Bridges did in their revised version

of Bishop's book and ask: how much of it can be formalized in this system?

They never use the Law of the Excluded Middle, so we can ask how much

of it can be formalized in (EM0�)
i

. It simply comes down to the questions:

where would full induction on N and the use of non-pre-joined families and

general inductively generated classes come in to the picture? These last are

used in T0 for a constructive theory of ordinals as constructive tree-classes.

Now in the original version of Bishop's book, he did measure theory by using
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Borel classes, and Borel classes in e�ect require using ordinals. But, later,

he was able to avoid the use of Borel classes by a quite di�erent approach

he worked out with a student of his (H. Cheng), and that is what you �nd

in Bishop and Bridges' book. It replaces the theory of Borel classes and

therefore does not use ordinals, and thus does not require IG.

By contrast, in Bishop style constructive algebra there is a part of Abelian

group theory where ordinals do come into the picture in an essential way,

namely in what is called the Ulm theory of countable Abelian groups, and

that de�nitely cannot be represented in (EM0�)
i

(though it can be in T0).

But ordinary �nitely generated Abelian group theory all goes through with-

out the use of ordinals. Aside from that, coming back to possible uses of full

induction on N and full Join axiom in (Bishop and Bridges 1985), one just

has to examine these case by case. By being sensitive to that question and

looking at various test cases you can see that all of BCM that does not use

ordinals can in fact be formalized in (EM0�)
i

and therefore rests on a basis

that does not assume any more than Heyting arithmetic.

B. Formal systems for predicativity. To conclude, let us look at

the metamathematical picture for predicativity. Here there are quite a few

references going back to the mid-60s, beginning with the work of myself

(Feferman 1964) and K. Sch�utte (1965) on the analysis of the full extent of

predicative mathematics. For further references, see (Feferman 1987) and

(Feferman and J�ager 1993, 1996).

To go back to the work of Sch�utte and myself from 1964, what this dealt

with was Kreisel's proposal to characterize what is predicative via trans�nite

rami�ed analysis. Although that is not a suitable foundation for the actual

predicative development of analysis, conceptually it is the appropriate place

to look at predicativity, though not through arbitrary ordinals, which would

not make sense predicatively. Only those ordinals which one can access step

by step from below by a kind of autonomy or bootstrap condition are to

be considered. What Sch�utte and I achieved independently in 1964 was a

determination of the least ordinal that is not obtainable in this way. And that

ordinal is the limit �0 of the Veblen hierarchy of critical functions described in

Lecture 1. The union of systems of rami�ed analysis up to but not including

�0 is denoted RA<�0 . Now if you want to see what part of analysis can

actually be carried out on predicative grounds, one needs subsystems which

are predicatively justi�ed, but which are not rami�ed. And by predicative
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justi�cation of a system is meant a proof theoretic reduction to RA<�0 .

For example, ACA0 is predicatively justi�ed in this sense, since it can be

interpreted in RA0, rami�ed analysis at the lowest level. The system W

discussed informally in Part IB is a candidate for a more exible predicatively

justi�ed system which is also unrami�ed. To spell out its principles, �rst of all

W is contained in the system T1 of (Feferman 1975). One axiom of W says

explicitly that existential quanti�cation over natural numbers is something

that is decided by a functional �, as follows:

(�) 9nf(n) = 0 ! f(�(f)) = 0 :

Here we can think of �(f) as the least n such that f(n) = 0, if there is such

an n, otherwise it takes the value 0, and so � is called the non-constructive

minimum operator. As in the systemEM0�, we make use of a restricted form

of induction on N. There it was restricted to classes, while in W we have a

still more restricted form called function induction. It says that if a function

f at 0 is 0 and if the property f(x) = 0 is closed under successor, then f is

0 at all natural numbers:

(Fun-IndN) f(0) = 0^8x(f(x) = 0! f(x0) = 0)! 8x 2 N(f(x) = 0) :

Equivalently: if two functions agree at 0 and whenever they agree at x they

agree at its successor then they agree on all natural numbers. With these

modi�cations, the systemW is very similar to EM0�. It has the Applicative

Axioms, but now beefed up with the functional, �. It has the basic axioms

for 0 and of successor on the natural numbers (N-Axioms) as before, but in

place of Class Induction it has Function Induction; �nally it has Elementary

Comprehension Axiom, as before. Symbolically,

W = APP + (�) +N-Axs + (Fun-IndN) +ECA :

The main metamathematical result forW is due to J�ager and myself (Fe-

ferman and J�ager 1993, 1996); we show (by a much more di�cult argument

than for EM0 �) that W is a conservative extension of PA. Hence, it also is

predicatively reducible.

From our metatheorem and the working hypothesis that all (or almost

all ) scienti�cally applicable analysis can be carried out in W it follows that

the part of mathematics needed for science rests on completely arithmetical

grounds. The signi�cance of this is discussed further, in the conclusion below.
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It is natural to ask whether still weaker systems (proof-theoretically) serve

the same purpose. That has been established to an extent in Reverse Math-

ematics. There, as mentioned before, only second order systems are used;

among these, one second order system emerges that comes up when we are

dealing with the subdivision argument. It is based on the so-called Weak

K�onig's Lemma,WKL. FullKL concerns arbitrary �nitely branching trees,

whereWKL simply deals with binary branching trees. Both say, classically,

that if there are no in�nite branches then there is a common �nite bound

on the length of all the branches, or equivalently, if there are arbitrarily long

branches then there is an in�nite branch. The systemWKL0 treated in Re-

verse Mathematics is obtained from ACA0 by restricting the set existence

axiom ACA to recursive predicates and adding the statementWKL. It was

shown by Friedman by a model-theoretic argument and then by Sieg ( 1991)

by a proof-theoretical argument using Herbrand-Gentzen style methods, that

WKL0 is a conservative extension of Primitive Recursive Arithmetic,PRA.

The system PRA is a fragment of PA that is purely quanti�er-free and

simply has the usual de�ning axioms for primitive recursive functions and

a quanti�er-free rule of induction. It has been argued by Tait that PRA

represents exactly �nitistic mathematics. Though what �nitism consists in

is not a settled matter, Tait's thesis is generally granted.

So now the questions is, how much of classical and modern analysis can al-

ready be carried out inWKL0? Simpson and his students have gone through

this and shown that, not only the analysis of step-wise continuous functions

can be done there, but also substantial portions of functional analysis can be

handled there as well. (Cf. (Simpson 1998), Ch. IV for a detailed exposition

and further references).

Since, in my view, exible (variable) �nite type systems are preferable

to second order systems when examining such questions, let us go back to

the system W. The obvious conjecture is that if we replace the (�)-axiom

by its consequence WKL in the system W, we then obtain a conservative

extension of PRA. That would give a system in which substantial portions

of scienti�cally applicable analysis can be formalized and which can, in prin-

ciple, be justi�ed on �nitistic grounds. (The argument that J�ager and I gave

for W does not pull down directly to this subsystem of W. So, the matter

has to be looked at again.)

To conclude, in (Feferman 1993) I have discussed the signi�cance of my

working hypothesis concerning scienti�cally applicable mathematics inW|

which as we have seen is a conservative extension of PA|for the so-called
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Quine-Putnam indispensability arguments. Their thesis was, as summarized

by Penelope Maddy (cf. op. cit. for the source): \We have good reason to be-

lieve our best scienti�c theories, and mathematical entities are indispensable

to those theories, so we have good reason to believe in mathematical entities.

Mathematics is thus on a . . . par with natural science [and] the evidence that

con�rms scienti�c theories also con�rms the required mathematics." Quine

argued that this justi�es Zermelo set theory, Z, but not Zermelo-Fraenkel set

theory, ZF. The reasoning was that we need the Axiom of In�nity to obtain

the natural numbers N and then the Power Set Axiom to obtain the real

numbers R, and its application once more to obtain the set of real functions

R! R; according to Quine, one is led to accept something like Zermelo set

theory Z by a \simpli�catory rounding out," though no more is necessary for

actual science. But Z is both highly impredicative and vastly stronger than

even full second order analysis, which in turn is impredicative and vastly

stronger than the kinds of systems such as W we have been dealing with

here. Quine's acceptance of Z is based on an uncritical examination of what

is actually needed in mathematics for natural science. The work described

here shows that, as least as far as currently applicable mathematics is con-

cerned, we do not need to go beyond systems of strength PA. I, myself,

do not accept the indispensability arguments but think it is philosophically

important to be aware of that result if one accepts them at all.

This concludes my tour of those modern approaches to constructive and

predicative mathematics, and of associated formal systems, with which I am

most closely acquainted. Whatever approach one prefers (and the references

below can be pursued for other such), I hope you are convinced by the work

presented here of both the viability of constructive and predicative alterna-

tives to classical mathematics (at least of its scienti�cally applicable part) as

well as of my slogan that \a little bit goes a long way".
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