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The 5 Questions 

 
1. Why were you initially drawn to the foundations of mathematics and/or the philosophy 
of mathematics? 
 
2. What examples from your work (or the work of others) illustrate the use of 
mathematics for philosophy? 
 
3. What is the proper role of philosophy of mathematics in relation to logic, foundations 
of mathematics, the traditional core areas of mathematics, and science? 
 
4. What do you consider the most neglected topics and/or contributions in late 20th 
century philosophy of mathematics? 
 
5. What are the most important open problems in the philosophy of mathematics and 
what are the prospects for progress? 
 

My Responses 
 
1. I’m a philosopher by temperament but not by training, and a philosopher of logic and 
mathematics in part, as I shall relate, by accidents of study and career.  Yet, it seems to 
me that if I was destined for anything it was to be a logician primarily motivated by 
philosophical concerns.   
 
When I was a teenager growing up in Los Angeles in the early 1940s, my dream was to 
become a mathematical physicist: I was fascinated by the ideas of relativity theory and 
quantum mechanics, and I read popular expositions which, in those days, besides 
Einstein’s The Meaning of Relativity, was limited to books by the likes of Arthur S. 
Eddington and James Jeans.  I breezed through the high-school mathematics courses 
(calculus was not then on offer, and my teachers barely understood it), but did less well in 
physics, which I should have taken as a reality check.  On the philosophical side I read a 
mixed bag of Bertrand Russell, John Dewey and Alfred Korzybski (the missionary for 
“General Semantics” in Science and Sanity, a mish-mash of the theory of types, non-
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Aristotelian logic and colloidal chemistry, among other things).  Also, I was fascinated 
by, and bashed my head against, Rudolf Carnap’s Logische Aufbau der Welt, but couldn’t 
penetrate it.  Still, I should have taken its attraction for me as another sign.  One thing I 
did know for sure, and that was that I wanted to have an academic career and become a 
professor.  What the source of that was is a bit of a mystery to me, since my parents and 
their friends were working class and I had no personal role models.  But I suppose I 
learned in one way or another that that was the way to go if I were to devote myself to 
theoretical research.   
 
In 1945, I applied to both UCLA and CalTech for mid-year entry to undergraduate 
studies.  I leaned toward UCLA since it was practically free, it had a broader curriculum, 
it was co-ed, and many of my friends were going there.  By contrast, CalTech was 
focussed on science and engineering, it had an all male student body in those days (and 
did not become co-ed until many years later), and none of my buddies applied there.  It 
was also more prestigious.  Perhaps I would have had a different career path if I had not 
passed the entrance exam for CalTech and still had physics so strongly on my mind. 
Tuition expense was a serious obstacle, but I was offered a part-scholarship and a job as a 
lunch-time waiter in the Athenaeum, CalTech’s faculty dining hall, and my proud parents 
made ends meet somehow or other.  (A high point one day as a student waiter was 
serving a boiled egg and salad to Robert Oppenheimer, whom I met again years later in 
his capacity as Director of the Institute for Advanced Study in Princeton, when I was a 
fellow there in 1959-60.)   
 
In my courses during the first two years at Caltech, mathematics was as before a breeze 
and fun, while in my physics courses I found that I lacked even minimal physical 
intuition.  Still, mathematical physics was my goal, and for that the book that was touted 
for students was Harry Bateman’s Partial Differential Equations of Mathematical 
Physics.  Looking through it made clear to me that that wasn’t at all the kind of thing I 
was after.  So, in my junior year, as a kind of fall-back position, I switched majors to 
mathematics.  But there I found that I had to enter a new mind-set, that of pure 
mathematics and theorems to be proved rather than problems to be solved and techniques 
to be mastered.  Of all the courses that I took from then on, only one appealed as a 
possible direction for further study, and that was an introduction to logic taught by Eric 
Temple Bellknown to mathematicians as a number-theorist and author of the romantic 
and historically flawed, Men of Mathematics and The Queen of Sciences, and to science-
fiction aficionados of the day through a pseudonym, John Taine (Green Fire, The Iron 
Star, etc.).  The course, which hardly got beyond propositional calculi of various kinds, 
was a hodge-podge because Bell did not really know anything substantive in logic; I 
learned years later that he had a fatal attraction to Lukasiewicz’ three-valued logic (in his 
The Search for Truth).  Despite its incoherent presentation, the material of that course 
resonated with me, but there was no follow-up to be had at CalTech.   
 
For a career in academia, it was clear I would have to go on to graduate work in 
mathematics, and in 1948 I applied to UC Berkeley and the University of Chicago.  I was 
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accepted at both places, but only Berkeley came through with an offer of a teaching 
assistantship, so that pretty much clinched it.  (Also I had a strong personal reason to 
prefer Berkeleya romantic interest.)  In my first year, I took some of the basic required 
courses in algebra and analysis, and I met Fred Thompson, who was working on a PhD 
with Alfred Tarski.  Thompson idolized Tarski, raved about him no end, and urged me to 
take his course in metamathematics, which I did the following year.  To quote myself 
from the biography that I co-authored with Anita Burdman Feferman, Alfred Tarski. Life 
and Logic (2004), “I knew immediately that this was to be my subject and Tarski would 
be my professor.  He explained everything with such passion and, at the same time, with 
such amazing precision and clarity, spelling out the details with obvious pleasure and 
excitement as if they were as new to him as they were to us.”  In the following years I 
went on to take courses in model theory, set theory and universal algebra with Tarski and 
became a regular attendee at his seminars, which in those years concentrated on algebraic 
logic.  My introduction to recursion theory and Gödel’s incompleteness theorems came 
via Andrzej Mostowski’s 1952 book, Sentences Undecidable in Formalized Arithmetic, 
through its use as the text of a course taught by Jan Kalicki (a promising young logician 
who, tragically, died in an automobile accident in the fall of 1953).  There were no 
courses in proof theory.   
 
I did indeed end up working toward a PhD with Tarski, but the excellent initial progress I 
had made in my studies with him did not presage the difficulties that I would have in 
arriving at a dissertation result to his satisfaction.  (I was not the only one with this 
problem.) That story has been told in our biography of Tarski, and in more detail in my 
article “My route to arithmetization” (1997).  Briefly, Tarski suggested two problems for 
me to solve, one on cylindric algebras, and the other on a decision procedure for the 
ordinals under addition, both of which I attacked dutifully but with only partial success.  
Fate intervened when I was drafted into the US Army in the fall of 1953 (fortunately not 
a time of active war for the US, since it was post-Korea and pre-Vietnam).  After basic 
training, I was assigned to a unit in the Signal Corps at Fort Monmouth, New Jersey, 
doing research on kill probabilities of hypothetical missile attacks on major cities and 
target sites in the US.  My thoughts about this alternated between bemusement with the 
essential unreality of our calculations and anxiety about the possible reality of the 
scenarios with which they dealt.  In what leisure time I had during off-hours, I read and 
reread Kleene’s Introduction to Metamathematics, and that added significantly to my 
understanding of recursion theory and Gödel’s theorems, as well as oriented me toward 
Hilbert’s finitist consistency program.  To my surprise during that period, Alonzo 
Church, as the Reviews editor of The Journal of Symbolic Logic, asked me to take on an 
article by Hao Wang.  That concerned an arithmetized version of Gödel’s completeness 
theorem that extended an earlier version in vol. II of Hilbert and Bernays’ Grundlagen 
der Mathematik.  (I think Dana Scott, who was by then studying in Princeton, suggested 
my name to Church.)  That led me to the question as to how, precisely, one should deal 
with formalized consistency statements in general, and thence directly into my work on 
the arithmetization of metamathematics.  When I was released from active army duty and 
returned to Berkeley in 1955 I proposed that to be the new topic of my dissertation.   
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As it happened, Tarski was on sabbatical leave in Europe that year, and Leon Henkin 
agreed to help supervise my work in his absence.  With his constant encouragement in the 
following months I obtained a number of good new results and I sought Tarski’s approval 
to have them form the main part of my thesis.  Because it was out of the mainstream of 
his interests, and perhaps because it dealt with problems arising from Gödel’s work rather 
than his own, he was initially resistant to that.  But he consulted Mostowski and then 
acceded, though still with some reservations, after he received the latter’s quite positive 
report.   
 
Crucial to me in that period, and, as it turned out, for many years following, was my 
contact with Georg Kreisel.  To quote myself again, in “My route to arithmetization” I 
wrote: “I first met Kreisel during the period in early 1956 when I was well into the 
research for my hoped-for dissertation; Kreisel happened to be visiting Berkeley for a 
month or so at that time.  Our initial personal contact was magical for me: I had hardly to 
begin explaining what I had done and what I was in the process of working on, to see that 
Kreisel understood immediately, and that it related to things he had thought about and to 
a whole body of literature in which he was completely at home.  His positive reception of 
my ideas confirmed my views of the significance of what I was up to, and added to my 
determination to make this work my thesis, despite Tarski’s reservations. … the boost 
provided by Kreisel’s  quick appreciation was psychologically crucial at that agonizing 
time.  In addition, Kreisel opened up a new world to me through his interests in 
constructivity, predicativity and proof theory, interests which I was naturally attracted to 
and which would come to dominate my own subsequent work.”   
 
I wrote up the dissertation itself during the academic year 1956-57 at Stanford University, 
where I had been appointed to an instructorship in mathematics and philosophy, and its 
results were eventually published in 1960 under the title, “Arithmetization of 
metamathematics in a general settting”. 
 
The influence of Tarski and Kreisel was decisive for me, the former in how I carried out 
my work and the latter in what I worked on.  In their own pursuits, both were highly 
conscious of aims and programmatic development; for Tarski that was largely 
mathematical while for Kreisel it was primarily philosophical, though Tarski’s work in 
the 30s on conceptual analysis of semantical notions has also been of great philosophical 
significance.  Tarski emphasized clarity and precision of presentation and careful, 
sequential organization of material; no detail was too small to be overlooked.  By 
contrast, Kreisel emphasized informal rigour and not taking received views for granted; 
once one had the right ideas, details were supposed to look after themselves.  Personally, 
my relations with Tarski were friendly and frequent throughout the years following my 
PhD to the time of his death in 1983, but my work was largely disjoint from his, and even 
where it wasn’t he reserved comment.  By contrast, Kreisel and I were the closest of 
colleagues for some fifteen years up to the time we had a rather abrupt and complete 
falling out in the early 1970s.  In any case, stimulating as our contact had been over such 
a long period, it was time to move on. 
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2. Here are some of the philosophical problems with which I have been concerned off and 
on over a long period of time.  What is the true reason for incompleteness? How may it 
be overcome? What ought we to accept once we have accepted given notions and 
principles?  Does mathematics need new axioms?  What is the significance of 
foundational work for mathematical practice?  Inevitably, each has given rise to more 
specific questions of philosophical relevance that I will also indicate in the following.1 
 
To go back to the beginning; the work in my dissertation was driven by the aim to carry 
out in precise and substantial generality the arithmetization of metamathematics as 
exemplified in particular by Gödel’s second incompleteness (or unprovability of 
consistency) theorem on the one hand and a formalized version of his completeness 
theorem on the other.  Both involved consistency statements, the latter in the form that a 
recursively axiomatized theory S is interpretable in Peano Arithmetic (PA) when the 
consistency of S, ConS, is added as an axiom.  But just what is meant by ConS in general?  
That is explained in terms of the arithmetized provability predicate for S, ProvS(x), and 
that in turn is determined by an arithmetized definition AxS(x) of the set of axioms of S, 
once we fix the logic to be that of the classical first-order predicate calculus.  It turns out 
that for the formalized completeness theorem it is sufficient for AxS(x) to binumerate the 
axioms of S in PA.  But that is not sufficient for the unprovability of consistency 
theorem, since an example can be given of a binumerative definition of the axioms of PA 
for which the associated statement ConPA is provable in PAin contrast, of course, to the 
“canonical” definition.  On the other hand, if AxS(x) is provably recursively enumerable 
(r.e.) and S is a consistent extension of PA (and already of much weaker systems) then 
ConS is not provable in S; any such definition serves to verify the Hilbert-Bernays 
derivability conditions for ProvS(x).  I showed how one could trade on the difference 
between these general statements, for example to show that PA + (¬ConPA) is 
interpretable in PA.  
 
A non-chronological aside: while provably r.e. definitions are sufficient for general 
formulations of the second incompleteness theorem and other results of the same 
character in the arithmetization of metamathematics, they are not necessarily 
intensionally correct, so what was still called for was an account of canonical consistency 
statements.  As it happens, it was not until the early 1980s that I returned to give full 
consideration to that matter.  My solution, in an improved form in the 1989 paper 
“Finitary inductively presented logics”, was to treat formal systems as they are actually 
presented to us in practice through the finite inductive generation of various syntactic 
categories of objects, operations on them, and relations between them; consistency 
statements are then canonically associated with those.  Besides addressing the conceptual 
issue of finding the “right” framework for general developments, this work was 
conceived of as having potential pedagogical and practical value, the latter via the pursuit 
of computer implementation of a wide variety of logical systems.  

                                                
1 Because of limitations of space, I cannot go here into other parts of my work that I 
consider to be of philosophical significance, including that on systems of constructive 
analysis and explicit mathematics, type-free theories of truth, foundations of category 
theory, relativized Hilbert program, and the limits of logic.   
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Moving beyond these particular technical and conceptual questions, following my 
dissertation work I turned to the phenomenon of arithmetical incompleteness itself.  What 
is the reason for it? Can it be overcome?  Famously, Gödel in footnote 48a to his 1931 
paper on undecidable propositions said that “the true reason for the incompleteness 
inherent in all formal systems of mathematics is that the formation of ever higher types 
can be continued into the transfinite … while in any formal system at most denumerably 
many of them are available. … An analogous situation prevails for the axiom system of 
set theory.”  To be sure, one can go beyond whatever axioms have already been accepted 
by adding axioms for the existence of sets that code a truth definition for a model of the 
previously accepted axioms, and thus prove their consistency.  So Gödel’s is one reason 
that can be given for incompleteness.  But another one that can be given is that it is 
simply a matter of oversight: whatever has led one to accept a given system S of axioms 
ought to lead one to accept its consistency ConS as a new axiom.  More generally, one 
ought to accept an expression of the correctness of S in the form of the local reflection 
scheme ProvS(A) → A for each A in the language of S.  Moreover, such extensions are 
formulated without positing the existence of any sets whatever.  Unlimited finite iteration 
of such schemes beginning with, say, PA, still leads to incomplete r.e. systems.  So the 
natural question to ask is, to what extent can arithmetical incompleteness be overcome by 
the transfinite iteration of consistency statements and more generally of reflection 
schemata?  The first attempt to answer such questions had been carried out by Alan 
Turing in 1939.  He introduced the notion of an ordinal logic, which is a uniform means 
of associating an r.e. system Sa with each a ∈ O, the set of Church-Kleene recursive 
ordinal notations.  Turing showed by an ingenious argument that if one forms the Sa by 
iterating consistency statements starting with S1 = PA, every true statement A of the form 
∀xR(x) with R primitive recursive can be proved in Sa for some a ∈ O that denotes ω+1.  
Turing was particularly interested in obtaining a similar result for statements in the next 
higher quantificational form, ∀x∃yR(x,y), via iteration of the local reflection principle; 
this class includes many interesting open problems in number theory.   
 
In my 1962 paper, “Transfinite recursive progressions of axiomatic theories” (my 
rechristening of Turing’s ordinal logics), I showed that iteration of the local reflection 
principle is incomplete for ∀∃ statements, but one does obtain completeness for them by 
iterating instead the uniform reflection scheme, ∀xProvS(A(num(x)) → ∀xA(x), i.e. the 
formalized version of the ω-rule.  In fact one obtains much more: for that progression, 
every true arithmetical statement A is provable in Sa for some a ∈ O at level ω2+ω+1.  
Moreover, there are paths P through O and recursive in O, such that every true 
arithmetical statement A is provable in Sa for some a ∈ P.  However, these results, like 
Turing’s, suffer from non-uniqueness: different notations a, b for the same ordinal may 
have quite different Sa and Sb.  Indeed, Spector and I showed in the follow-up paper, 
“Incompleteness along paths in progressions of theories” (1962), that one has 
incompleteness with respect to ∀-form statements along any path P through O that is of 
the same logical form as O (i.e., one universal set quantifier), and moreover there are 
many such paths thus putting us back to square one.  
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A side conceptual question raised by this work is: what is a natural system of notations 
for ordinal numbers?  The paradigm example for that is Cantor’s system of notations for 
the ordinals up to ε0, the least solution of ωα = α.  The cited completeness results for 
progressions depend crucially on the construction of non-natural notations that somehow 
encode the truths to be proved.  Ever since Gentzen’s proof in 1936 of the consistency of 
PA by transfinite induction up to ε0 with respect to a primitive recursive predicate, the 
question of natural well-orderings has also been of prime significance for proof-theorists 
in pursuit of Hilbert’s consistency program for systems much stronger than PA.  In 
practice, that work applies transfinite induction up to ordinals α much larger than ε0 for 
which one has a natural system of notations up to α.  Moreover, every such system has a 
recursive ordering on it and thus is embeddable in an initial segment of O.  But simple 
examples serve to show that recursiveness is far from sufficient as a condition for 
naturality.  This is a problem that has yet to receive a satisfactory answer; some efforts to 
provide one are surveyed in my lecture text, “Three conceptual problems that bug me” 
(1996a).   
 
In any case, the main problem with the work on ordinal logics/recursive progressions of 
theories was the lack of a conceptually motivated restriction on which ordinal notations 
ought to be accepted.  Following Kreisel’s own earlier work “Ordinal logics and the 
characterization of informal concepts of proof” (1960) on a progression related to 
finitism, he suggested that the choice of notations should be controlled by an autonomy 
condition.  That is, one may proceed to an Sa only if it has been proved in some 
previously accepted Sb with b < a that the ordering of notations up to a is well-ordered, so 
that a recognizably denotes an ordinal α.2 On the other hand, the restriction to the 
language of arithmetic that had been taken before may be considered to be arbitrary.  For, 
once one has accepted a system S as correct, one ought to accept the truth predicate for 
sentences of the language of S as a new basic notion with its usual closure conditions as 
new axioms; doing so automatically yields the uniform reflection principle for S.  Thus 
one is led to consider a progression of theories starting with PA obtained by iterating 
autonomously the adjunction of truth predicates.  It turns out that this is equivalent to an 
autonomous progression of ramified second-order theories RAα, or ramified analysis.  
Just as Russell ramified the theory of types in order to meet the Vicious Circle Principle 
and thus satisfy Poincaré’s injunction against impredicative definitions, so this could be 
considered to provide a characterization of the notion of predicative provability given the 
natural numbers.  The first question to ask, assuming that, was, what is the ordinal of 
predicativity, i.e. what is the least ordinal not obtained in the autonomous progression of 
RAα’s?  The answer to that was provided in my paper, “Predicative systems of analysis” 
(1964) and, independently, around the same time by Kurt Schütte.  Denoted Γ0, it is the 
least ordinal γ not obtained by transfinitely iterating the fixed point process applied to 
continuous increasing ordinal functions beginning with the exponential function.  By its 
nature, this proposed characterization of predicativity is impredicative, since it requires 
the impredicative concept of ordinal or well-ordering.  It is supposed to be complete as 
                                                
2 On the face of it, this requires a second-order quantifier over all subsets X of the 
ordering up to a, but restriction to a first-order language can be maintained by taking X to 
be a predicate parameter. 
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looked at from the inside, in the sense that everything the “ideal predicativist” ought to 
acceptand nothing moreis eventually accepted, but it is certainly incomplete looked 
at from the outside, since the consistency of the limit system RAγ with γ = Γ0 is not 
provable in that system.  
 
My subsequent work on predicativity branched along two paths, each carried out over an 
extended period. The first was to reformulate the characterization of predicative 
provability without any overt appeal to the impredicative notions of ordinal or well-
ordering, so that it would describe more directly the expansion of reasoning that could be 
admitted by an ideal predicativist.  The second was to see what part of mathematical 
practice may be accounted for in predicative terms.3  
 
Along the first path, my rethinking of the formulation of systems for predicativity went 
through several stages, and was eventually conceived in the mid 90s as part of a much 
wider project, namely the determination of what I call the unfolding of open-ended 
schematic systems.  The initial spark for that was provided by Kreisel’s 1970 article, 
“Principles of proof and ordinals implicit in given concepts”.  He posed the general 
question: “What principles of proof do we recognize as valid once we have understood 
(or, as one sometimes says, ‘accepted’) certain given concepts?” As he elaborated it, 
“[t]he process of recognizing the validity of such principles (including the principles for 
defining new concepts, that is, formally, of extending a given language) is here conceived 
as a process of reflection... Granted that we have to do with an area [C] which lends itself 
to the kind of analysis indicated, it is evident that ordinals play a basic role. They index 
the stages in the reflection process.”  The two principal basic concepts considered by 
Kreisel were, in his terminology: 1. the concepts of ω-sequence and ω-iteration, and 2. 
the concepts of set of natural numbers and numerical quantification, the first being related 
to his earlier work (1960) on an autonomous progressions for finitist mathematics and the 
latter to mine (1964) on an autonomous progression for predicative mathematics.  
However, I decided instead that the formal systems considered for a given C should not 
be taken to involve the notions of ordinal or well-ordering in any way that is not already 
contained in the basic concepts of C.  Moreover, I thought that extensions of set theory by 
certain axioms for “large cardinals” should serve as another possible example, in 
accordance with Gödel’s view in his famous 1947 article on Cantor’s continuum problem 
that the familiar systems such as ZFC “can be supplemented without arbitrariness by new 
axioms which are only the natural continuation of those set up so far.”  
 
The general notion of unfolding that I arrived at was first explained in my article, 
“Gödel’s program for new axioms: why, where, how, and what?” (1996).  It is applicable 
to formal systems in which schematic axioms and rules of inference are expressed using 
free predicate variables in an expandable language for which each expansion leads to 
new accepted substitution instances.  The general questions raised for such open-ended 
schematic systems S are: which operations and predicates—and which principles 

                                                
3 See my survey article “Predicativity” (2005) for a much fuller description of my work 
on that subject, together with its background in the ideas and work of Poincaré, Russell, 
Weyl, Kleene and Kreisel.   
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concerning them—ought to be accepted if one has accepted S? The answer for operations 
is straightforward: any operation from and to individuals is accepted which is determined 
explicitly or implicitly (e.g., recursively) from the basic operations of S. Moreover, the 
principles which are added concerning such operations are just those which are derived 
from the way that they are introduced. The question concerning predicates in the 
unfolding of S is treated in operational terms as well: which operations on and to 
predicates–and which principles concerning them—ought to be accepted if one has 
accepted S? For this, it is necessary to tell at the outset which logical operations on 
predicates are taken for granted in S. For example, in the case of non-finitist (classical) 
arithmetic NFA, these would be (say) the operations ¬, ∧ and ∀, while in the case of 
finitist arithmetic FA we would be limited to positive propositional connectives and (in 
one formulation) the existential operator.  Both of these have been investigated in 
collaboration with Thomas Strahm, to begin with in “The unfolding of non-finitist 
arithmetic” (2000), with the following results.  We take the initial axioms for NFA to be 
the usual ones for 0, successor and predecessor (as the only constants and operations on 
individuals) together with the induction scheme P(0) ∧ (∀x)[P(x) → P(sc(x))] → 
(∀x)P(x).  Further operations on individuals and predicates, and more elaborate axiom 
schemes are successively recognized via proofs of existence using the substitution rule.  
We showed that the operational unfolding of NFA is equivalent to PA, while the full 
(operational and predicate) unfolding is equivalent to predicative analysis, i.e. the union 
of the RAα for α < Γ0.   
 
In an unpublished MS in progress, “The unfolding of finitist arithmetic”, Strahm and I 
have shown that both the operational and full unfolding of a system FA for finitist 
arithmetic are equivalent to the system PRA of Primitive Recursive Arithmetic.  This 
supports Tait’s argument in his paper “Finitism” (1981) that PRA represents the limit of 
finitist definitions and proofs, while it differs from Kreisel’s claim (in his 1960 paper 
cited above, and elsewhere) that a system equivalent in strength to PA is its limit.  I 
conjecture that a system of strength PA can be shown to be the unfolding of NF 
augmented by a suitable quantifier-free form of rules for definition and proof by 
induction on well-founded orderings.  Finally, while there are no definitive results yet for 
the unfolding of set theory, a framework for that has been provided in my paper, 
“Operational set theory and small large cardinals” (2006a).  There are other obvious 
candidates of open-ended schematic systems for which the unfolding notion ought to be 
investigated.   
 
I can be somewhat briefer concerning the mathematical path in the work on predicativity.  
In Hermann Weyl’s work Das Kontinuum (1918) of his predicativist period, he explained 
how all of 19th century analysis of piece-wise continuous functions could be accounted 
for in predicative terms.  Examination of Weyl’s system showed that it could be 
formalized within a theory of finite types conservative over PA.  By modifying this to a 
more flexible system W of variable finite types also conservative over PA, I was able to 
verify that much of 20th century functional analysis of Lebesgue measurable functions 
can be formalized in W.  I was then led to conjecture that all of scientifically applicable 
mathematics can be formalized in W, and hence rests on a completely predicative basis; 
see “Why a little bit goes a long way.  Logical foundations of scientifically applicable 
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mathematics” (1993).  That conjecture has been verified to a considerable extent for the 
main fundamental results in functional analysis.  This is relevant to the Quine-Putnam 
indispensability thesis that led them to accept substantial portions of impredicative set 
theory as seemingly inextricably necessary for science.  As I have written op. cit., “By 
the fact of the proof-theoretical reduction of W to PA, the only ontology it commits one 
to is that which justifies acceptance of PA.”  Moreover, as is well-known, the latter is 
reducible to the intuitionistic system HA of Heyting Arithmetic, which does not require 
any platonistic ontology whatever.  Thus, in my view, “if one accepts the indispensability 
arguments, practically nothing philosophically definitive can be said of the entities which 
are then supposed to have the same status—ontologically and epistemologically—as the 
entities of natural science.” My conclusion was that the indispensability arguments are 
thus completely vitiated. 
 
3. How can one’s choice of philosophy of mathematics dictate what it is right to do and 
say in mathematics, i.e. in its foundations?  Consider the candidates on offer: formalism, 
finitism, constructivism, predicativism, logicism, nominalism, fictionalism, 
instrumentalism, platonic realism, structuralism, modal structuralism, scientific 
naturalism, mathematical naturalism, and quasi-empiricism, among others, including 
some in competing subvarieties.  For those thinkers who have arrived at what they take to 
be the one true philosophy, the answer goes without saying.  Moreover, among the 
pioneers to our subject such as Cantor, Frege, Brouwer and Hilbert, that stance was very 
efficacious in leading to substantial research programs.  However, as those programs 
were developed, along with great strides they were marked by serious difficulties.  
Comparable programs nowadays that are being vigorously pursued by a number of 
adherents are Martin-Löf’s constructive type theory, the Bishop school of constructivity, 
the large cardinal program in set theory, and categorical foundations.  For these, the 
difficulties are of a different nature.  Like predicativity, the first two require radical 
restrictions of what is admitted to mathematics, while the large cardinal program makes 
use of a radical extension; finally, the categorical program claims to usurp logical 
foundations.  Most logicians have not committed to such definite philosophical views, 
since active debate between the various positions makes a choice between them difficult, 
and radical solutions are discomfiting.  Among mathematicians, there is a widespread 
view that ongoing current mathematics on the whole is more reliable than any of the 
philosophically motivated programs that have been proposed to replace it, and that the 
only foundations that need be considered (if any at all) is organizational.   
 
My own view lies between these extremes.  First of all, the historical development of 
mathematics shows that not anything goes, that a number of notions, assumptions and 
supposed results have been found to be seriously problematic at one stage or another, e.g. 
infinitesimals, imaginary numbers, points at infinity, trigonometric series expansions of 
arbitrary functions, probabilistic arguments, etc., etc.  In the past, mathematicians dealt 
with these on a case by case basis.  In my article, “Working foundations” (1993a), I have 
argued that outside of the grand foundational schemes, what logic has had to offer in 
these days is work that is “a direct continuation by more conscious, systematic means of 
foundational moves which have been carried on within mathematics itself from the very 
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beginning.”  While not driven by any particular philosophical view, these foundational 
ways are often usefully informed by philosophical distinctions. 
 
The second thing I have been concerned with at a philosophical level is a critical 
examination of several foundational schemes, including categorical foundations, 
Lakatosian quasi-empiricism, and the large cardinal program, in the articles (among 
others) “Categorical foundations and foundations of category theory” (1977), “The logic 
of mathematical discovery versus the logical structure of mathematics” (1981), and “Why 
the program for new axioms needs to be questioned” (2000), respectively.  I have already 
mentioned another critique of this character above, in connection with the Quine-Putnam 
indispensability thesis.  In all of these, while not espousing a fixed positive philosophical 
position, I have brought to bear some fairly strong negative views.  Limitation of space 
prevents me from going into any detail here about the content of these critiques.   
 
But let me enlarge on the positive vs. the negative aspects.  Because of my substantial 
involvement over the years in studying the concept of predicative definability and 
provability, some have assumed that my philosophical position is that of predicativism; 
this is definitely not the case.  As I have written in the preface to my collection of essays, 
In the Light of Logic (1998), rather, “I am a convinced antiplatonist in mathematics.  
…according to the platonist philosophy, the objects of mathematics such as numbers, 
sets, functions and spaces are supposed to exist independently of human thoughts and 
constructions, and statements concerning these abstract entities are supposed to have a 
truth value independent of our ability to determine them.  Though this accords with the 
mental practice of the working mathematician, I find the viewpoint philosophically 
preposterous…” (or, as I have written elsewhere, set-theoretical platonism is the 
“medieval metaphysics of mathematics”). To go on, “[i]t should not be concluded from 
this, or from the fact that I have spent many years working on different aspects of 
predicativity, that I consider it the be-all and end-all in non-platonistic foundations.  
Rather, it should be looked upon as the philosophy of how we get off the ground and 
sustain flight mathematically without assuming more than the basic structure of the 
natural numbers to begin with.  There are less clear-cut conceptions which can lead us 
higher into the mathematical stratosphere …That such conceptions are less clear-cut than 
the natural number system is no reason not to use them, but one should look to see where 
it is necessary to use them and what we can say about what it is we know when we do use 
them.”  
 
4, 5.  I shall neglect question 4 about “the most neglected topics and/or contributions in 
late 20th century philosophy of mathematics” and go on directly to question 5, “What are 
the most important open problems in the philosophy of mathematics and what are the 
prospects for progress?”  Here are some rather general questions: 
(i) Is the Continuum Hypothesis a definite mathematical problem? 
(ii) What is a natural system and what is the interpretability order of natural systems? 
(iii) What makes mathematics such a distinctive body of thought?  What determines what 
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counts as mathematics and what doesn’t?  
(iv) Is the structure of mathematics essentially logical in nature?  If not, what is it?  
(v) Is the use of formal systems an adequate model of mathematical practice? 
(vi) How is it that mathematics is so successfully applicable to natural science?  Does that 
depend on what part of mathematics is being applied? 
 
Concerning (i), I came to the conclusion some years ago that CH is an inherently vague 
problem (see, e.g., the article (2000) cited above).  This was based partly on the results 
from the metatheory of set theory showing that CH is independent of all remotely 
plausible axioms extending ZFC, including all large cardinal axioms that have been 
proposed so far.  In fact it is consistent with all such axioms (if they are consistent at all) 
that the cardinal number of the continuum can be “anything it ought to be”, i.e. anything 
which is not excluded by König’s theorem.  The other basis for my view is philosophical: 
I believe there is no independent platonic reality that gives determinate meaning to the 
language of set theory in general, and to the supposed totality of arbitrary subsets of the 
natural numbers in particular, and hence not to its cardinal number.  Incidentally, the 
mathematical community seems implicitly to have come to the same conclusion: it is not 
among the seven Millennium Prize Problems established in the year 2000 by the Clay 
Mathematics Institute, for which the awards are $1,000,000 each; and this despite the fact 
that it was the lead challenge in the famous list of unsolved mathematical problems 
proposed by Hilbert in the year 1900, and one of the few that still remains open.   
I have been asked to explain what I mean by the statement of a problem being inherently 
vague.  The idea is that, not only is it vague, but there is no reasonable way to sharpen the 
notion or notions which are essential to its formulation without violating what the notion 
is supposed to be about.  For example, the notion of feasibly computable number is 
inherently vague in that sense.  And, for the statement of CH, the notion of arbitrary 
subset of N can’t be sharpened to arbitrary constructible subset of N, or any specific 
relativization thereof, without violating the idea of arbitrary subset of a set, independent 
of any means of definition.  I think progress can be made on elaborating the idea of 
inherently vague notions; whether that can be used to strengthen the case that CH is an 
inherently vague problem remains to be seen. 
 
Concerning (ii), much has been made by workers in the metamathematics of set theory of 
the observed fact that all natural systems extending ZFC that have been considered are 
comparable by the relation of relative interpretability in Tarski’s sense.  Moreover, in 
many cases systems based on quite different principles turn out to have the same 
interpretability strength.  It happens that large cardinal axioms have in all such cases 
figured as an essential link in establishing the interpretation (see, for example, Steel 2000, 
p. 227).  The central role of large cardinal axioms in these phenomena has been taken to 
suggest that that they in some way reflect a pre-established harmony.  Be that as it may, 
the phenomenon of linear ordering under interpretability has been observed to hold much 
more generally for all natural systems that have been considered extending certain very 
weak subsystems of arithmetic (cf. Friedman 2007, Section 7), and large cardinal axioms 
don’t have anything to do with that more general phenomenon.  So, really, the underlying 
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question here is: what is a natural system?  And then, if there is a reasonable answer to 
that question, what is the interpretability order and related orders (translatability, 
consistency, etc.) between such systems?  Friedman points out (loc. cit.) that it is not 
linear among algebraic systems, e.g.  the theories of discrete linear order without end-
points and dense linear order without end-points are incomparable.  Nor is it linear 
among finite extensions of arithmetic (hence f.i.p. systems), as shown in Lindström 1997, 
Ch. 7.  However, the latter systems are not natural because they are “cooked-up” by 
means of arithmetization techniques.  It would be quite remarkable, and might be 
considered some sign of the inner harmony of mathematics, if all natural systems 
extending arithmetic turned out to be linearly ordered by interpretability.  If one believes 
that this should be the case, a search for counterexamples among candidate explications 
could be a first step toward narrowing down the informal concept of natural system.  
 
Problems (iii)-(v) are interrelated, and may be connected with problem (vi). Let me 
conclude with some ideas about these.  Discovery in mathematics is one of the highest 
exercises of creative intelligence.  But confirmation of mathematical discoveries requires 
rigorous calculation and demonstration, and in this respect mathematics is logical at its 
core.  Moreover, mathematics is progressive, it builds on what came before.  Thus, since 
there can be no infinite regress, from the point of view of logic mathematics must rest 
ultimately on some sort of axiomatic foundations.  While mathematicians may accept this 
in principle, there is a sharp dichotomy between the logicians’ conception of mathematics 
and that of the practicing mathematician.  The latter pays little or no attention to logical 
or foundational axioms, even if he or she subscribes to some overall foundational 
viewpoint such as that of axiomatic set theory.  And in fact, the logical picture of 
mathematics bears little relation to the logical structure of mathematics as it works out in 
practice.  The use of certain basic structures like the natural numbers and the real 
numbers (and of structures built directly from them like the integers, rationals and 
complex numbers) is ubiquitous, and there is constant appeal to such principles as proof 
by induction and definition by recursion on the naturals and of the lub principle for the 
real numbers.  But these are not viewed from an axiomatic point of view, e.g. from that of 
the Peano Axioms for the naturals.  The essential difference is that the language of PA is 
limited to a fixed vocabulary, whereas induction and recursion can be applied in any 
subject in which natural numbers play some sort of role.  For example, the operation xn is 
defined in any (multiplicative) semi-group for every element x and natural number n, and 
its properties are proved by induction on n.  So even where the practicing mathematician 
invokes the basic axioms of the natural numbers, that is done without restriction to a 
fixed vocabulary.  According to the current set-theoretical point of view, all such 
concepts that the mathematician might want to use in addition to those expressed in PA 
are defined in the language of ZFC, so we need only look no further in order to give full 
logical scope to what underlies daily mathematics.  It seems however, that if we accept 
the language of set theory we ought to accept notions not defined in that language, such 
as the notion of truth in the set-theoretical universe.  Moreover there are informal 
outlying notions that have mathematical coherence, but are not (as given) defined within 
set theory.  One such, for example, is the notion of free choice sequence used by the 
Brouwerian intuitionists; this is separate from the fact that a formal system for f.c.s.’s can 
be modeled in set-theoretical terms.  Another example of a mathematical notion that is 
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not set-theoretically defined is the informal concept of randomness applied in various 
contexts, though again axiomatics of randomness has been modeled set-theoretically.  
Finally, when mathematics is applied to natural science, it makes direct use of physical 
concepts like force, mass, charge, etc., etc., that are evidently not expressed in set-
theoretical terms at all.  In my 2005 ASL lecture, “Open-ended schematic axiom 
systems” (2006), I have proposed an informal framework to account for mathematical 
practice and its actual and future possible applications in a more direct way than through 
the use of the various formal systems currently dominating logical work.  This is work in 
progress, as an extension of my earlier work on unfolding of open-ended schematic 
systems.  An essential new feature is the introduction of a quite general underlying 
“proto-mathematical” framework for operations and properties; that allows for the 
interaction of basic schematic systems like those for the natural numbers, real numbers, 
and subsets of any domain.  I believe the emphasis on conceptual open-endedness will 
also provide a new perspective on the phenomenon of incompleteness which was the 
preoccupation above.     
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