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Like Heisenberg’s uncertainty principle, Gödel’s incompleteness theorem has captured 

the public imagination, supposedly demonstrating that there are absolute limits to what 

can be known.  More specifically, it is thought to tell us that there are mathematical truths 

which can never be proved.  These are among the many misconceptions and misuses of 

Gödel’s theorem and its consequences.  Incompleteness has been held to show, for 

example, that there cannot be a Theory of Everything, the so-called holy grail of modern 

physics.  Some philosophers and mathematicians say it proves that minds can’t be 

modelled by machines, while others argue that they can be modelled but that Gödel’s 

theorem shows we can’t know it.  Postmodernists have claimed to find support in it for 

the view that objective truth is chimerical. And in the Bibliography of Christianity and 

Mathematics (yes, there is such a publication) it is asserted that ‘theologians can be 

comforted in their failure to systematize revealed truth because mathematicians cannot 

grasp all mathematical truths in their systems either.’ Not only that, the incompleteness 

theorem is held to imply the existence of God, since only He can decide all truths.  

Even Rebecca Goldstein’s book, whose laudable aim is to provide non-technical 

expositions of the incompleteness theorems (there are two) for a general audience and 

place them in their historical and biographical context, makes extravagant claims and 

distorts their significance. As Goldstein sees it, Gödel’s theorems are ‘the most prolix 

theorems in the history of mathematics’ and address themselves ‘to the central question 

of the humanities – ‘what is it to be human?’ –  since they involve ‘such vast and messy 

areas as the nature of truth and knowledge and certainty’. Unfortunately, these weighty 

claims disintegrate under closer examination, while the book as a whole is marred by a 

number of disturbing conceptual and historical errors.  

On the face of it, Goldstein would appear to have been an ideal choice to present 

Gödel’s work: she received a PhD in Philosophy from Princeton University in 1977 and 
since then has taught philosophy of science and philosophy of mind at several 
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universities.  She has also had a successful career as a writer of novels and short stories 

including The Mind-Body Problem and Properties of Light. A Novel of Love, Betrayal 

and Quantum Physics. 

What she does very well is to provide a vivid biographical picture of Gödel, 

beginning mid-stream with his touching relationship with Albert Einstein at the Institute 

for Advanced Study in Princeton, where, over a period of 15 years until Einstein’s death 

in 1955, they were often seen walking and talking together. They made an odd-looking 

couple: ‘One of [them], dapperly dressed in a white linen suit with a matching fedora, is 

still in his thirties, while the other, in baggy pants held up by old-world-style suspenders, 

is approaching 70.’ (Thus Gödel and Einstein in a widely reproduced summer photo. 

More often, in other seasons, even when warm, Gödel was seen bundled up in a heavy 

black overcoat.) In personality too they were opposites: Gödel was slight to the point of 

frailty, hypochondriac and buttoned up; Einstein was hearty and gregarious. But they 

enjoyed a close affinity owing to their similar cultural backgrounds and their pursuit of 

central problems in their respective fields. Both were German speaking émigrés (‘exiles’, 

as Goldstein has it): Einstein was brought from Nazi Germany to the Institute in 1933 by 

its founder, Abraham Flexner, as one of the first two permanent members (the other was 

the American mathematician, Oswald Veblen, brother of Thorstein); Gödel fled Austria 

at the last minute in 1940 to avoid conscription and came to the Institute as an ‘ordinary’ 

member, only later becoming a permanent one.  

 Gödel and Einstein’s most important work lay behind them, achieved in each case 

over a single, remarkable decade. In Einstein’s annus mirabilis of 1905 he published 

three seminal papers, including one on the special theory of relativity; the general theory 

of relativity was announced in 1915. After that, he was increasingly sidelined in 

theoretical physics, which came to be dominated by the probabilistic theories of quantum 

mechanics. To the end of his life, Einstein sought instead a deterministic unified theory of 

gravitation and electromagnetism since in his view, ‘God does not play dice.’  For his 

part, Gödel’s three fundamental results were the completeness theorem for the first-order 

logic of predicates (in his PhD thesis of 1929); the incompleteness theorems a year later; 

and his proof of the consistency of two problematic hypotheses with the axioms of set 

theory in 1939.  In the early 1940s, he worked on attempts to prove the independence of 
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the first of these, the so-called Axiom of Choice, with only limited success; after that he 

devoted himself almost entirely to the philosophy of mathematics.   

 In her final chapter, Goldstein portrays Gödel’s later life – during which he 

gradually descended via a surfeit of rationality into paranoia – with great empathy. 

Terrified of being poisoned, he died in January 1978 – according to the death certificate, 

of ‘malnutrition and inanition caused by personality disturbance’.  

As to the core of Goldstein’s book, anyone familiar with Gödel’s work has to 

flinch. Dozens of errors could have been avoided by an expert vetting of the manuscript. 

At the very least we would not have had ‘Kreisl’ for ‘Kreisel’, ‘Kline’ for ‘Kleene’ and 

‘Tannenbaum’ for ‘Teitelbaum’ (the birth surname of Alfred Tarski, the great logician, 

whose significant interaction with Gödel barely merits Goldstein’s notice). We would not 

have had a seriously incorrect (nay, impossible) formulation of Gödel’s crucial lemma 

providing for the construction of mathematical statements that indirectly refer to 

themselves.  We would not have had it said that the second incompleteness theorem is an 

immediate consequence of the first (the proof of the second requires much more delicate 

work). We would not have had a pairing of Gödel with Paul Cohen – who proved the 

independence of the Axiom of Choice twenty years after Gödel’s failed efforts – as if 

they were colleagues or teacher and student (at the time, Cohen was on the faculty at 

Stanford, on the other side of the continent from Princeton). We would not have had a 

misleading account of the origin and significance of non-standard models. And so on. 

But, instead of enlarging on such errors, let’s concentrate on those aspects of 

Incompleteness where one might have expected Goldstein’s professional background in 

philosophy to be put to better use. Even in this respect, she gets things seriously wrong.  

 Gödel entered the University of Vienna in 1924. At first, he was interested in 

physics, but switched to mathematics after attending the dazzling lectures in number 

theory by Philip Furtwängler. It was already clear that he had a gift for mathematics, 

which harmonized with his predisposition to precise thinking. Within a few years, Gödel 

began more specialized studies in mathematical logic. At the invitation of his supervisor, 

Hans Hahn, he became a regular at meetings of the Vienna Circle, a select philosophical 

discussion group. The leading members of the Circle called themselves logical 

positivists: they eschewed metaphysics in favor of the logical analysis of scientific 
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knowledge; statements of observation were the only ones granted a ‘primary’ meaning. In 

this they were greatly influenced by Ernst Mach’s empiricist (or positivist) philosophy of 

science and Wittgenstein’s ‘picture theory of meaning’, as developed in the Tractatus. 

Since mathematics is essential to the formulation of physical laws, the logical positivists 

also leaned heavily on Bertrand Russell’s program to reduce all mathematical concepts 

and truths to those of pure logic (a program, as it happens, that was later recognized to 

have failed).  

Goldstein bases her story of the development of the incompleteness theorems on 

the supposed fact that – in contrast to the views of the Vienna Circle – Gödel was already 

a confirmed Platonist. The philosophy of Platonic realism in mathematics holds that 

abstract objects such as numbers, points, sets and functions have an objective, immutable 

existence independent of the observer, and that the task of the mathematician is to 

establish truths about this reality. It is Goldstein’s conceit that Gödel fell in love with 

Platonism in 1925 in an introductory course on the history of philosophy. According to 

her, this put him at complete odds with the logical positivists when he attended their 

meetings. ‘Gödel’s audacious ambition to arrive at a mathematical conclusion that would 

be a metamathematical result supporting mathematical realism was precisely what 

yielded the incompleteness theorems.’ Goldstein claims that by 1928 this ambition had 

driven him to begin work on the proof of the first incompleteness theorem, ‘which he 

interpreted as disproving a central tenet of the Vienna Circle . . . He had used 

mathematical logic, beloved of the logical positivists, to wreak havoc on the positivist 

antimetaphysical position.’ In addition, her view is that Gödel’s theorems were designed 

to refute the formalist program of David Hilbert, according to which mathematics is 

nothing but an arbitrary human creation, ‘a game played according to certain simple rules 

with meaningless marks on paper’.  

Wrong, wrong, wrong! --But we can see how Goldstein was misled. There is no 

doubt that the mature Gödel was a mathematical Platonist, as is attested by some of his 

published and unpublished papers from the 1940s onwards, and by his many 

communications with colleagues. True, Gödel himself said here and there that he held 

these views since his student days.  There is considerable evidence, however, that Gödel 

was by no means fixed in his philosophical views prior to 1940. For example, in a lecture 
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he gave to the Mathematical Association of America in 1933 he made a strongly anti-

Platonist statement about the axioms of set theory (proposed by some as a foundation for 

all of mathematics), namely that ‘if interpreted as meaningful statements, [these axioms] 

necessarily presuppose a kind of Platonism, which cannot satisfy any critical mind and 

which does not even produce the conviction that they are consistent.’  

Goldstein uses the word ‘metamathematics’ mistakenly throughout, taking it to 

refer to the philosophy of mathematics, by loose analogy with ‘metaphysics’.  (Not only 

that, she uses ‘meta’ as a neologizing modifier with abandon, viz. ‘metaquestion’, 

‘metaconviction’, ‘metalight’, ‘metaovertones’, etc.)   This is not at all the sense in which 

it has been used by logicians since the 1920s, when it was introduced by Hilbert. In this 

usage, metamathematics is a branch of mathematics: it studies the syntax and semantics 

of formal languages and axiomatic systems set up to model informal mathematical 

reasoning. In that sense, Gödel’s theorems are a contribution to metamathematics, but not 

in Goldstein’s sense.  Finally, Hilbert never said that mathematics is nothing but ‘a game 

played according to certain simple rules with meaningless marks on paper’, a view 

incorrectly ascribed to him by Eric Temple Bell, a mathematician but a very careless 

historian of mathematics (as well as an author of science-fiction under the pseudonym, 

John Taine). Hilbert, the most versatile and influential mathematician of the late 19th and 

early 20th centuries, certainly thought that mathematical concepts are determined by 

axiomatic systems, but he did not deny that those concepts had meaning; on the contrary, 

in his practice he took mathematics fully at face value.  

The misconception of Hilbert as a formalist lay in his aim to secure mathematics 

against paradoxes that had emerged at the turn of the century, by axiomatizing it in 

formal systems representing the various parts of the subject – number theory, analysis, 

geometry, set theory etc – and establishing of each axiomatized system that it is 

consistent. This was to be done step by step, beginning with number theory: the study of 

the positive integers (or whole numbers), 1, 2, 3, . . . --and, following that, in what 

mathematicians call analysis: the study of real numbers via sets or sequences of rational 

numbers (or fractions); and then on to still higher parts of mathematics.  Hilbert insisted 

that consistency proofs be finitary, i.e. make use only of concepts and reasoning 

involving finite objects and finite collections of them. His program had a prima facie 
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plausibility since mathematical proofs as represented in formal systems are special finite 

sequences of symbols, and the consistency of a system would be established by showing 

that no such sequence produces a contradiction.  

As Gödel explained for an article by Hao Wang about his achievements, the 

incompleteness theorems came out of his attempt in 1930 to contribute to Hilbert’s 

program by providing a consistency proof of an axiomatic system for analysis. Whatever 

his philosophical views may have been at the time, his motivation had nothing to do with 

undermining logical positivism or formalism. To understand Gödel’s intervention, and in 

what way Goldstein has misconstrued it, we need to take account of some more logical 

terminology. A formal system is said to be complete if for each sentence A in its 

language, either A or its negation, not-A, is provable; and is said to be incomplete if that 

does not hold, i.e. for some sentence A, both A and not-A are unprovable. The notions of 

provability, completeness and incompleteness are purely syntactical: they have to do only 

with the form of expressions and the formal relations between them; the notion of a 

system’s consistency is, similarly, a syntactical one. By contrast, the notion of truth is 

semantic, having to do with the meaning assigned to expressions in the language of the 

system. Hilbert had conjectured that number theory is complete and that its consistency 

can be proved by finitary means.  

In pursuit of Hilbert’s program, Gödel’s plan was to reduce the consistency of 

analysis to the consistency of number theory and then to prove the consistency of number 

theory by finitary means. It was in trying to carry out the first step that he realized he 

would need to formally express the concept of truth for number theoretical sentences in 

the language of number theory itself, but that if he could do that, he would be able to 

produce a form of the Liar Paradox – a statement that asserts its own falsity – within 

number theory. This would be a contradiction. His plan, he now saw, could not be carried 

out. On the other hand, since the concept of provability could be formally expressed in 

the system, a number-theoretical statement A could be formed which asserts its own 

unprovability. Now if it were possible to prove A in the system for number theory it 

would contradict its own statement of unprovability; therefore, it is indeed unprovable 

and hence true, so number theory is incomplete.   
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This argument presumes that the axioms of number theory are true and that its 

rules of inference preserve truth, so no contradictions can be met among its provable 

statements. To meet the finitary restrictions that Hilbert placed on metamathematics, 

Gödel dispensed with the notion of truth in favor of certain consistency assumptions in 

the general formulation of his first incompleteness theorem.  In part, this showed that if S 

is any consistent formal system which contains number theory and A is a statement that 

asserts its own unprovability in S then A is indeed not provable in S. 

The success of these arguments depends on taking seriously the idea that the 

metamathematics of a formal system is simply a branch of mathematics, and that when 

the principles underlying metamathematical arguments are analyzed, it may be possible 

to formalize some or all of them within the system under consideration. In particular, 

Gödel carefully examined his metamathematical proof of the statement ‘If S is consistent 

then A is not provable in S,’ and verified that each step of the argument could be 

formalized in number theory; this makes use of the fact that the consistency of S can be 

expressed within number theory.  Thus S proves that the consistency of S implies the 

statement A, and since A is not provable in S if S is consistent, it follows that the 

consistency of S is not provable in S under the same conditions.  That is Gödel’s second 

incompleteness theorem.  

Is there any system S for which it is possible to give a finitary proof of its 

consistency? It follows from Gödel’s second theorem that if S is such that all finitary 

arguments can be represented within it, then the answer will be no. At the conclusion of 

Gödel’s incompleteness paper, he asserted that it may well be that there are finitary 

proofs that cannot be represented in the basic system for number theory used there.  
Gödel had taken Hilbert’s program seriously from beginning to end of his work on the 

incompleteness theorems and he was by no means out to undermine it.   A few years 

later, though, he came to the conclusion that all finitary arguments can be formalized in 

number theory and hence that Hilbert’s program to  establish the consistency of 

mathematics cannot be carried out for that system and, a fortiori, for any system 

containing it.  There is now general agreement that Hilbert’s program as originally 

conceived cannot be carried out other than for some relatively weak formal systems.  
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This is not a philosophical conclusion, but concerns only the aims and methodology of 

metamathematics.  

Nor do the incompleteness theorems in and of themselves support mathematical 

Platonism. The first of them looks as though it vindicates some form of mathematical 

realism when expressed in the form that for any sufficiently strong, consistent S, there are 

statements A that are true but not provable in S, since it seems to tell us something 

significant about the truth of statements of S. But the vindication is only apparent, since 

the notion of truth is already presumed in the very formulation of the theorem.  

Moreover, on closer examination, it is not the truth of mathematical statements in general 

that is at issue, but only the truth of number-theoretic statements of a very special form.   

In other words, not only is Goldstein mistaken about Gödel’s philosophical 

motivations for proving his incompleteness theorems, she is also wrong about their 

supposed philosophical consequences. She has, perhaps, been misled by the fact that 

Gödel himself thought they had such consequences, though not until much later, during 

the 1950s. He made such claims only in unpublished lectures and essays which, 

following his death, were retrieved from his Nachlass and published in his Collected 

Works. Towards the end of a 1951 lecture, ‘Some basic theorems on the foundations of 

mathematics and their implications’, he says of his arguments in favour of Platonism: ‘Of 
course I do not claim that the foregoing considerations amount to a real proof of this view 

about the nature of mathematics.  The most I could assert would be to have disproved the 
nominalistic view, which considers mathematics to consist solely in syntactic 

conventions and their logical consequences.’ 

Between 1953 and 1959, he elaborated this claim in an essay entitled ‘Is 

mathematics syntax of language?’ Gödel prepared six versions of the essay, but in the 

end was not satisfied with any of them and did not submit it. He wrote to the editor: ‘It is 

easy to allege very weighty and striking arguments in favor of my views, but a complete 

elucidation of the situation turned out to be more difficult than I had anticipated.’ All this 
is marked by Gödel’s extreme caution about publishing his philosophical convictions, 
when he could not arrive at completely unassailable arguments in their favor. 

 In addition to Goldstein’s mistaken view that Gödel was out to refute Hilbert’s 
program, much, too, is made in her book of Gödel’s supposed ‘decades-smoldering 
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resentment’ toward Wittgenstein as the ‘idol’ of the Vienna Circle.  Despite 

Wittgenstein’s major influence on the Circle through the Tractatus, he was not a 
positivist nor one of its members, and he and Gödel never met or corresponded.  It is 

generally agreed that Wittgenstein, in his 1967 Remarks on the Foundations of 

Mathematics, seriously misunderstood the content of Gödel’s theorems.  When this was 

brought to Gödel’s attention a few years later, he became quite annoyed, but for his part 

he could not appreciate Wittgenstein’s questioning of their philosophical significance.  
The two were talking past each other, not at ‘loggerheads’, as Goldstein would have it.  

Although the incompleteness theorems do not have direct philosophical 

consequences about the nature of mathematical truth, let alone the nature of truth in 

general (and even less about ‘what it is to be human’), they certainly raise questions of 

great interest for the philosophy of mathematics. If, for example, mathematics is to be 

founded on systems of axioms, on what basis are those systems to be chosen? The 

incompleteness theorems tell us that whatever system is accepted, one will need further 

axioms to arrive at previously unprovable truths. But which axioms, and why? Various 

answers have been proposed, but none has gained universal acceptance. (Meanwhile, 

mathematicians have happily gone on doing their thing; for as Gödel himself observed in 

his 1951 lecture on the foundations of mathematics, it is safe to say that 99.9 per cent of 

mathematics follows from a small settled part of the axiomatic theory of sets.) 

Other philosophical questions about the nature of mathematics are invited by the 

incompleteness theorems. If mathematics is about a non-physical Platonic reality, how 

can mathematicians gain knowledge of it? If, alternatively, it is a human creation, what 

confers on it its exceptional certainty, which distinguishes it from most other areas of 

human thought? From either point of view, how come mathematics is so useful in 

describing the physical world?  Gödel’s theorems have also been brought to bear when 

considering whether mind is in essence a computing machine, or, more specifically, 

whether in pursuing mathematical problems the human mind is encompassed by a formal 

system. In his 1951 lecture, Gödel claimed to have proved a weaker statement: either 

mind (in principle) surpasses any machine, or there are certain absolutely unsolvable 

number-theoretic problems. It is clear that Gödel believed that mind is not mechanical, 
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but he could not produce an unassailable proof; even his ‘proof’ of the disjunction lacks 

mathematical precision, involving as it does so vague a concept of mind.  

 Those who are fascinated by Gödel’s theorems--and the general idea of limits to 

what we can know—may still hunger for a more universal view of their possible 

significance.  But they should not be satisfied with Goldstein’s ‘vast and messy’ goulash, 

hers is not a recipe for true understanding.  

 

Solomon Feferman 


