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Mathematical Intuition vs. Mathematical Monsters 
Solomon Feferman* 

 
    Logic sometimes breeds monsters. --Henri Poincaré 
     
    DELTA: But there isn’t a theorem in the world which   
     couldn’t be falsified by monsters. --Imre Lakatos 
 
Abstract: 
Geometrical and physical intuition, both untutored and cultivated, is ubiquitous in the 
research, teaching, and development of mathematics.  A number of mathematical 
“monsters”, or pathological objects, have been produced whichaccording to some 
mathematiciansseriously challenge the reliability of intuition.  We examine several 
famous geometrical, topological and set-theoretical examples of such monsters in order to 
see to what extent, if at all, intuition is undermined in its everyday roles. 
 
1. Varieties of mathematical intuition.  The philosophical literature on mathematical 
intuition rightly concentrates on the question whether there is any sort of direct intuition 
of basic mathematical objects, structures and propositions, and, if so, to what extent that 
constitutes a foundation for mathematical knowledge.1  My intention here is, rather, to 
direct attention to the ubiquitous employment of mathematical intuition at a more 
everyday level in research, teaching and the development of mathematics, and to ask to 
what extent challenges to the reliability of intuition undermine its uses in these roles.  As 
it turns out, this will eventually return us to the more fundamental philosophical 
questions.   
 The word intuition as used by mathematicians has a variety of meanings, only a 
few of which will be touched on here.2  One sense is the common “Ah, hah!” Erlebnis of 
a flash of insight or illumination on the road to the solution of a problem.  The classic 
account by Henri Poincaré in his article “Mathematical discovery”3 contains both 
anecdotal material and an analysis of this role of intuition in the creative process.  Both 
were  
_________________________ 
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 elaborated by Jacques Hadamard in his well-known book, The Psychology of Invention 
in the Mathematical Field4 where the sequence leading to discovery is described as 
consisting, to begin with, of conscious preparatory engagement with the problem, 
followed by a period of gestation; next comes the crucial juncture of illumination, and the 
process is rounded out with rigorous verification.  Less vivid than the Poincaré-Hadamard 
account, but equally common, are the mathematicians’ hunches as to what problems it 
would be profitable to attack, what results are to be expected, and what methods are likely 
to work.  How much of this is peculiar to creative research in mathematics as opposed to 
other areas of science is another matter.   
 The meanings I wish, rather, to emphasize here, are those falling under the 
heading of geometrical and physical intuition.  I would question whether there is such a 
thing as innate, “raw”, untutored intuition of these or indeed of any kind.  In any case, it is 
clear that our intuitions can be cultivated through training and practice.  These may 
accord with tacit knowledge gained through experience, but, equally, one may gain 
intuitions that help one maneuver through subject matter that is initially highly non-
intuitive.  Moreover, intuitive knowledge or understanding is not simply separated from 
that obtained by more or less systematic reasoningthe two frequently go hand in hand, 
and neither is dispensable in practice.   
 In the teaching of mathematics, both geometrical and physical intuition are 
constantly called upon at all levels for motivation of notions and results, and even in 
some cases for proofs.  As examples of the latter, no proof of Pythagoras’ theorem can be 
more directly convincing than those involving dissection and rearrangement of figures, in 
some cases in combination with some elementary algebra.  Given the geometrical and 
physical applications of the calculus, it is not surprising that the corresponding intuitions 
should be called on regularly in the teaching of that subject.  But those same intuitions, 
suitably cultivated and extended, serve to carry one confidently into the study of analysis 
in higher dimensional spaces and then on into functional analysis.  There too, as in linear 
algebra, geometrical intuition is frequently appealed to in the use of notions of vector 
addition, length, angle, projection, etc.  And the near universal appearance of analogues 
of Pythagoras’ theorem in analysis and higher geometry is a linchpin in the extension of 
one’s intuition from familiar ground to the most diverse settings.   
 Topology serves to cultivate its own distinctive intuitions as rubber sheet 
geometry.  Closed orientable surfaces in three dimensions provide a playing ground 
where one can adapt those intuitions to the notions and techniques of combinatorial 
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topology in order to deal with less visualizable manifolds.  And, as a final pedagogical 
example, a good current course in axiomatic set theory will start with the intuitive 
conception of the cumulative hierarchy and appeal to it to justify the Zermelo-Fraenkel 
axioms and various plausible extensions.  Moreover, one returns to that in modified 
forms in the constructible and relative constructible hierarchies employed in various 
consistency and independence results. 
 Such examples can be multiplied a thousand-fold.  The point here is not to 
enumerate them, but rather to recognize the ubiquity of intuition in the common 
experience of teaching and learning mathematics, and the reasons for that: it is essential 
for motivation of notions and results and to guide one’s conceptions via tacit or explicit 
analogies in the transfer from familiar grounds to unfamiliar terrain.  In sum, no less than 
the absorption of the techniques of systematic, rigorous, logically developed mathematics, 
intuition is necessary for the understanding of mathematics.5  Historically, and for the 
same reasons, it also played an essential role in the development of mathematics.  The 
precise mathematical expression of various parts of our perceptual experience is mediated 
to begin with by intuitive concepts of point, line, curve, angle, tangent, length, area, 
volume, etc.  These are not uniquely determined in some Platonic heaven.  Mathematics 
models these concepts in more or less rigorous terms (sufficient unto the day), and then 
interweaves them to form more elaborate models or theories of physical experience as 
well as purely mathematical theories.  The adequacy of explication of the basic concepts 
can only be tested holistically by the degree to which these theories are successful.6   
 
2. Geometrical and topological monsters.  I don’t know who first applied the word 
“monster” to examples of counter-intuitive “pathological” functions and figures of the 
sort that began to emerge in the latter part of the nineteenth century.  My earliest source is 
the following from one of Henri Poincaré’s essays dating from 1906, “Mathematical 
definitions and education”7:  

 
Logic sometimes breeds monsters.  For half a century there has been springing 
up a host of weird functions, which seem to strive to have as little resemblance 
as possible to honest functions that are of some use.  No more continuity, or else 
continuity but no derivatives, etc. ...  Formerly, when a new function was 
invented, it was in view of some practical end.  Today they are invented on 
purpose to show our ancestors’ reasonings at fault, and we shall never get 
anything more out of them. 
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The appearance of monsters was a direct result of the nineteenth century program for the 
rigorous foundation of analysis and its arithmetization, i.e. for the triumph of number 
over geometry, at the hands most notably of Bolzano, Cauchy, Weierstrass, Dedekind and 
Cantor.  That program grew in response to the increasing uncertainty as to what it was 
legitimate to do and say in mathematics, and especially in analysis.  One could no longer 
rely on calculations that looked right, or depend on physical applications to justify the 
mathematics.  The completed program of arithmetization substituted the real number 
system for the measurement line and “ε, δ“ definitions and proofs for limit concepts and 
arguments.  The central notions which then emerged for functions were those of 
continuity and differentiability (both at a point or in a region) and integrability.  In those 
terms, the notion of a curve in n dimensions was defined simply as a continuous map f on 
a closed interval [a,b] to n-dimensional space Rn, and the tangent to such a curve at a 
point was then defined in terms of the derivatives of the components of f, when those 
exist.  Use of these precise explications sufficed to verify rigorously many of the 
intuitively evident properties of continuous functions and curves in the prior informal 
sense, e.g. that a continuous f from [a,b] to the real numbers R takes on a maximum and 
minimum on that interval, and that for differentiable f, such extrema can be located 
among the points where the tangent to its curve is horizontal.  Of course, it was familiar 
and expected that reasonable functions could have isolated points of discontinuity and 
that a continuous function could have isolated points where there is no tangent to its 
graph.  It was thus a surprise when Weierstrass produced an example of a function which 
is everywhere continuous and nowhere differentiable.  Then Peano produced an example 
of a space-filling curve, i.e. a continuous function from the closed interval [0,1] to R2 
whose range is the unit square [0,1] × [0,1], thus violating the intuition that a curve is a 
one-dimensional object.  Moreover, there is no reasonable assignment of length as a 
measure to Peano’s curve.  It was to such objects that Poincaré was reacting as 
“monsters”.   
 By contrast to Poincaré, the mathematician Hans Hahn (one of the principals in 
the Vienna Circle and the teacher of Kurt Gödel) argued against intuition in mathematics 
in a famous 1933 essay, “The crisis in intuition”.8  Asserting its complete unreliability, he 
made use of a number of mathematical monsters to support his critique.  Hahn’s main 
target was the Kantian view of space as one of the forms of pure intuition.9  Besides 
presenting simplified examples of a continuous curve without a tangent at any point and 
of a space-filling curve (in a form due to Hilbert), Hahn also described examples 
challenging intuitive topological concepts.  One, due to Brouwer, is that of a map of three 
“countries” which meet each other at every point of their boundaries.  Another, due to 
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Sierpinski, produces a curve which intersects itself at every point.  Typically, these 
objects are constructed as limits of reasonably well-behaved functions.  For example, the 
Peano-Hilbert space-filling “curve” is a limit of curves that first go through every 
quadrant of the unit square, then more quickly through every sub-quadrant, and so.  The 
Sierpinski “curve” is obtained by successively deleting the interior of an inscribed 
equilateral triangle within an initial such triangle; it is the skeleton of what’s left in the 
limit.10  
 Hahn draws the following conclusion from such examples in his essay: 

 
Because intuition turned out to be deceptive in so many instances, and because 
propositions that had been accounted true by intuition were repeatedly proved 
false by logic, mathematicians became more and more sceptical of the validity of 
intuition.  They learned that it is unsafe to accept any mathematical proposition, 
much less to base any mathematical discipline on intuitive convictions.  Thus a 
demand arose for the expulsion of intuition from mathematical reasoning, and 
for the complete formalization of mathematics.  That is to say, every new 
mathematical concept was to be introduced through a purely logical definition; 
every mathematical proof was to be carried through by strictly logical means... 
The task of completely formalizing mathematics, of reducing it entirely to logic, 
was arduous and difficult; it meant nothing less than a reform in root and branch.  
Propositions that had formerly been accepted as intuitively evident had to be 
painstakingly proved.11  

 
As to this last, Hahn cited the example of the Jordan curve theorem, according to which 
every simple closed curve in the plane is the boundary of two open connected regions, 
one (the “interior”) being bounded, the other (the “exterior”) unbounded.  It had been 
pointed out by Camille Jordan that it is necessary to formulate explicitly this bit of tacit 
intuitively obvious knowledge for the proper development of complex analysis, but it 
turned out to be devilishly difficult to prove even for reasonably well-behaved simple 
closed curves, namely those with polygonal boundary; after several faulty attempts by 
Jordan and others, it was finally proved in general for continuous boundaries in 1905 by 
Oswald Veblen.  Note, however, that the problem with intuition in this case was not due 
to a challenge by a monster, but rather the apparent necessity to use complicated rigorous 
methods even for intuitively simple results.   
 Another topological monster which Hahn could have cited, but didn’t, is the so-
called Alexander “horned” sphere (devised by James W. Alexander in 1924), which 
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relates to higher-dimensional versions of the Jordan curve theorem.  Two subsets X and Y 
of a topological space are said to be homeomorphic if there is a one-to-one continous map 
from X to Y whose inverse is also continuous; this seems to explicate the intuitive notion 
of rubber sheet equivalence.  The Alexander horned sphere is a subset S* of R3 which is 
homeomorphic to the unit sphere S2 in R3.  S* is formed by successively growing pairs of 
“horns” from S2 which are almost interlocked and whose end points approach each other; 
the first steps in its construction can be visualized by posing the thumb and forefinger of 
each hand toward those of the other hand as if one is going to interlock them, then 
growing a smaller thumb and forefinger on the end of each of these, etc.; S* is what is 
obtained in the limit.  While S2 is homeomorphic to S*, its ambient space is not: there is 
no homeomorphism of R3 with itself which takes S2 to S*, and this is because the 
complement of S*, unlike that of S2, is not simply connected.12  
 Without in the least bit denying the necessity of developing mathematicsin 
particular analysis and topologyin a rigorous manner, evidently (in view of my remarks 
in section 1) I disagree with those who, like Hahn and others, believe that intuition has no 
value and that it must be expelled from mathematics.  What, then, is one to say about the 
geometrical and topological monsters that are supposed to demonstrate the unreliability of 
intuition?  The answer is simply that these serve as counterexamples to intuitively 
expected results when certain notions are used as explications which serve various 
purposes well enough but which do not have all expected properties.  Unless one thinks 
that curves, for example, are laid up in a Platonic heaven as continuous functions from an 
interval to Rn, the arithmetized notion of curve must be treated as a model of an intuitive 
concept which itself isolates and describes in an idealized form certain aspects of 
experience.  An explication that is closer to most ordinary experience requires of a curve 
that it is at least piece-wise differentiable.  That less-stringent definitions of this notion 
may be valuable in modelling unusual parts of experience such as Brownian motion or 
fractal geometry (see ftn. 10) is not thereby denied; no one explication need be assumed 
to fit its purpose in all theories.  Similarly, while the use of homeomorphism as the 
mathematical definition of the conceptual rubber sheet stretching of a sphere and other 
familiar surfaces (such as tori, etc.) serves to verify many expected properties (e.g. forms 
of connectedness, “hole”-iness, etc.), it does not model fully the informal concept.  Thus 
one does not meet the kind of pathology represented by the Alexander horned sphere in 
the restriction to differentiable manifolds and diffeomorphisms between them.  Of course, 
special applications of topology in scientific modeling may require more delicate 
distinctions, as, for example, René Thom’s “catastrophe” theory required a central focus 
on singularities of differentiable mappings.13 
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 Though it is understandable for the time, given the continuing deep influence of 
Kant’s views through the work of the neo-Kantians in philosophy, it seems to me that 
Hahn’s focus on the Kantian account of geometric intuition is misplaced so far as 
mathematics is concerned, and that the examples brought forward against the unreliability 
of intuition serve a quite different and more general purpose.  Namely, it is standard 
mathematical practice to seek best possible results of an expected kind, and one way to 
achieve such is to make weakest possible assumptions on the given data.  In this respect 
the mathematical monsters serve simply to provide counter-examples to further possible 
improvements.  
 
3. Paradoxical decompositions of sets.  The internal process of the foundations of 
mathematics which had been dominated by the arithmetization program in the nineteenth 
century was transformed via Cantor’s revolutionary Mengenlehre into the set-
theoretization program dominating twentieth century foundations.  Several monsters 
established by set-theoretical methods, the so-called Hausdorff Paradox and the Banach-
Tarski Paradox,  emerged early in the first quarter of the new century in connection with a 
problem of both geometrical and analytical character.  For the basic technical information 
in the following I have drawn heavily on the excellent comprehensive expository work, 
The Banach-Tarski Paradox, by Stan Wagon.14  The background is this: a continuing 
concern for analysis at the turn of the century was the need for a satisfactory suitable 
general theory of integration in one or more variables, for example to deal rigorously with 
Fourier series in sufficient generality.  From the beginning, formal manipulations with 
these series looked right, but aroused serious concerns over their justification, especially 
as they led to fairly discontinuous functions, and because the relation between 
trigonometric series representing a function on a subset of its domain and the function 
itself was rather complicated.15  Now, one of the traditional applications of integration 
was calculation of areas and volumes, and it in turn could be conceived geometrically in 
terms of such.  Extended to higher-dimensional spaces, the problem of integration was 
thus subsumed under the problem of assigning to rather general subsets A of n-
dimensional space Rn a measure m(A) as “volume”, to satisfy the following minimal 
intuitive requirements, where m(A) is always a non-negative real number: 
 
(i) m is finitely additive, i.e. if A and B are disjoint then m(A ∪ B) = m(A) + m(B), 
(ii) m is isometry-invariant, i.e. if A is transformed into A′ by a rigid motion then  
m(A) = m(A′), and  
(iii) m normalizes the unit “cube” C in Rn, i.e. m(C) = 1. 
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The least class of sets on which such m can be defined consists of all finite disjoint unions 
of isometric images of the unit cube.  But one can clearly improve that to encompass all 
cubical subdivisions of the unit cube as well.  Efforts were made by Jordan and others to 
extend the domain of such m far beyond that, so as to include the kinds of sets needed for 
the analytic applications of integration.  It turned out that an adequate theory for the latter 
required countable additivity in place of finite additivity of m, and the most satisfactory 
definition of measure which incorporated that was first obtained by Henri Lebesgue in 
1902.  This yields a class of sets called measurable, which includes n-dimensional cubes 
of all sizes, normalizes the unit cube, is isometry-invariant, and is closed under countable 
unions and complements.  In the case n = 1, the class of measurable sets includes all 
intervals [a, b] (with standard length (b − a) as measure), is closed under countable 
unions and complements, and is translation-invariant.  Lebesgue raised the question 
whether there is a translation-invariant countably additive extension of the standard 
measure of intervals which is defined on all subsets of R.  This was answered in the 
negative by Giuseppe Vitali in 1905, i.e. he proved the existence of sets which are not 
measurable in the sense of Lebesgue; Vitali’s proof made essential use of the Axiom of 
Choice (AC) in order to choose one element out of each member of an uncountable 
collection of non-empty sets.  The same negative result applies also in all higher 
dimensions. 
 Following this work, it was natural then to return to the minimal requirements (i)-
(iii) and ask whether there is a function m defined on all subsets of Rn which satisfies 
those requirements.  In 1914, Felix Hausdorff succeeded in answering this question in the 
negative in all dimensions n greater than 2, while leaving it open for dimensions 1 and 2.  
His result, known as Hausdorff’s Paradox, makes use of the following notion:  two sets A  
and B  in Rn are said to be equivalent by finite decomposition  if A can be decomposed 
into a finite number of pieces which can be transformed by rigid motions and 
reassembled to form B, i.e. if there exist A1,..., Ak and B1,..., Bk such that A is the union of 
the Ai, B is the union of the Bi and each Ai is isometric to Bi (i = 1,...,k).  Then a set A is 
said to be paradoxical  if it is equivalent by finite decomposition to the union of two 
disjoint copies A′ and A′′ of itself.  The appellation is appropriate; it does not seem 
intuitively possible that there are non-empty sets which are paradoxical in this sense.  In 
fact it can be shown that there is no paradoxical subset of R1.  Yet, what Hausdorff 
proved (by an ingenious extension of Vitali’s argument, again using AC) is that: there is 
a denumerable subset D of the unit sphere S2 in R3 such that the set A = S2 − D is 
paradoxical.  This could then be used to show that there is no finitely additive, isometry-
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invariant measure on all subsets of Rn for n  ≥ 3 which normalizes the unit cube.  
Building on Hausdorff’s method, in 1924 Alfred Tarski and Stefan Banach proved the 
even more surprising result that: for each n ≥ 3 the unit ball in Rn is paradoxical.  
Moreover, they proved that any two bounded subsets of Rn each with non-empty interior 
are equivalent by finite decomposition.  Stated colloquially, according to the Banach-
Tarski (B-T) paradox, one can “cut up a pea into finitely many pieces and rearrange them 
to form a ball the size of the sun!”  The negative measure-theoretic consequence of the 
Hausdorff Paradox is immediate from this.  That left open the question for dimensions 
one and two; it was not until 1929 that Tarski was able to show (again using AC) that the 
previous negative result was best possible: there is a finitely additive, isometry-invariant 
measure which normalizes the unit interval, resp. square.   
 There has been much discussion of the significance of the B-T Paradox centering 
on the role of AC, the Axiom of Choice.  A few years after Paul Cohen invented the 
method of forcing to establish the independence of AC from the axioms ZF of the 
Zermelo-Fraenkel system of set theory, Robert Solovay proved a major metatheorem, 
whose consequence is that if we replace AC by the so-called Axiom of Dependent 
Choices DC then the B-T Paradox is not a theorem of ZF + DC, granted the consistency 
of ZF.16 Moreover, DC serves to carry out all “positive” uses of the Axiom of Choice in 
the part of real analysis that requires measure theory.  Thus the counter-intuitive 
consequences of B-T can simply be avoided by giving up full AC in favor of DC, without 
any genuine mathematical sacrifice.   
 But in this respect the situation of intuition vis à vis the monster contains one new 
aspect which is rather different from the geometrical and topological cases discussed in 
the preceding section.  It was not a question there of how the monstrous examples are 
established but rather of what they are examples.  Granted the precise definitions of 
continuous function, curve, etc. used in them, there is no dispute as to the proofs that a 
specific continuous function is nowhere differentiable or that a curve is space-filling, etc.  
Here, rather, the proof is put in question (at least by some), and it is the necessary use of 
AC that makes it questionable; so, the monster is “avoided” by simply barring the use of 
AC from proofs.  But one can reasonably take the opposite position that the monster has 
not ceased to exist thereby, only that one has somehow hidden from it in this way.  After 
many years of controversy over the role of AC in various parts of mathematics,17 it is fair 
to say that most mathematicians accept it in practice as either obvious or an unavoidable 
necessity.  If they have qualms about its use, they may be further comforted by Gödel’s 
relative consistency result that ZF + AC is consistent if ZF is consistent.  A much stronger 
position is taken by working set-theorists, who recognize AC (along with all the axioms 
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of ZF) as an evident truth about sets.  Indeed one’s intuitions about “arbitrary” sets would 
seem to make AC obvious, since such sets are supposed to exist independently of how 
one constructs or describes them.  So, according to this view, the monster is real and 
needs to be embraced (or at least allowed to sleep in another room of the house) 
regardless of its unusual nature.  What one has here, then, is a conflict of two quite 
different intuitions.  From the common-sense point of view of physical-geometric 
intuition, the B-T paradox is a patent impossibility, while from that of set-theoretical 
intuition, it is just another theorem, albeit a surprising one.  It is exactly the latter that was 
expressed by Banach and Tarski in their 1924 article, in which the B-T theorem is granted 
as seeming “perhaps” paradoxical; but then they point out the apparent necessity of AC 
for results which “agree with intuition”.   
 More recent results of Randall Dougherty and Matthew Foreman may require 
some reconsideration of the role of AC in paradoxical decompositions.18  One of the 
theorems they prove without the use of AC is: If A and B are any two bounded non-empty 
open subsets of Rn where n ≥ 3, then there is a finite pairwise disjoint collection of open 
subsets of A whose union is dense in A which can be rearranged isometrically to form a 
pairwise disjoint collection of open subsets of B whose union is dense in B.  Not only 
does the proof not make use of AC, it is completely constructive in the data.  However, 
the conflict with physical-geometrical intuition here is not as blatant as with the B-T 
paradox, involving as this does the technical notions of open set and of one set being 
dense in another.  A set A  is open if each point of A is contained in an open ball (a kind 
of bubble) included in A.  This seems clear enough, but when one sees examples of 
“wild” open sets, even though explicitly described, intuition of the possibilities of what 
can fall under the general concept of openness fails.  Similarly for the notion of one set 
being dense in another; the closure of an open set can add a set of points which is 
impossible to visualize.   
 Must intuition run for cover in the face of the various results on paradoxical 
decomposition described here?  If these are monsters such as those we discussed in the 
preceding section, then the answer, as there, would be a simple: No.  The view there was 
that the geometrical and topological monsters of the sort cited by Hahn simply serve as 
counterexamples to intuitively expected results when certain precise notions are used as 
explications of intuitive concepts, notions that work well enough in various situations 
butas one sees from the counterexamplesnot all.  To what expected result would the 
Banach-Tarski paradox be a counter-example?  If anything, it is the negation of their 
theorem: there is no way to cut up the unit ball in Rn  (no matter what n) into a finite 
number of pieces and rearrange them so as to produce two copies of the same.  Like the 
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Jordan curve theorem, that’s hardly a result one would expect to state unless forced to 
consider it for other reasons.  But suppose we did think to state it.  Then the main 
informal concept that needs to be examined is that of a “piece” of a geometrical object, 
and secondarily how we are to get at that piece by “cutting up” the object.  It is interesting 
here to compare the situation with a result in the plane concerning these notions which 
does accord with intuition.  That is the theorem of Bolyai-Gerwien (around 1832): Two 
polygons are congruent by dissection if and only if they have the same area.19  The notion 
of congruence by dissection is similar to that of equivalence by decomposition, but is on 
the one hand more restrictive and on the other hand more liberal.  The restriction is that 
the pieces used must themselves be polygons.  The liberalization is that we can ignore 
boundaries when re-fitting pieces together.  So, here, taking the notion of “piece” to be a 
polygon is very intuitive, but it is also somewhat arbitrary.  The arbitrariness can be seen 
by going up one dimension.  It is a result of Dehn (in answer to the third problem on 
Hilbert’s famous list of twenty-three) that a regular tetrahedron is not congruent by 
dissection to a cube using polyhedral pieces.  And, in fact, all known computations of the 
volume of a tetrahedron require a limiting process of one kind or another.  So there are no 
natural geometrically specified “pieces” to obtain such volumes by finite dissection 
procedures.  But that doesn’t conflict with intuition, since there is no intuitive expectation 
that we could do that in the first place.   
 This returns us to the question: What is a reasonable explication of the notion of 
“piece” of a geometric object, such that no ball in R3 is paradoxical for pieces of that 
kind?  There does not seem to be any unique candidate for this on offer, but one would 
expect that a piece is not any set of points but rather one with a well-defined volume or, 
more generally, measure satisfying the three basic requirements.  However, this is not an 
intrinsic explication of what constitutes a piece of a geometrical object.  But let us 
suppose one has such an explication for which the Banach-Tarski paradox shows that it 
gives reasonably “best possible” results, and thus that we can assimilate this monster to 
the kind of geometrical and topological monsters discussed in the preceding section.  
Even if so, I think there is still something very disturbing about the Banach-Tarski 
paradox that separates it in character from those examples.  Simply put, the conflict 
between common-sense geometrical intuition and the Banach-Tarski paradox seems so 
egregious that it may force one to question the very basic intuitions about arbitrary sets 
which lead one to accept the principles lying behind the paradox, namely the principles of 
Zermelo-Fraenkel Set Theory together with the Axiom of Choiceor, if not that, then at 
least the relevance of those principles to applicable mathematics.   
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 If common-sense and set-theoretical intuitions are in actual conflict, then one or 
the other must be rejected (but see the Appendix below).  Few would argue for the 
rejection of the set-theoretical position, on the grounds that it is the best current 
foundation of mathematics we have and it thereby accounts in a systematic and coherent 
way for all the mathematics that is used in physical applications.  The supporter of set 
theory may argue that even though non-measurable sets don’t actually arise in such 
applications it is not reasonable to exclude AC just on that account, since its manifold 
uses otherwise to obtain results in accord with everyday mathematical intuition justify it 
pragmatically.20  This way of defending set theory, including AC, is a version of the 
Quine-Putnam indispensability arguments.  Against that, I have made the case that all, or 
almost all, of scientifically applicable mathematics can be formalized in a system W 
conservative over Peano Arithmetic and thus do not require the assumption of any 
essentially set-theoretical notions and principles at all.21  The cases of applications that 
are not at present covered involve highly speculative models in quantum theory. So one 
can come down on the side of common-sense intuition in a full rejection of set theory, 
while saving the mathematics needed for scientific applications.  No doubt, the silent 
majority will not opt for either extreme, but will continue to accept, at least tacitly, the 
set-theoretical way of thinking in everyday mathematics while ignoring its bizarre 
consequences.   
 
4. Conclusion.  In my original plans for the lecture for which this paper was prepared I 
had planned to include one further topic for discussion, namely the work on higher 
axioms of infinity in set theory, some of which may be considered to be monstrously 
large, at any rate beyond the intuitions (such as they are) for “Cantor’s Absolute”.  
Because of the limitations of time, it became clear that I would have to content myself 
with the main points in sections 1-3 and not get into that topic at all.  In any case, the 
issues involved are still different from those in sections 2 and 3, and require extensive 
discussion; I have already dealt with them in part in a recent paper22, but the discussion in 
relation to intuition deserves to be carried further. 
 To conclude, I return to the question raised in the introduction: to what extent do 
the challenges raised by monsters to the reliability of intuition undermine its uses in its 
everyday roles in research, teaching and the development of mathematics?  I have argued 
that intuition is essential for all of these, but that intuition is not enough.  In the end, to be 
sure, everything must be defined carefully and statements must be proved.  And one 
service that the monsters lurking around the corners provide is forcing us to don such 
armor for our own protection.  But if the proofs themselves produce such monsters, then 
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the significance of what is proved requires closer attention, and that has to be dealt with 
on a case-by-case basis.  
 
Appendix for proof-theorists. 
 Other than in its use of AC, the proof of the B-T theorem actually makes very 
little use of ZF principles, and is quite predicative in that respect.  This raises some 

interesting proof-theoretical questions, which I formulate using the classical system Zω of 
finite type over arithmetic and its restricted versions using predicative primitive recursion 
and restricted induction in my article “Theories of finite type of related to mathematical 
practice” (1977).23   For the application of AC in the proof of the existence of non-
measurable sets and in the Banach-Tarski theorem, one only has to make a selection from 
equivalence classes of a definable equivalence relation between real numbers.  Logically 
speaking, this comes down to considering arithmetical formulas E(a,b), where a, b range 
over sets of natural numbers, satisfying the formula Equiv(E) which expresses that E is a 
partial equivalence relation.  Then the required special case of AC is: 
 
ACE  Equiv(E) → (∃ f) (∀a,b) [ E(a,b) → E(a,fa) ∧ fa = fb ]. 
 
Here f is a function variable of type 2, mapping sets of natural numbers to sets of natural 
numbers.  As in my article op. cit., I use µ for the non-constructive (unbounded) 
minimum operator, which allows us to eliminate arithmetical quantifiers, and (µ) for the 
axiom expressing that it is a Skolem operator in this sense.  In the following, I presume 

one may verify that the B-T theorem is provable in Zω + (µ) + ACE  for suitable 
arithmetical (or equivalently, quantifier-free, E), and already in its third-order part; 
however, I have not gone through the details. 
 
Questions. 

Q1.  Is the system Zω + (µ) + ACE  conservative over its third order part?  Same for the 
restricted version.  (I conjecture both are the case.) 
Q2.  What are the proof-theoretical strengths of the systems indicated in Q1?  (I 
conjecture that these systems are predicative, and indeed that the restricted system is 
conservative over PA.)   
Q3.  In which of the systems of Q1 is the existence of Lebesgue non-measurable sets 
provable?  Same question for the Hausdorff and Banach-Tarski paradoxes.  (This is 
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simply a question whether anything more than restricted primitive recursion and restricted 
induction is needed.) 
 
So what?  If the systems needed to prove these “monsters” turn out to be predicative in 
strength, as I conjecture, that may support an accomodation between common-sense 
intuition (with which predicative systems may be considered to be in accord) and that part 
of set-theoretical intuition needed to produce them, instead of a conflict between them.  
But, let’s see.  
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Notes 

                                                 
1 An extensive part of that literature is devoted to Kant’s ideas about the intuition of space and time, ideas 
which will not concern me here.  In this century, claims for certain basic intuitions have been advanced 
primarily by some of the mathematicians concerned with the foundations of mathematics, and in this respect 
they have concentrated on the structure of the natural numbers (e.g., Poincaré, Brouwer, Hilbert), the 
continuum (e.g, Poincaré, Brouwer and Weyl), and the cumulative hierarchy of sets (e.g. Gödel).  There is 
much interesting contemporary logico-philosophical literature dealing with these issues.  I mention only a 
few sources, beginning with a number of articles by Charles Parsons, first of all his essays on Kant’s 
philosophy of arithmetic and on the iterative concept of set in his collection of essays (1983); see also the 
articles Parsons 1979, 1994 and 1995.  On the iterative concept of set see, further, Boolos 1971.  Tieszen 
1989 relates Husserl and Gödel, while Folina 1992 provides a valuable study of Poincaré’s thoughts on the 
intuition of the natural numbers and of the continuum. 
 
2 One interesting suggested list of meanings, useful as a point of departure, is provided in Davis and Hersh 
1981, pp. 391-399; see also ibid. pp. 301-316.  A systematic effort to analyze the psychology of 
mathematical intuition is provided by Fischbein 1987. See also the pioneering work, Westcott 1968.  (I am 
indebted to Reuben Hersh for bringing my attention to these and a number of other works on intuition in 
mathematics.)  
 
3 From Poincaré 1952, pp. 47-63. 
 
4 Hadamard 1949. 
 
5 This has been emphasized particularly by William P. Thurston in his interesting article, “On proof and 
progress in mathematics” (1994), written as part of a discussion by a number of leading mathematicians of 
the earlier provocative article by Jaffe and Quinn 1993.  
 
6 For more extended accounts of the sources of mathematics in everyday experience and the mathematical 
modelling of experience, see MacLane 1986, especially pp. 34-36 and 415-417, and Lakoff and Nunez 
1997. 
 
7 Poincaré 1952, p. 125.  Poincaré was, however, anticipated in this usage long before that by Leibniz, in his 
“Critical thoughts on the general part of the principles of Descartes” as it appears in the edition Leibniz 
1958.  One finds there on p. 1179 two diagrams, one labelled “According to Descartes: a monstrous figure”, 
while the other is labelled “According to the truth--an orderly figure.”  The context is Leibniz’ discussion, 
op. cit. p. 665, of Descartes’ rules for the geometry of motion, where he writes: “Descartes acknowledges 
that it is difficult to use his rules because he sees that they conflict with experience.  But in the true rules of 
motion there is a remarkable agreeement between reason and experience.  ... From the Cartesian rules no 
continuous line whatever can be derived [in the case considered] for the results which correspond to the 
continous line representing the variable data; on the contrary, a figure is produced which is most erratic and 
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contrary to our law of continuity.”  (I am indebted to Robert Tragesser for bringing this passage to my 
attention.)   
  The word “monster” as applied to pathological counterexamples in mathematics was popularized in more 
recent years through the work of Lakatos 1976. 
 
8 Hahn 1933. 
 
9 But Hahn remarks in an aside that Kant’s thesis that arithmetic rests as well on pure intuition has been 
successfully opposed by Russell’s execution of the logicist program! 
 
10 This and the Sierpinski “sponge” (not cited by Hahn), which date from c. 1915, anticipate as examples 
the notion of fractional dimension; cf. Mandelbrot 1983, pp. 142-144. 
 
11 Hahn 1933, p. 93. 
 
12 Cf.Hocking and Young 1961, pp. 175-176. 
 
13  See Thom 1975 and Zeeman 1977. 
 
14 Wagon 1985; see that book for references to most of the results cited in this section.   
 
15 Incidentally, Cantor’s own work began with the question as to how complicated could a set of points of 
an interval be, outside of which any representation of a function by a trigonometric series must be unique. 
 
16 Solovay 1970. 
 
17 Detailed at length in Moore 1982. 
 
18 Dougherty and Foreman 1994.  Note that first announcement of this work, in 1992, appeared seven years 
after the publication of Wagon’s book.   
 
19 See Wagon 1985, pp. 21-23. 
 
20 Wagon takes this line of argument, op. cit., pp. 218-219. 
 
21 The arguments for this are made in two essays of my book (1998), namely, “Weyl vindicated: Das 
Kontinuum seventy years later” and “Why a little bit goes a long way.  Logical foundations of scientifically 
applicable mathematics.”   
 
22 Feferman 1999. 
 
23 Feferman 1977. 


