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The proof theory of classical and constructive inductive definitions.   

A 40 year saga, 1968-2008. 

Solomon Feferman1 

 

1.  Pohlers and The Problem. I first met Wolfram Pohlers at a workshop on proof 

theory organized by Walter Felscher that was held in Tübingen in early April, 1973.  

Among others at that workshop relevant to the work surveyed here were Kurt Schütte, 

Wolfram’s teacher in Munich, and Wolfram’s fellow student Wilfried Buchholz.  This is 

not meant to slight in the least the many other fine logicians who participated there.2  In 

Tübingen I gave a couple of survey lectures on results and problems in proof theory that 

had been occupying much of my attention during the previous decade.  The following 

was the central problem that I emphasized there: 

 

The need for an ordinally informative, conceptually clear, proof-theoretic reduction 

of classical theories of iterated arithmetical inductive definitions to corresponding 

constructive systems.   

 

As will be explained below, meeting that need would be significant for the then ongoing 

efforts at establishing the constructive foundation for and proof-theoretic ordinal analysis 

of certain impredicative subsystems of classical analysis.  I also spoke in Tübingen about 
                                                
1 This is a somewhat revised text of a lecture that I gave for a general audience at the 
PohlersFest, Münster, 18 July 2008 in honor of Wolfram Pohlers, on the occasion of his 
retirement from the Institute for Mathematical Logic at the University of Münster.  
Wolfram was an invited participant at a conference in my honor at Stanford in 1998, and 
it was a pleasure, in  reciprocation, to help celebrate his great contributions as a 
researcher, teacher and expositor.  In my lecture I took special note of the fact that the 
culmination of Wolfram’s expository work with his long awaited Proof Theory text was 
then in the final stages of production; it has since appeared as Pohlers (2009).  In that 
connection, one should mention the many fine expositions of proof theory that he had 
previously published, including Pohlers (1987, 1989, 1992, and 1998).   
2 That meeting was organized by Walter Felscher under the sponsorship of the 
Volkswagen Stiftung; there were no published proceedings.  It is Pohlers’ recollection 
that besides him and Felscher, of course, the audience included Wilfried Buchholz, Justus 
Diller, Ulrich Felgner, Wolfgang Maas, Gert Müller, Helmut Pfeiffer, Kurt Schütte and 
Helmut Schwichtenberg.  By the way, Felscher passed away in the year 2000.   
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possible methods to tackle the central problem, including both cut-elimination applied to 

(prima-facie) uncountably infinite derivations and functional interpretation on the one 

hand, and the use of naturally developed systems of ordinal notation on the other.  I recall 

that my wife and I had driven to Tübingen that morning from Oberwolfach after an 

unusually short night’s sleep, and that I was going on pure adrenalin, so that my lectures 

were particularly intense.  Perhaps this, in addition to the intrinsic interest of the 

problems that I raised, contributed to Wolfram’s excited interest in them.  Within a year 

or so he made the first breakthrough in this area (Pohlers 1975), which was to become the 

core of his Habilitationsschrift with Professor Schütte (Pohlers 1977).  The 1975 

breathrough was the start of a five year sustained effort in developing a variety of 

approaches to the above problem by Wolfram Pohlers, Wilfried Buchholz and my student 

Wilfried Sieg.  The results of that work were jointly reported in the Lecture Notes in 

Mathematics volume 897, Iterated Inductive Definitions and Subsystems of Analysis.  

Recent proof-theoretical studies (Buchholz et al.1981). In the next section I will give a 

brief review of what led to posing the above problem in view of several results by Harvey 

Friedman, William Tait and me at the 1968 Buffalo conference on intuitionism and 

proof-theory, with some background from a 1963 seminar on the foundations of analysis 

led by Georg Kreisel at Stanford in which formal theories of “generalized” inductive 

definitions (i.e., with arithmetical closure conditions) were first formulated.  

  The goals of proof-theoretic reduction and of proof-theoretic ordinal analysis in one 

form or another of the relativized Hilbert program (not only for theories of inductive 

definitions) are here taken at face value, though I have examined both critically; see 

Feferman (1988, 1993, 2000).  In addition to meeting those aims in the problem 

formulated above are the demands that the solutions be informative and conceptually 

clear—in short, perspicuous.  Granted that these are subjective criteria, nevertheless in 

practice we are able to make reasonably objective judgments of comparison. For 

example, we greatly valued Schütte’s extension of Gentzen’s cut-elimination theorem for 

the predicate calculus to “semi-formal” systems with infinitary rules of inference, 

because it exhibited a natural and canonical role for ordinals as lengths of derivations and 

bounds of cut-rank (cf. Schütte 1977) in the case of arithmetic and its extensions to 

ramified analysis.  To begin with, the Cantor ordinal ε0 emerged naturally as the upper 
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bound of the lengths of cut-free derivations in the semi-formal system of arithmetic with 

ω-rule, obtained by eliminating cuts from the (translations into that system of) proofs in 

Peano Arithmetic PA; by comparison the role of ε0 in Gentzen’s consistency proof of PA 

still had an ad hoc appearance.3   And the determination by Schütte and me in the mid-

1960s of Γ0 as the upper bound for the ordinal of predicativity simply fell out of his 

ordinal analysis of the systems of ramified analysis translated into infinitary rules of 

inference when one added the condition of autonomy.  Incidentally, because of the 

connection with predicativity, these kinds of proof-theoretical methods due to 

Schütte⎯of ordinal analysis via cut-elimination theorems for semi-formal systems with 

countably infinitary rules of inference⎯have come to be referred to as predicative.   

 The proof-theoretical work on systems of single and (finitely or transfinitely) 

iterated arithmetical inductive definitions were the first challenges to obtaining 

perspicuous ordinal analyses and constructive reductions of impredicative theories.  The 

general problem was both to obtain exact bounds on the provably recursive ordinals and 

to reduce inductive definitions described “from above” as the least sets satisfying certain 

arithmetical closure conditions to those constructively generated “from below”.  In the 

event, the work on these systems took us only a certain way into the impredicative realm, 

but the method of local predicativity for semi-formal systems with uncountably infinitary 

rules of inference that Pohlers developed to deal with them turned out to be of wider 

application.  What I want to emphasize in the following is, first of all, that ordinal 

analysis and constructive reduction are separable goals and that in various cases, each can 

be done without the other, and, secondly, that the aim to carry these out in ever more 

perspicuous ways has led to recurrent methodological innovations.  The most recent of 

these is the application of a version of the method of functional interpretation to theories 

of inductive definitions by Avigad and Towsner (2008), following a long period in which 

cut-elimination for various semi-formal systems of uncountably infinitary derivations had 

been the dominant method, and which itself evolved methodologically with perspicuity as 

the driving force.   

                                                
3 That role became less mysterious as a result of the work of Buchholz (1997, 2001) 
explaining Gentzen-style and Takeuti-style reduction steps in infinitary terms.   
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 It is not possible in a survey of this length⎯and at the level of detail dictated by 

that⎯to explain or state results in full; for example, I don’t state conservation results that 

usually accompany theorems on proof-theoretical reduction. Nor is it possible to do 

justice to all the contributions along the way, let alone all the valuable work on related 

matters.  For example, except for a brief mention in sec. 7 below, I don’t go into the 

extensive proof-theoretical work on iterated fixed point theories.  I hope the interested 

reader will find this survey useful both as an informative overview and as a point of 

departure to pursue in more detail not only the topics discussed but also those that are 

only indicated in passing.   Finally, this survey offers an opportunity to remind one of 

open questions and to raise some interesting new ones.   

   

2. From 1968 to 1981, with some prehistory. In my preface, Feferman (1981), to 

Buchholz et al. (1981), I traced the developments that led up to that work; in this section 

I’ll give a brief summary of that material. 

  The consideration of formal systems of “generalized” inductive definitions 

originated with Georg Kreisel (1963) in a seminar that he led on the foundations of 

analysis held at Stanford in the summer of 1963.4 Kreisel’s aim there was to assess the 

constructivity of Spector’s consistency proof of full second-order analysis (Spector 1962) 

by means of a functional interpretation in the class of so-called bar recursive functionals.  

The only candidate for a constructive foundation of those functionals would be the 

hereditarily continuous functionals given by computable representing functions in the 

sense of (Kleene 1959) or (Kreisel 1959).  So Kreisel asked whether the intuitionistic 

theory of inductive definitions given by monotonic arithmetical closure conditions, 

denoted ID1(mon)i below, serves to generate the class of (indices of) representing 

functions of the bar recursive functionals.  Roughly speaking, ID1(mon), whether 

classical or intuitionistic, has a predicate PA for each arithmetic A(P, x) (with a place-

holder predicate symbol P) which has been proved to be monotonic in P, together with 
                                                
4 The notes for that seminar are assembled in the unpublished volume Seminar on the 
Foundations of Analysis, Stanford University 1963. Reports, of which only a few 
mimeographed copies were made; one copy is available in the Mathematical Sciences 
Library of Stanford University. 



 5 

axioms expressing that PA is the least predicate definable in the system that satisfies the 

closure condition ∀x(A(P, x) → P(x)).  In the event, Kreisel showed that the representing 

functions for bar recursive functionals of types ≤ 2 can be generated in an ID1(mon)i but 

not in general those of type ≥ 3.   

 Because of this negative result, Kreisel did not personally pursue the study of 

theories of arithmetical inductive definitions any further, but he did suggest consideration 

of theories of finitely and transfinitely iterated such definitions as well as special cases 

involving restrictions on the form of the closure conditions A(P, x).  For example, those 

A in which the predicate symbol P has only positive occurrences are readily established 

to be monotonic in P.  And of special interest among such A are those that correspond to 

the accessible (i.e., well-founded part) of an arithmetical relation.  And, finally, 

paradigmatic for those are the classes of recursive ordinal number classes Oα introduced 

in Church and Kleene (1936) and continued in Kleene (1938).  The corresponding formal 

systems for α times iterated inductive definitions (α an ordinal) are denoted (in order of 

decreasing generality) IDα(mon), IDα(pos), IDα(acc) and IDα(O) in both classical and 

intuitionistic logic, where the restriction to the latter is signalled with a superscript ‘i’.5  

For limit ordinals λ we shall also be dealing with ID<λ(-), the union of the IDα(-) for α < 

λ, of each of these kinds, whether classical or intuitionistic.  Finally, when no 

qualification of IDα or ID<λ is given, it is meant that we are dealing with the 

corresponding IDα(pos) or ID<λ(pos), since⎯as will be explained in sec. 5 below⎯there 

is a relatively easy reduction of the monotonic case to the positive case.  The IDα(O) 

theories, or similar ones for constructive tree classes, are of particular interest, because 

the elements of those classes wear their build-up on their sleeves, i.e. can be retraced 

constructively;  some of the IDα(acc) classes considered below share that significant 

feature.    

 Kreisel’s initiative led one to study the relationship between such theories to 

subsystems of classical analysis considered independently of Spector’s approach and as 

the subject of proof-theoretical investigation in their own right.  The first such result was 

obtained by William Howard some time around 1965, though it was not published until 
                                                
5 The positivity requirement has to be modified in the case of intuitionistic systems.   
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1972.  He showed in Howard (1972) that the proof-theoretic ordinal of ID1(acc)i is 

φε(Ω+1)0, as measured in the hierarchy of normal functions introduced in Bachmann 

(1950).  Howard’s method of proof proceeded via an extension of Gödel’s functional 

interpretation.  This was the first ordinally informative characterization of an 

impredicative system using a system of ordinal notation based on a natural system of 

ordinal functions.  What was left open by Howard’s work was whether one could obtain a 

reduction of the general classical ID1 to ID1(acc)i (and even better to ID1(O)i) and thus 

show that the proof-theoretic ordinal is the same, and similarly for the systems of iterated 

inductive definitions more generally.6  

 Turning now to the 1968 Buffalo Conference on Intuitionism and Proof Theory, 

here, in brief, is what was done in the three papers I mentioned above.  

1. (Friedman 1970) proved that system ∑1
n+1-AC is of the same strength as Δ1

n+1-CA and 

is conservative over (∏1
n-CA)<ε(0) for suitable classes of sentences.  For n = 1 this tied up 

with the following two results: 

2. (Feferman 1970) gave an interpretation of (∏1
1-CA)α in IDα for various α, including α 

= ω, and of  (∏1
1-CA)<λ in ID<λ for various limit λ, including λ = ε0.7 

3. (Tait 1970) established the consistency of ∑1
2-AC via a certain theory of inductive 

definitions by informally constructive cut-elimination methods applied to uncountably 

long propositional derivations.   

These results and the prior work of Takeuti (1967) containing constructive proofs of 

consistency of ∏1
1-CA and ∏1

1-CA + BI gave hope that one could obtain a constructive 

reduction of some of the above second order systems via a reduction of classical theories 

of iterated inductive definitions to their intuitionistic counterparts.8  For, among the 

results of my Buffalo conference article was that the system ∏1
1-CA + BI is proof-

theoretically equivalent to IDω. What Takeuti had done was to carry out his consistency 
                                                
6 As will be explained in sec. 6, below, Zucker (1971, 1973) showed the ordinals to be 
the same without a reduction argument and by a method that did not evidently extend to 
the iterated case.   
7 Actually, the interpretation took one into iterated classical accessibility IDs.   
8 BI is the scheme of Bar Induction, i.e. the implication from well-foundedness to 
transfinite induction. 
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proofs by an extension of Gentzen’s methods with cut-reduction steps measured in 

certain partially ordered systems that Takeuti called ordinal diagrams; these are not based 

on natural systems of ordinal functions such as those in the Bachmann hierarchy. Takeuti 

proved the well-foundedness of the ordering of ordinal diagrams by constructive 

arguments that could be formulated in suitable intuitionistic iterated accessible IDs.  

These methods were later extended to Δ1
2-CA + BI in Takeuti and Yasugi (1973).   

 Before proceeding, a few words are necessary about the systems of ordinal 

functions involved in proof-theoretic ordinal analysis at that time and in subsequent 

work.  Bachmann had extended the classical Veblen hierarchy φα (or λα,β.φα(β)) of 

critical functions of countable ordinals by use of indices α to certain uncountable 

ordinals⎯including those up to the first ε-number greater than Ω⎯by diagonalizing at α 

of cofinality Ω, e.g. defining φΩβ to be φβ0.  This method was carried out systematically 

by Helmut Pfeiffer (1964) by reference to the finite ordinal number classes whose initial 

ordinals are the Ωn for n < ω, and then by David Isles (1970) via the number classes up to 

the first inaccessible ordinal.  Each such extension required more and more complicated 

assignment of fundamental sequences to the ordinals actually drawn from each number 

class.  In 1970, in informal discussions with Peter Aczel, I proposed an alternative 

method of generating the requisite ordinals and associated functions θα in place of the φα 

without any appeal to fundamental sequences and in a uniform way from the function 

enumerating the initial ordinals Ων of the number classes.  Aczel quickly worked out the 

idea in unpublished notes in a preliminary way; this was then developed systematically 

by Jane Bridge in her 1972 Oxford dissertation, the results of which were published in 

Bridge (1975).  She showed how to match up the notations obtained in this way with 

those obtained by the Bachmann-Pfeiffer-Isles procedures, and she initiated work to show 

that the countable ordinals generated by these means are recursive.  The latter verification 

was carried out systematically and in full in Buchholz (1975); a detailed exposition of the 

definition and properties of the θ functions was later given in Schütte (1977) in the first 

sections of Ch. IX.  (We’ll return below to a much later simplification leading to the ψ 

functions in Buchholz (1992).)  

 The first successful results on ordinal analysis for theories of iterated inductive 

definitions were obtained only on the intuitionistic side by Per Martin-Löf (1971) via 
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normalization theorems for the IDn(acc)i systems as formulated in calculi of natural 

deduction.  He conjectured the bounds φε(Ωn+1)0 in the Bachmann-Pfeiffer hierarchies 

for these and proved that their supremum is the ordinal of ID<ω(acc)i  by use of Takeuti 

(1967).   

 The first breakthrough on the problems of ordinal analysis for the classical systems 

was made by Pohlers (1975) to give ordinal upper bounds for the finite IDn also by an 

adaptation of the methods of Takeuti (1967); this was extended later in his 

Habilitationsschrift, Pohlers (1977), to arbitrary α, with the result that  

|IDα| ≤ θε(Ωα+1)0 

as measured in the modified hierarchies described above.  In addition, Buchholz and 

Pohlers (1978) showed this to be best possible by verification of 

θε(Ωα+1)0 ≤ |IDα(acc)i| 

using a constructive well-ordering proof of each proper initial segment of a natural 

recursive ordering of order type φε(Ωα+1)0.  These results lent further hope to the 

solution of the reductive problem posed above.  Independently of their work, in his 

Stanford dissertation, Sieg (1977) adapted and extended the method of Tait (1970) 

followed by a formalization of the cut-elimination argument to reduce IDα to IDα+1(O)i, 

and thence ID<λ to ID<λ(O)i, for limit λ, without requiring any involvement of ordinal 

bounds.  

 In view of these results, it was decided to exposit all this work together, with the 

addition of suitable background material, in a Lecture Notes in Mathematics volume.  As 

it turned out, the resulting joint publication Buchholz et al. (1981) contained important 

new contributions to the basic problems about theories of iterated inductive definitions, 

and though that volume has been superseded in various respects by later work, it still has 

much of value and I would recommend it as a starting point to the reader interested in 

studying this subject in some depth.  In particular, my preface (Feferman 1981) to the 

volume fills out the historical picture to that point.  Then the first chapter, Feferman and 

Sieg (1981a), goes over reductive relationships between various subsystems of ∑1
2-AC, 

systems of iterated inductive definitions, and subsystems of the system T0 of explicit 

mathematics from Feferman (1975).  The second chapter, Feferman and Sieg (1981b) 

showed how to obtain the reductions of ∑1
n+1-AC to (∏1

n-CA)<ε(0) by proof-theoretic 
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arguments (based on a method called Herbrand analysis by Sieg), in place of the model-

theoretic arguments that had been used by Friedman.  Following that, Sieg (1981) 

presented the work of his thesis in providing the reductions of IDα to IDα+1(O)i  and of 

ID<λ to ID<λ(O)i for limit λ,without the intervention of ordinal analysis.  In the next two 

chapters Buchholz (1981a, 1981b) introduced uncountably infinitary semi-formal 

systems making use of a special new Ωα+1-rule in order, in the first of these to obtain the 

proof-theoretical reduction of the IDα to suitable IDα(acc)i and in the second to reestablish 

the ordinal bounds previously obtained by Pohlers.  Finally, in the last chapter, Pohlers 

(1981) presented a new approach called the method of local predicativity, to accomplish 

the very same results in a different way.  This dispensed with the earlier dependence on 

the methods of Takeuti’s (1967); the more perspicuous method of local predicativity, in 

its place, utilizes a kind of extension to uncountably branching proof trees of the methods 

of predicative proof theory.  But both Buchholz’ and Pohlers’ work in the Buchholz et al. 

(1981) volume required the use of certain syntactically defined collapsing functions, in 

order to reduce prima-facie uncountable derivations to countable ones in a way that 

allows one to obtain the recursive ordinal bounds.  As will be described in sec. 4, this was 

superseded a decade later by the work of Buchholz (1992) showing how to obtain the 

same bounds without the use of such collapsing functions.  

  

3. Admissible proof theory.  Insofar as the work in Buchholz et al. (1981) settled the 

basic problem posed at the beginning, it could be considered the end of the story.  But the 

aim to develop conceptually still clearer methods had already been underway, beginning 

with the dissertation of Gerhard Jäger (1979), also under Schütte’s direction, but in that 

case with Pohlers’ assistance.  The novel element there was to embed various of the 

subsystems of analysis, both predicative and impredicative, in theories of admissible sets, 

and to carry out the ordinal analysis of the latter by means of a cut-elimination theorem 

for associated semi-formal systems of ramified set theory. The connection is that one can 

identify the minimal models of the theories of admissible sets in question as natural initial 

segments of the constructible hierarchy.  This method was further elaborated in Jäger’s 

Habilitationsschrift (1986) (though that relies on the earlier publication for certain proof-

theoretic results about ramified set theory).   



 10 

 The systems of admissible set theory considered by Jäger are taken to have a set of 

urelements interpreted as the set N of natural numbers given with its successor relation.  

KPN has the usual axioms for Kripke-Platek set theory with urelements (e.g. from 

Barwise (1975)), including the full induction scheme (INDN) on the natural numbers and 

(IND∈) on the membership relation.  KPNw is the system obtained from KPN by replacing 

the ∈−induction scheme by the corresponding set induction axiom, KPNr is obtained by 

further replacing the N-induction scheme by the corresponding set induction axiom, and, 

finally, KPN0 is obtained by completely dropping induction on the membership relation.  

We may also represent KPNw as KPNr + INDN.  Also considered are the extensions KPL 

and KPI of KPN, obtained by adding the axioms that the universe is a limit of admissible 

sets, and that the universe is an admissible limit of admissible sets, respectively; these are 

also considered in the ‘w’, ‘r’, ‘0’ restricted versions as for KPN.9  The minimal 

constructible model Lα of KPI is that for which α is the least recursively inaccessible 

ordinal.   

 Among the results of Jäger (1986) is that KPI0 is a kind of universal theory for 

systems having Γ0 as their proof theoretic ordinal, in the sense that all such systems (up to 

that point) have natural embeddings in KPI0.  Among these is Friedman’s theory ATR0, 

which also has Γ0 as a lower bound.  The proof theoretic treatement of KPI0 via ramified 

set theory takes the place of the earlier proof by Friedman, McAloon and Simpson (1982) 

of Γ0 as the ordinal of ATR0 via model-theoretic arguments.  Incidentally, ATR0 is 

already embeddable in KPL0, so KPI0 is no stronger than that.    

 Moving on to impredicative systems, ID1 is embedded in KPN, which was shown 

to have the Howard ordinal as upper bound in Jäger (1979).  The strongest system 

considered in Jäger (1986) is KPI, and among the further notable results for restricted 

subsystems of that are: 

(∑1
2-AC)0 ≡ KPIr, and ∑1

2-AC ≡ KPNr + INDN ≡ KPIr + INDN = KPIw, 

where ≡ is the relation of proof-theoretical equivalence; in both cases, the ordinal analysis 
                                                
9 Jäger (1986) uses KPu, KPl and KPi for what is here denoted by KPN, KPL and KPI, 
resp.  NB: the system denoted KPN in Jäger (1979, 1980) is the same as KPur + INDN in 
the notation of Jäger (1986), and of KPNw, or alternatively KPNr + INDN, in the notation 
used here.  KPN is equivalent in strength to the system often denoted as KPω. 
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of the set-theoretic side is obtained via cut-elimination via the semi-formal system of 

ramified set theory.  The main upper bound result for the full KPI was obtained in Jäger 

and Pohlers (1983) using the method of local predicativity to establish the ordinal upper 

bound, while (as explained below) the lower bound follows from the work of Jäger 

(1983): 

∑1
2-AC + BI ≡ KPI and |KPI| = ψΩ(εI+1),  

where, for simplicity, I am using the notation introduced later by Buchholz (1992) for the 

ψ functions in place of the θ functions.  For example, the ordinal of IDα in these terms is 

ψΩε(Ωα+1) in place of θε(Ωα+1)0. 

 In the survey article Pohlers (1998) it is shown how various subsystems of KPI 

match up both with subsystems of ∑1
2-AC + BI and with theories of iterated inductive 

definitions, and their proof-theoretic ordinals are identified in terms of the ψ functions; an 

informative table is given op. cit. p. 333.  For example, we have IDω ≡ ∏1
1-CA + BI ≡ 

KPL.  Among these are systems lying between ∑1
2-AC and ∑1

2-AC + BI in strength 

(alternatively described, between KPIw and KPI) studied by Michael Rathjen in his 

dissertation (1988) at Münster under Pohlers’ direction, including autonomously iterated 

theories of inductive definitions and corresponding systems of autonomously iterated 

∏1
1-CA and of admissible sets; see Pohlers (1998) sec. 3.3.5 for a partial account, since 

the work of Rathjen(1988) has otherwise not yet been published.  

 The work on admissible proof theory has also been useful in dealing with systems 

of explicit mathematics that were formulated and studied in Feferman (1975, 1979).  

These systems have notions of operations f, g, … and classes (a.k.a. classifications, 

properties, or [variable] types) A, B,C,…, both objects in a universe V of individuals; 

relations R, S,… are treated as classes of pairs, using a basic pairing operation on V.  

Operations are in general partial, but may apply to any element of V, including operations 

and classes.  The strongest system of explicit mathematics dealt with op. cit. in which the 

operations have an interpretation as partial recursive functions is denoted T0.  For present 

purposes, I want only to concentrate on one axiom group of T0, concerning a general 

operation i of inductive generation.   Given any A and (binary) R, i(A, R) is always 

defined and its value is a class I that satisfies: 

∀x ∈A[∀y ((y,x) ∈R → y ∈I) → x ∈I]  
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In addition we have induction on I, which is either taken in the restricted class-induction 

form 

∀x ∈A[∀y ((y,x) ∈R → y ∈X) → x ∈X] → I ⊆X, 

or as a scheme obtained by substituting for X all formulas of the language of T0. The 

system T0(res-IG) assumes only class-induction, while full T0 includes the full scheme; 

the latter does not follow from the former since classes are only assumed to satisfy 

predicative comprehension in T0.  Informally, i(A, R) is the well-founded part of the 

relation R, hereditarily in A.  

 It is easily seen that ID<ε(0)(acc)i is contained in T0(res-IG)i.  Moreover, T0(res-IG) 

is interpretable in Δ1
2-CA.  So, by the results described in the preceding section we have  

ID<ε(0)(acc)i ≡ T0(res-IG)i ≡ T0(res-IG) ≡ ∑1
2-AC  

Turning next to full T0, what Jäger showed in his1983 paper was that by use of a 

primitive recursive ordering ≼ of order type ψΩ(εI+1), the well-ordering of each initial 

segment of the ≼ relation can be established in T0
i .  I had given an (easy) interpretation 

of T0 in  

Δ1
2-CA + BI.  So that combined with the (much, much harder) work of Jäger and Pohlers 

(1983) and Jäger (1983) established 

T0
i ≡ T0 ≡ ∑1

2-AC + BI.   

In analogy to the above, I conjecture that there is a suitable system ID<I(acc)i in some 

sense that can be added to the left of these equivalences.   

 

4. A simplified version of local predicativity.  That is the title of Buchholz (1992), the 

next main methodological improvement in this approach.  As he writes at the beginning 

of that paper:  

 

The method of local predicativity as developed by Pohlers … and extended to 

subsystems of set theory by Jäger … is a very powerful tool for the ordinal analysis 

of strong impredicative theories.  But up to now it suffers considerably from the 

fact that it is based on a large amount of very special ordinal theoretic prerequisites. 

…  The purpose of the present paper is to expose a simplified and conceptually 

improved version of local predicativity which … requires only amazingly little 
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ordinal theory.  … The most important feature of our new approach however seems 

to be its conceptual clarity and flexibility, and in particular the fact that its basic 

concepts (i.e. the infinitary system RS∞ and the notion of an H-controlled RS∞ 

derivation) are in no way related to any system of ordinal notations or collapsing 

functions. (Buchholz 1992, p.117). 

 

 Buchholz there goes on to show how to carry out the ordinal analysis of KPI by this new 

method in full, absorbable detail.  Thenceforth, this  simplified method of local 

predicativity became the gold standard for admissible proof theory.  It was continued by 

Rathjen (1994) in a revised treatment of his 1991 ordinal analysis of KPM, i.e. KP with 

an axiom saying that the universe is at the level of a Mahlo-admissible ordinal.  As he 

writes (op. cit.) p. 139, KPM is “somewhat at the verge [i.e., upper margin] of admissible 

proof theory … Roughly speaking the central scheme of KPM falls under the heading of 

‘∏2-reflection with constraints’.”  The first steps in moving beyond admissible proof 

theory to systems of analysis like ∏1
2-CA, required dealing with ∏n-reflection for 

arbitrary n, as discussed op. cit., pp. 142ff.  For more recent progress⎯going far beyond 

our principal concerns here⎯see Rathjen (2006).     

 

5. Monotone inductive definitions.  Though the formal theories of generalized inductive 

definitions as originally proposed by Kreisel (1963) were of the form IDn(mon)i, their 

relationship to the systems IDn(acc)i was left unsettled by the work of Buchholz et al. 

(1981), as was the relationship for the corresponding classical systems.10  This was first 

taken up in my paper Feferman (1982a) for the 1981 Brouwer Centenary Symposium.  

I showed there that, at least on the classical side, IDn(mon) is a conservative extension of 

                                                
10 At first sight, one could obtain a simple reduction of the ID(mon) theories to the 
ID(pos) theories (whether classical or intuitionistic) by an application of Lyndon’s 
interpolation theorem to formulas of the form A(Q,P,x) ∧∀u[P(u) → P′(u)] → A(Q,P′,x), 
derived from prior axiom schemes.  This was indeed stated in Sieg (1977); however, 
Buchholz pointed out to Sieg soon after that there is a gap in the argument, since one 
should allow both P and P′ to be used together in those schemes.  There is no obvious 
way to get around this obstacle.   
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IDn(O) for all n.  The method of proof is via an interpretation of IDn(mon) in a 

predicative second order extension IDn(O)(2) which is easily shown to be a conservative 

extension of IDn(O).  The main work goes into showing that if A(P, x) is an arithmetical 

formula such that IDn-1(O)(2) proves the monotonicity condition  

∀X∀Y∀x[A(X, x) ∧ X ⊆Y → A(Y, x)] then one can define a predicate PA in IDn(O)(2) 

to provably satisfy the required closure and induction scheme axioms. In the same paper I 

also sketched how to generalize these arguments and results to the case of ‘α’ in place of 

‘n’. It follows from the work of Buchholz and Pohlers described in sec. 2 that in general 

IDα(mon) is proof-theoretically reducible to IDα(acc)i and the proof-theoretic ordinals are 

the same. Incidentally, as noted by Kreisel in 1963, there is no obvious informal 

argument for the constructivity of ID1(mon)i short of quantification over species in the 

intuitionistic sense.   

 At the conclusion of Feferman (1982a) I brought attention to the formulation of 

monotonic inductive definitions in the much more general setting of explicit 

mathematics.  By an operation f from classes to classes, in symbols Cl-Op(f) we mean 

one such that ∀X ∃Y (fX = Y); then by Mon(f) we mean  

Cl-Op(f) ∧ ∀X∀Y[X ⊆Y → fX ⊆fY].  The assertion ELFP(f) that f has a least fixed 

point is expressed as ∃X[fX ⊆X ∧ ∀Y(fY ⊆Y → X ⊆Y)].  I suggested adding the 

following axiom MID for Monotone Inductive Definitions to T0: ∀f [Mon(f) → 

ELFP(f)], i.e. the statement that every monotonic operation from classes to classes has a 

least fixed point.  And finally, I raised the question whether T0 + MID is any stronger 

than T0, since as I wrote: “[it] includes all constructive formulations of the iteration of 

monotone inductive definitions of which I am aware, while T0 (in its IG axiom) is based 

squarely on the general iteration of accessibility inductive definitions.  Thus it would be 

of great interest for the present subject to settle the relationship between these theories.”  

At the time I thought that my interpretation of T0 in ∑1
2-AC+BI could somehow be 

extended to one for T0 + MID, and thus give a general reduction of monotone to 

accessibility inductive definitions.  But as I said loc. cit., I did not succeed in doing this.  

In fact, it was not obvious how to produce any model of T0 + MID, let alone one 

bounding its strength by that of T0. 
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 The first progress on these questions was made by my student Shuzuo Takahashi in 

his PhD dissertation at Stanford, published as Takahashi (1989).  He proved that  

T0 + MID is interpretable in ∏1
2-CA + BI; this required a surprisingly difficult model 

construction, while no lower bound in strength was revealed by Takahashi’s work.  

Meanwhile I had raised the question of the status of a uniform version UMID of the MID 

axiom, obtained by adding a constant lfp to the language of T0 with the statement that for 

any f, if Mon(f) then lfp(f) is a least fixed point of f; the consistency of T0 + UMID was 

unsettled by Takahashi’s interpretation.  These questions of strength were later addressed 

in a series of papers by Michael Rathjen (1996, 1998, 1999) and a joint one with Thomas 

Glass and Andreas Schlüter (1997), all surveyed with some further extensions in Rathjen 

(2002).  Here, briefly, are some of the results.   

 First of all, it was shown in Rathjen (1996) that T0 + MID is in fact stronger than 

T0; in fact T0(res-IG) + MID proves the existence of a model of T0.  Then in Glass, 

Rathjen and Schlüter (1997) it was shown that  

T0(res-IG) + MID ≡ (∑1
2-AC)- + (∏1

2-CA)-, and 

T0(res-IG) + INDN + MID ≡ ∑1
2-AC + (∏1

2-CA)-, 

where the minus sign superscript on a scheme indicates that there are no class parameters 

(i.e. free class variables).  Following that, Rathjen (2002) proved that T0 + MID is 

bounded in strength by a theory K that is slightly stronger than ∑1
2-AC + (∏1

2-CA)- + 

BI.   

 Rathjen (1999, 2002) also obtained results about the strength of UMIDN (which is 

the UMID principle relativized to subclasses of N), including the following: 

T0(res-IG) + UMIDN ≡ (∏1
2-CA)0,  

while 

∏1
2-CA < T0 + UMIDN  ≤ ∏1

2-CA + BI. 

Rathen conjectured (2002), p. 339, that the  ≤  here can be replaced by ≡ and that UMID 

gives no stronger theory than UMIDN.  Finally, it is shown there that  

T0 + MID < T0 + UMIDN. 

All these results are for the systems of explicit mathematics as based on classical logic.  

About the intuitionistic side of these various theories, Rathjen wrote (loc. cit.) that 

virtually nothing is known.  However, subsequently, Sergei Tupailo (2004) established 
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that the classical and intuitionistic versions of T0(res-IG) + UMIDN are of the same 

strength, by an indirect argument via the so-called µ-calculus.11   

 A number of problems about the MID and UMID principles in explicit mathematics 

are still left open by this work, especially on the intuitionistic side.   

 

6. The method of functional interpretation, 1968-2008.  All of the proof-theoretical 

analyses of classical theories of iterated inductive definitions surveyed above made use of 

cut-elimination arguments applied to suitable uncountably infinitary sequent-style 

systems.  But for the purely reductive part of the problem, it seemed to me from the 

beginning that an extension of Gödel’s method of functional interpretation could serve to 

establish the expected results using finite formulas throughout.  In an unpublished lecture 

that I gave at the 1968 Buffalo conference⎯though circulated in mimeographed notes 

Feferman (1968)⎯I obtained a semi-constructive functional interpretation of ID1 in the 

classical system ID1(T), where the set T of constructive countable tree ordinals is a 

variant of O.  The hope was to then reduce ID1(T) to a suitable ID1(acc)i and thereby 

show that the |ID1| is the Howard ordinal, but I did not see how to get around the obstacle 

of essential use of numerical quantification (in its guise as the non-constructive minimum 

operator µ) in doing so.  The next attempts to approach this and the iterated case via 

functional interpretation were made by my student Jeffery Zucker in his dissertation 

(1971), the work from which was published in Zucker (1973).  Interestingly, Zucker 

showed that |ID1| = |ID1(acc)i| by application of Howard’s majorization technique to my 

functional interpretation with the µ operator.  However, he did not see a way to extend 

this to the iterated case.  What he was able to do was give a Kreisel-style modified 

realizability functional interpretation of IDn(acc)i in a theory of constructive tree classes 

up to level n for each n < ω and show that they have the same provably recursive 
                                                
11 Michael Rathjen has informed me that there is an alternative more direct argument to 
obtain Tupailo's result via an application of the double negation translation to the 
operator theory T<ω

OP of Rathjen (1998), which is of the same strength as 
T0(resIG)+UMIDN; moreover the same method applies to T<ε(0)

OP which is of the same 
strength as T0(res-IG)+INDN+UMIDN and thence of its intuitionistic version. 
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ordinals; he also sketched how this could be extended to transfinite α.   

 My notes Feferman (1968) and questions about its approach did not see the general 

light of day until they were outlined in sec. 9 of my survey with Jeremy Avigad in the 

Handbook of Proof Theory of Gödel’s functional interpretation, Avigad and Feferman 

(1998); I included that section there in the hopes that someone would see how to 

overcome the obstacle that I had met.  To my great satisfaction, that was finally achieved 

by Avigad with his student Henry Towsner in 2008 by a variant functional interpretation; 

the fact that this took place in the year of celebration of Wolfram Pohlers’ retirement is 

the reason why I subtitled this piece a forty year long saga. Since this is relatively new 

and unfamiliar material, I want to sketch how the approach in Avigad and Towsner 

(2008) proceeds.   

 As background, let’s look briefly at Gödel’s original Dialectica (or D-) 

interpretation (1958, 1972) and its consequences; subsequent work follows a broadly 

similar pattern.  Gödel applied the D-interpretation to Heyting Arithmetic HA to reduce it 

to a quantifier-free theory of primitive recursive functionals of finite type over N that he 

simply denoted by ‘T’.  This is carried out via an intermediate translation which sends 

each formula A of arithmetic into a formula AD of the form ∃z∀xAD(z, x) where z, x are 

sequences of variables of finite type (possibly empty) and AD is a quantifier free formula 

of the language of T.  The main theorem was that if HA ⊦ A then T ⊦ AD(t, x) for some 

sequence t of terms of the same type as z; this gives the reduction HA ≤ T.  A is 

equivalent to AD under the assumption of the Axiom of Choice, which in this setting is 

constructively accepted, plus the non-constructive Markov’s Principle and a principle 

called Independence of Premises.  But the interpretation of A by AD can be applied in 

combination with the double negation translation of PA into HA to show that these 

systems have the same provably recursive functions and that, moreover, they are the 

same as the functions of type 1 generated by the terms of T.  For if PA ⊦ ∀x ∃y R(x, y) 

with R primitive recursive then HA ⊦  ∀x ¬¬∃y R(x, y) and so by Markov’s Principle and 

the Axiom of Choice we have ∃z ∀x R(x, z(x)); finally, by the D-interpretation, there is a 

closed term of type 1 such that T ⊦ R(x, t(x)).  The set of functions of type 1 generated by 

the primitive recursive functionals of finite type is called the 1-section of T.  So this 

result can be summarized by the equations  
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Prov-Rec(PA) = Prov-Rec(HA) = 1-sec(T). 

Further work must be done if one wants to use this to recapture the result of Kreisel 

(1952) that the provably recursive functions of PA and HA are just those obtained by 

recursion on ordinals α < ε0. This can be obtained via the normalization of the terms of T 

using an assignment to them of ordinals < ε0.  That was was first carried out by Tait 

(1965) and later by Howard (1970) in ways akin to the use of ordinals < ε0 in the cut-

elimination arguments for PA by Schütte and Gentzen, respectively.   

 The details for the functional interpretation of theories of inductive definition are 

only given in full for ID1 in Avigad and Towsner (2008) and sketched for arbitrary IDn in 

their final section, though they say it can be extended to transfinite iterations. The first 

step, for a given arithmetical A(P, x), is to translate ID1 into the classical theory OR1 of 

abstract countable tree ordinals extended by axioms (I) for a predicate I(x, α) of natural 

numbers and (tree) ordinals, interpreted as x ∈Iα in the approximations from below to the 

least fixed point of A.  The functional interpretation is then used to obtain a reduction of 

OR1 + (I) to an ID1(acc)i via a quantifier-free theory TΩ of primitive recursive functionals 

of finite type over the tree ordinals and two of its extensions, QTΩ, which allows 

quantifiers over all finite type variables, and Q0TΩ, which allows only numerical 

quantification; unless otherwise indicated both are in classical logic. Avigad and Towsner 

show that OR1 + (I) ≤ Q0TΩ by the Diller-Nahm-Shoenfield variant of the D-

interpretation.  The problem then is to get rid of Q0 and pass to intuitionistic logic, which 

was essentially the obstacle that I and Zucker had met.  The novel key step is to establish 

the reduction Q0TΩ ≤ (QTΩ)i, using an adaptation of the argument in Sieg (1981) to 

formalize cut-elimination for a semi-formal version of Q0TΩ in (QTΩ)i.  Finally, the 

model of TΩ and thence of (QTΩ)i in the hereditarily recursive operations over the 

recursive countable tree ordinals may be formalized in ID1(O)i.  Chaining together these 

successive reductions, Avigad and Towsner obtain:  

ID1 ≤ ID1(O)i, |ID1| = |ID1(O)i|, and 

Prov-Rec(ID1) = Prov-Rec(ID1(O)i) = 1-Sec(TΩ). 



 19 

As I said, they assert that the same methods serve to establish IDα ≤ IDα(O)i and |IDα| = 

|IDα(O)i| in general; it would be good to see the details of that presented in full.  But 

assuming that is the case, on the basis of present evidence this work of Avigad and 

Towsner is an improvement on both Sieg (1977, 1981), which only obtained IDα ≤ 

IDα+1(O)i, and Buchholz (1981a), which only obtained IDα ≤ IDα(acc)i.  In addition, their 

functional interpretation has the advantage of giving a mathematical characterization of 

the provable recursive functions of a given ID theory in terms of the 1-section of a natural 

class of functionals.  Of course, one would need to use something like the methods of 

local predicativity with ordinal analysis in order to further describe those functions in 

terms of suitable ordinal recursions.    

7. Conclusion.  All the work surveyed here illustrates how the initial aim to use the 

constructive reduction and ordinal analysis of theories of iterated inductive definitions for 

the extension of Hilbert’s program to impredicative systems of analysis became 

transmuted into a subject of interest in its own right.  In addition, the continuing desire 

for conceptually clear arguments led to successive methodological improvements, which 

in turn proved useful in other applications.  Though the proof theory of iterated inductive 

definitions as first order systems falls far short of serving to deal with the next level of 

impredicative systems of analysis such as ∏1
2-CA, the work described in sec. 5 on 

classical and constructive theories of monotonic inductive definitions suggests that 

suitable second order theories of such may be useful for that purpose.   

To conclude, here are some questions suggested by the work that has been 

surveyed above.    

1. One does not have to be a devotee of purity of method to ask whether an 

alternative, more purely functional interpretation approach might be possible to 

arrive at the reduction IDα ≤ IDα(O)i in general.  Recall that Zucker (1973) 

showed that the proof theoretic ordinals of ID1 and TΩ are the same by applying 

the majorization argument of Howard (1973) to the semi-constructive functional 

interpretation of my 1968 notes.  For me, this is reminiscent of the use by 

Kohlenbach (1992) of his method of monotone functional interpretation to 

eliminate numerical quantification in the reduction of  the system WKL to PRA.  
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So the question is whether the appeal to cut-elimination in the final step of the 

Avigad and Towsner work both for ID1 and in general for IDα can be avoided by 

an application of the monotone functional interpretation or one of its variants, 

such as the bounded functional interpretation of Ferreira and Oliva (2005).  

Incidentally, I was misled by the work of Avigad and Towsner (2008) into 

thinking that they had somehow refined Sieg’s argument to replace ‘α+1’ by ‘α’ 

in the target system.  But it seems that that was only possible in combination with 

their use of functional interpretation.  So if a purely functional interpretation 

approach does not succeed to obtain a proof-theoretic reduction of IDα to IDα(O)i, 

it is still a question whether a refinement of Sieg’s arguments using cut-

elimination can achieve the same result.   

2. What part of mathematics can be carried out in ID1?  A recent interesting case 

study is provided by Avigad and Towsner (2009) (cf. also Avigad (2009) sec. 5): 

a version of the structure theorem in combinatorial ergodic theory due to 

Furstenberg (1977 ) can be formalized in ID1, via the interpretation in Q0TΩ+(I) 

described in the preceding section. That theorem was used by Furstenberg to 

prove by conceptually high level means the famous theorem of Szemerédi (1975), 

whose original combinatorial proof was very difficult. The work of Beleznay and 

Foreman (1996) suggests that the full Furstenberg structure theorem is equivalent 

to the ∏1
1 comprehension axiom.  But the work of Avigad and Towsner shows 

that the full strength of the structure theorem is far from necessary for the ergodic-

theoretic proof of the Szemerédi theorem. As this example shows, it may be that 

the pursuit of what other mathematics can be formalized in ID1 is more 

conveniently examined in proof-theoretically equivalent systems in which 

ordinals play an explicit role, such as the theory OR1 + (I) or its functional 

interpretations in the preceding section.  

3. What about what can be done in iterated IDs?   

4. Ordinal analysis only tells us something about the provably countable ordinals of 

a theory.  In the case of the IDαs, it would seem to make sense to talk about their 
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provably uncountable ordinals.  How would that be defined, and what can be 

established about them? 

5. ID1 is similar to Peano Arithmetic in various respects.  In Feferman (1996) I 

introduced the general notion of an open-ended schematic axiom system and its 

unfolding, to explain the idea of what we ought to accept if we have accepted 

given notions and given principles concerning them.  In Feferman and Strahm 

(2000) we showed that the full unfolding of a very basic schematic system NFA 

for non-finitist arithmetic is proof-theoretically equivalent to predicative analysis.  

There is a natural formulation of a basic schematic system NFI which stands to 

ID1 as NFA stands to PA.  What is its unfolding? 

6. A side development of the work on theories of iterated inductive definitions is 

that on theories of iterated fixed point theories IDα^, whose basic axiom for a 

given A takes the form ∀x [A(PA, x) ↔ PA(x)].  Building on work of Aczel 

characterizing the strength of ID1^, I showed in Feferman (1982b) that the union 

of the finitely iterated fixed point theories is equivalent in strength to predicative 

analysis.  That work was continued into the transfinite by Jäger, Kahle, Setzer and 

Strahm (1999) who showed that even though one thereby goes beyond 

predicativity in strength, the methods of predicative proof theory can still be 

applied.  They thus introduced the term metapredicativity for the study of systems 

that can be treated by such means.  In unpublished work by Jäger and Strahm, that 

even goes beyond ID1.  One should try to characterize the domain of 

metapredicativity in terms analogous to those used at the outset to characterize 

predicativity as the limit of the autonomous progression of ramified systems.  

Assuming that, I would conjecture that the full unfolding of the schematic system 

NFI suggested above is proof-theoretically equivalent to the union of the 

metapredicative systems.  

7. The set-theoretical treatment of least fixed points of monotonic operator apply to 

operators on subsets of arbitrary sets M.  Are there reasonable theories of IDs 

over other sets than the natural numbers, e.g. the real numbers?  What can be said 

about their strength? 
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