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Abstract

This is a survey of some of the principal developments in proof

theory from its inception in the 1920s, at the hands of David Hilbert,

up to the 1960s. Hilbert's aim was to use this as a tool in his �nitary

consistency program to eliminate the \actual in�nite" in mathematics

from proofs of purely �nitary statements. One of the main approaches

that turned out to be the most useful in pursuit of this program was

that due to Gerhard Gentzen, in the 1930s, via his calculi of \sequents"

and his Cut-Elimination Theorem for them. Following that we trace

how and why prima facie in�nitary concepts, such as ordinals, and

in�nitary methods, such as the use of in�nitely long proofs, gradually

came to dominate proof-theoretical developments.

In this �rst lecture I will give an overview of the developments in proof

theory since Hilbert's initiative in establishing the subject in the 1920s. For

this purpose I am following the �rst part of a series of expository lectures

that I gave for the Logic Colloquium `94 held in Clermont-Ferrand 21-23

July 1994, but haven't published. The theme of my lectures there was that

although Hilbert established his theory of proofs as a part of his foundational

program and, for philosophical reasons which we shall get into, aimed to have

it developed in a completely �nitistic way, the actual work in proof theory

�This is the �rst of three lectures that I delivered at the conference, Proof Theory: His-

tory and Philosophical Signi�cance, held at the University of Roskilde, Denmark, Oct. 31{

Nov. 1, 1997. I wish to thank the organizers, Prof. Stig Andur Pedersen and Prof. Vincent

F. Hendricks for inviting me to present these lectures, and especially for their substantial

work in preparing them for publication with the assistance of Mr. Klaus Frovin Jorgen-

son, from their audio tapes and my transparencies. I have edited the resulting articles for

coherence and readability, but otherwise have maintained their character as lectures, as

originally given.
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has moved steadily away from that towards rather in�nitary methods. So

the question posed in the title of my Clermont-Ferrand lectures was \how did

this happen, how is it that �nitary proof theory became in�nitary?". We will

get some idea of this. But what I want to concentrate on here are some of

the technical aspects of that work, to try to give you an idea of what are the

notions involved in the actual development of proof theory, and what are some

of the main results, at least up to the 1960s. The references below should be

consulted for more detailed technical expositions that bring the subject up

to the present, and for a more complete history of its development.

1. Review of Hilbert's Program and �nitary proof theory. Let us

start with Hilbert's program itself and his conception of it. He was very

concerned foundationally about the problems of the in�nite in mathematics.

Those were of two kinds. On the one hand you had explicit uses of the in�nite

in Cantorian set theory, that featured in some sense the completed in�nite,

the trans�nite. Then he also saw as a problem implicit uses of the in�nite,

already in classical number theory with the use of �rst order predicate cal-

culus and ordinary classical logic where, by the law of the excluded middle,

one assumes the natural numbers as in some sense a completed totality. For,

one would have to be able to decide between alternatives of the form: either

all integers have a property R or there is some integer which fails to have the

property R, i.e.

8xR(x)_ 9x:R(x): (1)

In general you would not be able to decide this. That kind of reasoning is

essential in various number-theoretical arguments. In order to eliminate the

in�nite in mathematics, Hilbert's idea was that somehow the actual in�nite

should only function as an ideal element, and is to be eliminated in favor

of the potential in�nite. So �nitism, in his conception of it, is to be the

mathematics of the potential in�nite.

We have a contrast here between �nitary (or �nitistic) methods and in-

�nitary (or in�nitistic) methods. Paradigmatic for the former is the estab-

lishment of universal propositions of the form: that each natural number, x,

has an e�ectively decidable property R(x) (or even more basically, a primi-

tive recursive property). A �nitistic proof of this has the character that for

each individual natural number x you can establish R at x, just by running

though a �nite portion of the integers. In the proof itself one might have to

go far beyond x in order to establish that, but, so to speak, the �nitary char-
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acter of the statement that R holds of all natural numbers x is that at each

individual natural number you will only need a �nite portion of the natural

numbers to verify the statement. If A on the other hand were a proposition

of the form 8xR(x), i.e. that all integers have a certain property, there would

be no way in principle in which that could be veri�ed by �nite means as a

whole.

How then was proof theory to be used as a tool in Hilbert's program? How

was proof theory to be used in order to eliminate the actual in�nite in systems

like number theory, as re
ected in propositions like (1)|to reduce proofs in

systems which involve implicitly or explicitly the actual in�nite, to proofs of

�nitary, or apparently �nitary, propositions, and to reduce these proofs to

actual �nitary veri�cations? The idea was: you would show �nitistically that

if you have a formal system S in which a body of mathematics is represented,

and if S proves a �nitarily meaningful proposition R(x), then you would want

to be able to show that at each natural number, x, R(x) holds. Formally

that takes the form: If u is a proof in S of R(x) then R(x) holds, i.e.

ProofS (u; pR(x)q)! R(x) (2)

In order to do this it turns out that for a system S which is able to es-

tablish elementary facts about primitive recursive functions and relations, it

is su�cient to establish the consistency of S in a �nitistic way. For suppose

you have a proof of R(x) in S (with free variable x) but R(x) does not hold

(for a speci�c x). Then within S you could prove that R(x) does not hold (at

that x) and therefore you would have a contradiction; if you assumed consis-

tency this could not happen. That is why Hilbert's program concentrated on

the consistency problem. The essence of the program was just this so-called

re
ection principle (2) for �nitary statements: that if you have a proof of

R(x) in the system then in fact R(x) holds. The elimination of the actual or

potential in�nite in S would be accomplished if the re
ection principle could

be established and, for that, if the consistency of S, Con(S), could be proved

�nitistically. In free variable form, Con(S) is the formula

:ProofS (u; p0 = 1q) (3)

and it is thus a candidate for a �nitistic proof.

There are a number of methods which were developed in proof theory in

order to be able to establish this program for the elimination of the actual

in�nite (explicit or implicit) in mathematics, and I just want to mention
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several before turning to what has come to be the dominant method. I

divide these into two groups, one group having a certain kind of functional

character and a second group having a more syntactic character.

Functional Methods. The ones having functional character start with

Hilbert's "-calculus. `"' there had nothing to do with the membership rela-

tion, but is simply a symbol he used to write "xA(x), which is interpreted

informally as an x such that the property A(x) holds, if there is any such

x at all. So you would say there is an x such that A(x) holds if A holds of

"xA(x), that is, if A("xA(x)). You have here a formal elimination of quan-

ti�ers in favor of such "-terms. Then you want to show that "-terms can be

eliminated, and thence reduce predicate calculus to propositional calculus,

which is unproblematic from a �nitary point of view. I think of these "-terms

as functions, because what they really do is to provide choices of an x, such

that A(x) holds; they are functions of the other arguments in A(x). Hilbert

himself initiated this approach; he proposed some theorems that ought to be

established. Wilhelm Ackermann, his collaborator, continued the work, and

it went a certain distance, but then after the 1930s not much was done until

William Tait took it up again in the late 1950s and early 1960s. In more

recent years it is my colleague Grigori Mints who has really pursued this

quite systematically and has extended the method to rather strong systems.

That is work which is currently in progress.

Jacques Herbrand had in some respects a related approach, and again

the idea was to reduce validity in the predicate calculus in some way to

validity in the propositional calculus. Basically what you do is that you in-

troduce functions which are in a sense dual to Skolem functions, which are

objects that are appropriate to eliminate quanti�ers for satis�ability. Her-

brand used functions which are appropriate for eliminating quanti�ers for

validity. Formally you can reduce questions of validity of arbitrary formulas

in the predicate calculus to questions of validity of purely existential for-

mulas by introducing many new function symbols in them. Then Herbrand

showed that if an existential formula is provable then some �nite disjunction

of instances of that formula is propositionally provable; moreover you can

derive the original formula, once you have such a �nite substitution instance.

This approach was initiated by Herbrand around 1930; there were technical

problems in Herbrand's own work, which were dealt with in the 1950s by

Burton Dreben and his (then) student Warren Goldfarb, among others.

Related work that continues this into number theory was carried on by
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Georg Kreisel, under the rubric of \the no-counter-example interpretation".

That designation comes from the fact that if a formula is not valid, Skolem

functions would give an example for the negation of the formula. So if you

say that the formula is derivable, there is no counter-example, and that leads

you to the idea of the \no-counter-example interpretation".

Kurt G�odel did something quite di�erent where functionals enter very

clearly, in the use of the so-called \Dialectica" (functional) interpretation.

He formally reduced classical systems to intuitionistic systems, and then

showed that proofs of intuitionistic propositions have a natural functional

interpretation which he provided.

Syntactical Methods. Now I want to turn to what are more syntactic

or purely logical approaches. In the early 1930s Gerhard Gentzen introduced

two kinds of calculi: First, the Calculi of Natural Deduction, which are

reasonably close in formal terms to the actual way in which we carry out

proofs. He tried to use this kind of calculus in order to carry out Hilbert's

program. But there were some technical problems there, and he put it aside

in favor of what are called Calculi of Sequents, which I will describe in more

detail. However, in later years the Natural Deduction Calculi were taken up

again by Dag Prawitz, and these have become very important, both in proof

theory and in applications of proof theory to computer science.

Gentzen introduced two kinds of Sequent Calculi for the �rst order pred-

icate calculus: LJ (intuitionistic predicate calculus) and LK (classical pred-

icate calculus). L stands for pure predicate logic, J for intuitionistic, K for

classical. The calculi have rules which are speci�c to each logical operation,

and they separate the use of implication from its use in inferences in a way

that we will see in a moment.

2. Results of �nitary proof theory via Gentzen's L-Calculi. Let

�;�; � � � be �nite sequences (or multi-sets, or sets|di�erent people take dif-

ferent choices) of formulas. Instead of using set notation we write A1; � � � ; An

for the sequence (multi-set or set), i.e. � = A1; � � � ; An. �; A simply means

adjoin A to the sequence �, i.e. �; A = A1; � � � ; An; A. Gentzen considers

derivations of formal expressions of the form � ` A where the sequence �

represents the hypotheses or premises and A the conclusion of an argument.

An expression of the form � ` A is called a sequent. Gentzen also allows that

there may be an empty conclusion, that is, expressions of the form � `. In-

stead of thinking of � ` as an argument without conclusion, you can think of
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it as an argument with a contradiction as conclusion by, for instance, putting

as conclusion a formula for a contradiction, like 0 = 1 or A ^:A for some

speci�c formula A. The character of these rules is that they tell you how

something is to be introduced in a conclusion and they also tell you how

something is to be used as a hypothesis. So in each of these rules you have

a left rule and a right rule. They either introduce a formula with a speci�c

principal logical operator as conclusion|those are the right rules|or they

introduce in a similar way a formula in the hypotheses (or antecedent of the

sequent)|those are the left rules.

The calculus LJ has the following formal rules

� Rules for logical operations

Right Left

:
�; A `

� ` :A

� ` A

�;:A `

!
�; A ` B

� ` A! B

� ` A �; B ` C

�; A! B ` C

_
� ` A

� ` A _B

� ` B

� ` A _B

�; A ` C �; B ` C

�; A _B ` C

^
� ` A � ` B

� ` A ^B

�; A ` C

�; A ^ B ` C

�; B ` C

�; A ^ B ` C

9
�; A(x) ` B

�;9xA(x) ` B
restriction on x

� ` A(t)

� ` 9xA(x)

8
�; A(t) ` B

�;8xA(x) ` B

� ` A(x)

� ` 8xA(x)
restriction on x

� Cut rule
� ` A �0; A ` B

�;�0 ` B

� Structural rules
� ` A

�0 ` A
; � � �0
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Let's �rst of all look at disjunction, which is very characteristic. You

can infer A _ B as the conclusion if you have either inferred A or you have

inferred B. To use A _B you argue as follows: if I knew A and I obtain C,

that would be one way, if I knew B and I obtain C that would be another

way. I do not know which of A or B holds, but if I have A_B, either A then

C or B then C, and therefore we can conclude C. The rules for conjunction

are dual to those for disjunction.

With negation it goes as follows. To infer that � establishes :A you need

to know that � together with A reaches a contradiction. On the other hand

to establish that � together with :A reaches a contradiction you establish

that A follows from �.

Now, perhaps the most natural rule, although they all are quite natural, is

the one with implication-introduction on the right. In order to infer A! B

from � you simply say: let us take A as an additional hypothesis with �, use

it and then infer B.

For quanti�cation, let us just look at existential quanti�cation: in order

to infer 9xA(x) you infer that � establishes A(t) for a speci�c t. In order

to establish that � together with 9xA(x) has as consequence B you say:

suppose 9xA(x), let x be anything with that property and show that B

is a consequence of � together with A(x). We need x there to be a fresh

variable that has not been named otherwise in the sequent involved; that is

the restriction on x in the quanti�er rules.

There are some axioms and rules besides these that are not speci�c to

the connectives. Axioms are simply of the form A ` A, i.e. that from A, A

follows; that is clear. The structural rules say that the set of premises in an

argument can be expanded: if from a set of hypotheses � you have obtained

A and you take any larger set �0 that also gives A.

The most signi�cant rule here is the Cut Rule which says: if from � you

have inferred A and from another �0 with A you have inferred B then from

both � and �0 you can infer B. This rule has some of the character of Modus

Ponens, but you can also think of it as a rule which corresponds to the use

of lemmas or theorems in the process of a derivation: in that process you

establish some particular lemma or theorem A as an intermediate step and

then by use of A you establish the �nal conclusion B.

The Cut Rule di�ers from the other rules in an important respect. With

the rules for introduction of a connective on the left or the right, you see that

every formula that occurs above the line occurs below the line either directly,

or as a sub-formula of a formula below the line, and that is also true for the
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structural rules. (We count A(t) as a subformula, in a slightly extended

sense, of both 9xA(x) and 8xA(x).) But in the case of the Cut Rule, the

cut formula A disappears. So you have a kind of detour, perhaps, through

a formula which may be more complicated than formulas which occur in the

�nal sequent.

Now, a crucial question would be: under what conditions can we establish

a direct derivation from a set of hypotheses, �, to a conclusion, A, without

use of the Cut Rule, because the Cut Rule means that we are making some

detours?

Before we get into this; what we have described so far is the Gentzen

calculus for intuitionistic logic. The Gentzen calculus for classical logic is

formally similar, except that on the right hand side we may also have a �nite

set or sequence of formulas �(= B1; : : : ; Bn), and the rules look exactly the

same as they did with the intuitionistic calculus allowing these sets of side

formulas, �, throughout.

� The calculus LK has the following formal rules:

� Rules for logical operations

Right Left

:
�; A ` �

� ` :A;�

� ` A;�

�;:A ` �

!
�; A ` B;�

� ` A! B;�

� ` A;� �; B ` C;�

�;�; A! B ` C;�;�

_
� ` A;�

� ` A _B;�

� ` B;�

� ` A _ B;�

�; A ` C;� �; B ` C;�

�; A _ B ` C;�

^
� ` A;� � ` B;�

� ` A ^B;�

�; A ` C;�

�; A ^B ` C;�

�; B ` C;�

�; A ^B ` C;�

9
�; A(x) ` B;�

�;9xA(x) ` B;�
restriction on x

� ` A(t);�

� ` 9xA(x);�

8
�; A(t) ` B;�

�;8xA(x) ` B;�

� ` A(x);�

� ` 8xA(x);�
restriction on x
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� Cut rule
� ` A;� �0; A ` �0

�;�0 ` �0

� Structural rules
� ` �

�0 ` �0
; � � �0;� � �0

In the classical case, Cut informally takes the form: if from � you have

obtained �; A and from �0; A you get �0 then from �;�0 you obtain �, �0.

In a moment we will look at an interpretation of LK in more usual Hilbert

style terms, but to see how this form of the calculus gives us something that

the intuitionistic calculus does not give, let us just look at a proof of the Law

of the Excluded Middle in LK. A formal proof of this law takes the following

form:
A ` A

` A;:A

` A _ :A;:A

` A _ :A;A _ :A

` A _ :A

From the axiom A ` A, you can bring negation over to the right hand side

and then, using the disjunction rule applied to the �rst formula A on the

right hand side you get A_ :A, and then using the disjunction rule once

more for introducing disjunction on the right you again obtain A_:A. Now

the set of formulas to the right of ` just consists of two exemplars of A_:A

which simply collapses to the set A_ :A. From the way this argument goes

we do not know why A _ :A holds, i.e. we do not know which of A;:A is

true, but by the mechanics of this form of Gentzen's classical calculus we are

able to derive it in that form. Note that we are blocked at the very outset

from carrying out this derivation in LJ, where at most one formula appears

on the right hand side of a sequent. In LJ if ` A _B then ` A or ` B, but

this doesn't hold in LK. In particular ` A _ :A in LK even when neither

` A nor ` :A.

The interpretation of LK is simply that a sequent � ` � is derivable

in that calculus just in case the conjunction of formulas in � implies the

disjunction of formulas in �, i.e.

A1 ^ � � � ^An ! B1 _ � � � _Bm (4)
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is valid. If you look back at the rules with this interpretation in mind you

see that each of the rules preserves validity in that sense.

So the Cut Rule is a kind of generalization of Modus Ponens and takes

over its roles. The principal theorem that Gentzen obtained is the Cut-

Elimination Theorem, and this works both for the classical and the intu-

itionistic calculi. It says that for each derivation d of a sequent � ` � we

can associate a cut-free derivation d� of the same sequent, i.e. one which has

no applications of the cut rule in it. Everything that is used in it is either

an axiom, a structural rule or one of the rules for introducing one of the

connectives either on the left or on the right. There is a price, though, that

you have to pay for this, and that is that the length of the cut-free derivation

associated with the original derivation is much longer in the worst case, and

it can grow at a hyper-exponential rate, which can be measured as follows:

Associated with each derivation is its cut-rank, which is the maximum of

the complexities of the cut-formulas A which are eliminated by the use of

the cut rule. You have a natural measure of the complexity of those for-

mulas and you also have a measure of the length of the derivation jdj and

the length of the new derivation jd�j. The length of the cut-free derivation,

compared to the length of the original derivation, is bounded by a stack of

2's above which the highest exponent is jdj, and the length of the stack is

the cut-rank of the original derivation. In symbols: jd�j � 2r(jdj) where

r = cut-rank(d); 20(a) = a and 2n+1(a) = 22n(a). Basically each reduction

of the cut-rank by 1 corresponds to an increase in the length of the modi�ed

derivation, by exponent to the base 2. By suitable examples this is in general

the best possible; you can't do much better than this.

Though not feasible operations in general, because of the possible hyper-

exponential rate of growth, these are e�ective transformations of the orig-

inal derivations into new cut-free derivations. The cut-free derivations are

signi�cant, as I say, because they have the sub-formula property. In par-

ticular, if you ask whether you can derive the empty sequent, which would

simply be a derivation of a contradiction, the answer is no, because by the

sub-formula property everything in such a derivation would have to be a

sub-formula of this eventual conclusion, but you have to start with axioms

so that can't be possible. So this proves that the classical predicate calculus

is consistent, which is not surprising|but this is a simple example of how

the Cut-Elimination Theorem might be useful in establishing consistency of

stronger systems S.
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Applications. As with the disjunction property for LJ, that if ` A_B

then ` A or ` B, we have an existential instantiation property for LJ: if

` 9xA(x), then for some t; ` A(t). This cannot be done in LK, even for

quanti�er-freeA. Herbrand's Theorem, which I have already mentioned, tells

us the next best thing we can do in LK. It runs as follows:

If R is a quanti�er-free formula and `9xR(x) in LK then

there exist terms t1; � � � ; tn such that ` R(t1) _ � � � _R(tn). And,

more generally, when � is purely universal, if in LK, � ` 9xR(x)

then � ` R(t1) _ � � � _R(tn) for some t1; : : : ; tn:

A proof of Herbrand's Theorem using LK goes along the following lines:

If you have a derivation d of an existential statement, ` 9xR(x), where R

is quanti�er free, then by the Cut-Elimination Theorem we can transform

it into a cut-free derivation d� of ` 9xR(x). Now in d�, this �nal sequent

would have had to have been established by the right rule for existential

quanti�cation, which would mean that you had a substitution instance R(t)

which brought that in. This 9xR(x) might still have been there, because by

the structural rules the set of formulas would collapse if I proved 9xR(x),

R(t) and then established 9xR(x), 9xR(x); and since the set of those are

the same as 9xR(x) I would still have that formula 9xR(x) one step back.

So we would continue up the tree of that derivation in that way, each time

having perhaps some new substitution instance. But eventually we have to

stop with that, and we will simply have a bunch of formulas on the right of

the form: R(t1); R(t2); : : : ; R(tn), and of course that is the same as having a

proof of the disjunction R(t1) _R(t2) _ : : : _ R(tn).

What Herbrand's Theorem tells us|and what comes out of the proof in

the Gentzen calculus|is that: classically, if you have a proof of an existen-

tial statement, you do not necessarily know of one speci�c instance which

realizes that statement, but you will always have a �nite set of instances,

by means of which you can say at least one of those realizes the statement.

More generally, if you have a purely universal set of hypotheses and that

proves an existential statement then there will be a �nite set of witnesses

which proves the corresponding disjunction. One way of seeing that is: take

the universal statements in �, use the negation rule to bring them over to

the right side, they then become existential statements, and we can apply

Herbrand's Theorem and then go back and we will have the conclusion.

The reason this is useful for Hilbert's Program is that some formal systems

of interest to us have particularly simple axioms which are purely universal.
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In particular, in Peano Arithmetic the axioms for 0, successor, addition, mul-

tiplication, and perhaps other primitive recursive functions are all universal.

The only thing which might not be universal is the Axiom of Induction, or the

scheme of induction with various formulas. Let us take the simplest form of

the scheme of induction, namely, Quanti�er Free Induction Axiom (QF-IA)

R(0) ^ 8x[R(x)! R(x0)]! 8xR(x) (5)

In this, R(x) is a quanti�er-free formula, with perhaps additional free vari-

ables. It expresses that if R(0) holds and if R(x) implies R(x0) for any x,

then 8xR(x) holds.

Assuming you have some elementary properties of primitive recursive

functions and relations|in particular the \less than" relation, then you can

show that (5) is equivalent to the statement

8x[R(0) ^ 8y < x[R(y)! R(y0)]! R(x)] (6)

which is purely universal with primitive recursive body. To see this, it is

su�cient to know that the induction hypothesis|that R transmits from y

to y0|holds for numbers under x in order to get up to x itself. In primitive

recursive arithmetic the bounded quanti�er formula 8y < x[R(y) ! R(y0) ]

is equivalent to a quanti�er-free formula. So, the universal closure of (6)

now becomes a purely universal statement. Therefore, if you are looking

at consequences of that particular subsystem of Peano Arithmetic which

just uses QF-IA, by Gentzen's Cut-Elimination Theorem (or if one prefers,

Herbrand's Theorem, or suitable theorems for Hilbert's "-calculus), you are

able to establish that if you prove an existential statement in that system

you will have a disjunction of a �nite number of instances provable there. In

particular, the consistency of this system is an immediate consequence.

That result for QF-IA was established by Ackermann as the �rst con-

tribution to Hilbert's consistency program for a system of any mathematical

interest. Though there is not very much you can do mathematically within

that system, it is non-trivial at the same time. Much later there was an

extension of this result to the instances of the induction axiom scheme which

use what are called �0
1 formulas denoted (�0

1
� IA):

A(0) ^ 8x[A(x)! A(x0)]! 8xA(x); (7)

where A is a �0
1 formula, i.e. it is of the form 9xR(x), where R itself is quanti-

�er free. (The super `0' simply means you have just numerical quanti�cation,

12



the sub `1' means one quanti�er and the � means that it is existential.) The

result for �0

1
� IA was �rst proved by Charles Parsons using an adaptation

of G�odel's functional interpretation. Wilfried Sieg later gave a new proof,

using Herbrand-Gentzen style methods, which happens to be useful for other

things.

It turns out from the work of Parsons that the system based on the �0
1

Induction-Axiom is conservative over the system of quanti�er-free Primitive

Recursive Arithmetic, PRA. Being conservative means that any formula

formulated in the language of PRA, which is provable with �0
1 induction

(�0

1
� IA), is already provable in PRA.

PRA itself is a system based on entirely quanti�er-free axioms and rules

for primitive recursive functions, including a Rule of Induction rather than

an Axiom of Induction. It has been argued by Tait, and is generally agreed,

that everything that is obtained in PRA is �nitistically justi�able, at least

in principle (Tait has also argued the converse). Assuming this, Parsons'

result is, therefore, again a contribution to Hilbert's program: you eliminate

the use of the in�nite as re
ected in the use of classical predicate calculus,

together with the axioms for this fragment of arithmetic�0

1
� IA in favor of

purely �nitary proofs, as represented in PRA.

If you are a radical �nitist you only talk about things that are feasibly

computable, and this result would not cover that because the primitive re-

cursive functions, beginning with exponentiation, go far beyond the feasibly

computable functions. But if you are �nitist \in principle" then conservativ-

ity over PRA should certainly satisfy you.

3. Shifting paradigms. How far can Hilbert's program be carried out?

G�odel's second incompleteness theorem told us that one would not be able

to prove the consistency of full �rst order arithmetic, PA (whose induction

axiom scheme applies to arbitrary formulas) by means which could be for-

malized within PA itself. Although Hilbert never made precise what exactly

�nitist arguments were to consist in, all the �nitary arguments that had been

carried out up to G�odel's incompleteness theorem were evidently formaliz-

able in very weak subsystems of PA, and in fact in PRA itself. Thus, one

had to rethink the Hilbert program at that point, and ask whether there is

some reasonable modi�cation of it which could establish the consistency of

PA and yet stronger systems. For example, instead of reducing in�nitary

systems to �nitary systems, one could try to reduce non-constructive sys-
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tems to constructive systems, or, as we will see, even seek other kinds of

reductions.

If one accepts intuitionistic logic as being a formal expression of con-

structive ideas, then one could say: suppose we replace classical logic in PA,

which is behind the �rst implicit use of the actual in�nite (as in, e.g.

8xR(x)_9x:R(x), which cannot be inferred in intuitionistic logic). Suppose

we leave out the law of the excluded middle; then we obtain a system which

is called Heyting Arithmetic,HA, which looks just like PA with the di�er-

ence that it is based on intuitionistic rather than classical logic. But there is

a simple translation of classical logic into intuitionistic logic and of classical

arithmetic into intuitionistic arithmetic|obtained independently by G�odel

and Gentzen. It is not clear that Hilbert would have been satis�ed with

this reduction in favor of a system where there is no implicit appeal to the

actual in�nite. But this is evidence of a kind of thing that could be done if

you replaced Hilbert's program by this modi�cation where you say: let us

just see what can be obtained by reducing non-constructive formal systems

involving appearances of the in�nite into constructive formal systems which

do not contain such appearances.

But to carry out something like Hilbert's original program for the full

system of arithmetic,PA, more must be done if you are going to try to push

a proof of its consistency as far down to �nitist arguments as possible. That

again was accomplished by Gentzen, who brought elements of the trans�nite

into the picture, with the use of ordinals. The ordinals here are those which

are below Cantor's ordinal "0. That is the limit of the sequence of ordinals

!; !!; !!
!

� � �

These ordinals can be represented in �nite form, in what is called Cantor-

normal form to base !, and when represented symbolically in that form,

these simply look like certain �nite symbolic con�gurations

!�m + � � �+ !�0; (8)

where the exponents are again of such forms. The ordering relation between

these �nite symbolic con�gurations turns out to be primitive recursive, in

a very easy way: you can decide whether one con�guration, representing

an ordinal less than "0, is less than another in a primitive recursive way.

Consequently, you could say: though I am talking about certain trans�nite

objects here|trans�nite ordinals|I am representing them in a �nitary way,

using this primitive recursive relation.
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What Gentzen did was to associate with each derivation in elementary

number theory a derivation of sequents using the induction rule (Ind-Rule)

� ` A(0);� �; A(x) ` �; A(x0)

� ` A(x);�
(9)

(A arbitrary) to supplement the logical rules of LK, to see whether something

like the Cut-Elimination Theorem could hold.

It turns out that we do not have full cut-elimination for this extension of

LK. But what we do have by Gentzen's work is that if you have a derivation,

d, which is a possible derivation of the empty sequent, then with each such

derivation you can assign an ordinal ord(d) less than "0, such that certain

reductions like cut-elimination can be applied to that derivation to lower the

complexity. If a derivation were a derivation of the empty sequent you would

be able to successively lower its complexity. That is, to each derivation d of

the empty sequent is associated another one d0, such that ord(d0) < ord(d) <

"0. But if that were the case, then you would have a descending sequence in

the above-mentioned order relation of order type "0. So, if you assume that

that is a well-founded relation, or equivalently that you can apply trans�nite

induction up to the ordinal "0, then you can verify that there cannot be

any such descending sequence of ordinals, and, therefore, there cannot be

such a reduction sequence: so you cannot have a derivation of the empty

sequent. Consequently, we have a consistency proof of the full �rst order

Peano Arithmetic, PA1.

What principle of trans�nite induction do we need here? It turns out

that we only need trans�nite induction applied to quanti�er-free formulas,

and that the rest of the argument can be carried out with just things that

are purely within primitive recursive arithmetic PRA. The statement that

PA itself is consistent is a statement of purely universal character, it says

no derivation d is a proof of 0 6= 1. All of this can be done in a purely, so

to speak, �nitary way except for the assumption of quanti�er free trans�nite

induction up to "0. Quanti�er-free trans�nite induction up to "0 proves the

consistency of PA,

QF�TI("0) ` Con(PA) (10)

�nitistically (and certainly over PRA). Gentzen showed that this was the

best possible in the following sense. For each ordinal � less than "0 you can

1Gentzen's work actually establishes something stronger, namely the re
ection principle

for �0

1
-formulas 9xR(x) in PA.
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prove trans�nite induction up to �, TI(�), in PA:

PA ` TI(�) for each � < "0: (11)

In some sense, "0 was thus attached as the ordinal of Peano arithmetic.

Further proposed modi�cations of Hilbert's program. That is

one way in which Hilbert's program was extended. Much further work in this

direction was carried on in the 1950s by the Munich school of Kurt Sch�utte

and in the school of Gaisi Takeuti. Though the work of these schools had sub-

stantial technical di�erences, they agreed on a general extension of Hilbert's

consistency program. The principal aim of people within this program has

been to prove the consistency of stronger and stronger formal systems, S.

And the way that is to be done is to associate an ordinal, �, which can be

represented primitive recursively, with S, and then prove two things. First,

that by just using �nitary methods and trans�nite induction up to � you are

able to prove the consistency of S; and, second, that this is best possible in

the sense that for each ordinal smaller than �, you can prove the trans�nite

induction principle up to �, TI(�), for � < �, in S itself. But also the

trans�nite induction principle up to � itself must somehow be recognized in

some constructive way. So you have a kind of curious combination here of

getting larger and larger ordinals attached to formal systems; you try to be

as �nitary as possible, but there is this one non-�nitary element, the trans�-

nite induction up to the ordinal associated with the system. You may have

to use very strong constructive methods in order to establish that trans�nite

induction principle.

A quite di�erent way of looking at what proof theory ought to do, was

proposed by Kreisel and continued by me in the article \Hilbert's program

relativized" (see the References). Instead of saying, as in the initial Hilbert's

program, that what we are trying to do is reduce in�nitary systems to �nitary

systems, let us say: well, one thing we can do is to perform various other

kinds of reductions. For instance, reduce

� non-constructive systems to constructive systems

� impredicative systems to predicative systems,

and so on, and then obtain related conservation results. There the reduction

does not mention ordinals at all, but the proof of the reduction might actually

16



have to use the techniques of Gentzen and the extensions by Sch�utte, Takeuti

and others behind the scenes in order to establish such conservation results.

That is still another direction that one might hope to pursue with extensions

of proof theory. This is something I will talk more about in the following

lectures.

Kreisel himself also promoted what you might call a non-ideological at-

tempt at using proof theory as a kind of extension of Herbrand's Theorem,

dealing with the question: if you prove some existential statements, what

kinds of information can you obtain about witnesses to those existential

statements? In the case of number theory typically statements of interest

are of the form

8x9yA(x; y) (12)

that is, for every natural number there exists another natural number having

a certain property, A. When proving such statements non-constructively you

would like to extract the constructive or recursive content, i.e., you would

like to know how y is obtained as a function of x. In the case that A is

primitive recursive, y is obtained as a recursive function of x. Then you talk

about what are called the provably recursive functions of the system S. One

way of thinking of that is that you may have a non-constructive proof of the

existence of a recursive many-one relation, but the question is actually to

produce that recursive relation, y as a function of x, or as a program which

realizes that function. Again, that can be carried out. So, for example, in

the case of arithmetic people have produced what are called hierarchies of

recursive functions, or sub-recursive hierarchies, starting with the primitive

recursive functions, going a little farther with the Ackermann function, which

uses a certain bit of ordinal recursion, and then farther up to the ordinal "0.

Kreisel characterized the provably recursive functions of PA in terms of a

sub-recursive hierarchy up to "0. For stronger systems the associated ordinal

also leads you to hierarchies of provably recursive functions. That is another

way in which proof theory is used to obtain, in principle useful, mathematical

information, although in fact it does not go much beyond producing such

hierarchies.

There have been di�erent ways that people have talked about the ordinal

of a formal system. One is the Gentzen-Sch�utte-Takeuti way, the least ordinal

that you can use to prove the consistency of the system,

the least � : PRA+ (QF�TI(�)) ` Con(S): (13)
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Another is that it is the least provably recursive well-ordering of the system,

i.e.

� = supfj�j:� is a provably recursive well-ordering of Sg: (14)

Still another is that it is the ordinal of the least hierarchy which cannot be

established in the system

� = supf� : e�ective trans�nite recursion up to � is justi�ed in Sg: (15)

There are no very good robust de�nitions of these concepts although they

agree in practice. Unfortunately, we do not have a theory that tells us exactly

what we are doing when we obtain the ordinal of a formal system, though it

is clear that we are doing something of interest.

4. Countably in�nitary methods (getting the most out of logic). In

the 1950s there was a shift in techniques to the use of in�nitary formal and

semi-formal systems2. Various people were involved in this but the person

who promoted it most vigorously was Kurt Sch�utte in Munich. He had a

di�erent way of getting the ordinal associated with Peano Arithmetic out of

a direct extension of logic to an in�nitary system where, instead of the usual

right universal quanti�er rule, we use the !-rule. It says that if you proved

A(�n) for each numeral �n, then you are allowed to prove 8xA(x), where A

here is an arbitrary formula. In sequent form it takes the following form

� � � � ` �; A(�n) � � � (n = 0; 1; 2; : : :)

� ` �;8xA(x)
(16)

The system obtained by adding this rule to LK is denoted LK(!).

Derivations here are in general going to be in�nite, since you have in�nite

branching at the !-rule. But going up along any branch you will eventually

come to an axiom. If you invert the derivation trees you can see that these

are well-founded because, going down, every branch comes to an end. Being

well-founded in�nite trees in this sense, they have a natural associated ordinal

length, namely: the height of the tree as an ordinal. The ordinal associated

with an !-inference is the sup of the ordinals associated with the hypotheses

plus 1, that is, it is the least ordinal greater than all the ordinals associated

with the sub-derivations of each instance � ` �; A(�n).

2The history here is incomplete. In particular, P. S. Novikov developed cut-elimination

for in�nitary derivations with ordinal bounds already in the late 1930s-early 1940s, but

this was largely unknown in the West for some time; cf. Mints (1991), 387-389.
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You can replace the use of the induction axiom in Peano arithmetic by

applications of the !-rule. There is an immediate map of derivations in PA

into derivations, d, in LK(!) preserving cut-rank. So these derivations in

LK(!) have cut-rank less than !, but, due to the !-rule, the length of d is

now going to be in�nite, but not too large, namely, less than ! + !.

Now, lowering the cut-rank in d by 1 gives us an exponential cost of j d j

to base !. That is,

d 7�! d0; j d0 j� !jdj (17)

By repeating this r times, where r is the cut-rank of d, r = rnk(d), we end

up with a cut-free derivation d� of the same sequent, whose length is at most

a stack of !'s r times up to the original length of the derivation d, i.e.

d 7�! d�; j d� j� !r(jdj); (18)

where !0(�) = � and wn+1(�) = !!n(�).

If we do things right you can take base 2 instead of base !, just as we did in

the �nitary case, but when we are in ordinals the e�ect of that is essentially

the same, since 2! = !. The �rst ordinal which is bigger than all those

ordinals that we get via (18) is simply "0. So, "0 falls out of this directly,

and now this is a full Cut-Elimination Theorem in !-logic, of derivations

with �nite cut-rank, whereas in the Gentzen-treatment of PA you only had

a partial Cut-Elimination Theorem of derivations of �0
1-sequents.

Here we have what people regarded as an essential methodological or

conceptual improvement, and that is that ordinals here were associated in

a canonical way with in�nite derivations in contrast to the original work of

Gentzen, where the association of ordinals looked rather ad hoc. It turns

out in recent work by Wilfried Buchholz that in fact there is a much closer

intrinsic connection between the way that Gentzen assigned the ordinal "0
to derivations in PA and the way that Sch�utte assigned ordinals to the

associated derivations in LK (!), than was realized for many years. In fact,

this same connection had been pretty much established back in the mid 1970s

by Mints, but it was not well-known. What Buchholz has done is essentially

to incorporate the work of Mints and to simplify it in a way now that it can

be extended to much stronger systems, so that it turns out that there is a

much closer intrinsic connection than had been previously suspected between

ordinal assignments in Sch�utte-style proof theory using in�nite derivations

and Takeuti-style proof theory using �nitary derivations.
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The ordinal "0 came out as a natural stopping point, because it is the �rst

ordinal closed under exponentiation. If you take the function �0(�) = !�,

and if you de�ne �1 as the function which enumerates the �xed-points of �0,

and continue this procedure into the trans�nite, then you get a hierarchy of

ordinal functions which is called the Veblen hierarchy �� of critical functions,

de�ned by:

�0(�) = !�

��+1 enumeratesf� j ��(�) = �g (19)

�� enumerates
\

�<�

Rng(��); when � is a limit ordinal.

So, e.g. �1 enumerates the "-numbers, i.e., �1(�) = "�. The ordinals

��(�) appear in further extensions into in�nitary proof theory, as we shall

see next.

The calculus LK!1 ;!. The basic simpli�cation here is due to Tait

who said instead of just using the !-rule|which seems rather special to

arithmetic|let us use countably in�nite conjunctions and disjunctions3. There

are natural rules which generalize those for �nite disjunctions and conjunc-

tions, and which look exactly like the ones we had before in LK, namely

� countable in�nite conjunctions
V

n
An with the rules

� � �� ` �; An � � � (n < !)

� ` �;
V
nAn

�; Ak ` �

�;
V

nAn ` �
(20)

� countable in�nite disjunctions
W

n
An with the rules

� ` �; Ak

� ` �;
W
n
An

� � ��; An ` � � � � (n < !)

�;
W

n
An ` �

(21)

Let LK!1;! be Gentzen's calculus LK extended with these in�nitary rules.

(The sub '!1' here means that all conjunctions and disjunctions have length

less than the �rst uncountable ordinal !1, while the sub `!' means that we

only allow �nite strings of quanti�ers at each occurrence.) Tait established

a Cut-Elimination Theorem for this language. Derivations might now have

3Again, this was anticipated by Novikov; cf. Mints (1991), pp. 387-389.
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trans�nite cut-rank instead of �nite cut-rank; roughly speaking, you can

bound the length of a cut-free derivation obtained from an original derivation

of cut-rank � and length � in the Veblen hierarchy by iterating � places out

in the � hierarchy. That is, for a derivation d with arbitrary cut-rank � and

length �, where �; � < !1, there exists a cut-free derivation d� of the same

conclusion with

j d� j� ��(�) (22)

Actually this is not best possible but this is pretty much the order of ordinal

complexity of what we get.

Applications. This gets applied to Rami�ed Analysis, which is of very

great signi�cance in the proof theory of predicativity, and which is something

I am going to be talking about a fair amount in my next lecture. Predicative

analysis, or rami�ed analysis, is essentially G�odel's notion of constructibility

restricted to sets of natural numbers, where you have sets indexed by ordi-

nals at di�erent levels and basically each level corresponds to sets which are

de�nable using only quanti�cation over sets of lower levels. By RA� one

means the system using levels up to �, and in RA<�, you use variables only

of levels less than �.

Sch�utte established that the proof theoretical ordinal of RA<� is ��(0)

when !� = �. That can be proved quite directly as Tait did by cut-

elimination in the in�nitary system LK!1;! that I described above. Now,

Kreisel had proposed that to explicate the notion of predicativity we use

Rami�ed Analysis, not through arbitrary ordinals, but only through those

ordinals which are accessible from below. That is, we only consider au-

tonomously generated RA� which means that there is a �, � < �, in a

previously obtained RA� with

RA� ` WO(��); (23)

where �� is a primitive recursive ordering of order type � and WO(��)

expresses that it is a well ordering. So that is what we call a boot-strapping

or autonomy procedure.

Sch�utte and I, independently, established in 1964 that the least impred-

icative ordinal is the least ordinal not obtained through the Veblen process.

That is called �0 and it is the least ordinal with the property

�; � < �0 ) ��(�) < �0 (24)

By (24), one has complete cut-elimination in the in�nitary system up to �0.
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This is basically where we came to in the 1960s, and is the beginning

of what is called predicative proof theory; further extensions make use of

prima facie uncountable in�nitary derivations and much more complicated

ordinal notation systems. For an introduction to predicative proof theory,

see the monograph by Wolfram Pohlers in the References below. For a survey

of many further extensions, see also, among other sources, his article \Sub-

systems of set theory and second order number theory" in the Handbook of

Mathematical Logic edited by Samuel R. Buss. This material gets extremely

complicated technically, and is beyond the scope of this lecture to try to

explain, even in the roughest terms.
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