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Harmonious Logic: Craig’s Interpolation Theorem and its Descendants 
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For Bill Craig, with great appreciation for his fundamental contributions to our 

subject, and for his perennially open, welcoming attitude and fine personality that 

enhances every encounter. 

 

Abstract: Though deceptively simple and plausible on the face of it, Craig’s 

interpolation theorem (published 50 years ago) has proved to be a central logical property 

that has been used to reveal a deep harmony between the syntax and semantics of first 

order logic.  Craig’s theorem was generalized soon after by Lyndon, with application to 

the characterization of first order properties preserved under homomorphism.  After 

retracing the early history, this article is mainly devoted to a survey of subsequent 

generalizations and applications, especially of many-sorted interpolation theorems.  

Attention is also paid to methodological considerations, since the Craig theorem and its 

generalizations were initially obtained by proof-theoretic arguments while most of the 

applications are model-theoretic in nature.  The article concludes with the role of the 

interpolation property in the quest for “reasonable” logics extending first-order logic 

within the framework of abstract model theory. 

 

1. Craig’s Interpolation Theorem.  A common statement of Craig’s theorem (initially 

referred to by him as a lemma) goes as follows:  

 

Suppose |  ϕ(R, S) → ψ(S, T).  Then there is a θ(S) such that |  ϕ(R, S) → θ(S)  and  

|  θ(S) → ψ(S, T).   

 

Here |  is validity in classical first order logic with equality (FOL), ϕ, ψ, θ are 

sentences, and R, S, and T are sequences of relation symbols for which the sequence S is 

non-empty.  Equality is treated as a logical symbol and not as one of the relation symbols.  
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Here and in the following, I consider only languages with no function symbols, since not 

all generalizations of the interpolation theorem hold when those are present; the reader 

will be able easily to see when they do hold by use of the standard translation into a 

purely relational language.  Constant symbols, on the other hand, are allowed, and for 

simplicity these are treated as 0-ary relation symbols.  A fuller and more formal statement 

of Craig’s theorem goes as follows, where we use Rel(ϕ) for the set of relation symbols 

in ϕ.   

 

THEOREM 1 (Craig 1957).  Suppose ϕ, ψ are sentences with |  ϕ → ψ.  

(i) If Rel(ϕ) ∩ Rel(ψ) is non-empty then there exists a sentence θ such that |  ϕ → θ  

and |  θ → ψ  and Rel(θ) ⊆ Rel(ϕ) ∩ Rel(ψ). 

(ii) If Rel(ϕ) and Rel(ψ) are disjoint then  | ¬ϕ  or  | ψ.   

 

In the following we shall ignore exceptional cases like (ii) in generalizations of the 

interpolation theorem, i.e. we tacitly assume a hypothesis like that in (i) as needed to 

verify the given conclusion; that kind of hypothesis is always met in the applications of 

the interpolation theorem and its generalizations.  

 I first heard Bill Craig explain this result and his proof of it in a talk he gave for 

the Summer Institute for Symbolic Logic held at Cornell University in the month of July, 

1957.  But it would be some ten years before I began to appreciate its wider significance 

through its extension to many-sorted logics as described in sec. 4 below, and beyond that 

to abstract model theory (sec. 5).   

 The intuitive idea for Craig’s proof of the Interpolation Theorem rests on the 

completeness theorem for FOL, in the form of equivalence of validity with provability in 

a suitable system of axioms and rules of inference.  By “suitable” here is meant one in 

which there is a notion of a direct proof for which if ϕ → ψ is provable then there is a 

direct proof of ψ from ϕ.  One would expect that in such a proof, the relation symbols of 

ϕ that are not in ψ would disappear in its middle.  Such systems were devised by 

Herbrand (1930) and Gentzen (1934); Hilbert-style systems enlarged by the axioms and 

rules of the epsilon-calculus can also serve this purpose.   
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 In Gentzen’s calculus LK, one establishes formal combinationscalled 

sequentsof the form ϕ1,…,ϕn |- ψ1,…,ψm (abbreviated ϕ |- ψ) which are valid just in 

case ϕ1∧…∧ϕn → ψ1∨…∨ψm  is valid.  The axioms of LK are restricted to atomic 

formulas and its rules of inference govern each propositional operator and quantifier 

separately as rules for introduction of a formula with that connective or quantifier on the 

left or the right; in addition there are structural rules (permutation, weakening and 

contraction).  Finally there is a cut-rule, which allows one to pass from  ϕ′ |- ψ′, θ and  

θ, ϕ′′ |- ψ′′ to ϕ′, ϕ′′ |- ψ′, ψ′′.  Gentzen’s cut-elimination theorem shows that every proof 

in LK can be transformed into another one which is cut-free.  Cut-free proofs have a kind 

of directness propertyin contrast to those which may involve cutsince in every 

application of one of its rules, each formula in one of the hypotheses of the rule is a 

subformula of some formula in its conclusion (with possible change of variables in the 

case of quantifier rules).  In the case that all the formulas of ϕ and ψ are prenex in a 

derivable sequent ϕ |- ψ, a cut-free derivation can be reorganized to have all quantifier 

introduction rules below all propositional rules; this is Gentzen’s generalization of 

Herbrand’s fundamental theorem. 

 At the Cornell conference and then in Craig’s paper (1957), “Linear reasoning. A 

new form of the Herbrand-Gentzen theorem”, he introduced a calculus for passing 

directly from formulas of the form (Q)( ϕ1∧…∧ϕn → ψ1∨…∨ψm ), where Q is a 

sequence of universally and existentially quantified variables and each of the ϕi’s and 

ψj’s is prenex, to new such formulas.  Unlike Gentzen’s system, each rule in Craig’s 

system has exactly one hypothesis, so a derivation in it is indeed linear and is, moreover, 

direct as it stands.  Any such derivation can be reorganized to have all quantificational 

inferences below all the propositional ones, just as in the Herbrand-Gentzen theorem. 

Then since interpolation is easily established for the propositional calculus, one can use 

that to ascend to an interpolant for a derivable sentence ϕ → ψ, provided that both ϕ, ψ 

are prenex. To prove Theorem 1 in general, one simply uses the transformation of 

arbitrary formulas into equivalent prenex form. 

 Craig’s system of linear reasoning is elegant and natural for the class of formulas 

considered, but it was not subsequently adopted by others as a tool for proof-theoretical 

work.  The reason may be that Gentzen’s approach has greater flexibility.  To prove the 
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interpolation theorem using LK, one can do it first, as Craig does, for prenex formulas via 

Gentzen’s generalization of Herbrand’s theorem.  But it is not necessary to restrict to 

prenex formulas in LK.  Given any sentences ϕ, ψ and a cut-free derivation D of ϕ |- ψ, 

one can inductively build up an interpolant step-by-step within D.  Moreover, the same 

argument can be used to obtain an interpolation theorem for certain infinitary languages 

via a straightforward extension of LK to those languages (see sec. 5 below), while there 

is no obvious adaptation of Craig’s system to those languages.  (Aside from interpolation, 

the proof theory of infinitary languages has been of major importance in extensions of 

Hilbert’s consistency program (see, e.g. Schütte (1977) and Pohlers (1989)).  Further 

methodological considerations will be taken up below.   

  

2. Craig’s applications of the Interpolation Theorem.  First among the applications 

that Craig made of the Interpolation Theorem in his paper (1957a), “Three uses of the 

Herbrand-Gentzen theorem in relating model theory and proof theory”, was to Beth’s 

Definability Theorem.  That result has an interesting history, beginning with a claim 

made by Alessandro Padoa in his article (1901) translated in part as “Logical introduction 

to any deductive theory” in van Heijenoort (1967), that we would rephrase in modern 

terms as follows: 

 

To prove that a basic symbol S is independent of the other basic symbols in a 

system of axioms ∑, it is necessary and sufficient that there are two 

interpretations of ∑ which agree on all the basic symbols other than S and which 

differ at S.1 

 

As remarked in the introductory note to Padoa’s article in van Heijenoort (1967), p. 118, 

the method to prove independence of the basic symbols of an axiomatic system “is 

merely stated, and Padoa seems to consider it intuitively evident.  He does not offer a 

proof of its correctness, and such a proof could hardly have been undertaken then, 

because, first, Padoa’s system (which is Peano’s) is ill-defined, and, second, many results 

requisite for such a proof were still unkown at the time.”   
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 Sufficiency in Padoa’s statement is obvious no matter which logic is considered, 

so the main issue is that of necessity.  If the axiom system ∑ is finite, and its conjunction 

is a sentence ϕ(R, S) in a given language L, then necessity is equivalently expressed by 

saying that if the interpretation of S is the same for any two interpretations of ϕ which 

agree on R, then S is explicitly definable from R in L on the basis of ϕ.  Alfred Tarski 

and Adolf Lindenbaum (1926) pointed out that necessity holds when L is taken to be the 

(impredicative) theory of types, on the basis of a theorem by Tarski later published in his 

paper (1935) (cf. Hodges (2008) for discussion).  Very simply, that is essentially done by 

taking S(x) ↔ ∀X( ϕ(R, X) → X(x) ).  Tarski had long been interested in Padoa’s 

method through its applications in Euclidean geometry, for which Tarski had given an 

axiomatization in FOL (cf. Tarski and Givant 1999).  But it was not until Evert Beth 

proved his Definability Theorem that it was done for FOL. 

 

THEOREM 2 (Beth 1953).  Suppose ϕ(R, S) ∧ ϕ(R, S′) |  S(x) ↔ S′(x).   

Then there is a θ(R, x) such that ϕ(R, S) | S(x) ↔ θ(R, x).  

 

Beth’s first proof of this was by use of the completeness of Gentzen’s LK and the cut-

elimination theorem.  He analyzed a cut-free proof of the sequent  

ϕ(R, S), S(x) |- ϕ(R, S′) → S′(x).  A draft of Beth’s proof was sent to Tarski in May 1953, 

and Tarski discussed it with me at that time (I was at Berkeley then, working with him as 

a student).  From Tarski’s point of view, since the statement of Beth’s definability 

theorem is model-theoretic, there ought to be a model-theoretic proof, and there was 

correspondence (via me) with Beth about how that might be accomplished (cf. van Ulsen 

2000, pp. 136 ff).  Beth made some efforts in that direction, but the published argument 

remains essentially proof-theoretic, making only cosmetic changes in the direction of a 

model-theoretic argument.   

 By compactness for FOL, Beth’s result immediately extends to any set ∑ of 

sentences in place of ϕ.   

 Craig’s Interpolation Theorem implies Beth’s Definability Theorem by the 

following simple argument.  By hypothesis, we have 

|  ϕ(R, S) ∧ S(x) → ( ϕ(R, S′) → S′(x) ). 
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To treat this as an implication between sentences, replace x by corresponding new 

constant symbols c, giving 

|  ϕ(R, S) ∧ S(c) → ( ϕ(R, S′) → S′(c) ). 

An interpolant for this implication is a sentence θ(R, c) such that  

|  ϕ(R, S) ∧ S(c) → θ(R, c)  and  | θ(R, c) → ( ϕ(R, S′) → S′(c) ). 

Replacing S′ by S and reorganizing these implications it follows that  

|  ϕ(R, S) → ( S(c) ↔ θ(R, c) ) 

and hence 

ϕ(R, S) |  S(x) ↔ θ(R, x). 

We can avoid the detour here via the auxiliary constants c by means of a slight 

generalization of the Interpolation Theorem to formulas, in the form that an interpolant 

can be constructed for a given valid implication as one for which each of its free variables 

is free in both its antecedent and its consequent; this will be stated explicitly in sec. 4 

below.   

 The first model-theoretic proof of Beth’s definability theorem was given by 

Abraham Robinson in his paper (1956), “A result on consistency and its application to 

the theory of definition.”  Beth’s theorem is shown there to follow from what is now 

called Robinson’s Consistency Theorem:   

 

THEOREM 3 (Robinson 1956).  Suppose L1 and L2 are two languages and L = L1∩L2.   

If ∑ is a complete theory in L and ∑1, ∑2 are consistent extensions of T in L1 and L2 

respectively, then ∑1∪∑2 is consistent in L1∪L2.   

 

 Robinson’s proof of this was by combination of the method of diagrams with the 

first use of a back-and-forth chain construction that was to become a standard tool later 

on in model-theory. 

 Craig referred to Robinson’s work in (1957a) fn. 1, as follows: “For another 

interesting proof [of Beth’s theorem], more along modeltheoretic lines, see A. Robinson 

[1956].  I am grateful to him for oral and written suggestions regarding several points…”  

It seems from this that neither Craig nor Robinson was then aware that their theorems are 

equivalent by relatively easy model-theoretic proofs.  It is not clear who first realized 
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that; the equivalence was apparently folklore in Berkeley in the years directly following 

Craig’s work.2  Curiously, Craig himself speaks of Robinson’s theorem as “a forerunner 

of more recent interpolation theorems” in his review of Robinson (1956) for The Journal 

of Symbolic Logic 25 (1960), p.174, but not in terms of their logical relationship.  As far 

as I can determine, the first published proof of the equivalence was given in Robinson 

(1963), pp. 114-117.3 

 The second application that Craig gave of his Interpolation Theorem in the paper 

“Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory” 

made use of the following notions: a class K of models is called a projective class (PC) if 

it is the set of M = (A, S) satisfying ∃R ϕ(R, S) for some ϕ of FOL.  K is an elementary 

class (EC) if it it consists of the models of a sentence θ(S) of FOL. 

 

THEOREM 4. (Craig 1957a) Any two disjoint projective classes can be separated by an 

elementary class. 

Proof. Under the assumption that | ¬[∃R ϕ(R, S) ∧ ∃T ψ(T, S)], where ϕ, ψ are both 

FOL formulas, we have |  ϕ(R, S) → ¬ψ(T, S).  Any interpolant θ(S) defines a 

separating EC.   

 As a corollary we have: 

 

THEOREM 5. (Δ-Interpolation Theorem). If  a class K of models and its complement are 

both in PC then K is in EC.   

 

 Craig’s third application in his (1957a) is a little more complicated to explain; it 

concerns axiomatizability with prescribed groupings of axioms according to which basic 

symbols they contain.  Let ∏1 and ∏2 be two finite sets of basic symbols (“parameters” 

in Craig’s terminology).  A (∏1, ∏2) axiom system ∑ is one for which ∑ = ∑1 ∪ ∑2 and 

all the symbols of ∑i are contained in ∏i.  Craig gives a necessary and sufficient 

condition that one can add a given sentence ϕ to a given axiom system so that the result is 

(∏1, ∏2) axiomatizable; the same is done more generally for any finite sequence of finite 

sets of parameters.  The reader is referred to Craig (1957a) pp. 282ff for the statement 

and proof.   
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3. Lyndon’s Interpolation Theorem and properties preserved under 

homomorphism.  In Roger Lyndon’s article (1959), “An interpolation theorem in the 

predicate calculus” he gave a generalization of Craig’s Interpolation Theorem in terms of 

the polarities of the relation symbols involved, and then applied that in the article (1959a) 

to establish a characterization of the properties expressed in FOL that are preserved under 

homomorphism.  As we shall see, this was paradigmatic for further uses of suitably 

generalized interpolation theorems.  Like Craig’s results, Lyndon’s work was first 

announced at the 1957 Cornell conference.   

 In preparation for both Lyndon’s and more general interpolation theorems, given 

any map F from formulas to sets, a formula θ is called an interpolant for a valid 

implication ϕ → ψ with respect to F if  

|  ϕ → θ and | θ → ψ and F(θ) ⊆ F(ϕ) ∩ F(ψ) . 

For Lyndon’s theorem we make use of the two functions Rel+ and Rel− such that for each 

formula ϕ, Rel+(ϕ) (Rel−(ϕ)) is the set of relation symbols with at least one positive (at 

least one negative) occurrence in ϕ.  These functions can be defined inductively, or via 

the negation normal form of ϕ, obtained by driving the negation symbol down to atomic 

formulas using the de Morgan laws.   

 

THEOREM 6. (Lyndon 1959) If  | ϕ → ψ then it has an interpolant w.r.t. Rel+ and 

Rel−.4  

 

 Of the argument for this, Lyndon writes (1959, p.130), “our first proof of [this] 

Interpolation Theorem used the Gentzen calculus; it did not differ essentially from 

Craig’s proof, at that time unpublished, of his lemma.”  He then describes a new proof 

which “serves as a substitute” for the methods due to Herbrand and Gentzen, motivated 

by conversations with Henkin and Tarski in which Tarski “emphasized the desirability of 

establishing the Interpolation Theorem by methods independent of the theory of proof.”  

But the substitute appears to be a model-theoretic version of a sharpened form of the 

Herbrand-Gentzen theorem.  The first proof of a more widely applicable model-theoretic 

character of Lyndon’s Interpolation Theorem (and still stronger results) was due to  
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H. Jerome Keisler (1960).  This extended the back-and-forth chain constructions 

combined with the method of diagrams inaugurated by Robinson (1956).  In the same 

period, ultrapower and ultraproduct constructions began to be used as an alternative to the 

method of diagrams.  The first such use was for the proof of the theorem, announced 

independently by Keisler (1959) and Simon Kochen (1959), that any two elementarily 

equivalent structures have isomorphic ultralimits (or “strong limit ultrapowers”); that 

implies Robinson’s theorem.  For basic model-theoretic methods used in establishing the 

interpolation theorems, cf. Chang and Keisler (1973) and Hodges (1993); other such 

methods will be noted below.   

 Lyndon (1959a) applied his theorem as follows.  Given M = (A, R), and  

M′ = (A′, R′) of the same similarity type, a map h: A → A′ is said to be a homomorphism 

of M onto M′ if h is onto and for each i, h(Ri) ⊆ R′i .  (When the relations are functions, 

this is the usual notion of homomorphism.)  A sentence ϕ is said to be preserved under 

homomorphisms if whenever M |= ϕ and M′ is a homomorphic image of M then M′ |= ϕ.   

A sentence is called positive if it has no negative occurrences of relation symbols, i.e. if 

Rel−(ϕ) is empty.  It is easily seen that every positive sentence is preserved under 

homomorphisms.  Lyndon used his interpolation theorem to characterize the sentences 

preserved under homomomorphism as just those equivalent to positive sentences.   

To see how this is established, consider the special case that we are dealing with 

structures with just one binary relation symbol R.  In place of homomorphisms, we may 

deal with congruence relations.  For this, let E be a new binary relation symbol and then 

let Cong(R, E) express that E is an equivalence relation, together with  

∀x1∀x2∀y1∀y2 [ E(x1, y1) ∧ E(x2, y2) ∧ R(x1, x2) → R(y1, y2) ]. 

For a sentence ϕ expressed in FOL with one binary relation symbol R, write ϕ(R, E) for 

the result of replacing atomic formulas x = y in ϕ by E(x, y).  Given new relation symbols 

R′ and E′, write R ⊆ R′ for ∀x∀y[R(x,y) → R′(x,y)], and similarly E ⊆ E′.  

 

Lemma.  ϕ is preserved under homomorphisms iff  

Cong(R, E) ∧ Cong(R′, E′) ∧ R ⊆ R′ ∧ E ⊆ E′ ∧ ϕ(R, E) → ϕ(R′, E′)  is valid.  
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THEOREM 7. (Lyndon 1959a) ϕ is preserved under homomorphisms iff it is equivalent 

to a positive sentence.  

Proof Apply Lyndon’s Interpolation Theorem to  

|  Cong(R, E) ∧ R ⊆ R′ ∧ E ⊆ E′ ∧ ϕ(R, E) → [ Cong(R′, E′) → ϕ(R′, E′) ]. 

Note that R′ and E′ have no negative occurrences in the antecedent and R and E have no 

occurrences in the consequent.  An interpolant θ meeting the conditions of Lyndon’s 

theorem can thus be chosen to have the form θ(R′, E′), positive in both R′ and E′.  By 

then specializing to the case that R′ = R and E′ = E, it follows that  

Cong(R, E) | ϕ(R,E) ↔ θ(R, E). 

Finally, take E to be the equality relation.   

 

Note on negative and positive results in finite model theory.  The basic results on 

interpolation theorems and their consequences for preservation characterizations 

described in this and the preceding section have all been revisited in finite model theory, 

which studies validity and satisfiability conditions for various languagesincluding that 

of FOLwhen restricted entirely to finite structures.  As shown by Tait, Gurevich and 

others, and exposited in Ebbinghaus and Flum (1999), sec. 3.5, most of the statements 

have turned out to be negative when restricted to finite models, including the Beth 

Definability Theorem, the Lyndon Interpolation Theorem, the Los-Tarski theorem (see 

next section) and the Lyndon theorem for preservation under onto homomorphisms.  A 

recent surprising exception is the characterization due to Benjamin Rossman (2005 and 

n.d.) of the first-order sentences preserved in the finite under into homomorphisms.    

 

4. Many-sorted interpolation theorems and their applications.  Many-sorted 

languages and associated structures are ubiquitous in mathematical practice; familiar 

examples are geometries (points, lines, planes,…) and vector spaces (vectors, scalars).  

Standard examples from logic are type theory and typed lambda calculi.  What 

distinguishes many-sorted languages is that each variable is of a definite sort: for a non-

empty set J of sorts and for each j ∈ J, we have infinitely many variables xj, yj, zj, … of 

sort j, and for j, j′ distinct, the corresponding sets of variables are disjoint.  A structure for 

such a language is thus of the form M = (〈Aj〉j∈J, …) where each of the basic domains Aj 
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is non-empty and the variables of sort j range over Aj.  As to the constraints on the 

relations, including the relation of equality, there are two basic options, strict and liberal. 

Under the strict option, each n-ary relation R is of a specified arity, given by an n-tuple of 

sorts 〈j1,…,jn〉, and atomic formulas are of the form R(x) where x is an n-tuple of sorted 

variables, where the sort of xi is ji for each i = 1,…,n.  In particular, there is an equality 

relation =j for each j ∈ J, whose arity is 〈j, j〉.  A typical example of the strict option is 

provided by the simple theory of types, where J is the set of natural numbers and, in 

addition to the relations =j we have the membership relations ∈j of arity 〈j, j+1〉 for each  

j ∈ J.  Under the liberal option, each relation, including equality, may relate objects of 

arbitrary sort; the only constraint is the specification of the number of its arguments.  For 

example, in Galois theory one considers fields as vector spaces over subfields as the 

scalars.  Other examples of the liberal option are given by certain versions of ramified 

type theory or the theory of constructible sets and forcing extensions.    

 The model theory of many-sorted structures is standardly reduced to that of 

single-sorted structures by the unification of domains.  Associated with the many-sorted 

language is a single-sorted language with new unary predicates Uj for each j ∈ J, and 

associated with each many-sorted structure M = (〈Aj〉j∈J, …) is a single sorted structure 

M(U) = (A, 〈Aj〉j∈J, …), where A is the union of the Aj for j ∈ J and Uj is interpreted as Aj. 

Finally, with each sentence ϕ of the many-sorted language is associated a sentence ϕ(U) of 

the associated single-sorted language, obtained by successively relativizing quantifiers, 

i.e. replacing each quantified occurrence ∀xj(…) in ϕ, resp. ∃xj(…), by ∀x(Uj(x) → …), 

resp. ∃xj(Uj(x) ∧ …) (replacing distinct variables by distinct variables).  Then M |= ϕ  iff 

M(U) |= ϕ(U).  Note that the distinction between the strict option and the liberal option is 

partially wiped out in the process, since now we have just a single equality relation.   

 In Feferman (1968) I established a generalization of Lyndon’s interpolation 

theorems to many-sorted languages making use of the following additional functions: 

Sort(ϕ) = {j ∈ J | a variable of sort j occurs in ϕ}  

Free(ϕ) = the set of free variables of ϕ 

Un(ϕ) = {j ∈ J | a ∀xj occurs in nnf(ϕ)} 

Ex(ϕ) = {j ∈ J | an ∃xj occurs in nnf(ϕ)}, 
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where nnf(ϕ) = the negation normal form of ϕ.  Note that an occurrence ∃xj in nnf(ϕ) 

corresponds in ϕ(U), under the process of relativization of quantifiers, to a positive 

occurrence of Uj in a context ∃x(Uj(x) ∧ …) while an occurrence ∀xj in nnf(ϕ) 

corresponds to a negative occurrence of Uj in a context ∀x(Uj(x) → …).   

 

THEOREM 8. (Feferman 1968). If | ϕ → ψ then it has an interpolant θ w.r.t. Rel+, 

Rel−, Sort, and Free, for which 

(†)   Un(θ) ⊆ Un(ϕ) and Ex(θ) ⊆ Ex(ψ).  

 

By the basic form of many-sorted interpolation is meant the same statement without (†).  

 

 It might be thought that Theorem 8 can be inferred from Lyndon’s Interpolation 

Theorem, by applying it to | ϕ(U) → ψ(U), i.e. to the result of unifying domains and 

relativizing quantifiers.  However, there is no assurance from the statement of Lyndon’s 

theorem that an interpolant for this implication can be chosen to be in the form θ(U), since 

the quantifiers need not be relativized in an interpolant.  This issue was revisited by 

Martin Otto (2000) in a way that will be discussed below.  My proof of Theorem 8 was 

carried out by a proof-theoretical argument in a many-sorted version of LK.   

 One application of Theorem 8 is to characterize up to equivalence the sentences 

preserved under extensions.  In the single-sorted case, we have the well-known 

characterization independently due to Los and Tarski (1955) by a model-theoretic 

argument, namely that a sentence is preserved under extensions iff it is equivalent to an 

existential sentence.  This can be generalized to the many-sorted case as follows.  For  

M = (〈Aj〉j∈J,…) and M′ = (〈A′j〉j∈J,…) and I ⊆ J we write M ⊆I M′ and M′ is called an  

I-stationary extension of M if M is a substructure of M′ with Ai = A′i for each i ∈ I.   

A sentence ϕ is said to be preserved under I-stationary extensions rel. to ∑ if whenever 

M, M′ are models of ∑ and M |= ϕ and M ⊆I M′ then M′ |= ϕ.  A sentence θ is said to be 

existential outside of I if Un(θ) ⊆ I.   

 



 13 

THEOREM 9.  ϕ is preserved under I-stationary extensions rel. to ∑ iff for some θ that is 

existential outside of I, ∑ |  ϕ ↔ θ.   

Proof.  For each sort of variable xj,… with j ∈ J −I, adjoin a new sort xj′,… , and 

associate with each relation symbol R of L (other than =) a new symbol R′.   Let ϕ′ be the 

copy of ϕ, leaving the variables of sort i ∈ I unchanged.  Let ExtI = the conjunction of 

∀xj∃xj′ (xj = xj′) for each j ∈ J−I together with ∀x [R(x) ↔ R′(x) ] for each R.   

Then ϕ is preserved under I-stationary extensions iff ∑ ∪ ∑′ | ExtI ∧ ϕ → ϕ′, where ∑′ 

is the result of replacing each sentence σ of ∑ by σ′.  By compactness there is a finite 

conjunction ψ of sentences of ∑ such that (ψ ∧ ExtI ∧ ϕ) → (ψ′ → ϕ′) is valid.  By 

Theorem 8, an interpolant for this implication can be chosen to be of the form θ′, with 

Un(θ′) contained in Un(ExtI); but there are no variables of the new sort in J−I, so Un(θ′) 

⊆ I.  Collapsing the new sorts to the old ones gives the desired result.   

 

 Looked at model-theoretically, what the proof does is combine two many-sorted 

structures M and M′ into a new one considered with the liberal interpretation, even when 

the original structures are taken with a strict interpretation.  The Los-Tarski theorem is 

the special case of this preservation theorem for J a singleton and I empty.   

 The technique of proof for Theorem 9 was modified in Feferman (1968a) to 

characterize the sentences preserved under end-extensions, where for single-sorted 

structures M and M′ with distinguished binary relations < and <′, M′ = (A′, <′, …) is 

called an end-extension of M = (A, <, …) it is an extension such that for each a ∈ A and 

b ∈ A′, b <′ a ⇒ b ∈ A.  A sentence ϕ is said to be preserved under end-extensions 

relative to ∑ if whenever M and M′ are models of ∑ and M |= ϕ and M′ is an end-

extension of M, then M′ |= ϕ.  For the characterization, one adjoins bounded quantifiers 

(∀y < x)(…)  and (∃y < x)(…) as basic logical operators; then a formula is called 

essentially existential if its nnf in the expanded language is existential when one ignores 

the bounded quantifiers.   

 

THEOREM 10. (Feferman 1968a) ϕ is preserved under end extensions rel. to ∑ iff it is 

equivalent in ∑ to an essentially existential sentence.  
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When < is taken to be the membership relation and ∑ is an axiomatic theory of sets, 

Theorem 10 yields a characterization of the (provably) absolute properties rel. to ∑, as 

just those which are equivalent to both an essentially existential and an essentially 

universal formula.  The notion of end-extension can be generalized to many-sorted 

structures with a given set of stationary sorts, and then this result can be generalized in a 

way analogous to Theorem 9.   

 Jacques Stern obtained the following variant of Theorem 8 and showed how that 

could be used to prove Theorem 9 while hewing to the strict interpretation.  

 

THEOREM 11. (Stern 1975) If |  ϕ → ψ then it has an interpolant θ w.r.t. Rel+, Rel− 

and Sort, for which 

(††)  Un(θ) ⊆ Un(ψ) and Ex(θ) ⊆ Ex(ϕ).  

 

Stern’s proof of this used the model-theoretic method of forcing.  Note that in his version, 

θ is not required to satisfy that it is an interpolant for the Free (variables) function.  My 

proof of Theorem 8 using LK can also be modified so as to drop that condition.  In doing 

so, one sees the reason for the switch from (†) to (††), by keeping track of when one must 

introduce quantifiers in the build-up of the interpolant.  By imposing the free variables 

condition on a subset of the sorts, Stern obtained a common generalization of the two 

many-sorted interpolation theorems 8 and 11.  The following strengthened form of 

Herbrand’s theorem is a nice immediate consequence of the latter.   

 

Corollary.  If ϕ and ψ are formulas with ϕ universal and ψ existential and if  

ϕ → ψ is valid then it has a quantifier-free interpolant θ w.r.t. Rel+ and Rel−. 

 

Note that it is essential for this that θ is not required to be an interpolant w.r.t. Free.   

In Feferman (1974) I applied Theorem 8 and this corollary to establish a simple model-

theoretic necessary and sufficient condition for eliminability of quantifiers for axiom sets 

∑ that are model-consistent relative to some subset of their universal consequences, in a 

way that generalizes to certain infinitary language.   
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 Returning to the question of dealing with many-sorted interpolation via 

unification of domains and relativization of quantifiers, Martin Otto (2000) showed how 

to deal with U-relativized formulas, where U = 〈Ui〉i ∈ I is a sequence of unary predicates, 

and every quantifier is relativized to some Ui.  Otto obtains there a generalization of 

Lyndon’s Interpolation Theorem in which an interpolant for U-relativized formulas is 

also required to be U-relativized; in addition, his result implies the many-sorted 

interpolation theorems of Feferman and Stern above.  Otto’s proof makes use of ω-

saturated structures, but a proof via LK should also be possible.   

 

5. Beyond first-order logic: interpolation properties and abstract model theory. 

Many semantically specified logics stronger than FOL have been studied in the last 50 

years; the following are some prominent examples: 

 

1. ω-logic 

2. 2nd order logic 

3. Logic with the cardinality quantifier Qα (i.e., ∃≥ℵα) 

4. Lκ,λ, logic with conjunctions of length < κ and quantifier strings of length < λ (κ, λ 

infinite cardinals) 

5. LA for A admissible (conjunctions over sets in A, ordinary 1st order quantification). 

 

FOL can be identified with Lω,ω or with LHF, where HF is the collection of hereditarily 

finite sets.  For HC = the hereditarily countable sets and A ⊆ HC, LA ⊆ Lκ,ω with κ = ω1.  

 

 The subject of abstract model theory arose through the study of these and other 

such languages from a general perspective; a comprehensive source for material on it is 

provided by the volume Barwise and Feferman (1985).  Abstract model theory deals with 

properties of model-theoretic logics L, specified by an abstract syntaxi.e. a set of 

“sentences” satisfying suitable closure conditionsand “satisfaction” relation M |= ϕ for 

ϕ a sentence of L.  With each such L is associated its collection of Elementary Classes, 

ECL, and from that its collection of Projective Classes, PCL in the way explained above.  
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L ⊆ L* is defined to hold if ECL ⊆ ECL*.  Using these notions we can formulate various 

properties of model-theoretic logics and examine specific logics such as 1-5 in terms of 

them.  Before getting into interpolation and related properties, we begin with the 

following: 

 

1° Countable compactness property. 

2° Löwenheim-Skolem (L-S) property. 

3° R.e. completeness property. 

 

By 1° is meant that if ∑ is any countable set of L sentences every finite subset of which 

has a model then ∑ has a model.  By 2° is meant that if an L-sentence ϕ has an infinite 

model then it has a countable model.  By 3° is meant that the set of valid sentences is 

recursively enumerable (usually simply referred to as the completeness property). 

 

Example: Other than Lω,ω only its extension by the uncountability quantifier (Q1) among 

the specific examples 1-5 has countable compactness and r.e. completeness (Keisler 

1970); obviously L-S fails.  None of the others has either property.   

 

 The following are the famous theorems of Per Lindström characterizing FOL in 

terms of these properties:5 

 

THEOREM 13 (Lindström 1969) 

(i) Lω,ω is the largest logic having the countable compactness and L-S properties. 

(ii) Lω,ω is the largest logic having the r.e. completeness and L-S properties. 

 

 We now turn to abstract formulations of interpolation and related properties for 

any model-theoretic language L: 

 

4° Interpolation property.  

5° Δ-Interpolation property.  

6° Beth property. 
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7° Weak Beth property. 

8° Weak projective Beth property.  

 

By 4° is meant that any two disjoint classes K in PCL can be separated by an ECL, while 

5° means that if K and its complement are both PCL then K is in ECL.  The Beth property 

6° is that for K ∈ ECL, if each M has at most one expansion [M, S] ∈ K then S is 

uniformly definable over M, while 7° gives the same conclusion when each M has 

exactly one expansion [M, S] ∈ K.  Finally, by 8° is meant that the weak Beth property 

holds for K ∈ PCL. 

 The following is a ready consequence of these explanations.   

 

Lemma. 

(i) Interpolation ⇒ Δ-interpolation ⇒ Beth ⇒ weak Beth. 

(ii) Δ-interpolation ⇔ weak projective Beth. 

 

 It was shown by Lopez-Escobar (1965) that LHC has the interpolation property and 

more generally by Barwise (1969) that the same holds for every LA with A a countable 

admissible subset of HC.  Barwise also generalized the r.e. completeness property to LA 

when ‘r.e.’ is replaced by ‘A-r.e.’, i.e. ∑1-definable over A in the language of set theory.  

Even more, one has:  

 

THEOREM 14 (Feferman 1968, 1968a).  All of the results stated in sections 1-4 above 

generalize to LA for A a countable admissible subset of HC and ∑ an A-r.e. set of 

sentences.   

  

My proof of this made use of the completeness of an extension of Gentzen’s calculus LK 

to such LA, together with a cut-elimination theorem thereof.  Model-theoretic proofs of 

overlapping results have been given by Keisler (1971), using the so-called technique of 

Consistency Properties.  As remarked by Bienvenido Nebres (1972), p. 464, these are 

dual to Validity Properties, i.e. closure conditions on the sequents in cut-free LK 
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derivations.  To the best of my knowledge, no other model-theoretic methods extend to 

these LA for the results comprehended by Theorem 14. 

 None of the other logics in 1-5 has even the weak Beth property, as shown by 

Craig (1965), Mostowski (1968), and Friedman (1973).  One way to show that a specific 

logic L does not satisfy the weak Beth property is to show that the satisfaction (and hence 

truth) predicate for L over any model M is implicitly definable in L uniformly in M, 

while it is not explicitly definable over suitable M.  However, it is often the case that the 

satisfaction predicate is uniformly definable in L up to any formula of L, via its 

subformulas. This led me in my article (1974) to introduce the notion, L is adequate to 

truth in L*, when the syntax of L* is represented in a transitive set A, roughly speaking if 

the satisfaction predicate SatL*(m, a, x), which holds iff m |= a[x] in L*, is uniformly 

implicitly definable in L up to any a ∈ A that represents an L* formula.  Then L is said to 

be truth maximal if whenever it is adequate to truth in L*, L* ⊆ L.  It is truth complete if 

it is both truth maximal and adequate to truth in itself.   

 

THEOREM 15 (Feferman 1974)  

(i) L has the Δ-interpolation property iff it is truth maximal.   

(ii) LA  is truth complete for each admissible A ⊆ HC.  

 

Jouko Väänänen (1985) has used the notion of truth adequacy to characterize logics 

whose satisfaction relation is absolute relative to certain systems of axiomatic set theory.   

 Nowdrawing to a closeI want to say something about work that has been 

done on a problem that I raised in the 1970s in various informal venues, and more 

formally in my paper (1975), sec. 4: 

 

QUESTION. Does there exists a logic L properly extending Lω,ω satisfying the countable 

compactness property and the interpolation property, or at least one of its related 

consequences such as the Δ-interpolation property or one of the Beth definability 

properties? 
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Re Δ-interpolation: as has been pointed out above, that fails for the countably compact 

logic Lω,ω(Q1) (with a counter-example due to Keisler).  However, one can form the  

Δ-closure Δ(L) of any logic L so as to satisfy Δ-interpolation, and similarly the Beth-

closure of L.  But if L is compact, the resulting closures need not be compact. Note that 

by the Lindström theorem 13(i) characterizing Lω,ω, any logic L of the kind that might 

exist in answer to this question must violate the L-S property, such as, for example, 

extensions of Lω,ω(Q1). 

 The question above led to considerable research, especially by Johann Makowsky 

and Saharon Shelah and with various collaborators, of which the following is a sample;  

I will revisit the motivations behind the question itself below.  See also Makowsky and 

Shelah (1979 and 1981), Makowsky, Shelah and Stavi (1976) and Makowsky (1985), sec. 

4, the latter for a discussion and survey (to that date) of this and related questions.   

 

• Makowsky and Shelah (1983), “Positive results in abstract model theory” and Mundici 

(1982), “Compactness, interpolation and Friedman’s third problem” independently prove 

that for extensions of Lω,ω with finitely many generalized quantifiers, the Robinson 

consistency property is equivalent to the interpolation property plus compactness.  

• Shelah (1985), “Remarks in abstract model theory”, proves there is a (fully) compact 

proper extension of Lω,ω with the Beth definability property, using the Δ-closure of the 

quantifier “the cofinality of < is at most the cardinality of the continuum”.  This logic 

does not satisfy interpolation; also, it does not extend Lω,ω(Q1). 

• Mekler and Shelah (1985), “Stationary logic and its friends I”, proves that it is 

consistent for Lω,ω(Q1) to have the weak Beth property. 

• Hodges and Shelah (1991), “There are reasonably nice logics”, proves that Lω,ω(Qα) is a 

countably compact logic with the interpolation property, for ℵα an uncountable strongly 

compact cardinal with at least one larger strongly compact cardinal.   

• Shelah and Väänänen (n.d.), “New infinitary languages with interpolation”, proves that 

there exists a logic beween L∞,ω and L∞, ∞ with the interpolation property, but it does not 

satisfy the countable compactness property.   
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 To conclude, I have emphasized the harmonious relation between syntax and 

semantics due to the interpolation property for first-order logic and its immediate 

generalizations to the countable admissible logics.  But the completeness of FOLeven 

more its strong completenessis of course the fundamental property of that character.  

To formulate this in abstract terms, we consider only logics L represented in HF.  (More 

abstract formulations with generalized notions of finiteness were proposed in Feferman 

(1975), sec. 4.)  By an axiomatic basis B for L is meant a pair B = 〈A, R〉 consisting of a 

set A of “axioms” and a set R of finitary “rules of inference” such that for every set ∑ of 

L-sentences and any L-sentence ϕ, ∑ |= ϕ in L iff there is a derivation of ϕ from ∑ 

together with A using the rules of inference R.  L is said to satisfy the strong 

completeness property if it has an axiomatic basis, and it is said to satisfy the strong r.e. 

completeness property if it has an axiomatic basis for which A and R are recursively 

enumerable.  That of course is a property of FOL by Gödel’s proof of his completeness 

theorem.  The following relates these notions to 1° and 3° above : 

 

Lemma. 

(i) Strong completeness implies countable compactness. 

(ii) Strong r.e. completeness property implies r.e. completeness.   

 

This suggests the following new Lindström type characterization theorem of Lω,ω: 

 

CONJECTURE.  There does not exist a proper extension of Lω,ω with the strong r.e. 

completeness and interpolation properties.   

 

If this conjecture is correct, it may well be that one has still stronger characterizations of 

Lω,ω, obtained by dropping ‘r.e.’ and/or replacing the interpolation property by one of its 

consequences 5°-8° above.   
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1 Padoa (1901), in van Heijenoort (1967), p. 122.  
2 H. Jerome Keisler said he heard it from one or more of the Berkeley logicians in the 
period 1957-1959 (personal communication).  Henkin (1963) fn. 3 says that Robinson’s 
theorem is “now known” to be equivalent to Craig’s theorem, without giving credit to 
anyone.  And Robinson (1963), pp. 137-138 writes that “[t]he fact that 5.1.6 [the 
Consistency Theorem] entails 5.1.8 [the Interpolation Theorem] has been pointed out to 
the author by several logicians from Warsaw and Berkeley.” 
3 A short proof that Craig’s theorem implies Robinson’s can be found in Chang and 
Keisler (1973), pp. 88-89.  The reverse direction is left there as a starred exercise.   
4 Interestingly, in a personal communication, Wilfrid Hodges brought to my attention that 
“[t]he Lyndon theorem has a claim to be the 20th century metatheorem with the longest 
pedigree, because it is a generalisation of the late medieval laws of distribution for 
syllogisms.  Obviously the theorem itself and any of its proofs would have been way 
beyond the understanding of any of the medievals, but it does seem to contain the correct 
formalisation of a number of medieval intuitions.”  For elaboration, see Hodges (1998).   
5 See also Flum (1985) for an exposition of this and related characterization theorems.   


