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Are There Absolutely Unsolvable Problems?

Gödel’s Dichotomy†

SOLOMON FEFERMAN*

This is a critical analysis of the first part of Gödel’s 1951 Gibbs lecture
on certain philosophical consequences of the incompleteness theorems.
Gödel’s discussion is framed in terms of a distinction between objective
mathematics and subjective mathematics, according to which the former
consists of the truths of mathematics in an absolute sense, and the latter
consists of all humanly demonstrable truths. The question is whether
these coincide; if they do, no formal axiomatic system (or Turing
machine) can comprehend the mathematizing potentialities of human
thought, and, if not, there are absolutely unsolvable mathematical
problems of diophantine form.

Either . . . the human mind . . . infinitely surpasses the powers of any
finite machine, or else there exist absolutely unsolvable diophantine
problems.

1. Does Subjective Mathematics Coincide with
Objective Mathematics?

The above striking dichotomy was enunciated by Kurt Gödel in a lecture
entitled ‘Some basic theorems on the foundations of mathematics and
their implications’, on the day after Christmas, 1951, at a meeting of the
American Mathematical Society at Brown University in Providence,
Rhode Island. The lecture itself was the twenty-fifth in a distinguished
series set up by the Society to honor the nineteenth-century American
mathematician, Josiah Willard Gibbs, famous for his contributions to both
pure and applied mathematics. Soon after Gödel delivered the Gibbs
lecture he wrote of his intention to publish it, but he never did so; after he
died, the text1 languished with a number of other important essays and
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lectures in his Nachlass until it was retrieved by our editorial group for
publication in Volume III of the Gödel Collected Works.

At the risk of going over familiar ground, in this section and the next
I will explain what Gödel meant by the various terms in the above
statement, and then fill in the ellipses to help us understand better what he
was after. The basic results on the foundations of mathematics referred to
in the title of his lecture are the two stunning incompleteness theorems that
he had discovered twenty years earlier. But it was mainly the
consequences of the second incompleteness theorem that were stressed
by Gödel in his lecture, and which he there expressed informally as
follows:

For any well-defined system of axioms and rules . . . the
proposition stating their consistency (or rather the equivalent
number-theoretical proposition) is undemonstrable from these
axioms and rules, provided these axioms and rules are
consistent and suffice to derive a certain portion of the
finitistic arithmetic of integers. [Gödel, 1951, pp. 308–309]

As indicated by Gödel in a footnote (p. 308, fn. 10), by axioms and rules
sufficient for the ‘finitistic arithmetic of integers’ he meant the usual
system PA of Peano Axioms for the arithmetic of the natural numbers.

The implications that Gödel drew from this incompleteness theorem
concerned both the potentialities and possible limitations of human
thought as expressed in the above dichotomy in terms of a distinction
between objective mathematics and subjective mathematics. According to
him, objective mathematics consists of ‘the body of those mathematical
propositions which hold in an absolute sense, without any further
hypothesis’, as contrasted with theorems that are only conditionally true,
such as those of axiomatic geometry. A mathematical statement con-
stitutes an objective problem if it is a candidate for objective mathematics,
i.e., if its truth or falsity is not conditional on any hypotheses and is
independent of whether or how it may be demonstrated. At a minimum,
among the objective problems are those concerning the arithmetic of
integers that are in diophantine form, as explained below.

By subjective mathematics2 Gödel means the body of all humanly
demonstrable (or knowable) mathematical truths, i.e., all the propositions
which the human mind is capable of demonstrating. More precisely,
subjective mathematics consists of all those theorems whose truth is
demonstrable in some well-defined system of axioms all of whose axioms

2 Subjective mathematics in this sense is no less objective than objective mathemat-
ics; so Gödel’s terminology may be confusing. I have decided to retain it nevertheless,
so as to avoid conflicts with his text.
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are recognized to be objective truths and whose rules preserve objective
truth.

Of the relation between objective and subjective mathematics, Gödel
says that his second incompleteness theorem

makes it impossible that someone should set up a certain well-
defined system of axioms and rules and consistently make the
following assertion about it: All of these axioms and rules I
perceive (with mathematical certitude) to be correct, and
moreover I believe that they contain all of mathematics. If
someone makes such a statement he contradicts himself. For
if he perceives the axioms under consideration to be correct,
he also perceives (with the same certainty) that they are
consistent. Hence he has a mathematical insight not derivable
from his axioms. [Gödel, 1951, p. 309]

Gödel goes on to say that one has to be careful in order to understand
clearly the meaning of this state of affairs.

Does it mean that no well-defined system of correct axioms
can contain all of mathematics proper? It does, if by
mathematics proper is understood the system of all true
mathematical propositions; it does not, however if one
understands by it the system of all demonstrable mathematical
propositions.

By the above argument, no well-defined system of correct axioms can
contain all of objective mathematics. As to subjective mathematics,

it is not precluded that there should exist a finite rule
producing all its evident axioms. However, if such a rule
exists, we with our human understanding could certainly never
know it to be such, that is, we could never know with
mathematical certainty that all the propositions it produces are
correct. . . . [W]e could perceive to be true only one pro-
position after the other, for any finite number of them. The
assertion . . . that they are all true could at most be known
with empirical certainty.

In these terms, Gödel’s dichotomy comes down to whether objective and
subjective mathematics coincide. If they do, then demonstrations in
subjective mathematics are not confined to any one system of axioms
and rules, though each piece of mathematics is justified by some such
system. If they do not, then there are objective truths that can never be
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humanly demonstrated, and those constitute absolutely unsolvable
problems.

2. Formal Systems, Finite Machines and the Second Incompleteness
Theorem

To explain more precisely the assertions in Gödel’s dichotomy and the
incompleteness theorem behind it, I shall elaborate his terminology
according to his own explanations. To begin with, a system of axioms and
rules of inference is said to be well-defined if it is a formal system in the
usual sense, i.e., if, first of all, its propositions are stated in a formal
language all of whose expressions are finite sequences of a specified finite
stock of basic symbols, and if, secondly, one can check by a finite
procedure (on a finite machine) the following three things: (i) whether or
not a given sequence of basic symbols constitutes a statement of the
language, (ii) whether or not a given statement is an axiom, and, finally,
(iii) whether or not a given statement follows directly from other
statements by one of the rules of inference.3

As Gödel explains at the beginning of his lecture, by a finite machine
he means a Turing machine, and by a finite procedure he means one that
can be carried out by such a machine. Furthermore, he is in agreement
with the Church-Turing thesis that identifies effective computability with
computability on a Turing machine. In accordance with more current
terminology, I shall occasionally use effective procedure in place of ‘finite
procedure’, and effectively given (or presented) formal system in place of
‘well-defined system of axioms and rules’. I shall also use the letter ‘S’ to
denote any such system. Standard examples are Peano Arithmetic (PA)
and Zermelo-Fraenkel set theory (ZF). In Gödel’s view, both PA and ZF
are part of objective mathematics, but he is at pains to formulate the
incompleteness theorem and its consequences in a way that holds for other
positions—such as those of the finitists and intuitionists—as to what
counts as mathematics proper.

The proof of Gödel’s incompleteness theorems for sufficiently strong
formal systems S makes use of the arithmetization of syntax of S, via the
attachment of (Gödel) numbers to the symbols of S, then the formulas
of S, and finally the sequences of formulas of S. We can effectively
determine whether or not a given number is the Gödel number of a formula
of S. Proofs from the axioms of S are finite sequences of formulas, each
of which is either an axiom of S or is obtained from earlier formulas in the

3 In one of Hao Wang’s conversations with Gödel in 1972, reported in [Wang,
1996, p. 204], Gödel says that ‘a formal system is nothing but a many-valued [non-
deterministic] Turing machine which permits a predetermined range of choices at each
stage’.
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sequence by application of one of the rules of inference. Again, we can
effectively determine whether or not a given number is the Gödel number
of a proof from S. Furthermore, when it is, we can effectively extract
the number of the final statement in the proof, i.e., the theorem established
by the proof. It follows that we can mechanically run through all the
integers in turn, testing each to see if it is the number of a proof from S,
and when it is, give as output the number of the theorem established by
that proof. In other words, with each effectively given formal system is
associated a Turing machine M which enumerates the set of theorems of
S, or—more picturesquely—prints out the theorems of S one after
another. Conversely, given any formal language L, any Turing machine M
can be made to correspond to a formal system S in L by extracting from
the numbers it enumerates those that are Gödel numbers of formulas of L,
and taking their deductive closure to be the theorems of S. In this way, talk
of well-defined or effectively given formal systems can be converted into
talk of Turing machines and vice versa.

Given any effectively presented formal system S we may construct in a
canonical way from its presentation an effectively computable relation
PrfS(x, y) which expresses that x is the Gödel number of a proof in S of
the formula with Gödel number y. Fixing y to be the number n0 of
some standard false statement such as :(0 ¼ 0), the statement ConS

defined as 8x :PrfS(x, n0) then expresses that S is consistent. In his
original proof of the incompleteness theorems, Gödel showed that for
the case that the relation PrfS is primitive recursive, it is definable in
the language of Peano Arithmetic. Later it was recognized through the
work of Kleene that statements of the form 8x P(x) with P Turing
computable can be effectively re-expressed in the form 8x R(x) with R
primitive recursive, hence definable in the language of arithmetic.
Thus for any effectively presented formal system S, the statement ConS

may be construed to be a statement of that language. It is with this
understanding that Gödel’s second incompleteness theorem is expressed
as follows.

If S is an effectively given formal system which contains PA
and S is consistent, then ConS is not provable in S.

Much stronger formulations of this theorem have since been established,
obtained by replacing PA by a relatively weak subsystem proof-
theoretically equivalent to the system PRA of Primitive Recursive
Arithmetic.4 However, this and even stronger improvements do not affect
Gödel’s general argument for his dichotomy.

4 See, e.g., [Hájek and Pudlak, 1991, p. 164].
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Note well that whether or not the axioms of S are objectively true and
whether or not the rules of inference of S preserve objective truth, the
consistency statement for S is an objective number-theoretical problem:
either the system is consistent or it is not, so either ConS is true or it is not.
Gödel refers to it as a diophantine problem. The appellation comes from
the work Arithmetica of the third-century AD Greek mathematician,
Diophantus of Alexandria, on the solutions in integers of polynomial
equations with integer coefficients. In an unpublished and undated
manuscript from the 1930s found in Gödel’s Nachlass and reproduced in
Vol. III of the Collected Works,5 he showed that every statement of the
form 8x R(x) with R primitive recursive is equivalent to one in the form

8x1 . . . xn 9y1 . . . ym p x1, . . . , xn, y1, . . . , ymð Þ ¼ 0½ �

in which the variables range over natural numbers and p is a polynomial
with integer coefficients; it is such problems that Gödel referred to as
diophantine in the Gibbs lecture.6 It follows from the later work on
Hilbert’s 10th problem by Martin Davis, Hilary Putnam, Julia Robinson
and—in the end—Yuri Matiyasevich that, even better, one can take
m ¼ 0 in such a representation when the ¼ relation is replaced by 6¼.7

Thus, in the following, one may take diophantine problems to be those in
the latter stronger form rather than in Gödel’s form.

3. Gödel’s Dichotomy and Its Proof

We are now in a position to return to Gödel’s dichotomy and state it in full
as done in his Gibbs lecture:

Either mathematics is incompletable in this sense, that its
evident axioms can never be comprised in a finite rule, that is
to say, the human mind (even within the realm of pure
mathematics) infinitely surpasses the powers of any finite
machine, or else there exist absolutely unsolvable diophantine
problems of the type specified. [Gödel, 1951, p. 310]

According to Gödel, this is a ‘mathematically established fact’ which is a
consequence of his incompleteness theorem. However, all that he says by
way of an argument for it, in consequence of the second incompleteness
theorem, is the following:

5 Appearing there as Gödel *193?.
6 [Gödel, 1951, p. 307].
7 See, e.g., [Davis, Matiyasevich, and Robinson, 1976].
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[I]f the human mind were equivalent to a finite machine, then
objective mathematics not only would be incompletable in the
sense of not being contained in any well-defined axiomatic
system, but moreover there would exist absolutely unsolvable
problems . . . , where the epithet ‘absolutely’ means that they
would be undecidable, not just within some particular
axiomatic system, but by any mathematical proof the mind
can conceive. [Gödel, 1951, p. 310]

Looking more closely at this, there are some unstated underlying
assumptions that I make explicit as follows:

(I) The human mind, in demonstrating mathematical truths, only
makes use of evidently true axioms and evidently truth-
preserving rules of inference at each stage.

(II) The axioms and rules of inference accepted as evident for the
human mind include those encapsulated in the system PA of
Peano Arithmetic.

(III) By a finite machine is meant a Turing machine which enumerates
only theorems that are among those provable by the human mind.

The argument then runs as follows. To say that the human mind—in its
capacity as a producer of mathematical truths—is equivalent to a finite
machine amounts, as we have seen, to the same thing as saying that the set
of humanly demonstrable theorems can be axiomatized by an effectively
given formal system S. Suppose this is the case; then since by (I) the
human mind proves only truths, S must be consistent. Moreover, by (II) S
contains PA. Hence by the second incompleteness theorem, the con-
sistency ConS of S is true but not provable in S; so it is not humanly
provable. Since the negation of ConS is not true it is also not provable in S
by (I). But ConS can be brought to the form of a diophantine statement,
and so if the human mind is equivalent to a finite machine, it provides an
example of an absolutely undecidable diophantine problem. On the other
hand, if the human mind is not equivalent to a finite machine, then for any
such machine the mind can prove a statement which cannot be produced
by a machine, or, as Gödel puts it, ‘the human mind . . . infinitely
surpasses the powers of any finite machine’.

4. Skeptical Considerations

What are we to make of this argument? Gödel’s claim that its conclusion
is a mathematically established fact can only be accepted if we grant
mathematical meaning to all the notions involved and mathematical
certitude to the assumptions. But we have problems with that straight
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off: hardly any mathematicians would ascribe mathematical clarity to the
concept of ‘the human mind’ or even of what is humanly demonstrable
within mathematics, or even more specifically of what is humanly dem-
onstrable within the realm of arithmetic. Moreover, since what is at issue
is the producibility of an infinite set of propositions, no one mathemat-
ician, whose life is finitely limited, can produce such a list; so either what
one is talking about is what the individual mathematician could do in
principle, or one is talking in some sense about the potentialities of the
pooled efforts of the community of mathematicians now or ever to exist.
Again, we ought to regard that as a matter of what can be done in
principle, since it is most likely that the human race will eventually be
wiped out either by natural causes or through its own self-destructive
tendencies by the time the sun ceases to support life on earth. One might
hope that somehow or other, despite these dire probabilities, humanity, or
whatever it evolves into, will persist into the indefinite future somewhere
in the universe and continue to produce new mathematical theorems. But
it is clear that whichever way this is taken and whatever speculations
about the future are accepted, there is a highly idealized concept of the
human mind in its mathematizing behavior that is at play in Gödel’s
dichotomy.8

This is not to say that the perennial question: Is mind mechanical?, is
not taken seriously. One has only to look at the contents of such works as:
Minds and Machines; How the Mind Works; Minds, Brains, and
Computers; Mind Design; etc., etc., to see that this has engaged the
attention of a number of researchers in cognitive science, especially from
the fields of philosophy, psychology, and artificial intelligence, and has
even attracted the interest of some mathematicians willing to forego
mathematical precision. The question addressed by these thinkers is
whether human mental activity can in general be described in terms of
the workings of a machine. But in pursuing that question, even the
concept of machine is up for grabs. Some cognitive scientists have
proposed mechanical models quite different from those provided by
Turing machines. For example, there are the so-called connectionist
machines (or neural networks, or parallel distributed processors, as they
are also called); unlike the idea of Turing machines, there is no established
mathematical explanation of what constitutes a connectionist machine,

8 The problematic character of these idealizations has been stressed by Stewart
Shapiro [1998], among others. An indication of Gödel’s own view is provided by a con-
versation with Hao Wang reported in [Wang, 1996, p. 189 (6.1.23)]: ‘By mind I mean
an individual mind of unlimited life span. This is still different from the collective mind
of the species.’ Cf. also [Wang, 1996, p. 205 (6.5.5)].
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but there is a general idea of such, given specificity by a number of
interesting examples.9

Setting aside the problem of minds and mental capacities, another
concept that is presumed in Gödel’s dichotomy and that may be viewed
askance is that of objective mathematical truth, which is supposed to be
considered in an absolute sense, independent of how one may arrive at
such. Even in the most basic realm of arithmetic, there is some dispute
among mathematicians of various foundational tendencies about this idea.
The formalists identify truth—if they are willing to speak about it at all—
with what can be proved in a formal axiomatic system. The intuitionists
identify truth with what can be demonstrated by constructive
means, though what constitutes a constructive proof is to be understood
without reference to a formal system. And the finitists limit truth
to statements of a very restricted kind that can be verified without
appeal to the completed infinite. Unlike any of these, I think it is fair to
say that the great majority of working mathematicians view what
they are after is determining truths, and that the questions of truth or
falsity of statements of arithmetic, and in particular those in diophantine
form, are definite mathematical problems. Gödel himself counts the
statements of set theory among the objective problems, but, as I have said,
he formulates his dichotomy in such a way that there can be as divergent
understanding of what those come to as that given by the finitists and the
intuitionists. In doing so, he makes the statement of the dichotomy even
vaguer.

Moving on, what about Gödel’s talk of ‘evident axioms’? This reminds
me of the apocryphal story told about Norbert Wiener who at a certain
point in his lecture on some recondite points in the theory of Fourier series
asserted that something is obvious, stopped, reconsidered, went out of the
room for a half hour, and then returned saying, ‘Yes, it’s obvious.’ What is
left out of the story is that what is obvious to such a one as Wiener need
not be obvious to the students, no matter how hard they try to grasp what is
asserted, even if it is something that is supposed to be ‘really obvious’.
And that already applies in the case of so-called evident axioms that take a
certain amount of mathematical sophistication to appreciate. Even Gödel

9 See, for example, [Rumelhart and McLelland, 1986] and [Churchland and Sejnowski,
1992]. Any connectionist machine with rational weights and computable activation
functions at each unit can be treated in terms of Turing machines. But the essential fea-
ture of experiments with connectionist machines to model assorted cognitive phenomena
is the use of procedures for ‘training’ them so as to decrease the error between correct
outputs and actual outputs over a sample of inputs, by systematically modifying the
weights. There are various procedures in practice for minimization of errors but no
general theory of such.
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suggested, in his famous article on Cantor’s continuum problem, that what
is evident can be cultured:

[T]here may exist, besides the usual axioms . . . other
(hitherto unknown) axioms of set theory which a more
profound understanding of the concepts underlying logic and
mathematics would enable us to recognize as implied by these
concepts. [Gödel, 1990, p. 261]

As suggested in this quote, it is not at all evident what makes a proposed
axiom evident.

Let us take this one step farther: recall assumption (I) that the human
mind, in doing mathematics, makes use only of evident axioms and
evident rules of inference. But mathematicians hardly mention axioms at
all in support of their proofs in their daily practice, and some go through
their entire careers without appealing once to an axiom of any kind.
So assumption (I) requires an argument that underneath it all, mathe-
maticians proceed step by step from what is already known, and so on,
back to more and more basic knowledge. According to this view, there
can be no infinite regress in this; so an account of the logical structure
of mathematical practice must eventually reach statements which are
regarded as so evident that they take on the status of axioms. An
alternative view of mathematics is promoted by such thinkers as Imre
Lakatos who—inspired by Karl Popper—assimilated mathematics to
empirical science and other areas of fallible knowledge. Lakatos
pointed both to the history of the subject, which is full of controversy,
confusion, and even error, marked by periodic reassessments and
occasional upheavals, and to the mathematician at work, who relies on
surprisingly vague intuitions and proceeds by fumbling fits and starts
with all too frequent reversals. I have argued against the Lakatosian
view of mathematics and in favor of an account in terms of its logical
structure,10 but want to emphasize that the latter cannot be taken
for granted. Even if it is accepted that mathematics proceeds at bottom
in a logical way, one may ask whether the formalization of mathematics
in effectively given axiomatic systems S of the sort presumed by
Gödel provides the appropriate model of the logical structure of
mathematics. In this respect I have developed views which diverge from
the metamathematical approach that is currently in the saddle, but it would
take me too far afield and into more technical territory to explain
that here.11

10 Cf. [Feferman, 1998, Ch. 3].
11 Cf. [Feferman, 1996].
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5. Taking the Issues at Face Value

What I have been concerned with in the preceding section is to put into
question Gödel’s assertion that his dichotomy is an established mathe-
matical fact. But at an informal, non-mathematical, more every-day level,
there is nevertheless something to the ideas involved and something to the
argument that we can and should take seriously. If we then take these at
face value, we will want to say more, namely, which disjunct ought to be
accepted and why? There was no uncertainty about the choice in the mind
of David Hilbert. In his famous lecture entitled ‘Mathematical problems’
for the meeting of the International Congress of Mathematicians held in
Paris in 1900, Hilbert emphasized the importance of taking on challenging
problems for maintaining the progress and vitality of mathematics. But he
went beyond that to express a remarkable conviction in the solvability of
all mathematical problems, which he even called an ‘axiom’. To quote
from his lecture:

Is the axiom of solvability of every problem a peculiar
characteristic of mathematical thought alone, or is it possibly
a general law inherent in the nature of the mind, that all
questions which it asks must be answerable? . . . This
conviction of the solvability of every mathematical problem
is a powerful incentive to the worker. We hear within us the
perpetual call: There is the problem. Seek its solution. You can
find it by pure reason, for in mathematics there is no
ignorabimus.12

To be sure, one problem after another had been vanquished in the past by
mathematicians, though sometimes only after considerable effort and only
over a period of many years. And Hilbert’s personal experience was that
he could eventually solve any problem he set his mind to. But it was rather
daring to assert that there are no limits to the power of human thought,
at least in mathematics.

At any rate, Hilbert clearly said that there are no absolutely unsolvable
problems, but in answer to the question as to why he believed that, he told

12 [Hilbert, 1900], as translated in [Browder, 1976, p. 7]. For the relevance of Hilbert’s
problems to logic see the articles there by A. D. Martin and G. Kreisel, as well as
Ch. 1 of [Feferman, 1998]. Hilbert qualified his idea of the solvability of every problem
by saying that a solution might consist of demonstrating that the problem cannot be
solved by prescribed methods, e.g., the problem of the duplication of the cube by
straightedge and compass and the problem of the solution of the general fifth-degree
equation by radicals. It should also be noted that some of the problems on Hilbert’s list
are not at all specific but, rather, are programmatic. For example, Problem 6 calls for
one to ‘treat . . . by means of axioms, those physical sciences in which mathematics
plays an important part.’
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us only that it is an axiom or a matter of conviction.13 What was Gödel’s
own view? Typically cautious, in the Gibbs lecture he stated his
conclusion from the second incompleteness theorem only as a disjunction,
despite his personal conviction that mind is not equivalent to a finite
machine. Apparently the reason he did that is because he did not feel he
had a knock-down proof of the falsity of the mechanist position. Rather,
he put forward various arguments against that position, including several
communicated to Hao Wang and first recounted in the latter’s book, From
Mathematics to Philosophy14 and then at greater length in A Logical
Journey. From Gödel to Philosophy.15 Gödel thought that Hilbert was
right to reject the possibility of absolutely unsolvable problems.
Otherwise, ‘it would mean that human reason is utterly irrational by asking
questions it cannot answer, while asserting emphatically that only reason
can answer them.’16 Further, in a note entitled ‘A philosophical error in
Turing’s work’ prepared for publication but never actually published,
Gödel wrote:

Turing gives an argument which is supposed to show that
mental procedures cannot go beyond mechanical procedures.
However, this argument is inconclusive. What Turing dis-
regards completely is the fact that mind, in its use, is not static,
but constantly developing, i.e., we understand abstract terms
more and more precisely as we go on using them . . . though at
each stage the number and precision of the abstract terms at
our disposal may be finite, both . . . may converge toward
infinity . . . .17

Note that, in contrast to the ascription of an error in the title, Gödel does
not say that Turing is mistaken, only that his argument is inconclusive.
Moreover, in the Gibbs lecture he countenances the possibility that ‘the

13 For an interesting stab at a theoretical formulation of Hilbertian ‘rationalistic
optimism’ see [Shapiro, 1997, pp. 207–211].

14 [Wang, 1974, pp. 324–326].
15 [Wang, 1996], especially Ch. 6. Cf. also [Wang, 1993].
16 [Wang, 1974, p. 324]. Geoffrey Hellman (personal communication) has pointed

out that this is hyperbole (uncharacteristic of Gödel), for ‘first of all, in any particular
case, we may not know or have reason to think that we’re dealing with an unsolvable
problem, so why is it irrational to pursue a proof? And second, to assert that only reason
can answer is by no means that reason can answer—a problem may simply be beyond
‘‘reason’s’’ capacity to answer (which is not to say it has no objectively correct answer,
a separate issue).’

17 [Gödel, 1990, 1972a Remark 3, p. 306]. A close version of same is to be found
in [Wang, 1974, p. 325]. Cf. also the relevant conversations reported in [Wang, 1996,
pp. 195–200].
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human mind (in the realm of pure mathematics) is equivalent to a finite
machine that, however, is unable to understand completely its own
functioning’. And in a footnote he says that

[I]t is conceivable . . . that brain physiology would advance so
far that it would be known with empirical certainty

1. that the brain suffices for the explanation of all mental
phenomena and is a machine in the sense of Turing;

2. that such and such is the precise anatomical structure and
physiological functioning of the part of the brain which performs
mathematical thinking. [Gödel, 1951, p. 309, fn. 13]

Gödel’s cautious statement concerning minds and machines is also
curious in view of his assertion near the outset of the Gibbs lecture that the
‘phenomenon of the inexhaustibility of mathematics’ follows from the
fact that

[T]he very formulation of the axioms [of set theory over the
natural numbers] up to a certain stage gives rise to the next
axiom. It is true that in the mathematics of today the higher
levels of this hierarchy are practically never used. It is safe to
say that 99.9% of present-day mathematics is contained in the
first three levels of this hierarchy. So for all practical purposes,
all of mathematics can be reduced to a finite number of
axioms. However, this is a mere historical accident, which is
of no importance for questions of principle. [Gödel, 1951,
p. 307]

More positive claims to prove that mind is not equivalent to a finite
machine in Turing’s sense have come from several sources, most
prominently the philosopher J. R. Lucas and the mathematician Roger
Penrose. In Lucas’s article ‘Minds, machines and Gödel’ [Lucas, 1961],
he argued that whatever Turing machine M is proposed to describe mind,
knowing the program for M one can produce a sentence which is true but
not provable by the machine, namely the consistency statement for M.
This presumes that if mind is equivalent to a Turing machine then its exact
program can be produced; it may well be that empirical investigations
support the existence of such a machine without one being able to tie
it down in complete detail. The second thing that Lucas’s argument
presumes is that mind is consistent, and moreover that we know it is
consistent. In his book Shadows of the Mind, Penrose developed a refined
version of Lucas’s argument designed to be immune from such criticisms.
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But his conclusion is concomitantly weak: ‘Human mathematicians are
not using a knowably sound algorithm in order to ascertain mathematical
truth’.18 In a trenchant survey of these and other such ‘proofs’, Stewart
Shapiro has concluded that ‘there is no plausible mechanist thesis on
offer that is sufficiently precise to be undermined by the incompleteness
theorems’.19

While I agree completely with Shapiro, this leaves open the possibility
that there are grounds, other than those coming from the incompleteness
theorems, for coming to the conclusion that there are no absolutely
unsolvable problems. Indeed, Per Martin-Löf has proved exactly that, in
the form: There are no propositions which can neither be known to be true
nor be known to be false [Martin-Löf, 1995, p. 195]. However, this is
established on the basis of the constructive explanation of the notions of
‘proposition’, ‘true’, ‘false’, and ‘can be known’. The argument goes
roughly as follows. A proposition A can be known to be true just in case it
can be demonstrated and it can be known to be false just in case its
negation :A can be demonstrated, i.e., A can be shown to lead to a
contradiction. Then to assert that A cannot be known to be true implies
:A. Similarly, to assert that A cannot be known to be false implies ::A.
Thus the assumption that one has a proposition A which both cannot be
known to be true and cannot be known to be false is to have one for which
:A^::A holds, and that is demonstrably false.20

For the non-constructive mathematician, Martin-Löf’s result would be
translated roughly as: No propositions can be produced of which it can be
shown that they can neither be proved constructively nor disproved
constructively. For the non-constructivist this would seem to leave open
the possibility that there are absolutely unsolvable problems A ‘out there’,
but we cannot produce ones of which we can show that they are
unsolvable.

18 [Penrose, 1994, p. 76]. I am deliberately ignoring here Penrose’s ‘new argument’
in the 1996 Psyche symposium on his book; cf. [Shapiro, 1998, p. 284] and [Lindström,
2001].

19 [Shapiro, 1998, p. 275]. For useful supplements to Shapiro’s bibliography see also
[Hellman, 1981], [Lindström, 2001], [Franzén, 2005], and http://cons.net/
online2.html#godel in David Chalmers’s excellent collection of online sources on the
philosophy of mind.

20 Gödel makes a similar observation in [1951, p. 310, fn. 15], as follows: ‘It is to be
noted that intuitionists have always asserted the first term of the disjunction [in the
dichotomy] (and negated the second term, in the sense that no demonstrably undecidable
propositions can exist).’
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6. Minds Are Not Finite Machines and Yet There Are Absolutely
Unsolvable Problems

Where does this leave us? First of all, though I have used ‘Gödel’s
dichotomy’ to refer to the disjunctive formulation in section 3 above, the
disjuncts are not on the face of them mutually contradictory. Gödel
himself asserts in a parenthetical remark directly following the statement
that ‘the case that both terms of the disjunction are true is not excluded, so
that there are, strictly speaking, three alternatives’. Speaking for myself, I
have to say that I find it plausible that both disjuncts of Gödel’s dichotomy
are true! But here I depart from problematic matters of principle to matters
of current and foreseeable practice.

Let me begin with the first disjunct. It seems to me that there is an
equivocation in Gödel’s ‘proof’ of the dichotomy and in the Lucas-
Penrose arguments, in which one countenances the assumption that mind
is a finite machine with respect to the production of mathematical truths.
There are two ways of taking this, if one grants that such truths are
established only by proofs. The first is that in carrying out these proofs
human minds are (explicitly or implicitly) following some one formal
system S of evident axioms and rules of inference. The second is that
human minds are employing an algorithm or program for a Turing
machine to carry out the production of mathematical truths.21 The
equivocation lies in identifying the processes for producing proofs of
theorems of S with their results, that is, with the set of all theorems of S. If
one considers only the results then for mind to be constrained to follow
a single S is the same as to be a finite machine since, under the given
assumptions on formal systems, the set of theorems of S is effectively
enumerable. But if we look instead at the processes by means of which
they are obtained, it is obvious that the way mathematicians prove
theorems is not at all the way that machines (at least as currently
conceived) churn out theorems. It is a travesty of the former to picture the
mathematician trying to prove a particular statement A by enumerating
the theorems of S one after another to see if A is among them. By contrast,
the actual human search process is guided by a combination of experience,
intuition, and trial-and-error; frequently it requires intense concentrated
work, intermixed with periods of gestation and sudden leaps of realization
(‘Ah, hah!’).22 The elements of a solution to a non-routine problem are
usually novel and can even be suprising; they may require the introduction
of new connections and new concepts that are nowhere on the surface.

21 The two ways are brought closer together by allowing consideration of non-
deterministic Turing machines; cf. fn. 3 above.

22 Cf. [Hadamard, 1949], [Pólya, 1968], [Fischbein, 1987], and [Feferman, 2000].
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Moreover, finding proofs of theorems that have previously been stated
is only part of the story. A good part of the mathematician’s work in
practice is devoted to arriving at new fruitful conjectures to be tackled,
and that is a matter of informed judgment as well as an exercise of creative
intelligence. There is nothing at all in the machine picture that accounts
for this aspect of the mathematical mind at work.

Note that my conclusion that—insofar as the process of producing
theorems is concerned—mind is not a finite machine in the sense
of Turing, does not exclude the possibility that the actual creative
mathematical process can be modeled by some other kind of machine;
however, there is no proposal for such remotely on the horizon.

Note also that it is not excluded that the totality of humanly acceptable
principles for proving theorems is bounded by a single formal system S,
for example the system ZFC with the addition of all large-cardinal axioms
that have been considered to date.23 But even though such axioms border
on inconsistency, as they do at the very highest reaches,24 it is of course
conceivable that one will think of new axioms beyond those considered
to date for which consistency can still be entertained. On the other hand,
I don’t know of anyone who says that we can be assured that all the
large-cardinal axioms that have been considered to date lead only to
mathematical truths, let alone that they are ‘evident’ as required by Gödel
in his disjunctive formulation.25

Let us turn, finally, to the second disjunct. We do not have any precise
criterion for the solvability of individual problems which would allow
us to prove the existence of problems that are absolutely unsolvable
in principle; so it is idle to ask for examples of such. Instead I wish to point
to two problems at the extremes of current mathematics that I will argue
are absolutely unsolvable from the standpoint of practice.

(P1) Is the value of the digit in the 10101010

th place of the decimal
expansion of p � 3 equal to 0?

As Robert Solovay and I have written about such problems,26 this is an
example of a mathematical ‘yes/no’ question, whose answer can be
determined in principle by a mechanical check, but which, in all
probability, cannot be settled by the human mind because it is beyond

23 Cf. [Kanamori, 1994, p. 471].
24 Ibid., p. xxii.
25 If one is only concerned with the completely minimal requirement that every dio-

phantine statement proved be true, one need only seek assurance as to the consistency of
such axioms. But what could provide such assurance, given Gödel’s second incomplete-
ness theorem?

26 Feferman and Solovay, Introductory Note to Gödel 1972a, Remark 2, in [Gödel,
1990, p. 292].
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all remotely conceivable computational power on the one hand and there
is no conceptual foothold to settle it by a proof on the other.

The second problem that is a candidate to be absolutely unsolvable is
Cantor’s continuum problem, which Hilbert placed first on his list of
23 open mathematical problems in his 1900 address.

(P2) Is there an uncountable subset of the set R of real numbers which is
not in one-to-one correspondence with R?

Gödel took this problem as belonging to the realm of objective
mathematics and thought that we would eventually arrive at evident
axioms to settle it. In terms of Cantor’s notation, we have that the cardinal
number of R, Card(R), is greater than or equal to the first uncountable
cardinal number �1; Cantor conjectured that they are equal. But all efforts
to determine the value of the cardinal number of R (‘the continuum’) on
the basis of currently accepted axioms or any plausible extension S of
those axioms proposed thus far have failed. Using the forcing method
introduced by Paul Cohen, Azriel Levy and Robert Solovay have shown
that both Card(R) ¼ �1 and Card(R) > �1 are consistent with any such
S, provided S is consistent.27 28 Of course, Cantor’s problem is not a
diophantine problem, and if it is absolutely unsolvable that does not mean
that there exist absolutely unsolvable diophantine problems. But there are
closely related problems which are of that form. Namely, in an effort to
settle the continuum problem, some set theorists have proposed adding to
the axioms of set theory statements of the form that some very large
cardinals exist. Well, then one can ask whether the resulting system is
consistent, and that question is a diophantine problem. How could we
hope to settle it? As remarked in fn. 25, Gödel’s incompleteness theorem
makes that a non-starter.

My conclusion from all this is that—stimulating as Gödel’s formula-
tions in the Gibbs lecture of the consequences for mathematics of his
incompleteness theorems are—they are a long way from establishing
anything definitive about minds, in their general mathematizing capacity,
and machines. Gödel himself was more concerned with the philosophical
consequences, namely that ‘under either alternative [of the disjunction]
they are very decidedly opposed to materialistic philosophy’, or, to put it
more positively, they support ‘some form or other of Platonism or
‘‘realism’’ as to the mathematical objects’ [1951, p. 311], and he devoted

27 Cf. [Martin, 1976, p. 86]. More precisely, the ‘plausible extensions’ S of ZFC are
those by some large-cardinal axiom asserting the existence of a cardinal k which is pre-
served under Cohen extensions relative to forcing by P with card(P) smaller than k.
This result was proved in [Levy and Solovay, 1967].

28 Conceivably, Hilbert would have regarded the proof of independence of CH from
ZFC set theory as a ‘solution’ to P2. Cf. fn. 12.
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the main part of his lecture to making the case for that. A discussion of
these claims could be largely independent of the preceding considerations.

Note Added in Proof

Alasdair Urquhart brought to my attention interesting notes that Emil Post
made in November, 1940, of two conversations he had had a year or two
before with Kurt Gödel on the subject of absolutely unsolvable problems;
these notes are reproduced in part in [Grattan-Guinness, 1990, pp. 82–83].
At that time, Gödel offered the Continuum Hypothesis as a possible
candidate for such a problem if, as he conjectured, its independence from
the axioms of set theory could be established. Seemingly, the idea was
that independence of CH, like its consistency, would hold for any
extension of the axioms of set theory that might reasonably be
contemplated. As is well known, Gödel later rejected this possibility in
his 1947 article on Cantor’s continuum problem [Gödel, 1990, pp. 176–
187]. For Post’s own speculations about absolutely unsolvable problems,
see [Urquhart, forthcoming].
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