Harmonious Logic: Craig's Interpolation Theorem and its Descendants

Solomon Feferman Stanford University http://math.stanford.edu/~feferman

.

Interpolations Conference in Honor of William Craig 13 May 2007

.

Though deceptively simple and plausible on the face of it, Craig's interpolation theorem (published 50 years ago) has proved to be a central logical property that has been used to reveal a deep harmony between the syntax and semantics of first order logic.

1

- Early history
- Subsequent generalizations and applications, especially of many-sorted interpolation theorems
- A rare interaction between proof theory and model theory
- Interpolation and the quest for "reasonable" stronger logics.

Craig's Interpolation Theorem ("Lemma")

Suppose $\vdash \phi(\underline{R}, \underline{S}) \rightarrow \psi(\underline{S}, \underline{T})$. Then there is a $\theta(\underline{S})$ such that

$$\vdash \phi(\underline{R}, \underline{S}) \rightarrow \theta(\underline{S}) \text{ and } \models \theta(\underline{S}) \rightarrow \psi(\underline{S}, \underline{T}).$$

Here \mid is validity in the first order predicate calculus with equality (FOL) and φ , ψ , θ are sentences.

W. Craig (1957a), "Linear reasoning. A new form of the Herbrand-Gentzen theorem"

_____(1957b), "Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory"

Let $Rel(\varphi)$ = the set of relation symbols in φ . General statement:

Suppose φ , ψ are sentences with $\vdash \varphi \rightarrow \psi$. Then (i) $\operatorname{Rel}(\varphi) \cap \operatorname{Rel}(\psi) \neq \emptyset \Rightarrow \exists a \text{ sentence } \theta \text{ s.t.}$ $\vdash \varphi \rightarrow \theta \text{ and } \vdash \theta \rightarrow \psi \text{ and}$ $\operatorname{Rel}(\theta) \subseteq \operatorname{Rel}(\varphi) \cap \operatorname{Rel}(\psi).$ (ii) $\operatorname{Rel}(\varphi) \cap \operatorname{Rel}(\psi) = \emptyset \Rightarrow \vdash \neg \varphi \text{ or } \vdash \psi.$

<u>N.B.</u> In the following, assumptions like (i) are implicit and we ignore boundary cases like (ii).

Proof theory and model theory

 Proof theory concerns the structure and transformation of proofs in formal axiomatic systems. (Hilbert, Herbrand, Gentzen, ...)

2. Model theory concerns the relation of satisfaction between formulas from a formal language and structures. M $\models \varphi$ if M is a model of φ .

 $\Sigma \models \phi$ if every model of Σ is a model of ϕ .

(Skolem, Tarski, A. Robinson, ...)

3. Gödel's completeness theorem relates provability in FOL to validity:

 φ is provable from \sum iff $\sum \vdash \varphi$. So \sum has a model iff \sum is consistent, iff every finite subset of \sum has a model (the Compactness Theorem).

4. Gentzen showed proofs in FOL can be transformed into *direct proofs* ("cut-free" with the "subformula property").

5. The Herbrand-Gentzen mid-sequent theorem for prenex formulas. Craig's version.

<u>Craig's first application of the Interpolation</u> <u>Theorem: Beth's Definability Theorem</u>

A. Padoa (1900), "Logical introduction to any deductive theory" (English translation in *From Frege* to Gödel.) Padoa's claim: To prove that a basic symbol S is independent of the other basic symbols in a system of axioms Σ , it is n.a.s. that there are two interpretations of Σ which agree on all the basic

symbols other than S and which differ at S.

First justification for FOL:

E. W. Beth (1953), "On Padoa's method in the theory of definition".

<u>Beth's Theorem</u> ("Implicit definability implies explicit definability"). Suppose $\varphi(\underline{R}, S) \land \varphi(\underline{R}, S') \longmapsto S(\underline{x}) \Leftrightarrow S'(\underline{x})$. Then there is a $\theta(\underline{R}, \underline{x})$ such that $\varphi(\underline{R}, S) \longmapsto S(\underline{x}) \Leftrightarrow \theta(\underline{R}, \underline{x})$.

Beth's first proof; Tarski's reaction. Beth's published proof.

Craig's simple proof: Apply interpolation to $\vdash \phi(\underline{R}, S) \land S(\underline{x}) \rightarrow (\phi(\underline{R}, S') \rightarrow S'(\underline{x})).$

Robinson's earlier proof of Beth's theorem: A. Robinson (1956), "A result on consistency and its application to the theory of definition"

Craig's theorem implies Robinson's theorem (easy).

Craig's second application: Projective classes

A class K of models is a *projective class* (PC) if it is the set of M = (A, <u>S</u>) satisfying $\exists \underline{R} \varphi(\underline{R}, \underline{S})$ for some φ of FOL. K is an *elementary class* (EC) if it it consists of the models of a sentence $\theta(\underline{S})$ of FOL. In these terms Craig's theorem is reexpressed as:

<u>Interpolation Theorem</u> Any two disjoint projective classes can be separated by an elementary class. <u>Proof.</u> Use $\vdash - \varphi(\underline{R}, \underline{S}) \rightarrow -\psi(\underline{T}, \underline{S})$ from $\vdash - [\exists \underline{R} \varphi(\underline{R}, \underline{S}) \land \exists \underline{T} \psi(\underline{T}, \underline{S})].$

Corollary (Δ -Interpolation Theorem). *If* K and its complement are both in PC then K is in EC.

<u>Note</u>: Δ -Interpolation is analogous to the Souslin-Kleene theorem in (Effective) Descriptive Set Theory and Post's theorem in Recursion Theory.

Lyndon's theorems

R. Lyndon (1959a), "An interpolation theorem in the predicate calculus"

_____ (1959b), "Properties preserved under homomorphism"

Let F be a map from formulas to sets. θ is called an interpolant for $\mid -\phi \rightarrow \psi$ w.r.t. F if $\mid -\phi \rightarrow \theta$ and $\mid -\theta \rightarrow \psi$ and $F(\theta) \subseteq F(\phi) \cap F(\psi)$.

Let Rel⁺(ϕ) (Rel⁻(ϕ)) be the set of relation symbols of ϕ with at least one positive (negative) occurrence in ϕ^{\sim} , the *negation normal form* (n.n.f.) of ϕ .

Lyndon's interpolation theorem If $\mid -\phi \rightarrow \psi$ then it has an interpolant w.r.t. Rel⁺ and Rel⁻.

Given, say, M = (A, R) and M' = (A', R') with R, R' binary, a map h: $A \rightarrow A'$ is said to be a homomorphism of M onto M' if h is onto and for any $x, y \in A, R(x, y) \Rightarrow R'(h(x), h(y))$. (When R, R' are functions, this is the usual notion of homomorphism.) A sentence φ is said to be *preserved under homomorphisms* if whenever M $\models \phi$ and M' is a homomorphic image of M then M' $\models \varphi$. Replace x = y in φ by E(x, y) and write $\varphi(R, E)$ for φ . Let Cong(R, E) express that E is an equivalence relation, together with $\forall x_1 \forall x_2 \forall y_1 \forall y_2 [E(x_1, y_1) \land E(x_2, y_2) \land R(x_1, x_2) \rightarrow$

 $R(y_1, y_2)$].

<u>Lemma</u> φ *is preserved under homomorphisms iff* ⊢ Cong(R, E) ∧ Cong(R', E') ∧ ∧R ⊆ R' ∧ E ⊆ E' ∧ φ (R, E) → φ (R', E'). A sentence φ is said to be *positive* if Rel⁻(φ) is empty.

Lyndon's characterization theorem φ is preserved under homomorphisms iff it is equivalent to a positive sentence.

<u>Proof</u> Apply Lyndon's interpolation theorem to

 $Cong(R, E) \land R \subseteq R' \land E \subseteq E' \land \varphi(R, E) \rightarrow$

 $[\operatorname{Cong}(\mathsf{R}',\mathsf{E}') \rightarrow \varphi(\mathsf{R}',\mathsf{E}')].$

R' and E' have no negative occurrences in the hypothesis.

Lyndon's first proof of his interpolation theorem; Tarski's reaction.

Many-sorted interpolation theorems and their <u>uses</u>

S. Feferman (1968a), "Lectures on proof theory" _____ (1974), "Applications of many-sorted interpolation theorems" (in Proc. of the 1971 Tarski Symposium)

Many-sorted structures $M = (\langle A_j \rangle_{j \in J},...)$. Language L with variables $x_j, y_j, z_j,...$ for each $j \in J$. <u>Example</u>: Two-sorted, with variables x, y, z, ..., and x', y', z',... *Liberal equality* (x = x') vs. *strict equality* (x = y, x' = y') atomic formulas. We allow liberal equality.

Sort(φ) = { $j \in J \mid a \text{ variable of sort } j \text{ occurs in } \varphi$ } Free(φ) = the set of free variables of φ Un(φ) = { $j \in J \mid \text{there is } a \forall x_j \text{ in } \varphi^{\sim}$ } Ex(φ) = { $j \in J \mid \text{there is an } \exists x_j \text{ in } \varphi^{\sim}$ } <u>Many-sorted interpolation theorem</u>. *If* $\mid -\phi \rightarrow \psi$ *then it has an interpolant* θ *w.r.t.* Rel⁺, Rel⁻, Sort, *and* Free, *for which*

(*)
$$Un(\theta) \subseteq Un(\phi) \text{ and } Ex(\theta) \subseteq Ex(\psi).$$

By the *basic form of many-sorted interpolation* is meant the same statement without (*).

For $M = (\langle A_j \rangle_{j \in J}, ...)$ and $M' = (\langle A'_j \rangle_{j \in J}, ...)$ and $I \subseteq J$, $M \subseteq_I M'$ if M is a substructure of M' with $A_i = A'_i$ for each $i \in I$.

 φ is *preserved under* I-*stationary extensions rel. to* \sum if whenever M, M' are models of \sum and M $\models \varphi$ and M \subseteq_I M' then M' $\models \varphi$.

<u>Theorem</u> φ *is preserved under* I*-stationary extensions rel. to* \sum *iff for some* θ *that is existential outside of* I, $\sum \vdash \varphi \Leftrightarrow \theta$. <u>Proof</u>. For each sort of variable $x_j,...$ with $j \in J - I$, adjoin a new sort $x'_j,...$, and associate with each relation symbol R of L (other than =) a new symbol R'. Let φ' be the copy of φ , leaving the variables of sort $i \in I$ unchanged. Let $Ext_I =$ the conjunction of $\forall x_j \exists x'_j (x_j = x'_j)$ for each $j \in J$ -I together with $\forall \underline{x} [R(\underline{x}) \Leftrightarrow R'(\underline{x})]$ for each R. Then φ is preserved under I-stationary extensions iff $\sum \cup \sum' \models Ext_I \land \varphi \rightarrow \varphi'$. Finally, apply compactness and many-sorted interpolation.

<u>Note</u>: The Los-Tarski theorem (1955) is the special case of this for J a singleton and I empty.

To avoid use of liberal equality between sorts, the following was proved by

J. Stern (1975), "A new look at the interpolation problem":

<u>Many-sorted interpolation theorem (Stern version)</u>. If $\mid - \phi \rightarrow \psi$ then it has an interpolant θ w.r.t. Rel⁺, Rel⁻ and Sort, for which

(**) $\operatorname{Un}(\theta) \subseteq \operatorname{Un}(\psi) \text{ and } \operatorname{Ex}(\theta) \subseteq \operatorname{Ex}(\varphi).$

<u>N.B.</u> The interpolant may have free variables not in both ϕ and ψ .

<u>Corollary</u> (Herbrand) If φ is universal and ψ is existential and $\mid -\varphi \rightarrow \psi$ then it has a quantifier-free interpolant.

The Herbrand theorem is combined with a use of basic many-sorted interpolation in Feferman (1974) to establish a simple model-theoretic n.a.s.c. for eliminability of quantifiers for Σ that are model-consistent relative to some subset of their universal consequences. This holds, e.g., for real closed and algebraically closed fields.

Preservation under end-extensions

For (possibly many-sorted languages) with a binary relation symbol < (on one of the sorts), we can introduce *bounded quantifiers* $(\forall y < x)(...)$ and $(\exists y < x)(...)$, and then *essentially existential* and *essentially universal formulas*.

 $M' = (A', <', ...) \text{ is an$ *end-extension* $of}$ M = (A, <, ...) if it is an extension such that for each

 $a \in A \text{ and } b \in A', b <' a \Rightarrow b \in A.$

S. Feferman (1968b) "Persistent and invariant formulas for outer extensions" uses a modification of the methods of the (1968a) article to prove:

<u>Theorem</u> φ is preserved under end extensions rel. to \sum iff it is equivalent in \sum to an essentially existential sentence. Similarly with I-stationary sorts. When < is taken to be the membership relation and \sum is an axiomatic theory of sets, this yields a characterization of the (provably) *absolute properties rel. to* \sum .

Beyond First Order Logic

Many logics stronger than FOL have been studied in the last 50 years.

Examples:

- 1. ω-logic
- 2. 2nd order logic
- 3. Logic with cardinality quantifiers $Q_{\alpha} (= \exists \geq \omega_{\alpha})$

4. $L_{\kappa,\lambda}$, logic with conjunctions of length < κ and quantifier strings of length < λ (κ , λ inf. cards.)

5. L_A for A admissible (conjunctions over sets in A, ordinary 1st order quantification)

FOL can be identified with $L_{\omega,\omega}$ or with L_{HF} , where HF is the collection of hereditarily finite sets. For HC = the hereditarily countable sets and A \subseteq HC, $L_A \subseteq L_{\kappa,\omega}$ with $\kappa = \omega_1$.

Abstract model theory

S. Feferman and J. Barwise (eds.) (1985), *Model-Theoretic Logics*.

Abstract model theory deals with properties of *model-theoretic logics* L, specified by an abstract syntax—i.e. a set of "sentences" satisfying suitable closure conditions—and "satisfaction" relation $M \models \phi$ for ϕ a sentence of L.

With each such L is associated its collection of Elementary Classes, EC_L , and from that its collection of Projective Classes, PC_L . $L \subseteq L^*$ if $EC_L \subseteq EC_{L^*}$. Using these notions we can formulate various properties of model-theoretic logics and examine specific logics such as 1-5 in terms of them.

1° Countable compactness
2° Löwenheim-Skolem property
3° Löwenheim-Skolem-Tarski property
4° R.e. completeness.

By 4° is meant that the set of valid sentences is recursively enumerable.

<u>Example</u>: Other than $L_{\omega,\omega}$ only the extension by the uncountablility quantifier (Q₁) among the specific examples 1-5 has countable compactness and r.e. completeness (Keisler 1970); obviously L-S fails. None of the others has either property.

Lindström's theorems (1969)

(i) $L_{\omega,\omega}$ is the largest logic having the countable compactness and L-S properties.

(ii) $L_{\omega,\omega}$ is the largest logic having the r.e.

completeness and L-S properties.

(iii) $L_{\omega,\omega}$ is the largest logic having the L-S-T

property.

Interpolation related properties:

5° *Interpolation* (any two PC_L K's can be separated by an EC_L).

6° Δ -Interpolation (if K and its complement are both PC_L then K is in EC_L).

7° *Beth* (for $K \in EC_L$, if each M has *at most one*

expansion $[M, \underline{S}] \in K$ then \underline{S} is uniformly definable over M).

8° Weak Beth (...and each M has exactly one

expansion $[M, \underline{S}] \in K \dots$.

9° Weak projective Beth (for $K \in PC_L, ...$).

<u>Lemma</u>. Interpolation $\Rightarrow \Delta$ -interpolation \Rightarrow Beth \Rightarrow weak Beth; Δ -interpolation \Leftrightarrow weak projective Beth.

<u>Example</u>: Only L_A for $A \subseteq HC$, admissible, among the logics 1-5, has the interpolation property (Lopez-Escobar, Barwise).

All of the results above for many-sorted interpolation theorems and their applications to FOL carry over to these L_A . (Feferman 1968a, 1968b)

<u>Remark:</u> Most model-theoretic methods used in FOL to prove preservation theorems do not carry over to the L_A for $A \subseteq HC$, admissible.

Consistency properties do—but they are dual to use of cut-free sequents.

<u>Counter-examples to interpolation or even weak Beth</u> for other logics are due variously to Craig, Mostowski, Keisler, Friedman, etc.

W. Craig (1965), "Satisfaction for nth order languages defined in nth order languages."

E.g., for 2nd order logic, the truth predicate is implicitly but not explicitly definable.

<u>Truth adequacy and truth maximality</u>. These are notions introduced in my 1974 article. Roughly speaking, *L* is adequate to truth in *L**, when the syntax of L* is represented in a transitive set A, if the truth predicate Sat(m, a) is uniformly implicitly definable up to any $a \in A$. *L* is truth maximal if whenever it is adequate to truth in L*, L* \subseteq L. It is truth complete if it is truth maximal and adequate to truth in itself. <u>Theorem</u> Δ -interpolation is equivalent to truthmaximality.

The quest for "reasonable" logics

It has been suggested that for a logic to be reasonable, it ought to satisfy countable compactness and Δ -interpolation, or at least the Beth property.

• Δ -interpolation fails for $L_{\omega,\omega}(Q_1)$ (Keisler).

<u>Question</u>: are there any reasonable proper extensions of $L_{\omega,\omega}$?

<u>Note</u>: One can form the Δ -*closure* $\Delta(L)$ of any logic L to satisfy Δ -interpolation, but then the problem is to see if $\Delta(L)$ has other reasonable properties.

Some results in the quest for reasonable logics

• S. Shelah (1985), "Remarks in abstract model theory" proves there is a compact proper extension of $L_{\omega,\omega}$ with the Beth property, using the Δ -closure of the quantifier "the cofinality of < is $\leq 2^{\omega}$. This logic does not satisfy interpolation.

A. Mekler and S. Shelah (1985), "Stationary logic and its friends I" proves that it is consistent for L_{ω,ω}(Q₁) to have the weak Beth property.

• W. Hodges and S. Shelah (1991), "There are reasonably nice logics" proves that $L_{\omega,\omega}(Q_{\alpha})$ is a reasonable logic for ω_{α} an uncountable strongly compact cardinal with at least one larger strongly compact cardinal. <u>Question</u>: what if one adds r.e. completeness to the conditions for a reasonable logic?