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Introduction

I will talk here about three problems that have bothered me for a number of
years, during which time I have experimented with a variety of solutions and
encouraged others to work on them. I have raised each of them separately
both in full and in passing in various contexts, but thought it would be
worthwhile on this occasion to bring them to your attention side by side. In
this talk I will explain the problems, together with some things that have
been tried in the past and some new ideas for their solution.

Types of conceptual problems.

A conceptual problem is not one which is formulated in precise technical
terms and which calls for a de�nite answer. For this reason, there are no
clear-cut criteria for their solution, but one can bring some criteria to bear.
These will vary from case to case. There are three general types of conceptual
problems in mathematics of which the ones that I will discuss today are
examples. These are:

1�. Finding a suitable framework for the direct expression of

seemingly problematic notions. Examples from logic are:

{ The use of non-standard models to develop analysis with in�nites-
imals.

{ Formal theories for Brouwerian free choice sequences.
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Examples from mathematics (outside of logic) are:

{ Projective geometry for points at in�nity and the line at in�nity.

{ Distribution theory for the Dirac �-function.

My problem of this type: Find a suitable framework for the direct
expression of structural concepts which admit self-application (e.g.,
the category of all categories).

N.B. It is to be expected in solving this sort of conceptual problem
that there will be trade-o�s. For example, in non-standard analysis
one has to distinguish between internal and external properties of the
model. And in projective geometry, one has to give up metric proper-
ties.

2�. Explicating an informal concept. (This is perhaps what one thinks
of �rst under conceptual problems, that of conceptual analysis.) Ex-
amples from logic are:

{ The de�nition of truth for formal languages.

{ The de�nition of e�ective computability.

Examples from mathematics are:

{ The de�nition of random variable.

{ The notion of natural isomorphism.

My problem of this type: How should one de�ne the notion of
natural well-ordering?

3�. Generalizing some heuristically successful analogies. Examples
from logic:

{ E�ective descriptive set theory, to generalize classical descriptive
set theory and the logical theory of hierarchies.

{ Admissible set theory, to generalize ordinary and meta-recursion
theory.

Examples from mathematics:

{ Hilbert spaces, to generalize �nite-dimensional linear algebra and
theory of integral equations.
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{ Ideal theory, to generalize prime factorization in integers and in
speci�c algebraic number �elds.

My problem of this type: How should one generalize the concepts
of large cardinals as they appear in impredicative set theory, admissible
set theory, and proof-theoretical ordinal notation systems?

These are not all the types of conceptual problems that arise in practice.
Another one which is closely related to the type 1� is:

4�. Finding the \right" framework in which to carry out certain

developments. Examples from logic are:

{ Axiomatic set theory to develop Cantorian theory of ordinals and
cardinals.

{ Domain theory for denotational semantics of programs.

Examples from mathematics are:

{ Category theory for homological algebra.

{ Sheaf theory for algebraic geometry.

One has an overlap with problems of type 1�, e.g. to the extent that Can-
torian set theory involved problematic notions or methods, and earlier alge-
braic geometry involved problematic arguments.

A type of problem that one thinks of more in terms of applied mathe-
matics is:

5�. Modeling mathematically some speci�c features of our expe-

rience. Here examples from logic are:

{ Intuitionistic logics to model constructive reasoning.

{ Rami�ed systems to model the idea of predicativity.

Examples from mathematics are ubiquitous:

{ Di�erential geometry to model \curved space".

{ Di�erential equations to model dynamical physical systems.

The listener will no doubt think of other examples of all these types and
perhaps other distinctive types of conceptual problems. I'll not talk further
about 4� and 5� here.
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I. The problem of self-applicable structural

concepts

I assume some familiarity with category theory in this part. The mathemat-
ical notion of category isolates an interesting mathematical structure on the
class of structure-preserving maps (or \morphisms") between all structures
of a given kind. Then, pursued informally, one is naturally and directly led
to the following:

(R1) For each usual kind K of mathematical structure (for which we have
some usual notion of structure-preserving morphism), there is the cat-
egory of all structures of that kind, e.g. the category Grp of all groups
(group homomorphisms), the category Top of all topological spaces
(continuous maps), the category Cat of all categories (functors).

(R2) For any two categories A and B we have the category (A ! B) [or
BA] of all functors from A to B.

(R1) and (R2) may be considered to be partial requirements (or criteria)
on a framework that it must meet in order to permit direct expression of
self-applicable structural concepts. So far, one has only provided frameworks
for versions of (R1) and (R2) which are essentially restricted in one way or
another. Thinking of structures as objects (A; : : :) with one or more domains

A, which are collections of objects, on which are de�ned some relations,

operations, etc., it is natural to think of what has to be accomplished as being
part of a broader framework in which we have the following familiar closure
conditions of a set-theoretical nature on objects, collections and operations:

(R3) (i) The set N of natural numbers is among our collections.

(ii) For any objects a; b we have the ordered pair (a; b).

(iii) For any collections A;B, we have the collections A \ B;A [B;

A�B;A �B;A! B; }(A), etc.

(iv) For any collection A and sequence of collections hBxix2A, we have
the collections

S
Bx[x 2 A];

T
Bx[x 2 A];

P
Bx[x 2 A];Q

Bx[x 2 A].

This can be considered a further requirement on the desired framework for
informal category theory and other general theories of structures. It is natu-
ral, to begin with, to seek a set-theoretical foundation for these requirements.
(R3) is of course met in systems like ZF or ZFC if we take all objects, col-
lections and operations to be sets in the usual way. But we can't then meet
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(R1), since there is no set of all groups, etc. Here are two familiar solutions
which meet (R1)-(R3) but only in rather restricted forms for one or another
of these:

1. Grothendieck's method of universes. This is a modi�cation of
the preceding attempt at a set-theoretical interpretation. Add to ZFC
the hypothesis: \there exist in�nitely many inaccessible cardinals".
Universes are de�ned to be sets like the V� for � inaccessible, which
satisfy suitably strong closure conditions. For any universe U , the
category KU of all structures of a given kind K which are members of
U belongs to a larger universe U 0. So this is a modi�cation of (R1).
The requirements (R2) and (R3) hold within any universe U .

2. MacLane's small and large categories (MacLane 1961). Work in
the BG theory of sets and classes. A collection is called small if it is
a set, i.e. a member of V , and large if it is a class which is not a set.
Again, (R1) is met in a modi�ed form: By GrpV we mean the (large)
category of all small groups, TopV is the (large) category of all small
topological spaces, CatV is the (large) category of all small categories,
etc. (R2) is met only for A small, and there are similar restrictions on
cartesian power and products in (R3).

Now here are some solutions that I have tried over the years:

3. Set theory with re
ection principle (Feferman 1969). This is a
modi�cation of the Grothendieck approach to avoid using in�nitely
many inaccessibles, but which also gives some internal sense to the
category of all categories, for example. Add a set constant S to ZF
(or ZFC) with axioms that express that (S;2) is an elementary sub-
structure of (V;2). We think of S as a set which acts as a surrogate

for V . The category of all structures of a given kind K which be-
long to S;KS , is then a surrogate for KV , and belongs to V . Any
set-theoretical properties established of the former transfer to the lat-
ter. (Some categorical arguments require S to be inaccessible; this of
course can be added, but at the cost of then allowing arbitrarily many
inaccessibles again.)

4. NFU with pairing (Feferman 1974, unpub.). Jensen (1969) proved
that NFU is consistent relative to ZF. Add a pairing operation sym-
bol to its language, and modify the de�nition of strati�cation, so that
when a; b are assigned a type level n (the same for both) then the type
level assigned to (a; b) is also n. (This is not met by usual de�nitions
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of pairing in NF or NFU.) Call the system with pairing and compre-
hension for strati�ed formulas in this modi�ed sense, NFUP; Jensen's
consistency proof extends to NFUP. (One can also establish consis-
tency in !-logic, in order to make N standard, relative to ZFC plus a
Ramsey-ish cardinal.) The point of working in NFUP is that the col-
lection of all structures of a usual kind K can be de�ned by a strati�ed
formula in this modi�ed sense. For simplicity take, for example, the
collection K of all structures (A;R) where R � A2 is a partial ordering
on A; assign the elements of A type level 0; then the elements of R,
which are pairs, are also of type level 0, so A and R both get assigned
level 1 and so K exists. Thus (R1) is met. In particular, in NFUP
we can prove (Cat; Funct; : : :) 2 Cat. Also (R2) is met if we regard
functions in the usual set-theoretic way as many-one relations. Most
of (R3) is met, but not, e.g. Cartesian product

Q
Bx[x 2 A]. For, in

order for this to be a collection of functions from A to the union of
the Bx, we have to have the elements x of A and the elements of each
Bx at the same level, say 0. But then each Bx is assigned level 1, and
there is no way to represent the sequence hBxix2A as a function from
A into the universe. Another thing that is not met is the formation
of (A; : : :)=E for E a congruence relation on the structure (A; : : :).
Again the problem is that this requires a function whose arguments
and values are of di�erent type level. I was not successful in developing
a system for strati�cation of pairs with mixed type level. In any case,
I'm not happy with NFU as a framework, without its own intuitive
support. But strati�cation by itself is natural in certain contexts, as
we'll see.

4. Non-extensional type-free theory of operations and classes

(\Explicit Mathematics", Feferman 1975). The point of departure for
this work was to give an axiomatic account of Errett Bishop's approach
to constructive mathematics. But the framework is much broader and
has a variety of applications in constructive, predicative and classi-
cal mathematics. The �rst main di�erence from set theory is that it
separates the role of operations and classes, giving them independent
status. The second is that it is non-extensional. The informal model
for the system T0 of explicit mathematics is that all individuals are
given by some sort of syntactic presentation, and in particular opera-
tions (which are in general partial) are given by de�ning rules, and the
classes (or classi�cations of individuals) are given by de�ning proper-
ties. However, within T0, these notions are dealt with abstractly.
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Thus the universe V of individuals in T0 is closed under pairing, and
comprises among its individuals partial operations f; g; : : : and classes
A;B; : : : . That is, since operations and classes are thought of as given
by syntactic presentations, they may also be treated as individuals. In
particular, classes are Janus-faced; when considering what members
they have, we are thinking of them as given by de�ning properties.
But when treating them as individuals, we are just thinking of them
in the manner that they are speci�ed. When forming new classes
fx : �(x; y; : : : ; A; : : :) g from given class parameters A; : : : , we must
treat each parameter A in its class or property guise; thus � must be
strati�ed in the sense that class variables and constants in � appear
only to the right of 2 subformulas. But otherwise, self-membership is
both reasonable and possible, e.g. V 2 V . Operations may have oper-
ations or classes as arguments and/or values. In particular, hBxix2A

is treated as an operation f which is de�ned for each x 2 A and has
value Bx, and we can form the Cartesian sum

P
Bx[x 2 A], and

product
Q
Bx[x 2 A] of these classes over A. (This overcomes the

obstacle to such in NFUP.) In T0 we meet the requirements (R2) and
(R3) except for }(A)|for, there is no class C = }(V ). The reason
is instructive. Otherwise the identity operation f takes each indi-
vidual x in C to itself as a class, and we could then form the class
B =

P
x[x 2 C] = f(x; y) : x 2 C ^ y 2 xg, and �nally the Russell

class R = fx : x 2 C ^ (x; x) 62 Bg. But this blocks meeting (R1),
since similarly there is no class B of all structures (A; a) with a 2 A,
and no class of all groups (G; : : :), etc.

Note: Some set-theoretically oriented folk think that sacri�cing ex-
tensionality at the outset makes systems of explicit mathematics a non-
starter. But the evidence of the massive amount of work in Bishop-
style mathematics demonstrates that extensionality is an easily dis-
pensable principle. One simply deals with structures (A; : : :) where
each domain carries an \equality" relation E on it, which is a suitable
congruence relation, instead of dealing with A=E. Constructivity is
not an issue here; the method works equally well in classical math-
ematics. For example, the real numbers may be identi�ed with the
collection of all Cauchy sequences hsni, where two such sequences are
declared to be \equal" if they have the same limit. I have made the
case for non-extensionality at length in (Feferman 1975, 1979). Of
course this is one of the trade-o�s of trying to work in the explicit
mathematics framework, but I do not consider it a major trade-o�.
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5. A theory of partial operations and partial classes (Feferman
1977). In trying to see whether we can also meet (R1) in an explicit
mathematics style framework, I tried to see what happens if we give
up strati�ed comprehension in T0. But then in order to avoid incon-
sistency, one has to restrict comprehension in other ways. One way
to do this is by a notion of partial classes A, for which we have two
(disjoint) relations ofmembership 2 and non-membership ~2, but where
we need not have 8x[x 2 A _ x~2A]; a class that satis�es the latter
is called a total class. One can formulate a theory eT which is sim-
ilar to T0 in its principles for operations, but much more liberal in
its existence principles for classes, provided that we allow them to be
partial. (This grafts ideas of Fitch and Gilmore onto the application
structure.) But now, for (R1), the best one can do is form the partial
category GrpTot of all total groups, and similarly the partial category
of all total categories, etc. So this is still not a happy solution.

6. A new idea? Explicit mathematics with strati�ed structural

notions. Let's go back to the trouble with }(V ) in T0. As far as a
theory of structure goes, the essence of the problem lies in the fact
that we can't form a class B of all structures of the form (A; a) where
a 2 A. For then with B as a class parameter in strati�ed comprehen-
sion, we could form the class B1 = fx : (x; x) 2 Bg and then the class
R = fx : x 62 B1g. R, being a class, satis�es (R;R) 2 B if R 2 R, so
R 2 B1, and then R 62 R. So R 62 R. But then (R;R) 62 B, and hence
R 62 B1, so R 2 R. So we have an inconsistency. What point in this
argument is to be avoided? It seems to me innocuous to have closure
under the operation that takes B to B1 and also under complementa-
tion, that takesB1 toR. The problem is the slip fromB toB1 in which
we forgot how the elements of B are structured. This is also why in sys-
tems like NF, it is not obvious that we might not avoid inconsistency;
even though each instance of comprehension is strati�ed, as we make
use of sets in an argument, we forget the strati�cation conditions that
introduced them. What we need is something that gives a more 
exi-
ble combination of the bene�ts of typed and untyped systems. Typed
systems are too rigid for mathematical practice and they don't permit
self-application. Untyped systems can run into trouble by forgetting
the typing that is naturally associated with certain constructions. So
the idea would be that part of the information of what makes a struc-
ture (A; a) with a 2 A is the typing relation, say a of type 0 and A
of type 1, and this information should be carried along with the struc-
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ture, so that we don't forget it. This should be considered as a relative
typing, not an absolute one as in type theory. Then we could hope to
form the class B of all such structures, but we would be barred from
forming B1 as above, because strati�cation conditions would prevent
us from passing to pairs (x; x) in B. Now for any particular structure
(A; a) in B we could say that (B; (A; a) ) 2 B, since we can shift the
relative typing to have (A; a) treated as an object of type 0 and B as
an object of type 1. If this can be carried through in some coherent
way, we could then meet all the requirements (R1)-(R3). But so far I
have not seen how best to do this.

II. The problem of natural well-orderings

We have lots of examples of natural well-orderings. These are given by
orderings of expressions in some notation system S for ordinals: with each
s 2 S is associated the ordinal jsj that it denotes, and then we de�ne

s �S t$ jsj � jtj:(1)

Everyone is familiar with the notation system for ordinals less than the
Cantor ordinal �0, based on a system of expressions generated by closure
under addition and exponentiation to the base !, or more compactly by
combinations of the form

!s + t;(2)

with j!s+tj = !jsj+jtj. We shall freely use such suggestive notation, keeping
letters like �; �; : : : for ordinals and s; t; : : : for terms, but with operations on
ordinals represented by the same symbols for terms. Thus with the binary
operation f(�; �) = !�+�, is associated the formal function f(s; t) = !s+t,
and the system S of notations for ordinals less than �0 is generated by f
starting with the symbol 0 (for 0). As de�ned in (1) above, �S is a pre-
well-ordering; we could if wished choose a canonical representative of each
equivalence class and obtain a well-ordering from it. In general below, we
shall deal with pre-well-orderings and not make this passage.

It is also familiar that this ordering relation is primitive recursive (num-
bering terms as usual) and that by trans�nite induction along this ordering
(applied to prim. rec. predicates) we can prove the consistency of PA. More-
over, this is best possible, in the sense that for any proper initial segment of
this ordering, we can prove trans�nite induction applied to arbitrary arith-
metical formulas up to that segment in PA. However, we can also de�ne very
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short \unnatural" prim. rec. well-orderings such that the consistency of PA
can be proved from the formal assumption that trans�nite induction holds
for them. For example, take an ordering which looks like 0,1,2,... as long as
we don't reach an inconsistency in PA, but in which we introduce an in�nite
descending sequence once we do. Since PA is in fact consistent, this ordering
is of type !, but we can't prove that in PA, since that would give a proof
of the consistency of PA within itself. Further, from the hypothesis that
trans�nite induction holds for this ordering we can prove the consistency of
PA. So the question is, what distinguishes the above natural well-ordering
of type �0 from such \monsters". Evidently, recursiveness is not enough.
Moreover, the fact that they can be used to prove the consistency of some
formal system is not enough. Though natural well-orderings arise naturally
in the proof theory of formal systems, the feeling is that what distinguishes
such orderings are certain intrinsic mathematical properties that are inde-
pendent of their possible use in proof-theoretical work. On the other hand
it is just the use of natural well-orderings in proof theory that makes them
important. When it is said that we have determined the ordinal of a formal
system, just what is meant by that? To be sure, we can de�ne the ordinal
of a system in a way independent of particular questions of representation,
as the sup of the ordinals of all provably recursive well-orderings (assuming
the notion of well-ordering can be expressed in the system in one way or an-
other). But that does not tell us in what form the ordinal of the system is to
be determined. Now does it insure that we can use a determination of that
ordinal to prove the consistency and other fundamental metamathematical
properties of the system in question.

What we shall do in the following is describe a few systems of natural or-
dinal representation that have been of signi�cance in proof-theoretical work,
and try to say in general mathematical terms what is special about them.
(All of this will be familiar to proof-theorists who have worked on ordinal
analysis in the sense descended from the Gentzen-Sch�utte line.) Then we
shall consider more speculative properties. Note from the outset that we
have shifted the problem from|What constitutes a natural well-ordering
qua pure well-ordering?|to the problem|What constitutes a natural struc-
ture (�;<; f) on an ordinal �?| where f is a sequence of functions under
which � is closed, and � is the closure under f of f0g. The structure (�;<; f)
determines a system S of ordinal representation and ordering �S as de-
scribed at the beginning of this section, whose order-type (mod=S) is just
�. But now, since � is determined by f , we may shift the problem once
more to look at the members of the sequence f as functions on arbitrary

ordinals and ask|What leads us to such f in the �rst place and what makes
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their properties have useful consequence for the associated system S just
described?

For more details concerning various of these systems, the reader should
begin with Sch�utte (1977) and Pohlers (1989) and then progress to Pohlers
(1996) and Rathjen (1996).

1� The Cantor system. This is as described above, consisting of the
single function f = ��; �:!�+�; we use � ( for `Cantor') to denote this
function. The closure under � of f0g is �0. In general, the ordinals
closed under � are the �-numbers, which are the solutions � of !� = �.

2� The Veblen hierarchy. Let f0 be any unary normal function of or-
dinals. De�ne a sequence of functions f� for � 6= 0 by: f� enumerates
f� : f�(�) = � for all � < �g. We call this the Veblen hierarchy over f0.
We can combine this into a single function f = ��; �:f�(�). It is easily
seen that if we take f0 = ��:(1 + �) then the resulting f is just the
function � above. If we take f0 = exp! = ��:!� then the resulting f
is denoted �. The closure under � and � of f0g (or, equivalently under
+ and �) is the least � with ��(0) = � and is denoted �0; in general
such �xed points are called �-numbers (or strongly critical numbers).
The step from a Veblen hierarchy ��; �:f�(�) to the normal function
��:f�(0) is called diagonalization.

In the following, let 
� be the initial ordinal of cardinal @�. 
0 is then
just ! and 
1 is the set 
 of all countable ordinals. In general, the sets 
�

for � 6= 0 are called the (ordinal) number classes. A system f on arbitrary
ordinals is said to preserve the number classes if for each � 6= 0; 
� is
closed under f . The Cantor function � preserves the number classes. If a
normal function f0 preserves the number classes, then so also does the Veblen
hierarchy over it. In particular, the system (�; �) preserves the number
classes. The following systems, eventually designed to produce a system
which preserves countable ordinals, are produced in a di�erent way.

3� Bachmann-Pfei�er-Isles hierarchies. The details are complicated
to describe, but the idea originating with Bachmann (1950) is to use
hierarchies in higher number classes to produce systems of notation
which are then used to index hierarchies of functions preserving lower
number classes. For example one uses the function exp
 to generate
an analogue of the Cantor hierarchy lifted to the 
2 number class. The
�rst ordinal under which this is closed is �
+1, which I write as �(
+1)

11



in the following. Now this is used to generate an extension of the Ve-
blen hierarchy on 
; hf�i�<�(
+1) where for � = supf�� : � < 
g of
co�nality 
 in the lifted Cantor system, f� is de�ned by diagonaliza-
tion over all preceding functions: f�(�) = g�(0), where g� is the f� with
index ��. For � not of co�nality 
, we use a fundamental sequence
for it in the system for �(
 + 1) to proceed as in the Veblen hierar-
chy under 
. Pfei�er extended this idea to the higher number classes
and Isles extended it out to the �rst inaccessible. (See Isles 1970.) I
shall refer to these all as Bachmann-style hierarchies. They give rise to
very strong systems of ordinal representation for countable ordinals,
which with some work can be shown to be recursive. In particular the
system for ordinals up to ��(
+1) was used by Howard to determine
the ordinal of the system ID1, and analogous higher Bachmann-style
ordinal systems were used by Pohlers (cf. the history and references in
Buchholz et al 1981) to determine the ordinals of systems of iterated
inductive de�nitions ID� .

4� Long hierarchies without fundamental sequences. The Bach-
mann-style hierarchies of functions on 
 are long in the sense that they
are indexed by ordinals going beyond 
. Around 1970 I proposed a way
of obtaining long hierarchies without fundamental sequences. Prelim-
inary match-ups with ordinals generated by Bachmann-style systems
were then obtained independently by Aczel and Weyrauch. None of
this work was published. (Weyrauch's thesis, written in 1972, was
not submitted until 1975.) Building on Aczel's notes, Jane Bridge in
her 1972 Oxford thesis pushed the match-ups into higher inaccessibles.
She made the �rst moves to establish recursiveness of the associated
systems. Buchholz the gave a full treatment of recursiveness. (For
detailed references and more of the history, see the introduction to
Buchholz et al (1981) and Feferman (1987).)

What are now called the Feferman-Aczel systems allow one to start o� with
speci�c 
�s or functions enumerating such, etc. For example we could start
with the single ordinal 
 or we could start with the function ��:
�, or even
larger inaccessible ordinals. For simplicity, and to bring out some of the
issues most clearly, we consider the simplest case only, obtained by simply
adding 
. A sequence of functions �� for � an arbitrary ordinal is de�ned
by recursion on �. Thus we assume given h��i�<� which we denote ��. Next
de�ne the closure C(�; 
) under �� inductively as follows:

(i) 
 [ f0;
g � C(
):
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(ii) �; � 2 C (�; 
)) � + �; �(�; �) 2 C(�; 
)

(iii) � < �& � 2 C(�; 
)& � 2 C(�; 
)) ��(�) 2 C(�; 
):

We say that 
 is �-closed if C (�; 
) \ 
�+1 = 
 when 
 belongs to the
number class interval [
�;
�+1]. Then we de�ne:

(iv) �� enumerates f
 : 
 is ��closedg.

We may think of the sequence of functions h��i as a kind of long Veblen hi-
erarchy using just the symbol for 
. In general, for 
 2 [
�;
�+1]; C(�; 
)
will stretch beyond 
 into the same number class interval to the least � � 


with � 62 C (�; �), but will have max(@0; card(
) ) elements in higher number
classes. These will appear in stretches with gaps in between. However, it
follows by the de�nition and this cardinality fact that each �� preserves each
number class, just like the original Veblen hierarchy. De�ne �(�; �) = ��(�).
Now we can form a notation system based on this sequence of functions, by
closing f0g under the constant 
 and the functions +; �, and �, and inter-
secting the result with 
. The least ordinal not thus obtained is ��(0), where
� = �
+1 is the �rst � number beyond 
. This system thus comprehends
the Howard ordinal for ID1.

5� Systems with collapsing functions. In order to make the veri�ca-
tion of recursiveness for the systems based on long hierarchies of the
sort just described less complicated, Buchholz made some simpli�ca-
tions in the de�nitions, such as the following which yields a notation
system with the same ordinal as in 4�. This also shifts the attention
from long hierarchies �a la Veblen-Feferman-Aczel, to so-called collaps-

ing functions such as the function  introduced by the following. These
turn out to be crucial for current in�nitary proof theory of subsystems
of analysis and set theory. For each �, we de�ne sets of ordinals B(�)
and numbers  (�) inductively as follows:

(i) f0;
g � B(�):

(ii) �; � 2 B(�)) � + �; �(�; �) 2 B(�):

(iii) � < �& � 2 B(�))  (�) 2 B(�)

(iv)  (�) = min f� : � 62 B(�)g:

Then the closure of f0g under 
;+; � and  , intersected with 
, is
the same as the ordinal described at the end of the preceding section.
 is called a collapsing function since in this case all its values are
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countable. (There is also a relation with the Mostowski collapse.) See
Pohlers (1989) for detailed treatment of this speci�c system. Sch�utte
(1977), Ch. IX, gives a system using ��:
�, and J�ager and Pohlers
(1982) made use of a system with the further addition of the �rst
inaccessible for the proof theory of

P1
2-AC+BI. Subsequently, Rathjen

(1991) pushed this out to the use of the �rst Mahlo cardinal, and
most recently (1995,1996) he has found applications of ordinal systems
employing names for supercompact cardinals to the proof theory ofQ1

2-CA and related systems of set theory.

General properties of such systems of functions. Suppose given a
sequence f of functions de�ned for arbitrary ordinals, and suppose given an
ordinal 
. We de�ne Cl(f ; 
) to be the least set containing f0g [ 
 and
closed under f . 
 is said to be an f -inaccessible if Cl(f ; 
) = 
. The class of
f -inaccessibles is closed and unbounded, and so is enumerated by a normal
function, denoted f 0; the passage from f to the adjunction f � f 0 of this
function is called the critical process. By Term(f , X) where X is a set of
individual variables, is meant the set of terms generated from the symbol
0 and the variables in X by the formal function symbols for f . The system
of notation associated with f is then just Term(f ; ;). In Feferman (1968) I
introduced the following notions:

I. f is said to be complete if Cl(f ; 0) is an ordinal, i.e. �lls up an initial
segment of the ordinals. f is said to be replete if for any 
; Cl(f ; 
) is
an ordinal, i.e. stretches 
 to an initial segment of the ordinals.

II. f is said to be e�ective, if the natural ordering of terms in Term(f ; ;)
is recursive. f is said to be e�ectively relatively categorical (e.r.c.) if
whenever X is a �nite set of variables and � is an assignment of values
to the members of X in the class of f -inaccessibles, then the natural
ordering of Term(f , X) is recursive uniformly in the order diagram of
�.

The properties of completeness and e�ectiveness are not in general pre-
served, when one passes from a system f to the system consisting of f and
f 0. But it was proved op. cit. that the properties of being replete and being
e.r.c. are preserved under trans�nite iteration of the critical process. As
examples, the systems (�) and (�; �) or (+; �) are replete and e.r.c.

The work Feferman (1968) preceded the introduction of long hierarchies
described in 4� above and later simpli�ed in 5�. The notions treated there
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do not apply directly, because the ordinals generated have gaps, but that is
taken care of by a slight modi�cation of the de�nitions: for 
 2 [
�; 
�+1],
we de�ne Cl0(f ; 
) to be the intersection of Cl(f ; 
) with 
�+1. Then f is
said to be replete if Cl0(f ; 
) is an ordinal. Also, the f -inaccessibles are
de�ned to be those 
 such that 
 62 Cl0(f ; 
) and f is said to be e.r.c. as
before. It is morally certain (I have not checked the details) that the systems
(+; �; �) of 4� and (+; �;  ) of 5� are replete and e.r.c. What's new in these
situations is that we have an auxiliary set of terms using symbols from
higher number classes when forming the system Cl0(f ; ;), namely just those
naming the elements of Cl(f ; ;) which lie beyond 
. This use of auxiliaries
is a bit mysterious, and we shall return to it below. But let us look more
speculatively at what would be considered good properties of such systems
produced by f 's which are both replete and e.r.c.; these are admittedly vague.

(1) Normal forms. There is somehow a naturally described subset of
terms which denote all the ordinals generated in Cl0(f ; ;), no two of
which denote the same ordinal. Can we give some theoretical criteria
for what constitute normal forms? Presumably, each is given by a term
built up by constituent terms representing smaller arguments, but this
is not enough. As shown in Feferman (1968), e.r.c. systems determine
functors on inaccessibles of a system, which preserve limits. Girard
(1981) de�ned a notion of dilator, which is a functor on orderings that
preserves limits and pull-backs. This notion corresponds somehow to
having a unique system of representation. So a candidate for an f

whose associated system has normal forms is one which is e.r.c. and
whose associated functor is a dilator.

(2) Retracing functions. Once one discerns normal forms, one can de-
�ne (what Kreisel called) retracing functions which tell how each or-
dinal is built up from smaller ordinals. For example, in the Cantor
system (�) for �0, we associate with each 
 < �0, for which 
 6= 0,
ordinals �; � and a positive integer k with 
 = !� � k+ � and � < !�.
If this system is extended by the function ��:��, the retracing func-
tions depend on whether !
 = 
 or not; in the latter case, we use the
preceding retracing functions, while in the latter case, we associate �
with 
 where 
 = ��|and so on for further iterations of the critical
process.

(3) Replacing trans�nite recursion by ordinary recursion. In some
suitable sense, once one has retracing functions, further functions
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which are de�ned by \ordinary" trans�nite recursions on the given
ordinal and under which it is closed, can be de�ned by �nite recur-
sions instead. Example: on the Cantor system for �0 we can de�ne
ordinal multiplication by a �nite recursion.

(4) Maximality. Put in other terms, a good system f for an ordinal � is
one which gives a representation system for � and which is maximal in
the sense that everything that can be de�ned by \ordinary" trans�nite
recursion on the ordinal can be replaced by a �nite recursion. Two
di�erent systems for the same ordinal which are maximal in this sense
should be interchangeable.

The mysterious role of the higher number classes and other auxil-

iaries. In some sense, all we are doing in building these systems of functions
is iterating the critical process, which simply means that we are adding at
each \stage" the �rst unnamed ordinal at that stage. Unlike 1� and 2�, what
happens in 4� and 5� is that there are big gaps in the ordinals represented,
and that what we are really after is the �rst segment with no gaps, and it's
that that we keep closing up. Now admittedly, the collapsing function  is
of proof-theoretical use to us outside of this segment, but if we are just after
this initial segment, the use of ordinals from higher number classes appears
mysterious. In Feferman (1970) I suggested a di�erent way of getting at the
same segment, via higher types over 
, rather than higher number classes.
Then the notion of repleteness can be extended to higher types as a notion
of hereditary repleteness, and one can think of iteration as a functional in
each type � 2 which iterates through 
 any functional of next lower type.
So as we ascend in types we can deal with the iteration of the critical pro-
cess, its hyper-iteration etc. Now (as I conjectured there and was proved
by Weyrauch in his thesis) the ordinal obtained in this way when one starts
with the function ��(1+ �) and uses iteration of the critical process, hyper-
iteration, etc. through all �nite types, is just the Howard ordinal. At my
further suggestion, Aczel (1972) extended this to trans�nite types, but he
concluded that this approach would be limited relatively low down in the
Bachmann hierarchies, though of course well beyond the Howard ordinal.
This limitation depended on a speci�c way of passing to trans�nite types,
and it still seems to me that there may be alternative ways of doing so which
move us beyond the Aczel limit. One advantage to looking at things this
way is that one can equally well consider hereditarily replete functionals and
iteration of the critical process over !CK1 , to obtain directly from the set-up
that the ordinal segment generated is recursive. Currently, for systems of
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style 4� or 5� this requires a special argument in each case. But perhaps here
in any case, we're barking up the wrong tree, since the collapsing functions
on higher ordinals seem to be needed in any case.

III. \Large" \cardinals"

We observe that various notions of large cardinals: inaccessible, Mahlo,
indescribables, and still higher, have reasonable analogues in admissible set
theory and in the construction of systems of ordinal function as in section
II. The problem is whether the reason for the success of such analogues can
be located in the existence of a more general framework in which each of
these appears as a special case. I believe the prospects for doing this in
the case of ordinary (impredicative) set theory and admissible set theory
are very good, and I have suggested how that might be done in my paper
(already available) for the G�odel `96 conference following soon on the heels
of this one. So I won't repeat any details here, but simply say that the idea
is to reformulate both kinds of set theory by the addition of variables for
partial functions whose domain will in general classes (possibly all of V ), and
the addition of speci�c constants, functions and functionals: in the case of
admissible set theory, these are the constants 0 and !, unordered pair, union
and the characteristic function of the 2 relation, together with functionals
S and R for Separation and Replacement respectively, with axioms:

8x 2 a[f(x) #]! S(f; a) # ^8x[x 2 S(f; a)$ x 2 a ^ f(x) = 0]:(S)

8x 2 a[f(x) #]! R(f; a) # ^8y[y 2 R(f; a)$ 9x 2 a(f(x) = y) ]:(R)

For impredicative set theory we also add the power set function and a func-
tional for universal quanti�cation, which allows us to assign a characteristic
function to every de�nable class. Both systems also have the Axiom Scheme
of Foundation. Now to the extent that large cardinal notions can be for-
mulated within the common language, we see how to generalize the two
situations. So the obvious thing to look for now is an appropriate set the-
ory, still weaker than admissible, which is just what we need to establish the
above kinds of hierarchies of ordinal functions as in 4� and 5� and in which
we can interpret the least uncountable ordinal as !CK1 . The essential di�er-
ence has to be that we allow for collapse. In admissible set theory, we can't
use functions de�ned in terms of higher number classes to yield \countable"
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ordinals. It has been shown by Rathjen and Schl�uter (see Pohlers (1996)
p. 186 for references) that the 
� in the various systems of ordinal rep-
resentation with collapsing functions indicated above, may be interpreted
as the admissible ordinals !�, though there is no principled basis for this
conclusion in recursion theory on admissible sets as currently developed. So
the problem is, whether there is a weaker form of the theory in which each
\regular" ordinal is regular with respect to arbitrary functions produced,
not just those de�ned in a restricted way on each \number class".

For a rather di�erent kind of generalization, but in the same spirit of
seeking notions of large set or large cardinal applicable to a variety of \en-
vironments", see Gri�or and Rathjen (1996).
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