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CHALLENGES TO PREDICATIVE FOUNDATIONS OF ARITHMETIC
by

Solomon Feferman1 and Geoffrey Hellman

Introduction. This is a sequel to our article “Predicative foundations of arithmetic”
(1995), referred to in the following as [PFA]; here we review and clarify what was
accomplished in [PFA], present some improvements and extensions, and respond to several
challenges.  The classic challenge to a program of the sort exemplified by [PFA] was issued
by Charles Parsons in a 1983 paper, subsequently revised and expanded as Parsons (1992).
Another critique is due to Daniel Isaacson (1987).  Most recently, Alexander George and
Daniel Velleman (1996) have examined [PFA] closely in the context of a general discussion
of different philosophical approaches to the foundations of arithmetic.

The plan of the present paper is as follows.  Section 1 reviews the notions and
results of [PFA], in a bit less formal terms than there and without the supporting proofs, and
presents an improvement communicated to us by Peter Aczel.  Then Section 2 elaborates on
the structuralist perspective which guided [PFA].  It is in Section 3 that we take up the
challenge of Parsons. Finally, Section 4 deals with the challenges of George and Velleman,
and thereby, that of Isaacson as well.  The paper concludes with an appendix by Geoffrey
Hellman, which verifies the predicativity, in the sense of [PFA], of a suggestion credited to
Michael Dummett for another definition of the natural number concept.

1. Review.  In essence, what [PFA] accomplished was to provide a formal context based
on the notions of finite set and predicative class and on prima-facie evident principles for
such, in which could be established the existence and categoricity of a natural number
structure.  The following reviews, in looser formal terms than [PFA], the notions and results
therein prior to any discussion of their philosophical significance.  Three formal systems
were introduced in [PFA], denoted EFS, EFSC and EFSC*, resp.  All are formulated within
classical logic. The language L(EFS), has two kinds of variables:

Individual variables:  a,b,c,u,v,w,x,y,z, ..., and

Finite set variables:  A,B,C, F,G,H,....

                                                
1 This paper was written while the first author was a Fellow at the Center for Advanced Study in the
Behavioral Sciences (Stanford, CA) under grants from the Andrew W.Mellon Foundation and the National
Science Foundation, whose facilities and support have been greatly appreciated.
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The intended interpretation is that the latter range over finite sets of individuals.  There is
one binary operation symbol ( , ) for a pairing function on individuals, and individual terms
s,t,... are generated from the individual variables by means of this operation. We have two

relation symbols, = and !, by means of which atomic formulas of the form s = t and s ! A

are obtained.  Formulas ", #,... are generated from these by the propositional operations ¬,

&, $, %, and by the quantifiers & and ' applied to either kind of variable.  The language

L(EFSC), which is the same as that of EFSC*, adds a third kind of variable:

Class variables:  X,Y,Z,....2

In this extended language, we also have a membership relation between individuals and

classes, giving further atomic formulas of the form s!X.  Then formulas in L(EFSC) are

generated as before, allowing in addition, quantification over classes.  A formula of this
extended language is said to be weak second-order  if it contains no bound class variables.
The intended range of the class variables is the collection of weak second-order definable
classes of individuals.  We could consider finite sets to be among the classes, but did not
make that identification in [PFA].  Instead we write A = X if A and X have the same
extension.  Similarly, we explain when a class is a subclass of a set, and so on.  A class X
is said to be finite  and we write Fin(X) if 'A( A = X ) .

The Axioms of EFS  are denoted (Sep), (FS-I), (FS-II), (P-I) and (P-II), resp.; these
are explained as follows.  The separation scheme (Sep) asserts that any definable subset of

a finite set is finite, i.e. for each formula " of EFS, {x ! A | "(x) } is a finite set B when A

is a given finite set.  (FS-I) asserts the existence of an empty (finite) set, and (FS-II) tells us

that if A is a finite set and a is any individual then A ( {a} is a finite set.  The pairing

axioms (P-I) and (P-II) respectively say that pairing is one-one and that there is an
urelement under pairing; it is convenient to introduce the symbol 0 for an individual which
is not a pair.

The Axioms of EFSC  augment those of EFS by the scheme (WS-CA) for weak

second-order comprehension axiom, which tells us that {x | "(x) } is a class X for any weak

second-order ".  In this language, we allow the formula " in (Sep) to contain free class

variables; then it can be replaced by the assertion that any subclass of a finite set is finite.

                                                
2 The class variables are given in boldface, to distinguish them from the finite set variables.
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The following theorem (numbered 1 in [PFA]) is easily proved by a model-theoretic
argument, but can also be given a finitary proof-theoretic argument.

METATHEOREM. EFSC is a conservative extension of EFS.

In the language of EFSC, (binary) relations are identified with classes of ordered
pairs, and functions, for which we use the letters f,g,...,3 are identified with many-one
relations; n-ary functions reduce to unary functions of n-tuples.  Then we can formulate the
notion of Dedekind finite class as being an X such that there is no one-one map from X to a
proper subclass of X. By the axiom (Card) is meant the statement that every (truly) finite
class is Dedekind finite.  The Axioms of EFSC*  are then the same as those of EFSC, with
the additional axiom (Card).

Now, working in EFSC, we defined a triple ) M, a, g * to be a pre-N-structure  if it

satisfies the following two conditions:

(N-I) &x!M[ g(x) + a ], and

(N-II) &x,y!M [ g(x) = g(y) % x = y ].

These are the usual first two Peano axioms when a is 0 and g is the successor operation.
By an N-structure  is meant a pre-N-structure which satisfies the axiom of induction  in the
form:

(N-III) &X,M [ a ! X & &x (x ! X % g(x) ! X ) % X = M ]

It is proved in EFSC that we can define functions by primitive recursion on any N-structure;
the idea is simply to obtain such as the union of finite approximations.  This union is thus
definable in a weak second-order way.  From that, we readily
obtain the following theorem (numbered 5 in [PFA]):

THEOREM  (Categoricity, in EFSC)  Any two N-structures are isomorphic.

                                                
3 As a point of difference with [PFA], function variables here are given in boldface in order to indicate that
they are treated as special kinds of classes.
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Now to obtain existence of N-structures, in [PFA] we began with a specific pre-N-

structure )V, 0, s *, where V = {x | x = x } and s(x) = x- = (x,0); that this satisfies (N-I) and

(N-II) is readily seen from the axioms (P-II) and (P-I), resp.  Next, define

(1) Clos.(A) / &x[ x- ! A % x ! A ],

and

(2) y 0 x / &A [x ! A & Clos.(A) % y ! A ].

In words, Clos.(A) is read as saying that A is closed under the predecessor operation (when

applicable), and so y 0 x holds if y belongs to every finite set which contains x and is closed

under the predecessor operation.  Let

(3) Pd(x) = {y | y 0 x }.

The next step in [PFA] was to cut down the structure )V, 0, s * to a special pre-N-structure:

(4) M = { x | Fin(Pd(x)) & &y[ y 0 x % y = 0 $ 'z(y = z-) ] }.

This led to the following theorem (numbered 8 in [PFA]):

THEOREM  ( Existence, in EFSC*)  ) M, 0, s * is an N-structure.

To summarize: in [PFA], categoricity of N-structures was established in EFSC and
existence in EFSC*.  Following publication of this work we learned from Peter Aczel of a
simple improvement of the latter result obtained by taking in place of M the following class:

(5) N = {x | Fin(Pd(x)) & 0 0 x }.

THEOREM (Aczel). EFSC proves that  )N, 0, sc * is an N-structure.

We provide the proof of this here, using facts established in THEOREM 2 of [PFA].
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(i)   0 ! N, because Pd(0) = {0} and 0 0 0.

(ii)  x ! N % x- ! N, because Pd(x-) = Pd(x) ( {x-}, and 0 0 x % 0 0 x- .

(iii) If X is any subclass of N and 0 ! X 1 &y[ y ! X %  y- ! X ] then X = N .  For,

suppose that there is some x ! N with x 2 X.  Let A = { y | y 0 x & y 2 X }; A is finite

since it is a subclass of the finite set Pd(x).  Moreover, A is closed under predecessor, so A

contains every y 0 x ; in particular, 0 ! A, which contradicts 0 ! X .

The theorem follows from (i)-(iii), since the axioms (N-I) and (N-II) hold on V and hence
on N.

It was proved in [PFA] that EFSC* is of the same (proof-theoretic) strength as the
system PA of Peano Axioms and is a conservative extension of the latter under a suitable
interpretation.  The argument was that EFSC* is interpretable in the system ACA0 , which is
a well-known second-order conservative extension of PA based on the arithmetical
comprehension axiom scheme together with induction axiom in the form (N-III).
Conversely, we can develop PA in EFSC* using closure under primitive recursion on any
N-structure.  Since any first-order formula of arithmetic so interpreted then defines a class,
we obtain the full induction scheme for PA in EFSC*.  Now, using the preceding result, the
whole argument applies mutatis mutandis  to obtain the following:

METATHEOREM (Aczel). EFSC is of the same (proof-theoretic) strength as PA and is a
conservative extension of PA under the interpretation of the latter in EFSC.

This result also served to answer QUESTION 1 on p.13 of [PFA].

Incidentally, it may be seen that the definition of N in (5) above is equivalent to the
following:

(6) x ! N / &A[ x ! A & Clos.(A) % 0 ! A ] & 'A[ x ! A & Clos.(A) ] .

For, the first conjunct here is equivalent to the statement that 0 0 x, and the second to

Fin(Pd(x)). In this form, Aczel’s definition is simply the same as the one proposed by
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George (1987), p.515.4  Part of the progress that is achieved by this work in our framework
is to bring out clearly the assumptions about finite sets which are needed for it and which
are prima-facie evident for that notion.

There is one further improvement in our work to mention.  It emerged from
correspondence with Alexander George and Daniel Velleman that the remark in Footnote 5
on p.16 of [PFA] asserting a relationship of our work with a definition of the natural
numbers credited to Dummett was obscure.  The exact situation has now been clarified by
Geoffrey Hellman in the Appendix to this paper, where it is shown that Dummet’s
definition also yields an N-structure, provably in EFSC.  

                                                
4 That,in turn, was a modification of a definition of the natural numbers proposed by Quine (1969) using
only the first conjunct in (6), which is adequate when read in strong second-order form, but not when read in
weak second-order form; cf. George (1987), p.515, and George and Velleman (1996), n.10.


