
My route to arithmetization
Solomon Feferman

For Per Lindström

I had the pleasure of renewing my acquaintance with Per Lindström at the meeting of
the Seventh Scandinavian Logic Symposium, held in Uppsala in August 1996.  There at
lunch one day, Per said he had long been curious about the development of some of the ideas
in my paper [1960] on the arithmetization of metamathematics.  In particular, I had used the

construction of a non-standard definition !* of the set of axioms of P (Peano Arithmetic) to

show that P + {¬ Con!} is interpretable in P, where ! is a standard definition of the axioms

of P and Con! expresses the consistency of P via that presentation.  Per pointed out that there

is a simple “two-line” proof of this interpretability result which does not require the use of

such formulas as !*, and he wondered whether I had been aware of that.  In fact, his proof

had never occurred to me, and if it had at the time, it is possible I would never have been led to
the use of non-natural definitions. Per regarded this as a happy accident, since subsequent
work by him and others on interpretability made essential use of such definitions.  In our
conversation, I enlarged a bit on the background to my work on arithmetization, and when I
was invited to contribute to this special issue of Theoria  dedicated to Lindström, it seemed a
natural choice to use the occasion to fill out the story. One caveat, though: the following is
drawn largely from memory, not always reliable, supplemented by consultation of the 1960
paper and the 1957 dissertation from which it was drawn.  

The circumstances leading to this work began in the period 1953-55 when I was
enduring an enforced hiatus from my graduate studies in mathematics at U.C. Berkeley, as a
draftee in the U.S. Army.  Prior to my military service, I had been working on a thesis
problem in model theory under the direction of Alfred Tarski, namely to establish the
decidability of the theory of ordinals under addition.  I had made only partial progress on that

problem, by reducing it to the weak second-order theory of the ordinals with the < relation,

accomplished via a new notion of generalized power of a theory which was shown to preserve
decidability.  That work did not become part of my thesis, but the basic idea was eventually
combined in a fruitful way with work of Bob Vaught on sentences preserved under cartesian
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products, to produce the fundamental Feferman-Vaught paper [1957] on generalized products
of theories.1

My Army posting had been in the Signal Corps at Fort Monmouth, New Jersey.
This was at the height of the Cold War, though fortunately no hot wars were in progress; the
U.S. involvement in Korea was safely past, and its engagement in Vietnam was still some
years away.  At Fort Monmouth I was assigned to a math unit which primarily researched
“kill” percentages by Nike missile batteries against hypothetical enemy attacks.  The
percentages we calculated under different hypotheses always turned out to be somewhat less
than 100%, so (according to those results) in the event of a massed attack on, say, New York
or Washington, at least one atom-bomb-tipped missile would be sure to get through, and that
would be the end of those cities.  Needless to say, the results of this research left me
somewhat uneasy.  To divert my mind and try to make up for the lost time in my education, in
the few spare hours of leisure that I had during evenings and weekends I set out to master
Kleene’s Introduction to Metamathematics.  That gave me a much better understanding of
recursive function theory and Gödel’s incompleteness theorems than I had previously
obtained from my courses in Berkeley, where we were heavily into model theory, set theory
and algebraic logic.  Besides expanding my vistas in logic, Kleene’s concern with
foundational matters struck a responsive chord in me, and I began to think of a shift in
research directions.  Serendipitously, during this period I received in the mail from Alonzo
Church a request which I can still visualize: it was meticulously handwritten in black and red
ink on a postcard with wavy, straight and double-straight underlines.  The request was to
review a paper by Hao Wang for The Journal of Symbolic Logic on an arithmetized version
of Gödel’s completeness theorem.2  It was my work on this review that led me straight into
questions about the arithmetization of metamathematics.

The main result of the paper in question, Wang [1951], was that if T is a recursively
axiomatized first-order theory, then T has a formal model (i.e., can be interpreted) in P
together with the formal statement ConT that T is consistent.  This was an extension of the
corresponding result for finitely axiomatized T in Hilbert-Bernays [1939].  However,
Wang’s arguments were rather sketchy and his statements insufficiently precise according to
Tarskian standards.  I invested a great deal of effort in supplying the details of a modified
proof in order to convince myself of the correctness of Wang’s result.  This went via a
formalization of the well-known Henkin [1949] simplified proof of completeness of first-

                                                
1 Meanwhile, the decision problem for the ordinals under + was solved in the affirmative by Andrzej
Ehrenfeucht in 1956, via the use of back-and-forth game methods.
2 I don’t know what led Church to me, as we had not previously corresponded, nor was I known for any
expertise in this area.  Perhaps my name had been suggested to him by Dana Scott, who had become
Church’s student after leaving Berkeley.
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order logic3 rather than the original Gödel proof, which Wang had followed.  However, I
remained troubled by the ambiguity of associating such statements ConT  with recursively
axiomatized T in general, and found that this question had not been adequately addressed in
the literature.

By the time I returned from the army to Berkeley in the fall of 1955, I had decided to
devote myself fully to the study of consistency statements and the arithmetization of
metamathematics in some generality.  It happened that Tarski was on sabbatical in Europe
that year, and while he continued nominally to serve as my advisor, Leon Henkin agreed to
give active help with my pursuit of this direction of research.  Though his own major interests
were in model theory and algebraic logic, he offered me a willing ear and a great deal of
encouragement, and with the prod of weekly meetings I soon made significant progress.4

The problem as I took it was this: given that there are many non-equivalent ways in which a
recursive set can be defined arithmetically, in what sense can we speak of the formal statement
ConT  of consistency of an arbitrary recursively axiomatized theory T?  And if, as I expected,
there is in general no canonical choice of such a statement, what conditions have to be
imposed on the definition of T in arithmetic in order to obtain general statements of
metatheorems involving ConT such as Gödel’s second incompleteness theorem and the
Hilbert-Bernays-Wang arithmetized completeness theorem?  I had various bits and pieces of
work to go on:

    1°  Gödel’s own formulation in [1931] of his second incompleteness theorem referred to

arbitrary extensions of a base system P by a primitive recursive class T of axioms; using the
fact that every primitive recursive class is binumerable (‘entscheidungsdefinit’ in Gödel’s
terminology) in P, he constructed a statement ConT from such a binumeration to express the
consistency of T.5  In terms of this, Gödel stated, but did not prove his second
incompleteness theorem for arbitrary consistent such T, simply giving a brief outline which
rested on formalizing the proof of the first part of the first incompleteness theorem.  

    2°  While the idea of Gödel’s proof was convincing, carrying out the details was another

matter.  This was first done in Hilbert-Bernays [1939], and there only for a very special case,

                                                
3 As simplified still further in Hasenjaeger [1953].
4 Actually, Henkin’s interests were not entirely disconnected from mine: besides my use in the arithmetized
version of his simplified proof of the completeness theorem, he had raised a few years earlier the nice question
as to the provability of sentences which express their own provability.  The positive solution to that problem
by Löb [1955] was definitely relevant to my concerns, as discussed below.
5 Here and below I am freely substituting the notation from my 1960 paper for that in Gödel’s and other
works on arithmetization, in order to explain the problems in a uniform way.  Gödel used ‘"‘ for the class T
and wrote‘Wid(")’ where I write ‘ConT‘.  Initially, Gödel took for P a form of simple type theory over the
natural numbers at lowest type.  He modified the base system to a version of Peano Arithmetic in a brief note
in 1932 (cf. Gödel [1986], pp. 234-237).
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namely Peano Arithmetic P (in two versions Z and Zµ).  As an intermediate step in the

argument, they made use of certain derivability conditions on a formal definition of
provability ProvP(x) in the system in question.  The third derivability condition is used to
show the formal expression of the statement that for the system P of arithmetic

(1) if P ¢ # then P ¢ ProvP(!#"),

where !#" is the numeral of the Gödel number of #.  The obvious statement that would be

needed for the statement of Gödel’s second incompleteness theorem more generally would
be

(2) if T ¢ # then P ¢ ProvT(
!
#
").

    3°  Though it could be recognized by inspection that the formula ProvP(x) expresses

provability from P in the intended way, what was missing from Gödel’s formulation is the
step from the class T to the formula ProvT(x) via a definition of membership in T in
arithmetic.  The alternatives here were either:
    (i) to say that this definition is produced via the proof of his Theorem V that every
primitive recursive relation is binumerable in the base system P, following a specific step-by-
step generation of the characteristic function of T by the schemata for primitive recursive
functions, or
    (ii) to ignore T per se and simply assume that one is dealing with a formula ProvT(x)
satisfying the Hilbert-Bernays derivability conditions, or the later, more elegant derivability
conditions of Löb [1955], or
    (iii) to say that one simply takes an arbitrary binumeration of T in P.  

I countenanced taking the route (i) as the basis for a precise formulation of Gödel’s
theorem for primitive recursively axiomatized extensions of arithmetic by explaining what it
means to be given the sequence of defining equations for a primitive recursive function, and
then canonically following out such a sequence for the formal definition of the characteristic
function of T.  Moreover, one could extend this to arbitrary recursively axiomatized T or even
T with a recursively enumerable set of axioms by applying Craig’s theorem [1953] that any

such T can be axiomatized by a primitive recursive set of sentences T$.  But this line did not

seem fully satisfactory to me both because of the artificiality of the Craig construction and
because it did not seem relevant to the proper general formulation of the arithmetized
completeness theorem, à la Hilbert-Bernays-Wang.  Indeed, I recognized that the third
derivability condition was irrelevant to the latter, for which all one would need would be a
numeration of T in P.  That was also one reason for not following the derivability condition
approach (ii).  Another reason was that given any putative definition ProvT(x) of provability
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from T, one would still have to check that this meets the derivability conditions, and that might
take non-trivial work in each case.  Finally, as to route (iii) it did not seem likely that
construction of ProvT(x) from an arbitrary binumeration of T would be sufficient to obtain
Gödel’s second incompleteness theorem, though the proof of that would somehow have to be
established by a counter-example.

My solution to these dilemmas was to deal with formulas Prov%(x) which incorporate

a standard representation of derivability in the first-order predicate calculus, and to leave open

only how the set T of non-logical axioms might be defined by a formula %(x).  In this way, we

could hope to say what conditions on the way % defines T would be needed for each

metatheorem employing formal provability predicates.  In particular, I introduced the classes
of PR- and RE- formulas, which correspond respectively to canonical primitive recursive
definitions in arithmetic and existential quantifications of such, since every recursively
enumerable set is definable by the latter kind of formula.6  These classes of formulas are
readily distinguishable by their syntactic form, especially in a language which has a symbol

for each primitive recursive function directly available.  In a language with just +  and &, by

Gödel’s work with the '-function, one can replace the RE-formulas by the even syntactically

simpler class of formulas in prenex form using existential and bounded universal

quantifiers.7  On the other hand, one can consider whether %(x) numerates or binumerates a

given set T without taking the form of % into account.  The two come together of course in the

fact that the recursively enumerable sets are exactly those numerable in P, and the recursive
sets are exactly the same as those binumerable in P (and also the same in much weaker
systems); moreover, one can choose an RE-formula to serve as the numeration, resp.
binumeration of the given set in each case.  

My first main results were then as follows:

(I) If T is a consistent extension of P and %(x) is an RE formula which numerates the axioms

of T in P, then Con% is not provable in T.

                                                
6 The RE-formulas are nowadays referred to as the (1 formulas in arithmetic.  Moreover, the system (1-IA
(the subsystem of P in which the induction axiom is restricted to (1 formulas) is nowadays generally taken as
a base for the Gödel theorems (cf. Smorynski [1977]).
7 By the work on Hilbert’s 10th Problem, we could take these nowadays to be in the even simpler form of
purely existential formulas; that work has been shown to be formalizable in the system (1-IA of ftn. 7 and
even weaker systems; cf. Hájek and Pudlák [1993], p. 97.
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(II) If T is any system and %(x) is any formula which numerates the axioms of T in P, then T

is (relatively) interpretable in P + {Con%}.

(III) One can construct a binumeration !* of P in P such that P ¢ Con!*.

(IV) More generally, for any reflexive8 extension T of P, one can construct a binumeration %*

of T in T such that P ¢ Con%*.

The first of these results, (I), was my general formulation of Gödel’s incompleteness
theorem, while (II) was my formulation of the arithmetized completeness theorem.  The result
(III) was necessary to show that the route (iii) above could, indeed, not be followed.9  For its

proof I simply took !* to name the “longest” initial segment of P which is consistent, and

similarly for the proof of (IV).  While these served as cautionary counter-examples, their real
value turned out to be their use in obtaining some interesting new results about (relative)
interpretability, to begin with:

(V) For ! an RE numeration of P in P one has that P + {¬Con!} is interpretable in P.

The proof involved the following steps, all in P, using the formula !* of (III):

1) Since ¬Con! is an RE formula, it is provable that it implies ProvQ(!¬Con!
") hence also

Prov!*(
!
¬Con!

").

2) So then by Con!*, ¬Con! ) ¬ Prov!*(
!Con!

"), i.e. Prov!*(
!Con!

") ) Con!.

                                                
8  A system T is called reflexive if it proves the consistency of every finite subsystem of T, and essentially
reflexive if every consistent extension S of T in the same language as T is reflexive.  Mostowski [1952] had
proved that P is essentially reflexive.  Using Gödel’s second incompleteness theorem, it follows that any
consistent extension T in the same language as P is not finitely axiomatizable.  However, there are well-
known finitely axiomatized extensions of P in stronger languages.
9 Here is another “happy accident”, at least assuming the 1-consistency of P.  In the result (I) it makes no
difference whether we deal with RE numerations in P or in any subsystem of P which contains Robinson’s
finite axiom system Q.  Now what I overlooked in my 1960 paper was the following more general result:
     THEOREM.  If T is an extension of P and % is any numeration of T in S, where S is a finite subset of P
then T does not prove Con%.
     The proof is as follows.  Let %$(x) be the formula ProvS(

!
%(num(x)

 "
).  Then %$ is RE and numerates T in

P, so T does not prove Con%$ by (I).  But P proves the reflection principle for S, so P proves %$(x))%(x),
hence also Con%) Con%$.  Thus also T does not prove Con%.
     What this shows is that if one deals with definitions (in the sense of numerations or binumerations) % of
T in a finite subsystem of P such as Q, we don’t need to make any syntactic restrictions on the form of % to
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3) Also Prov!*(
!Con!

") ) Prov!(
!Con!

"); but we know that Con! implies ¬Prov!(
!Con!

").

4) Hence Prov!*(
!Con!

") ) ¬Con!.

5) It follows from 2) and 4) that ¬ Prov!*(
!Con!

"), i.e. that Con! $  holds, where !$(x) =

!*(x)* x= !¬Con!
").

6) Since all this is done in P, we have P ¢ Con!$ and that tells us that P + {¬Con!} is

interpretable in P by (II).

Now, by comparison, here is the “two line proof” that I garnered from Per
Lindström:  

a) Let T = P + {¬Con!} and let %(x) be !(x) * x = !¬Con!
"; then since P ¢ Con! ) Con%,

we have that T is interpretable in P + {Con!} by (II).

b) Of course T is interpretable in itself, i.e. in P + {¬Con!}.

So we finish with a “disjunctive” interpretation of T in P, depending formally on whether

Con!  holds or not.10

Returning to the paper [1960], after (V) the next main application of non-standard
definitions for interpretability results came in the proof of Orey’s Compactness Theorem:

(VI) Suppose S and T are recursively enumerable sets of axioms and that S is a reflexive
extension of P.  Then T is interpretable in S if each finite subset A of T is interpretable in S.  

This is proved by first noting that S ¢ ConA  for each finite subset A of T.  Then, as in

(IV) or (V), one defines %*(x) which binumerates T in S and which is such that S ¢ Con%*.

The interpretability of T in S then follows from (II) with P replaced by S.  

I don’t remember when I first learned of Orey’s theorem.  It was certainly after I
presented the results of my dissertation in a talk at the Summer Institute for Symbolic Logic
held at Cornell University in the summer of 1957 (a watershed conference in our subject).

                                                                                                                                                   
obtain a generalization of Gödel’s second incompleteness theorem.  But we still have to first know the result
(I) as given above.
10 I don’t know who first observed this; at any rate, though the idea is clear in two lines, it takes a few more
lines to fill in the details.  It should be noted that this way of proving the result generalizes to a stronger
result than my way of proving (V), since it doesn’t depend on the reflexivity of P.
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Steven Orey attended the meeting and it is my recollection that I met him there for the first
time.  I also believe that it was only after the meeting that he communicated this and some
related results concerning arithmetization to me, and which he kindly allowed me to include in
my paper [1960].11  Then, also in 1960, he, Kreisel and I collaborated on a paper on 1-
consistency and faithful interpretations.  I recently tried to confirm the historical sequence of
interactions with Orey, only to learn the sad news that he had died a few years ago.

The foregoing by no means outlines the full content of [1960]; among other things
there were further results (which I shall not go into here) about relative consistency
statements that proved to be useful in subsequent extensions of this work.  But after 1960 I
myself did not actively continue my work on applications of arithmetization to questions of
interpretability (though see the next paragraph).  Instead, I soon took up the subject of
transfinite recursive progressions of r.e. theories, as a reconstruction and extension of
Turing’s work on ordinal logics.  My work on arithmetization was also crucial to the precise
formulation of the notions and results in the resulting paper [1962], but non-standard
definitions of axiom systems and the relation of interpretability played no role there.12

However, this did not mean the end of my interest in those aspects of the subject.  I was
pleased to see further applications and extensive ramifications being made in the following
years by Orey, Jeroslow, Hájek, Hájková, Guaspari, Lindström and Visser, among others13),
but I did not follow that work in detail.

There are two codas to the preceding.  The first is the following announcement made
in footnote 3 of my 1960 paper, about which I have often been asked:

“Work is underway on a monograph, being written in collaboration with Richard
Montague, on the method of arithmetization and some of its applications.  It is
intended that this monograph should contain a completely detailed presentation
of the work discussed here as well as of the research of Montague in [his
dissertation [1957]].”

That monograph never appeared, though an agreement for its publication had been made early
on with the North-Holland Publishing Co. and, in the following years, Montague and I
                                                
11 Further evidence for this is an abstract of Orey’s on relative interpretations which appeared in the J.
Symbolic Logic  24 (1959), 281-282.
12 For the history of work on ordinal logics and progressions of theories, see my paper [1988].  It may be
thought that non-standard definitions of axiom systems were also used in an essential way for the
completeness results in [1962]; rather, these come about indirectly via axiom systems attached to non-
standard ordinal notations.  The definitions %a(x) of the axiom systems Ta  (a + O) in a progression of
theories are there defined in a uniform RE way.
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invested considerable effort in its preparation.  Somewhere in my files are drafts of chapters
for about half the volume, which I have not looked at in years.  What happened was that our
paths steadily diverged in the 1960s and our thoughts and energies became largely directed
elsewhere.  Nevertheless, this was a commitment which we wished devoutly to be fulfilled,
and we continued to work on it sporadically, frequently prodding each other to take the next
step.  But after Montague’s awful murder in 1970, I no longer had any heart for the project.
Moreover, in the meantime, research by others had overtaken us and would have had to be
taken into account in order to remain up to date.  In particular, Montague’s dissertation work
on reflexivity of various systems of set theory, first reported on publicly at the 1957 Cornell
conference and then outlined in his paper [1961], was superseded by the paper of Kreisel and
Lèvy [1968] on applications of partial truth definitions to non-axiomatizability of various
systems of arithmetic and set theory by statements of bounded complexity.

The second coda has to do with the role and influence of Georg Kreisel, first as
mentor, then as the closest of colleagues for some fifteen years, before the rupture in our
relationship in the early 1970s.  The personal aspects of this have been deftly described by
my wife, Anita Burdman Feferman, in her recollections [1996].  Here, I shall only go into the
particulars relevant to the present story.  I first met Kreisel during the period in early 1956
when I was well into the research for my hoped-for dissertation; Kreisel happened to be
visiting Berkeley for a month or so at that time.  Our initial personal contact was magical for
me: I had hardly to begin explaining what I had done and what I was in the process of
working on, to see that Kreisel understood immediately, and that it related to things he had
thought about and to a whole body of literature in which he was completely at home.  His
positive reception of my ideas confirmed my views of the significance of what I was up to,
and added to my determination to make this work my thesis, despite Tarski’s reservations.
The problem for Tarski was that its content was out of the mainstream of his interests, and
this was compounded by the difficulties of give-and-take communication while he was on
sabbatical in Europe.  (What was not a concern for him, fortunately, was that I had previously
demonstrated that I could meet his exacting standards of rigor and clarity of exposition.)  In
addition to the active encouragement and regular monitoring of the work given to me by
Henkin, mentioned above, the boost provided by Kreisel’s quick appreciation was
psychologically crucial at that agonizing time.  In addition, Kreisel opened up a new world to
me through his interests in constructivity, predicativity and proof theory, interests which I was
naturally attracted to and which would come to dominate my own subsequent work.

                                                                                                                                                   
13 Cf. the list of references below as well as Ch. III.4 of Hájek and Pudlák [1993], and the historical notes
thereto.
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Even so there was a fly in the ointment of this new stage in my development as a
logician.  Much to my surprise, in the public discussion following my lecture on consistency
statements and interpretability of theories at the 1957 Cornell Summer Institute, Kreisel
turned on me and made light of my criticisms of Wang’s formulation of his results which
had been the starting point of my research, suggesting that there were no genuine ambiguities
involved.14  All I could say in response was that Wang should speak for himself; Wang
demurred.  But that was not the end of the matter.  Like a father who keeps bringing up one’s
lapses that one doesn’t want to hear, in the following years Kreisel kept disparaging the use
of non-natural consistency statements, and stressing the need for an account of "canonical”
presentations of axiomatic systems in order to obtain a proper generalization of Gödel’s
second incompleteness theorem.  Naturally this rankled, but I had to grant some justice to his
goading.  Still it was not until 1980 that I gave serious consideration to the matter, not just to
meet Kreisel’s entreatments but because of the way it emerged from other work that I had
been up to.  My solution, in the paper [1982] and, in an improved form in [1989], was to treat
formal systems as they are actually presented to us in practice through the finite inductive
generation of various syntactic categories of objects, operations on them, and relations
between them.15 Besides addressing the conceptual issue of finding the “right” framework
for the second incompleteness theorem and other results of the same character in the
formalization of metamathematics, this work was conceived of as having potential pedagogical
and practical value, the latter via the more currently fashionable pursuit of computer
implementation of a wide variety of logical systems16.  The irony of all this is that if I had
addressed the question of canonical presentations of formal systems from the outset rather
than concentrating on what was problematic in the literature and thence what roles non-
canonical statements might play, the “happy accident” to which Per Lindström referred
above might never have occurred.

Acknowledgments. I wish to thank Anita Burdman Feferman and Karl-Georg Niebergall
for their helpful comments on a draft of this paper.

                                                
14 To the contrary, for example, Bill Hanf subsequently corroborated my conjecture in the 1960 paper (ftn.
23, p. 78) about the falsity of Wang’s statement that the consistency of every decidable theory is provable in
arithmetic.  In fact, in the very interesting paper Hanf [1965], using a novel construction, he produced a
finitely axiomatizable decidable system for which that fails.
15 The reader is referred to the papers [1982, 1989] for the relationship to earlier work, particularly of Post,
Smullyan and Jeroslow.
16 The solution in [1989] goes far beyond my [1960] in the generality of formal systems covered; to quote
from the introduction op. cit., it covers “ propositional and predicate calculi of various kinds (classical,
intuitionistic, many-valued, modal, temporal [etc., etc.]) and styles (Hilbert, Gentzen natural deduction,
Gentzen sequential, linear, etc.), as well as equational calculi, lambda calculi, combinatory calculi, [etc.,
etc.].”
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