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Which Quantifiers are Logical?   

A combined semantical and inferential criterion 

Solomon Feferman1 

 

Abstract. The aim of logic is to characterize the forms of reasoning that lead invariably 
from true sentences to true sentences, independently of the subject matter; thus its 
concerns combine semantical and inferential notions in an essential way.  Up to now 
most proposed characterizations of logicality of sentence generating operations have been 
given either in semantical or inferential terms. This paper offers a combined semantical 
and inferential criterion for logicality (improving one originally proposed by Jeffery 
Zucker) and shows that any quantifier that is to be counted as logical according to that 
criterion is definable in first order logic.   

 

The aim of logic is to characterize the forms of reasoning that lead invariably from true 

sentences to true sentences, independently of the subject matter.  The sentences involved 

are analyzed according to their logical (as opposed to grammatical) structure, i.e. how 

they are compounded from their parts by means of certain operations on propositions and 

predicates, of which the familiar ones are the connectives and quantifiers of first order 

logic.  To spell this out in general, one must explain how the truth of compounds under 

given operations is determined by the truth of the parts, and characterize those forms of 

rules of inference for the given operations that insure preservation of truth.  The so-called 

problem of “logical constants” (Gomez-Torrente 2002) is to determine all such 

operations.  That has been pursued mostly via purely semantical (qua set-theoretical) 

criteria on the one hand⎯stemming from Tarski (1986)⎯and purely inferential criteria 

on the other⎯stemming from Gentzen (1935) and pursued by Prawitz (1965), among 

others⎯even though on the face of it a combination of the two is required.2  What is 

offered here is such a combined criterion for quantifiers, whose semantical part is 

provided by Lindström’s (1966) generalization of quantifiers, and whose inferential part 
                                                
1 The main body of material for this article was first presented for a talk at the ESSLLI Workshop on 
Logical Constants, Ljubljana, Aug. 9, 2011. A second presentation was made on May 23, 2012 at a 
conference at CUNY in honor of Sergei Artemov, on the occasion  of his 60th birthday.  
2 Some further contributions to the semantical approach are Sher (1991) and McGee (1996), and to the 
inferential approach is Hacking (1979); Gomez-Torrente (2002) provides a useful survey of both 
approaches. I have critiqued the semantical approach as given by set-theoretical criteria in Feferman (2000, 
2010) where, in conclusion, I called for some combined criterion.  



 2 

is closely related to one proposed by Zucker (1978).3 On the basis of this criterion it is 

shown that any quantifier that is to be counted as logical is definable in classical first 

order logic (FOL). In addition, part of the proof idea is the same as that provided by 

Zucker, but his proof itself needs to be corrected in at least one essential respect that will 

be explained below; fixing that up is my main contribution here in addition to elaborating 

the criterion for logicality.   

One basic conceptual difference that I have with Zucker is that he regards the 

meaning of a quantifier to be given by some axioms and rules of inference, provided 

those uniquely determine it on an inferential basis, whereas I assume that its meaning is 

specified semantically; that is the viewpoint both of workers in model-theoretic logics 

(cf. Barwise and Feferman 1985) and of workers on quantifiers in natural language (cf. 

Peters and Westerståhl 2006).  For Zucker’s point of view, see the Discussion below. 

Given a non-empty universe of discourse U and k ≥ 1, a k-ary relation on U is 

simply a subset P of Uk; we may also identify such with k-ary “propositional” functions 

P: Uk →{t, f}, where t and f are the truth values for truth and falsity, respectively.  

P(x1,…,xk) may thus be read as “P holds of (x1,…,xk)” or as “P(x1,…,xk) is true.”  

Q is called a (global) quantifier of type ⟨k1,…,kn⟩ if Q is a class of relational 

structures of signature ⟨k1,…,kn⟩ closed under isomorphism.  A typical member of Q is of 

the form ⟨U,P1,…,Pn⟩ where U is non-empty and Pi is a ki-ary relation on U. Given Q, 

with each U is associated the (local) quantifier QU on U which is the relation 

QU(P1,…,Pn) that holds between P1,…,Pn just in case ⟨U,P1,…,Pn⟩ is in Q.   

Alternatively we may identify QU with the associated functional from propositional 

functions of the given arities on U to {t,f}.  

Examples of such quantifiers may be given in set-theoretical terms without 

restriction.  Common examples are the uncountability quantifier of type ⟨1⟩, the equi-

cardinality quantifier of type ⟨1, 1⟩, and the “most” quantifier of type ⟨1, 1⟩.  However, 

even though the definitions of those refer to the totality of relations of a certain sort 
                                                
3 An unjustly neglected paper, along with Zucker and Tragesser (1978). 
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(namely 1-1 functions), all quantifiers in Lindström’s sense satisfy the following 

principle:  

 

Locality Principle. Whether or not QU(P1,…,Pn) is true depends only on U and 

P1,…,Pn, and not on what sets and relations exist in general over U.  

 

As shown by Lindström, given any first-order language L with some specified 

vocabulary of relations, functions and constant symbols, we may add Q as a formal 

symbol Q to be used as a new constructor of formulas φ from given formulas ψi, i = 

1,…,n.  For each i, let xi be a ki-ary sequence of distinct variables such that xi and xj are 

disjoint when i ≠ j, and let y be a sequence of distinct variables disjoint from all the xi. 

The syntactical construction associated with Q takes the form 

φ(y) = Qx1…xn(ψ1(x1,y),…,ψn(xn,y)) 

where the xi are all bound and the free variables of φ are just those in y. The satisfaction 

relation for such in a given L-model M is defined recursively: for an assignment b to y in 

U, φ(b) is true in M iff (U, P1,…,Pn) is in Q when each Pi is taken to be the set of ki-

tuples ai satisfying ψi(ai,b) in M. 

  Next what is needed to bring inferential considerations into play is to explain 

which quantifiers have axioms and rules of inference that completely govern its forms of 

reasoning.  It is here that we connect up with the inferential viewpoint, beginning with 

Gentzen (1935).  Remarkably, he showed how prima facie complete inferential forms 

could be provided separately for each of the first-order connectives and quantifiers, 

whether thought of constructively or classically, via the Introduction and Elimination 

Rules in the calculi NJ and NK, resp., of natural deduction.  In addition, he first 

formulated the idea that the meaning of each of these operations is given by their 

characteristic inferences.  Actually, Gentzen claimed more: he wrote that “the 

[Introduction rules] represent, as it were, the ‘definitions’ of the symbols concerned.” 

(Gentzen 1969, p. 80).  Prawitz put teeth into this by means of his Inversion Principle 
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(Prawitz 1965, p. 33): namely, it follows from his normalization theorems for NJ and NK 

that each Elimination rule for a given operation in either calculus can be recovered from 

the appropriate one of its Introduction rules when that is the last step in a normal 

derivation.    

 As I have stated above, in my view the meaning of given connectives and 

quantifiers is to be established semantically in one way or another prior to their 

inferential role.  Their meanings may be the primitives of our reasoning in general, 

including “and”, “or”, “not”, “if…then”, “all”, “some”⎯or they may be understood 

informally like “most”, “has the same number as”, etc., in a way that may be explained 

precisely in basic mathematical terms. What is taken from the inferentialists (or Zucker) 

is not the thesis as to meaning but rather their formal analysis of the essential principles 

and rules which are in accord with the prior semantical explanations and that govern their 

use in reasoning.  And in that respect, the Introduction and Elimination Rules for each 

logical operation of first-order logic implicitly characterize it in the sense that any other 

operation satisfying the same rules is provably equivalent to it.4 That unicity will be a 

key part of our criterion for logicality in general.     

To illustrate, since I will be dealing here only with classical truth functional 

semantics, I consider schematic axioms and rules of inference for sequents Γ ⊦ Δ as in 

LK, but in the case of each connective or quantifier, show only those formulas in Γ and Δ 

directly needed to characterize the operation in question.  That may include possible 

additional side formulas (or parameters), to which all further formulas can be adjoined by 

thinning.  In LK, the Right and Left Introduction Rules take the place of the Introduction 

and Elimination Rules, resp., in NK.  I shall then show how unicity is expressed for the 

corresponding Hilbert-style axioms and rules.   

Consider for illustrative purposes the (axioms and) rules for  → and ∀.   For 

notational simplicity,  ⇒  is used for inference from one or more sequents as hypotheses, 

to a sequent as conclusion.   

                                                
4 The observation that the natural deduction Introduction and Elimination rules for the operations of FOL 
serve to uniquely specify each such operation is, I think, well known.  At any rate, one can find it stated in 
Zucker and Tragesser (1978) p. 509.  In apparent agreement with Gentzen that the Introduction rules 
provide the meaning of each operation, they say that the related Elimination rules serve to “stabilize” or 
“delimit” it.  
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(R→)   r, p ⊦ q ⇒ r ⊦ p→q         (L→)  p, p→q ⊦ q 

(R∀)  r ⊦ p(a) ⇒ r ⊦∀x p(x)       (L∀)  ∀x p(x) ⊦ p(a). 

Given an operation →′ satisfying the same rules as for → we can infer from the left rule 

p→q, p ⊦ q the conclusion p→q ⊦ p→′q by the substitution of p→q for r in (R→′); the 

reverse holds by symmetry. In the case of the universal quantifier, given ∀′ that satisfies 

the same rules as ∀, we can derive ∀x p(x) ⊦ ∀′x p(x) by substituting ∀x p(x) for r in 

(R∀′).  What is crucial in these proofs of uniqueness is the use of substitution of the 

principal formula (p→q and ∀x p(x) and their ′ versions, resp.) for a side formula 

(parameter) r.   

 If we accept → as a basic fully understood operator, we can pass to the Hilbert-

style axioms and rules for the universal quantifier by simply replacing the turnstile 

symbol by ‘→’, as follows: 

(R∀)H  r → p(a) ⇒ r →∀x p(x)       (L∀)H  ∀x p(x) → p(a). 

Then in a suitable metatheory for axioms and rules in which we take all the connectives 

and quantifiers of FOL for granted, we can represent this rule and axiom by the following 

single statement in which we treat universal quantification as a quantifier Q of type ⟨1⟩: 

Α(Q)    ∀p ∀r {[∀a(r → p(a)) →  (r → Q(p))] ∧ [∀a(Q(p) → p(a))]}, 

where ‘r’ ranges over arbitrary propositions and ‘p’ over  arbitrary unary predicates.  

Then, as above, we easily show that  

(A(Q) ∧ A(Q′)) → (Q(p) ↔ Q′(p)). 

Our question now is: Which quantifiers Q in general have formal axioms and 

rules of inference that uniquely characterize it in the same way as for universal 

quantification?  The answer to that will initially be treated via a second-order language 

L2 of individuals, propositions and predicates, first without and then with a symbol for Q.  

L2 is specified as follows: 
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Individual variables: a, b, c,…, x, y, z 

Propositional variables: p, q, r,… 

Predicate variables, k-ary: p(k), q(k), …; the superscript k may be dropped when 

determined by context. 

Propositional terms: the propositional variables p, q, r,… and the p(k)(x1,…,xk) (any 

sequence of individual variables) 

Atomic formulas: all propositional terms 

Formulas: closed under ¬, ∧,→, ∀  applied to individual, propositional and predicate 

variables.  (Other connectives and quantifiers defined as usual.)  

Next, models M2 of L2 are specified as follows:  

(i)       Individual variables range over a non-empty universe U 

(ii)       Propositional variables range over {t, f} where t ≠ f. 

(iii)       Predicate variables of k arguments range over Pred(k)(M2), a subset of                

Uk → {t, f}. 

 

Clause (iii) is in accord with the Locality Principle, according to which predicate 

variables may be taken to range over any subset of the totality of k-ary relations on U.   

Satisfaction of a formula φ of L2 in M2 at an assignment σ to all variables, M2 ⊨ 

φ[σ], is defined inductively as follows:  

(1)   For φ ≡ p, a propositional variable, M2 ⊨ φ[σ] iff σ(p) = t 

(2)   For φ ≡ p(x1,…,xk), p a k-ary predicate variable, M2 ⊨ φ[σ] iff 

σ(p)(σ(x1),…,σ(xk)) = t 

(3)   Satisfaction is defined inductively as usual for formulas built up by   ¬, 

∧,→, ∀ , given the specified ranges in (ii) and (iii) for the propositional and 

predicate variables when it comes to quantification. 
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 Now, given a quantifier Q of arity ⟨k1,…,kn⟩., the language L2(Q) adjoins a 

corresponding symbol Q to L2. This is used to form propositional terms Q(p1,…,pn) 

where pi is a ki-ary variable.  Each such term is then also counted as an atomic formula of 

L2(Q), with formulas in general generated as before.  A model (M2, Q|M2) of L2(Q) 

adjoins a function Q|M2 as the interpretation of Q, with Q|M2: Pred(k1)(M2) × … × 

Pred(kn)(M2)→{t, f}.   

 Axioms and rules for a quantifier Q as in LK can now be formulated directly by a 

sentence A(Q) in the language L2(Q), as was done above for the universal quantifier, by 

using the associated Hilbert-style rules as an intermediate auxiliary. To formulate the 

translation in general if we start with rules in the sequent calculus, suppose those for a 

formal quantifier Q(p1,…,pn) of the sort we are considering are Rule1,…, Rulem, where 

each Rulej has 0 or more sequents Γj,ν ⊦ Δj,ν in the hypothesis and one sequent Γj ⊦ Δj as 

conclusion.  Some of these will be Right rules and some Left rules for Q.5  Consider any 

such Rulej. If there is more than one term in the antecedent of one of the sequents in the 

hypothesis, replace that by their conjunction, and if in the succeedent by their disjunction.  

Replace an empty antecedent by ∀p(p→p) and an empty succeedent by ¬∀p(p→p).  

Finally, replace ⊦ by →.  Next, for each j, take the conjunction of the translations of the 

Γj,ν ⊦ Δj,ν, and universally quantify that by all the individual variables that occur in it; call 

that Hj.  Similarly, replace the conclusion Γj ⊦ Δj by the universal quantification Cj over 

the individual variables of its translation.  Finally, replace the inference sign ⇒ from the 

hypotheses to the conclusion by →.  Let Bj = Hj → Cj be the translation of Rulej thus 

obtained. Finally, take A(Q) to be the sentence 

∀p∀q∀r…(B1∧…∧Bm), 

                                                
5 Zucker and Tragesser (1978) pp. 502-503 make further assumptions about the nature of the rules in a 
natural deduction calculus for a candidate operator.  Since our criterion will be formulated under much 
looser assumptions, we don’t have to invoke those here.   
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where p, q, r, … are all the propositional and predicate variables that appear in any of the 

Bj. Now the criterion for accepting a quantifier Q given by such rules is that they 

implicitly define QU in each model of A(Q) (more precisely, the restriction of QU to the 

predicates of the model).   

We need not restrict to such specific descriptions of axioms and rules of inference 

for a global quantifier Q in formulating the following more general partial criterion for 

acceptance of Q as logical.  The reason this is not claimed to be a necessary and 

sufficient condition for logicality will be discussed below.   

Semantical-Inferential Necessary Criterion for Logicality.  A global quantifier Q of 

type ⟨k1,…kn⟩ is logical only if there is a sentence A(Q) in L2(Q) such that for each 

model M2 = (U,…),  QU is the unique solution of A(Q) when restricted to the predicates 

of M2. 

Remark. I spoke above of the use of axioms and rules of inference for a quantifier Q that 

completely govern its forms of reasoning.  One should be careful to distinguish 

completeness of a system of axioms in the usual sense from completeness of a sentence 

A(Q) for Q in the sense that it meets the above criterion.  For example, let Qα be the type 

⟨1⟩ quantifier which holds of a subset P of U just in case P is of cardinality at least אα.  

Keisler (1970) has proved completeness of a system of axioms for first-order logic 

extended by Q1.  But it is easily seen that those same axioms are satisfied by Qα for any α 

greater than 1 (cf. ibid, p. 29).  Hence a sentence A(Q) formally expressing Keisler’s 

axioms does not meet the above criterion.   

Main Theorem.  Suppose Q is a quantifier that satisfies the preceding partial criterion 

for logicality.  Then Q is equivalent to a quantifier defined in FOL.   

 The sketched proof of the related theorem in Zucker (1978) pp. 526 ff makes use 

of a different second order language than here, and claims to apply Beth’s definability 

theorem to obtain an equivalence of Q with a formula in FOL.  The first problem with 

that is the question of the applicability of Beth’s theorem to a second-order language.  
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That may be possible for certain languages such as L2 whose semantics is not the 

standard one but rather is “Henkin” or “general”.  So far as I know a Beth theorem for 

such has not been established in the literature, even though that is quite plausible.  In 

order to do that, one might try to see how the extant model-theoretic or proof-theoretic 

proofs can be adapted to such languages.  But even if one has done that, all that the 

corresponding Beth theorem would show is that Q is definable by a formula in L2; in 

order to obtain a definition in FOL, one would still have to eliminate the propositional 

and predicate variables, and that requires a further argument, not considered at all by 

Zucker.  It is shown here how to take care of both difficulties by simulating the languages 

L2 and L2(Q) and their models in corresponding first-order languages L1 and L1(Q) in 

which the proposition and predicate variables are taken to be two new sorts of variables 

at type level 0 besides the individual variables.   

Here is the specification of this first-order language L1: 

Individual variables: a, b, c, …, x, y, z 

Propositional variables: p, q, r,…  

Propositional constants: t, f 

Predicate variables p(k) of k arguments for k ≥ 1; where there is no ambiguity, we will 

drop the superscripts on these variables.   

Predicate constants t(k) of k arguments for each k ≥ 1. 

In addition, L1 has for each k a k+1-ary function symbol Appk for application of a k-ary 

predicate variable p(k) to a k-termed sequence of individual variables x1,…,xk; we write 

p(k)(x1,…,xk) for Appk(p
(k), x1,…,xk). 

The terms of L1 are the variables and constants of each sort, as well as the terms 

p(k)(x1,…,xk) of propositional sort for each k-ary predicate variable p(k).  The atomic 

formulas are just those of the form π1 = π2, where π1 and π2 are terms of propositional 
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sort. Formulas in general are built up from these by means of the first-order connectives 

and quantifiers over each of the sorts of variables as usual.   

By the language L1(Q) is meant the extension of L1 by a function symbol Q taking a 

sequence (p1,…,pn) of predicate variables (not necessarily distinct) as arguments, where 

pi is ki-ary, to a term Q(p1,…,pn) of propositional sort.  For any term π of propositional 

sort, whether in the base language or this extension, we write T(p) for p = t, to express 

that p is true.  

The following is a base set S of axioms for L1: 

(i)      ¬(t = f) 

(ii)      ∀p(p = t ∨ p = f ), (‘p’ a propositional variable) 

(iii) ∀x1…∀xk( t(k)(x1,…,xk) = t ) for each k ≥ 1 

(iv) ∀p∀q [∀x1…∀xk(p(x1,…,xk) = q(x1,…,xk)) → p = q]. 

The last of these is of course just Extensionality for predicates.   

Models M1 of S are given by any non-empty universe of individuals U as the 

range of the individual variables, and the set {t, f} (with t ≠ f ) as the range of the 

propositional variables. Furthermore each assignment to a k-ary predicate variable in M1 

determines a propositional function P from Uk to {t, f} as its extension, via the 

interpretation of the application function Appk.  By Extensionality, we may think of the 

interpretation of the k-ary predicate variables in M1 as ranging over some collection of k-

ary propositional functions.  The interpretation of t(k) is just the constant propositional 

function λ(x1,…,xk).t on Uk.  In the following, all structures M1 considered are assumed 

to be models of S. 

Each model M2 of the second order language L2 may equally well be considered 

to be a model M1 of the first order language L1 in the obvious way.  Conversely, by 

extensionality each of the models M1 for L1 may be construed to be a model M2 for L2. 
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The essential difference lies in the way that formulas are formed and hence with how 

satisfaction is defined.  In the first-order language, propositional terms are merely such, 

while they have also been taken to be atomic formulas in the second order language.  

Recall the abbreviation T(p) for p = t in L1.  Note that any assignment to the variables of 

L2 in M2 counts equally well as an assignment to the variables of L1 in M1.  All of this 

goes over to the languages extended by Q and the corresponding interpretations of it in 

the respective models. 

We define the translation of each formula A of the 2nd order language L2, with or 

without Q, into a formula A↓ of the 1st order language L1 by simply replacing each 

atomic formula τ of A (i.e. each propositional term) by T(τ).  Thus, for example, the 

translation of the above formula characterizing the axiom and rule for universal 

quantification is simply 

∀p∀r{[∀a(T(r) → T(p(a))) → (T(r) → T(Q(p)))] ∧∀a[T(Q(p)) → T(p(a))]}. 

 Similarly, we obtain an inverse translation from any 1st order formula B of L1 into 

a 2nd order formula B↑ of L2 by simply removing each occurrence of ‘T’ that is applied to 

propositional terms.  The atomic formulas π1 = π2 are replaced by π1 ↔ π2. These 

translations are inverse to each other (up to provable equivalence) and the semantical 

relationship between the two is given by the following lemma, whose proof is quite 

simple. 

 

Lemma. Suppose M1 and M2 correspond to each other in the way described above.  

Then 

(i) if A is a formula of L2 and σ is an assignment to its free variables in M2 then          

M2 ⊨ A[σ] iff M1 ⊨ A↓[σ]; 

(ii)  similarly, if B is a formula of L1 and σ is an assignment to its free variables in 

M1 then M1 ⊨ B[σ] iff M2 ⊨ B↑[σ]. 

Moreover, the same equivalences hold under the adjunction of Q throughout. 

  Now to prove the main theorem above, suppose A(Q) is a sentence of L2(Q) such 

that over each model M2, QU is the unique operation restricted to the predicates of M2 

that satisfies A(Q).  Then it is also the unique operation that satisfies A(Q)↓ in M1.  So 
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now by the completeness theorem for many-sorted first-order logic, we have provability 

of  

(A(Q)↓ ∧ A(Q′)↓) → (Q(p1,…,pn) = Q′(p1,…,pn))  

in FOL, so that by Beth’s definability theorem, which follows from the interpolation 

theorem for many-sorted logic (Feferman 1968a), the relation Q(p1,…,pn) = t is 

equivalent to a formula B(p1,…,pn) of L1.   Moreover, by assumption, in each model M1, 

B defines the relation QU restricted to the range of its predicate variables (considered as 

relations). Though B is a formula of L1, it is not necessarily first-order in the usual sense 

since it may still contain quantified propositional and predicate variables; the remainder 

of the proof is devoted to showing how those may be eliminated.   

First of all, we can replace any quantified propositional variable p in B by its 

instances t and f, so we need only eliminate the predicate variables. Next, given two 

models M1 = (U,…) and M1′ = (U′,…) of L1, we write M1 ≤  M1′ if M1 is a 

substructure of M1′ in the usual sense, but for which U = U′.  The  relation (M1, Q|M1) 

≤ (M1′, Q|M1′) is defined in the same way, so that when this holds, Q|M1 is the 

restriction to the predicates of M1 of Q|M1′, in accordance with the Locality Principle.  

Suppose both structures are models of A(Q); then by assumption, Q|M1 = QU on the 

predicates in M1 and Q|M1′ = QU on the predicates in M1′.  Moreover both are 

equivalent to B on the respective classes of predicates.  Hence, given P1,…,Pn predicates 

in M1, B(P1,…,Pn) holds in M1 if and only if it holds in M1′. In other words, B is 

invariant under ≤ extensions in the sense of Feferman (1968b).6 It follows from Theorem 

4.2, p.47 of Feferman (1968b) that we can choose B to have quantifiers only over 

individuals; in addition, since we have a constant t(k) of each propositional and predicate 

sort, we can take B to have no free variables other than p1,…,pn.  In other words, B is a 

first-order formula in the usual sense, with all quantified variables being of the individual 

sort, which defines QU in each M1 when restricted to the predicates of M1.  Lifting B to 

B↑ and M1 to the corresponding M2 gives, finally, the desired result.   

                                                
6 These are called outer extensions in Feferman (1968b), but in the case at hand they are just ordinary 
extensions with one sort fixed (or “stationary” in the language of that paper), namely the sort of individuals.   
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Discussion and Questions.   

1. Comparison with Zucker (1978).  Zucker considers formal quantifiers Q at every 

finite type level, within which he deals with first order quantifiers (i.e. those at type level 

2 whose arguments are predicates of type level 1) as a special case.  (The case of higher 

types uses different arguments with both positive and negative results.)  He denotes by Sc 

(‘c’ for ‘classical’) the set [of operations] {∧,¬,t,∀}.  By way of comparison, it is worth 

quoting him at some length as to his aims (the italics in the following are Zucker’s): 

We are looking for an argument of the following form: given a proposed new 

‘logical operation’ (say a quantifier), show that it is explicitly definable in terms 

of Sc.  … Now what does it mean, to “propose a new quantifier Q for inclusion in 

the language?” Clearly, a symbol ‘Q’ by itself is useless: a meaning must be given 

along with it.  … In fact a symbol ‘Q’ is never given alone: it is generally given 

together with a set of axioms and/or inference rules, proposed for incorporation in 

a logical calculus.  Now we [make] the following basic assumption:  

For Q to be considered as a logical constant, its’meaning’ must be 

completely contained in these axioms and inference rules.   

In other words, it is quite inadequate to propose a quantifier Q for incorporation 

in the calculus as a logical constant, by giving its meaning in set theory, say (e.g., 

“there exist uncountably many”), and also axioms which are merely consistent 

with this meaning.  The meaning of Q must be completely determined by the 

axioms (and rules) for it: they must carry the whole weight of the meaning, so to 

speak; the meaning must not be imposed from outside (by, e.g., a set-theoretical 

definition), for then we merely have a ‘mathematical’ or ‘set-theoretical’ 

quantifier, not a logical one.  … Our basic assumption, then, gives a necessary 

condition for a proposed new constant to be considered as purely logical.  We re-

state it as a principle of implicit definability: 

 (ID) A logical constant must be defined implicitly by its axioms              

and inference rules.   
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Hence in order to prove the adequacy of Sc, it will be sufficient to show that any 

constant which is implicitly definable (by its axioms and rules) is also explicitly 

definable from Sc.” (Zucker 1978, pp. 518-519) 

There follow three notes (ibid.). The first is that (ID) is only proposed as a necessary (but 

not necessarily sufficient) condition for logicality.  The second is that the inference rules 

for the new constant need not be of the natural deduction kind.  Third, it is assumed that 

the status of the members of Sc as logical constants is not in doubt. 

As noted in the introductory discussion above, one essential difference I have with 

Zucker is that I regard the meaning of a quantifier to be provided from the outside so to 

speak, i.e., to be given in model theoretic terms prior to the consideration of any rules of 

inference that may be in accord with it.  For me, the significance of the condition ID is to 

specify completely its role as an inferential agent. 

2. What is a necessary and sufficient condition for logicality?  Taking for granted that 

the standard operations of FOL are logical, it is at first sight plausible that any quantifier 

defined in terms of them should also be considered logical.  However, in a personal 

discussion following a presentation of this material,7 Lauri Hella questioned this.  He 

pointed out that many mathematical notions considered as Lindström quantifiers that 

would not ordinarily be considered logical are definable in FOL.  For example, we can 

thus define what it is for (U, P) to be a group, where P is a ternary relation for the 

product relation of the group.  Note that the relation of equality is used in this definition, 

and it is a matter of some contention whether equality is a logical notion (cf. Quine 

(1986), pp. 61ff and Feferman (1999), p. 44).   We can side-step that issue by considering 

the definition in FOL without equality of all (U, P, E) where E is a congruence relation 

with respect to a product relation P under which the structure forms a group.  The 

collection Q of all such (U, P, E) would still not ordinarily be considered to be a logical 

quantifier.  In any case, that is the reason why the combined semantical and inferential 

criterion considered here is only proposed as a necessary condition.  In order for such to 

be tightened to a necessary and sufficient condition, we would have to be explicit about 

                                                
7 At the 2011 Workshop on Logical Constants in Ljubljana referred to in fn. 1. 
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what would constitute axioms and rules of inference for a quantifier Q that determine it 

uniquely.   The work of Zucker and Tragesser (1978) pp. 10-15 is a start on that for a 

formulation in natural deduction terms, but that needs to be generalized and, if possible, 

simplified.   

3.  Extension to countable admissible languages.  It is shown in Feferman (1968a, 

1968b) that the results from those articles needed for the proof here of the Main Theorem 

hold equally well for the sublanguages LA of the language with countably long 

conjunctions and disjunctions and ordinary quantification, and for which A is an 

admissible set.  Thus one should expect that the Main Theorem carries over directly to 

those languages.  But now there is a new question that ought to be considered, namely 

whether all infinitary propositional operations that satisfy a necessary criterion for 

logicality similar to the one taken here, are definable in LA.   

4. Are there analogous results for intuitionistic FOL? There are several possible 

options to consider for the semantics of general quantifiers looked at constructively: the 

most familiar ones are the (so-called BHK) interpretation in terms of primitive notions of 

construction and constructive proof, realizability interpretations, inferential semantics, 

and Kripke models.  It is an open question how Lindström quantifiers might be treated 

with respect to either of the first two of these.  As to the third, one would take the work of 

Zucker and Tragesser (1978) as a point of departure as suggested at the end of item 2 

above; it is shown there (under certain natural hypotheses about the forms of inferences) 

that every formal quantifier given by introduction rules is equivalent to one definable in 

intuitionistic FOL. Finally, given any Lindström quantifier Q viewed classically, one can 

extend its semantics to arbitrary Kripke structures (W, ≼, ⟨Uw: w ∈ W⟩, …) for which w ≼ 

v implies Uw ⊆ Uv, by taking a formula Qx1…xn(ψ1(x1,y),…,ψn(xn,y)) to be satisfied by b 

in (Uw, …) just in case (Uv, P1,…,Pn) is in Q for each v ≽ w, where Pi is the set of all ki-

tuples ai in Uv such that ψi(ai, b) is true at v.  Then the definition of forcing works as 

usual.  Since Kripke semantics reduces to classical semantics on worlds W having a 

single element, the Main Theorem can be applied to show that any Lindström quantifier 

on Kripke structures dealt with in this way and that satisfies the criterion considered here 
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is definable in classical FOL.  This leaves open whether some more intrinsic version of 

the Main Theorem holds for Kripke structures and intuitionistic FOL.     
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