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SOME FORMAL SYSTEMS FOR THE UNLIMITED THEORY OF STRUCTURES AND CATEGORIES

by

Solomon Feferman(l)

Abstract. In the informal unlimited theory of structures and (particularly)

categories, one considers unrestricted statements concerning structures such as that

the substructure relation on all structures of a given kind forms a partially ordered

structure. or that the collection of all categories forms a category with arbitrary

These sorts of propositio~s are not accounted for di-functors as its morphisms.

The aim of the present work is to give a foun-rectly by currently accepted means.

dation for the theory of structures including such unlimited statements -more or less

as they are presented to us -by means of certain formal systems. The theories

studied here are based on an extension of Quinels idea of stratification. Their use

is justified bya consistency proof. adapting methods of Jensen. These systems are

successful for the basic aim to a considerable extent. but they suffer a specific

defect which prevents them from being fully successful. Some possible alternatives

are also suggested.

The following are examples of informal statements in the unlimited§l. Introduction.

or "naive" theory of structures and categories:

(1} The collection PO of all partially ordered structures itself forms a partially

ordered structure under the substructure relation S. Symbolically: (PO.S} ~ PO.

(2} The collection WO of all well-ordered structures is well-founded under the~

end-extension relat1on E: (WO.E} ~ WF.

(3} The collection Cat of all cateQories forms a cateQory. with the collection

Funct of all functors as its morphisms. toQether with the usual composition. domain.

and codomain operations: (Cat. Funct. 0. D .D l } ~ Cat.
o

(4} For any categories A.B the collection Funct (A.B} of all functors F: A + B

forms a category. with the collection Nat(A.B} of all natural transformations be-

tween these functors as its morphisms. toQether with the usual composition. domain

and codomain operations on such: (Funct(A.B}. Nat(A.B}. 0. DO. Dl} ~ Cat.
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These sorts of statements cannot be accounted for directly in currently

(generally) accepted mathematics, i.e. as formulated in systems such as ZF or its

in111ediate extensions. But they do not have an unreasonable or "cooked-up" look.

Each of them arises as a natural continuation of ordinary mathematical talk about

structures (in particular, categories). Indeed, it seems unnatural in category theory

to keep from making statements such as (3), (4) without restriction.

We do know more or less systematic means for paraphrasing statements of this kind

which can be formulated in currently understood terms; these certainly serve to

secure the applications of general theories of structures.(2) Still one feels that

there should be a foundation which gives a more direct account of such statements.

simply as they are presented to us. This paper studies such foundations in terms of

certain formal systems.

As seen from (1). (2) the foundational issues here are quite old. Moreover. a

number of attempts have been made over the years to obtain satisfactory formal

systems permitting some such instances of self-application(3); none of these has been

clearly successful. The interests behind that work were primarily logical or

philosophical. having to do with vague general ideas about properties. The work in

universal algebra and category theory has brought a different and rather more specific

interest from the direction of mathematics. The aims of a foundation for unlimited

statements in these subjects can be formulated much more definitely. Then one is led

more directly to proposed solutions and it is easier to test their adequacy.

A subject is given foundations by means of a formal system when it is shown how

to formulate and develop the subject within the system and the system itself is

shown to be justified. This may be done either directly. by showing that the prin-

ciples of the system are evident for certain understood concepts. or indirectly by

means of reduction to previously accepted principles. Zermelo's foundations for in-

formal set theory provide an example of the former. his axioms being evident for the

cumulative hierarchy. An example of the latter is given by the axiomatization of

projective geometry and its interpretation by use of Euclidean spaces. That is

typical of a subject involving objects beyond the limits of ordinary experience. The

type of foundation pursued here for the informal unlimited theory of structures is of
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this second kind. We take it that the treatment of ordinary structures is already

accounted for in formal systems S such as ZFC.

for which:

*
We may also have subsidiary aims, such as that S should be simple and that the

*
notions and axioms of S should have some kind of intuitive plausibility.

We concentrate on A(i) in §2, beginning with consideration of choice of

*
language for S to formulate mathematical properties of arbitrary structures and

These lead us to athen principles to establish statements such as (1)-(4) above.

*simple system Sl --"

of ~tTAt-ification. [Ql].

*
S which contains ZFC. I

*

whose main existence axioms involve an extension of Quine's idea

*
51 is relatively weak; it is expanded in §3 to a system

The main part of §3 is devoted to a proof of the consistency

This is carried out by an adaptation of Jensen's methods in [J] to establish

*
the consistency of a (weakened) form of Quine's system NF. Thus 5 satisfies

A(ii) and A(iii).

* *
The aim A(i) is examined first for 5,

of S .

at the end of §2 and then for S

and particularly category theory at the end of §3. While these theories fulfill

A(i) to a certain extent. they suffer a serious ~efect- in this respect. I believe

the present attempt still has value in illustrating the character of the solution to

the foundational problem which is sought here and the specific c:)nsiderations used

to test a proposed solution. But despite the partial success. an improved solution

may have to be based on a quite different idea.

There are three Appendices. Appendix I gives a theorem on the existence of

modification of previous work. but the statement is new and perhaps of independent
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interest.

such as ( I: ..

relative to any universe. these develop a suggestion due to Kreisel. However there

are problems for (4) in these systems and consequent difficulties for aim A(i)

*
generally. Appendix III examines an idea to get around the defect above of 51 and

* * *
5 .leading to another system 52. It is not known if 52 is consistent. this

raises an interesting problem.

Appendix II describes an alternative and simpler way to realize statements

1)-(3) above in certain theories TP, and TPn of structural DroDerties

§2. A weak system 51 for the unlimited theory of structures.

§2.l. Structures and their properties. Usually. when properties of structures are

described syntactically. one specifies the signature (similarity type) a of the

structures considered and deals with properties expressed by sentences of an associated

*
language La. We want a language Ll within which we can deal conveniently with

variable structures of arbitrary finite signature. A simple way to do this is first

to identify structures with n-tuples of collections (n variable);

(1) x = (Xl'...'Xn

Specifically. given a (many-sorted) structure having basic domains Al Ak.

relations Rl RR.. operations Fl Fm and individuals cl cp. we regard

each Fi as identified with its graph and replace each individual by its singleton.(4)

The structure

(2) ~ = (Al Ak. Rl RR,. Fl Fm. {Cl} {Cp})

is then of the form (1). To say that X is a structure of the signature cr~ of ~

*
is easily done in the language Ll with basic symbols as follows:

(3)

The last is thought of as a pairing operation. from which n-tupling is defined

;nduct;yely by
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(4) ( Xl Xn+ 1 ) =
Def ((Xl Xn). Xn+l)

*
The logical symbols of Ll are those of the predicate calculus. basically -.v. 3.

from which I\. '9' are defined as usual. as well as unique existence

(3IX)(...) and restricted quantifiers (3Y£X)(...) and ('9'Y£X)(...). -

abbreviate (3X
, )...(3X n )( ) to (3X l X )( ) I --""

-n-

We also

(3Y1EX)...(3YnEX)(-)
to

(5) (3Xl.X2.X3){X = (Xl.X2.X3) A (V Ut:X3)(3Ylt:Xl)(3Y2t:X2)[U = (Yl.Y2)]

(VY1~Xl)(3lY2~X2)[(Yl.Y2)~X3)}

To formulate this more generally, we make the following abbreviations in L~(m ?.1):

(Y s. Xl x ...xXm) -Oef (YU~Y)(3Wl~Xl)...(3Wm~Xm)[U = (Wl Wm)](6) (;)

( i i )

m

(iii) (v: Xl x ...xXm -0- Z) +-+-Def V So Xl x ...x Xm x Z

A (VWlcXl)...(VWm£Xm)(3IU£Z)[(Wl Wm.U) £ V] .

(v: xm + Z) ++ 0 f (V: X x ...)( X + Z)
e ' "'

iv)

m

(v) x = {U} ++Def U ~ X A (vY~X)(y=U)

These should not be considered for the moment as giving any independent meaning to

'XlxoooxXm'. IXml or '{U}'o

Now it is obvious how to associate with each n and a of length n a

*
11 which expresses that (Xl Xn) is a structure

-0- in the first-order language

) which

formula Str (X l '...'X ) of L
a n

of signature a. Following this, with each sentence e

L~l> of structures of signature a is associated a formula e(Xl'...'Xn-

( -* expresses that Xl'...'Xn> satisfies 6. Let 6(X) be the formula of Ll'
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(7) (3X1 Xn){X = (X1 Xn) " Stro(X1 Xn) " e(X1 Xn)}

(8) 6'po(X) is (3X1'X2){X = (X1'X2) A 3U(U�X1) A X2 ~ xi A epo(X1'X2)} where

epo(X1'X2) is (VU�X1)[(U,U)�X2] A (VU,W�X1)[(U,W)� X2 A (W,U) � X2 + U = W]

A (VUltU2tU3~Xl)[(UltU2) ~ X2 A (U2tU3) ~ X2 + (UltU3)~X2]

Similarly we obtain formulas BGrp(X). ecat(X) expressing that X has the

structure of a ~. resp. of a category. etc.

-*
This kind of association of formulas e. e of Ll with sentences e in

languages of varying a can be carried out just as well for e in any .second-ord~

or even higher finite order language of structures of signature a. For example,

associated with the sentence eWF which holds in ~ = (A,R) just in case ~ is

~e)l-f~un-d-ed. and partially ordered is the formula eWF(xl'X2) which is the con-

junction of epO(xl'X2) and the minimal element principle:

(VZ){Z s. Xl + (YY£Z)(3Yl£Z)(YY2£Z)[(Y2.Yl) £ X2 + Yl = Y2]}.(9)

Similarly, with any sentence ~ in first or higher-order languages expressing

(3Xll'...'Xmn ){X = ((Xll'...'Xln ),...,(Xml'...'Xmn ))A ~(Xll'...'Xmn )}

m 1 m m
(10)
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(11)

A X. + (U.W) E X12]}.s X21 A X12 S X22 A (VU.W~X1)[(U.W) ~ X22

§2.2. Type theory with pairinQ; stratification. We now introduce a typed language

with pairing LTP in terms of which we can describe precisely finite type properties

of structures of arbitrary signature. It suffices to use the simple types

O,l,...,n,... if we take it that each type is closed under pairing. The basic

symbols 2f LTP are as follows:

.nnn nnn
varlables of type n, A ,B ,C ,...,X ,V ,Z

relations. =,E

binaryoperation (

'1) (i)

( i i )

(iii)

for each n £ w.

).

The sets of tenns of type n of LTP are defined inductively by:

(2) (i) each variable of type n is a tenn of type n;

(ii) if tltt2 are tenns of type n then so also is~, ( tl .t2 ) .

The atomic formulas of LTP are just those of the form

(3)

The formulas of lTP are generated from these using -, v, 3. By IT we mean the

sublanguage of lTP without the binary pairing symbol and by IT(£) the further

sublanguage of IT without the equality symbol-

*
A formula ~ of II is said to be lTP -stratified if we can assign type

superscripts to the variables of ~ in such a way that the resulting ~+ is a

formula of lTP; in this assignment, each variable is to receive the same type at

all its occurrences. ~+ is not uniquely determined by ~; any such ~+ is called

a stratification of ~. ~ is said to be IT(£) (resp. IT)-stratified if ~+ is

an LT(£) (resp. IT) formula; this is the same as being stratified in the sense

of Quine [Ql] (resp. Jensen [J]). Such notions of stratification can be extended in
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an obvious way to any many-sorted language for which one has specified the admitted

terms and atomic formulas. We call each instance of such a stratification set-up.

The following are simple examples of LTP-stratified formulas:

(4) i ) (ii}x £ v. (XIX) f: y

The following formulas are ~ LTP-stratified

5} ( ; ) (ii)x 10 X. (x,V) ~ z " x

Obviously the set of LTP-stratified formulas is (primitive) recursive.

The main point for our purpose is that

(6) is

LTP-stratified.

In other words. the kinds of properties of and relations between structures

X = (Xl Xn) dealt with there are all expressed by LTP-stratified formulas.

(Xl Xn and X may be assigned type 1 and their elements type O in these

formulas.)

for allIt is natural to consider the following axiom schemes in LTP' n:

(7) i ) LTP-Comprehension

IAn+l,

= Bn+l.(ii)

(3An+l)(VXn)[Xn f An+l ++ ~] ,

for each formula ~ of LTP which does not contain

Extensionality (VXn)[Xn e An+l ++ Xn f Bn+l] ~ An+l

.. ( n n ) ( n n ) n n n nPalrlng Xl'X2 = Vl'V2 ~ Xl = Vl A X2 = V2 .(iii)
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T of axiom in LTP

*
§2.3. The SVSt~l Sl. With each set

TStrat of formulas, where

is associated a set

+ +
of e we have e ( T.(1) e TStrat -Oef for some strati!ication e

for the set TIn particular, the following scheme I and axioms II, III form TStrat

of axioms in §2.2(7)(i)-(iii):

(2) I. lTP-Stratified Comprehension

(3V)(VX)[X E A -~J

*
for each LTP-stratified formula q> of Ll in which

Extensionality (VX)[X ~ A ++ X ~ B] ---A = B.

Pairing (Xl.X2) = (Yl.Y2) ---Xl = X2 " Yl = Y2.

'A' does not occur.

III

The system consisting of Extensionality and Lr-Stratified Comprehension (i.e. where

is restricted to LT-stratified ~) is a version of Quine's system NF.(5) It is

not known whether NF is consistent. The related system NFU shown consistent by

Jensen [J] ha$ in place of II the statement

(2) IIi. Weak Extensionality

(3X)(X~A) " VX[X ~ A -X ~ B] -+- A = B

This is the form suitable for systems of set theory in which one admits "Urelementen."

* *
We define Sl to be the set of axioms (2) I, II' ~ III. Sl can be shown to

be consistent by a direct adaptation of Jensen's methods. Moreover, just as remarked

*
in [J] for NFU, the system Sl is quite weak; its consistency can be proved in

*
elementaryarithmetic. We shall not give a separate consistency proof for Sl' but

* *
only for the much stronger theory S to be considered in §3. But Sl is already

of interest in connection with the aim A(i), as will be shown in the next sub-

section §2.4. Before this, there are a number of points worth noting.

Remarks.

(i} Pairing. The existence of {V1'V2}' ; .e. the statement
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(3!V)(VX)[X ( A +-+- X = Vl v X = V2]

is provable in NFU. Then we can define {V} = {V.V} and (Vl.V2

and prove as usual the Pairing Axiom for this definition in NFU.

={{Vl}'{Vl'V2}}

<Xl'X2) = <Vl'V2) ...Xl = Vl " X2 = V2

*
But there is no obvious way to use this to interpret 51 in NFU. for when

stratifying in LTP we need to assign to (Vl.V2) the same type n as assigned to

both Vl and V2 while by this definition. (Vl.V2) must be assigned type n + 2.

Then. for example. in a structure (Xl.X2) with X2 ~ xi. using this definition of

pair, X2 must be assigned type 2 higher than that of Xl. This blocks us from

realizing LTP-stratified properties of structures.

On the other hand. Quine [Q2] gave a quite different and more complicated

definition. in NF. of ordered pair -denoted for the moment here as «Vl'Y2» -

which does have the property that « Vl.V2» can always be assigned the same type

as Vl.V2 when stratifying. However, to prove the Pairing Axiom

«X1'X2» = «V1'V2» --X, = V1 .1\ X2 = V2

one makes use of full Extensionality (2) II in an essential way. Lacking the known

consistencyof NF, we have taken the simple alternative of adding pairing to NFU

as a primitive and extending stratification to preserve types. Of course, it must

then be checked that this causes no problems for the consistency proof.

*
(ii) An inconsistent stratified system. We may ask whether the consistency of 51

may be established on general grounds. i.e.. if T is a consistent set of statements

*
2!!. LTP. ~ T5trat necessarily consistent in Ll? We shall now show that the

corresponding is false for a simple. at first sight. reasonable looking extension of

the stratification set up. Describe the typed language with pairing LTp just as

for LTP in §2.2 (1)-(3). except that in the inductive definition of the set of

terms of type n we permit also:

t2 is of type "2 ~ (tl't2) liii tl ; s of type "1 ~

.21 .We. max("1'"2).
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The atomic formulas of LIp are built from these terms just by the same conditions

as §2.2(3). Then it is clear what is meant by an LIp-stratified formula. The

system Si consisting of LIp-Stratified Comprehension and Pairing is inconsistent.

For. the following are instances of the schema in si:

(3A)(VX){X � A ~~ (3Y.Z)[X = (Y.Z) A Y � Z]}
(.)

(YA(3B)(YY)[Y ~ B ++ (Y.Y) i A]

Using Pairing we then get a form of Russell's Paradox. Now 51 = T5trat where

consists of the scheme of Comprehension

(3A"+1)(VX")[X" £ A"+l .--+- ~]

for each 1/1 (without

"1 "2 "1 "2 "1 ".
(X1 .X2) = (V1 .V2 ) + X1 = V1

n n
AX2=V2

2 2

xn/n = x. Xm+l/n = {Xm/n}

This has the property that if Xm/n = ym/n then X = v. Then define

i t y £ M t n = max(n
l tn 2 ) .

nl n2
for X ~ M

T is consistent.

(iii) Extensionality in stratified theories. The preceding shows that even if the

association of TStrat with consistent T for a given stratification scheme looks

plausible. the justification for using TStrat must be given on other grounds. Since

we do not have a clear intuitive interpretation of such theories. the only grounds

we have are by means of interpretations in terms of concepts that we already under-

stand. In particular. there is no reason to insist on full Extensionality if we

cannot see how to interDret it. unless it is essential for the aim A(i): we return
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to the latter question below. It happens that in every known model for stratified

theories, i.e. of the kind found by Jensen and developed further here, it is evident

from the proof that the most we can hope to arrange for is Weak Extensionality.

Other candidates for models may be imagined. for example those for the theories of

properties considered in Appendix II below. But there also. Extensionality fails.

Indeed. it seems whatever intuitions we have about stratified comprehension principles

has to do with ideas about properties. which are non-extensional objects. This is

not to deny the possibility of consistency of theories such as NF. But our interest

in such shifts when we think of the range of the variables as being not classes in

the usual extensional sense. but some kind of classes given by definitjons. For

lack of better intuition. I propose to call these meta-classes here.

( iv) Extensionality and structure theory. Is full Extensionality essential for the

informal theory of structures? Weak Extensionality is certainly used at various

places, for example when it is shown that distinct equivalence classes of an

equivalence relation are disjoint. I do not know of an example where it would be

On the other hand, I do not have arequired that two empty objects be identical.

convincing argument why it is unnecessary. It is convenient at times to admit empty

structures. But we could get around possible non-uniqueness of such simply by

designating a specific empty object 0. and considering only empty domains coinciding

with 0.

*
§2.4. Development of the unlimited theory in Sl. It is convenient here and for §3

*
to make the following definitions. These apply to any language which contains Ll

and some designated constant symbol 0. We assume throughout this section that

(1) (VX)(xtO)

'A' is not free) let(in whichDefinition 2.1. For any formula 1/1

if (3 !A)(VX)[~
[XI~] =

The formula ~ may contain parameters, say Vl'...'Vm' in which case we write this

:A -~]
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more loosely as

(2) [XI~(X.Yl Ym)] or [XI~(X)] .

This determines an operation from meta-classes to meta-classes. Given a tenn

t(Xl Xn
which may also contain parameters, we put

i3) [t(Xl'...'Xn) 1,(Xl'...'Xn)] =
Def [XI(3Xl Xn)(X=t(Xl..oo.Xn)"cjI(Xl Xn»)].

is called the defining con~i!ion of [XI~]

ls an- LTP-stratified!ormula, then (assuming ~l ))'it is provable

satisfies its defining condition, i.e.

A = [XlIPJ ...(VX)[X E A -+-+-IPJ .

We obviously get the same for any [t(Xl Xn)1 ~(Xl Xn)] where t is built

by pairing. Each of the following has an LTP-stratified defining condition.

Definition 2.3.

n

(i) {YltY2} = [xIx = Yl v X = Y2]

(ii) {Y} = {YtY}

(;ii) UY = [XI(3Z)(X � Z " Z � Y)]

(iv) Yl u Y2 = lJ{YltY2}

(v) nY = [XI(VZ)(Z � Y + X � Z)]

(vi) Yl n Y2= n{YltY2}

(vii) -Y = [XIX i Y]

(viii) V = [xIx = X]

(xiv) DY = [XI(3Z)(X,Z) � Y]

'"-'
(xv) Y = [(Xl'X2)I(X2'Xl) � Y]

v '-.J
(xvi) D Y = DY .

(Note that the symbols in §2.l(6) are now given independent meaning.)

i ) Fun(F) ++ (F: OF + V).Definition 2.4.-~

(X,V) £ F ifthe unique y

O otherwise.

~. Fun(F) " X E DF

(ii) Fix) =
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*
Now consider the formulation of statements §1(1)-(4) in Sl. For the first.

we use the formulas epo(X) and WSub(X) of §2.1(8) and (1

resp.. that X is a partially ordered structure and that X is a pair

1) resp., which express,

(XltX2)

of structures in the substructure relation. Let

(4)(l) PO = [XIepO(X) ]

(ii) S ~ [ZIWSUb(Z) ,,(3XltX2)(Z = (XltX2) " Xl I: PO " 121: PO)]

5)
*

51 t- (POtS) E PO .

This simply proceeds by formalizing the informal proof that the substructure relation

satisfies the properties to be a partial ordering. Similarly, using the formula

eWF(Xl'X2) of 2.1(9) we define

(6) WF = [(Xl'X2) I(Xl'X2) £ PO A eWF(Xl'X2)]

It is then clear how to define WO. the metaclass of well-ordered structures, and

Et the end-extension relation. in S. and to establish

(7) +- (WO.E)s:

To formulate the statements §1(3)-(4) in $: we would have to spel out in a

little more detail the basic notions of category theory. There are no obstacles to

r thedoing this for the given statements. But since we shall also want to conside

formulation of significant theorems of category theory which require stronger

*
principles than in Slt we delay all details until §3.4. It should however be re-

marked that the category of all functors between two given categories, mentioned in

§1(4),is analogous to the (meta)class V2Vl of all functions between two given

(meta)classes Vl'V2. (In addition, this is the only one in the given list of

statements that requires formation of [Xl~] for ~ with parameters.)

*
Thus 51 provides us with the means to formulate directly and verify statements

of the unlimited theory of structures like those of §1. Definitions 2.1. 2.3 and 2.4



15

extend familiar mathematical operations and notions for classes to metaclasses, for

which they continue to satisfy usual properties. It would thus seem that s~ can

*
fulfill aim A(i) to a considerable extent. Nevertheless, Sl has a serious

limitation in this respect, which we may consider to be the principal defect of

LTP-stratification.(6) There are many situations in which we want to consider a re-

lation between pairs (X,V) where X,V are intuitively at distinct type levels.

There is no problem about forming such a pair for any particular X,V; for example,

*
whenever A is defined in Sl so also is (A,PA). The problem arises when we want

to consider such pairs for variable X,V, and want to form the corresponding meta-

class. For example, we frequently consider the operation Q from an object X to

in a given equivalence relation:its equivalence class [X]E

[XJE = [VI (X.V) f: El(i)(8 )

(ii) Q = [II (3X)(X £ DE " I = (X.[X]E))] .

The second part of this definition is given sense by Definition 2.1, but since the

*
defining condition is not LTP-stratified we don't see how to prove in 51:

(YZ){Z £ Q- (3X)[X £ DEll Z = (X,[X]E)]} .
(9)

u = [X]E must be assigned a
For, when this is written out without abbreviations,

type one higher than X in any attempt to stratify.

A similar problem arises when one tries to define the direct product

p = nX~AF(X) for F: A + V

We may try

p = [GIFun(G) A (VX~A)(G(X) ~ F(X)]

= [GIFun(G) A (VX~A)(3Y.Z){(X.Y) ~ G A (X.Z) £ F A Y ~ Z}] .

but again the defining condition is not LTP-stratified (V.Z must be assigned the

same type as X for pairing but different types for membership); so we don't see

*
how to prove that P satisfies its defining condition in Slo
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One way that might be thought to overcome these difficulties is to define new

ordered pair operations to adjust type levels, essentially as done for the model

considered in Remark (ii) of the preceding section. For example, take

{x}.V)11) (X,V)I =
Def

when dealing with pairs satisfying a stratified condition in which y ~ust be assigned

type one higher than X. We can prove in s; that ( )1 satisfies the pairing

axiom and. in place of (9);

(12) (3Q)(VZ){Z E Q-.-+0 (3X)(X E DE 1-. Z = (X,[X]E)I}}

Q satisfies Funl. the property of being a function in the new sense of ordered

pair. i.e. we have

(VX t: DQ)(3!Y)[(X.Y)1 t: Q] .

But this sort of device requires a duplication of all the basic mathematical notions

such as relation. function. structure. etc.. for each new ordered pair operation

that is introduced.(]) That is just contrary to the kind of theory which is sought

here. which makes no a priori distinctions between kinds of objects.(8)

One should seek instead a formal theory in which ordered pairs (X.V) can be

accomodated in a comprehension schema without any joint type restrictions on X,V.

From §2.3 Remark (ii), one obvious extension of the stratification scheme to

accomplish this leads to a contradiction. Another candidate is proposed in Appendix

III; we do not know if it is consistent. The Burali-Forti Paradox provides a good

test for any such proposed extension. Recall that one proceeds there by defining

ordinals as equivalence classes a = [X]Is of well-ordered structures X under the

equivalence relation

(X,V) ~ Is +-+-Def X; V.

Then for a = [XJIs, S = [VJIs one puts S ~ a if V is isomorphic to an initial

segment of X. A crucial point in the argument is that each well-ordered X is
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this requires mixing types in anisomorphic to the ordinals preceding [X]Isi

essential way.

The theory S considered next incorporates a constant V
o

*

which we can

interpret as any reasonably closed universe of sets. While S uses the same

*
stratification scheme as Sl for meta-classes. it is essentially unrestricted on

*
sets. In S we can form the operation x ~ [x]E for an equivalence relation E

between sets. and we can form n X I F(X) for I c V and F: I + PV .Thus while
£ -o o

* *
S still has the same defect as Sl for work with meta-classes in general. we can

get a partial accomodation of the basic operations on structures at least for the

*
ones that interest us in practice. At the same time we have in S some of the

freedom expected of an unlimited theory.

§3. The Theory S~.

*
The languages Ll and LTP are now both extended byLanguages and axioms.

adjoining

(, ) (i) a constant Vo' and

(ii) variables a,b,c,...,x,y,z

called set-variables. The extended languages are denoted L K and LTPS respectively.

The inductive definition in §2.2(2) of the set of terms of type n is extended

further as follows:

(2) The constant V and each set-variable is a term of tvne n.o J~- for all no

The language L of set theory. using only set-variables and the symbols = and

*
is a sublanguage of L .

*
A formula ~ of L is said to be (LTPS-)stratified if we can assign type

*
superscripts to the variables of ~ in such a way that the resulting formula ~

is a formula of LTPS; in this assignment. each metaclass variable is to receive

the same type at all occurrences in ~. but no such restriction is made on the

assignments to Vo and set variables,. In particular. every formula of L .is

stratified in this sense. The following are some simple examples of LTPS-stratified
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formulas

(3) (i) V ( X " X, V
n 0

(ii) x E X

(iii) x,x) «' x

But the formula (x.X) ~ x is not stratified.

Axioms of S

I. LTPS-Stratified Comprehensio!!

(3A)(VX)[X E A t/lJ

'A'for each stratified ~ of L in which does not occur

II. Weak Extensionality

(3X)(X~A)A(VX)[X ~ A+-+ X ~ B] ...A = B

III. Pairing

(Xl.X2) = (Vl.V2) + X, = Vl A X2 = V2

IV. Sets and metaclasse~

a)

b)

c)

0

(3X)(x = X)

(3x)(X=x) ++ X f: V

Xf:x+Xf:V
0

v. Empty Set

(3 la) (Vx)(x/;a)

For the remaining axioms, a =Def [the unique a s.t. (Vx)(xia)]. Then by IV c),

(VX)(XiO). The further symbols are as introduced by Definitions 2.1,2.3,2.4.
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VI. Operations on sets

a) {xl'x2} £ Vo

VII. Infinite set

(3a) [0 ~ a " (Vx)(x ~ a + x u {x} ~ a)]

VIII. Replacement on Vo.

not in 1!1).for each formula ~ of L "('b'

IX. £-Induction on V.
o

(Vx)[(Vy£x)$(y) ~ $(x)] ~ (Vx)$(x)

for each L ~-formula W.

x. Univer~a-l~-h~-ic~,.

(3C){Fun(C) A (VX)[(3U)(U£X) + (3U)«X.{U}) £ C A U £ X)]}

Theorem 3.1

(;) S

(;;) S

is consistent.

is an extension of ZFC

be proved in the next subsections §§3.2.3.3. Part (ii)
f!Q.Qf.: Part (;) w;l

quite simple. but a few points are worth noting. IV expresses that every set is a

meta-class and that V. which is transitive. is exactly the range of the set
o

variables.(9) It is not excluded that there are distinct empty meta-classes. but

there is only one empty set. Hence Extensionality holds for sets. If $(x) is any

formula of set-theory L we take
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[xl~(x)] =Def [XI(3x)(X=x " ~(x»] .

Then by Def. 2.1 and lTPS-Stratified Comprehension

A = [x 11/1 (x)] + (Vx)[x £ A 1/I(x)] .

It is easily checked that the definitions of { .} and U are in agreement with

the usual ones. For the operation p we need also to observe

Xs.X+Xf:Vo;

this is a form of the Separation axiom, which follows from Replacement. As to VI d),

this merely says) agrees with the usual pairing operation on V; all we
o

really need. though. is closure of V under pairing. Replacement and ~-Induction
o

in ZF are special cases of the schemata VIII and IX. using only L-formulas 1/1. Note

that no stratification restriction is made on 1/1 in the full schemata. To obtain

Universal Choice for sets, we can take

where c exists by X. Then we have

Fun(CO) A (Vx) [X f o + Co(x) £ x]

*
Remark. s is ~ a conservative extension of ZFC. For we can interpret the theory

*
MKC of Morse-Kelley (with choice) in S .taking as the range of the 2nd order

variables all X ~ Vo such that (3y)(Y£X) v X = 0. As is known. MKC is stronger

than ZFC because we can define truth for L in MKC and use it to prove Cons(ZFC).

MKC is essentially the 2nd order system with full comprehension extending ZFC.

Even more, we can interpret the simple theory of types §2.2(7) in the obvious way in

*
S with the variables of type O ranging over Vo. On the other hand, if we

*
simply replace the axioms V -X of S by those of ZFC and keep VI d) (for

ordered pair on sets), the resulting system can be shown to be a conservative ex-

tension of ZFC.
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§3.2. The consistency proof: construction of the model. Part (i) of Theorem 3.1

will be established here by Jensen's methods [J]. The proof assembles the following

three elements:

(i) Specker's [5p] reduction of consistency of NF to existence of models

~ T = «U. ). <E. ». Z of extensional type theory with arbitrary integer types i E Z
, , , E

and having a shifting automorphism

a: u; + U;+l

* .
Namely. ~ = (uo.~ ) withfor al

a e: b .-a e: a(b)
o

gives a model of NF. The same construction works just as well for NFU and type

theory with Weak Extensionality.

(ii) The use by Ehrenfeucht and Mostowski [E-M] of Ramsey's theorem to get

models of first-order theories with indiscernibles. {Ci}i~I in given orderings

(It<). When these models are generated by Skolem functions from the ;ndiscernibles

we get elementary substructures having automorphisms induced by those of (It<).

Jensen applied (ii) to get models ~ of (Zermelo set theory) + (Skolem axioms)

{ci}i~Z and shifting automorphism induced by a(ci) = ci+l.

*
A Z-typed model is formed from Ui = {xix ~ c;}t and thence a model ~ of NFU

by (i). The same methods were used to show the axioms of Infinity and Choice con-

sistent with NFU.

with indiscernibles

to get such ~a,In Part II of [J]. Jensen showed how. given any ordinal

which are end extensions of a. This employs:

(iii) The generalization of Ramsey's theorem to certain infinite partitions

by Erdb's-Rado [E-R].
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previously in the literature. though little needs to be added to Jensen1s or other

well-known work on indiscernibles to obtain it. Appendix I also contains basic

definitions concerning indiscernibles and Skolem fra g ments for L and the state-
oow

ments of known results from which the Theorem of App. I is derived.

We now proceed with the proof of 3.1(i). ~ K be an inaccessible number.

RK the set of all sets of rank < K and R' = R u{R }. Enlarge the language L
K K K

of set theory by adding constant symbols a for each a � R'; this language is
K

denoted L(R~). Consider the following set of sentences EK of sentences in

l (R'):ww K

Vx[x t: a -w x = '6]

bEa
(lJ for each a " R~ .

A structure satisfies EK just in case it is isomorphic to an end extension of R~.

Let LA be the least Skolem fragment of Loow(R~) which contains the sentences

of EK. LA contains for each formula (3x)~(x.yl Yn) (n ~ 0) an n-ary function

(or constant) symbol f3x~. The cardinality of the set FmA of LA-formulas is

equal to K:

IFmA I = K .(2)

(Rot£)
is aNow let O be the first inaccessible cardinal greater than K.

model of ZFC. There exist functions F3xq, on Ro so that

(3)

(I/>EFmA):
is also a model for SkA' the Skolem axioms in LA

(4) +~(f3x~(Yl Yn).Yl Yn) .
(3x).P(x,yl'...'Yn

Note that if ZFC ~ (3Ix)~(x.yl Yn) then F3x~ is the set-theoretical operation

on Rt5 which gives x as a function of Yl Yn. In particular. the operations

{ .} of unordered pair. and ( ) of ordered pair (defined from { .} ~

usual) are Skolem functions. as are the operations U of union a n !:I p of power set.

This is a very important point in the proof.
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Consider the set

(5) = {R K < a < a and R i s closed under all the functions F3xI/J 12.!:. I/J~FmA} .
.0 (1 a

10 is linearly ordered by the �-relation; we write < for the restriction of

to

£

10.

110(6) = ~.

then weFor it is seen by the method of Montague and Vaught [M-V] that if Ra £ 10

can find R13 £ 10 with a < 13; also 10 is closed under increasing unions.

It follows by the Theorem of Appendix I that there exists a model

(7)

containing a set {Ci}iEl of indiscernibles ordered in the type of the integers,

ieee satisfying (i) of the following, and satisfying two further conditions:

(8) ~~ F ~(Cj o...oCj ) whenever

1 n
il<...<ini) ~ F ~(Ci, Ci

n

and jl < ...< jn .

for all i l < ...< i whenever ~ 6 ~(R
n o I"(iii) ~ F ~(Cil Ci

R )

al ann

ill 10°
an

Now take

(9) ~ = (M.!~. ( ~~ ) ~!FmA) ~

(i) M is the subset of Ml generated from {ci}1!Z byall ~~(~!FmA). ~

(ii)

Since ~ F SkA'

(10) !D! ~ LA-elementary substructure of :Dllt SO that conditions 8(1)-(111)

hold f2!: !D! 1n place of !D!l.

(ii) ~o =LA ~, .~

restricted to M, as is each ~xlf>.
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In particular,

(i) ~I to ZFC

( ; i ) ~ ~ (Vx) [x E a 1-+ W b x = 01 for each a E: R I ,

I E:a K

(iii) ~ r (VY1 Yn)[Yl Yn ~ ci + f3xIP(Yl Yn) ~ ciJ

(iv) ~ F (ci£Cj) whenever i < j .

(v) ~ F Vx.y [y £ x " x £ ci + y £ ci] for each i

(i) R u {R } c MK K -

(ii) for each a £ R'. (a) = a. and
K mi -

(iii) for each a £ R~ ~ b £ M. b £~ a -b £ a.

Note that each a £ R' is the O-ary Skolem function corresponding to the sentence
K

(3x)(x=a). It follows by (ll)(iii) that

a ~ c. for each; ~ Z and a ~ R'
~, -K(l3)

We can establish:

(14) ~ has an automorphism a: M + M satisfying a(ci) = ci+1 for all; E Z.

a must also satisfyTo be such an automorphism,

of !1!1 .(15) a(G(bl bn)) = G(a(bl) a(bn)) for each G = ~x~

Each element b of M has some representation in thea is defined as follows.
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b = G(c. ,...,c;

'1 n

for some G = ~xq, of ~ t since a composition of Skolem functions is again a

Skolem function We take

a(b) = G(C;,+l...

is well-defined, suppose given another representationTo see that a

b = G1(c. '...'C J" )

Jl m

G(c = G' (Cjl+l .Cjrn+l )
+l'...'c ;+1n

follows from

G(c; c; ) = G'(Cj Cj

1 n 1 m

a is seen to be one-one and onto and, finally, an auto-by indiscernibility.

morphism. by the same facts.

We next use ~ and the {c.}. z to form a Z-typed structure:
1 1£

where

( ; ) u; = {a I a E M ~ a 1m c; } ~

( ; ; ) a E. b ~ a E U. .b E U . +1.a ~ b and b c Cl.. 1 1 1 :lj, m

Here b ~ ci abbreviates (Yx)[x ~ b ~ x ~ ci]; this is added to insure

Weak Extensionality. For if we have blt b2 � Ui+l and know simply that

Ya � Ui [a ~ bl ~ a ~ b2] it does not follow in general that bl = b2. But

Ya � Ui [a �i bl ~ a �i b2] does imply bl = b2 when (3a � Ui)(a �i bl). Note

that we may consider each G = ~xt/l as acting on each Ui separately since by

(ll)(iii)

.ci +1) .
n



26

Finally, we form a Specker model !Dl from !IJ1T:

where

*
We give the following interpretation of L in u .

0.

( ; )\'1 the variables A.B.C X.Y.Z range over Uo.

(ii) the set-variables a.b.c x.y.z range over RK.

iii) Vo is interpreted as RK.

*(iv) = is interpreted as =. .and £ as E .

(v) the pairinq symbol is interpreted by the function ~XI/J

'lJb. F3xI/J(a.b) = (a.b) = {{a}.{a.b}} .

where in

3.3. The consistenc : verification of the axioms.

*
To spell out how the properties of ~ reduce to those of ~ via ~T we

consider a language L!DI appropriate to ~. thus extendinQ the lanQuaQe LTPS.

T

Its symbols and their interpretations are specified as follows.

( . ) . bl A i B i C i X i V i Zi
1 Varla es , , ,..., , ,(1) of each type i E: Z. interpreted as

( i i )

ranging over Ui.

set-variables a.b.c x.y.z. the constant V. and function svmbolso , -J"' *

f3x4l. fQ!. 41 .i!l. FmA. each interpreted as in LA.

The sets of terms of type i in L are generated inductively as follows:
~T

(2)

i ;

(i) each variable of type i is a tenl1 of type i;

(ii) each set-variable and the constant Vo are tenl1s of typ~ i for all

(iii) .11. f3x~ is n-ary (~~FmA) ~ tl tn are of type i ~

f 3 x~ ( tl tn ) i s of type i .

,- b -a ~o a(b)
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(2)(ii) is coherent since R1c U,.for all by 3.2(13),(16). Under any
K-

assignment to variables of type j in U., each term t of type i has a value
J

(tJ in U.. The atomic formulas of L"" are described just as for L
TP ' but

~T ' ..'IT

now using the preceding sets of terms; they are just those of the form

(3) (i)

(ii)

(tl=t2) for type (tl) = type (t2) ~

(tl ~ t2) fQ!:. type (tl) + 1 = type (t2); ~ tltt2 are terms

of Ltm .

-""T

Given any appropriate assignment to the variables. the formula tl = t2 is to be

satisfied in ~T just in case (tl)~T = (t2)~T and the formula (tl E t2) is to

be satisfied just in case (t l ) E.(t 2) for i = type (t l ). Now there is a
~T' ~T

possible ambiguity. due to (2)(ii) and the fact that we are only using one symbol E

in ~. Each term t of type i is built up from Vo. set variables and variables

of type i by the function symbols. We may write it in the form

i i
)V1'...'Vm .(4)

t(xl.ooo.xn.

It may be that n = a or m = 0. If m > 0 then i is uniquely determined by t.

Otherwise we have a term of the form t(x, xn); all such are called the .term~

indefinite type. It must be checked for atomic formulas (tl ~ t2) in which either

tl or t2 is of indefinite type that the interpretation (3) is well-determined.

This is true because

( tl)!IJ! = a. ( t2)!IJ!

b ~ ci for each

a ~ R1).
K ..

11 1

With each formula l/I(xl xn. Vl Vmm) of L!IJ!

T

~-(xl xn. Yl Ym) which may be considered the translation of 1/1 ~--

language of (!JJl. (ci)i~Z).

~ and each Ui is an end extension of R:. In particular if

= b under an assignment and t2 is of indefinite type. then

ii thus for a ~ Ui we have a ~i b.. a ~ b ..a ~ b (and

is associated a formula

into the

(5) (;) ~ t of the form (4). t- ~ t(x1 xn. Y1 Ym);

(;i) (t1=t2) ~ (ti=t2);

(;ii) (t1 ! t2)- ~ [ti! t2 I\ (Vx)(x ! t2 + x £ c;)] f.2!:. t2 of type i +1;
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(iv)

{vi )

The followingIn (iii) the choice of i is arbitrary for t2 of indefinite type.

is then easily proved by induction.

i,
!f.. 1jI(Xl'...'xn' Vl

i

Vmm) !!!2. al an £ RK.~1. is a formula of L~

T

b1 ~ U i b ~ U .then1 m lm -

-(!m, c; ;E;Z) I= \jJ-(al'...'an' bl'...'bm).'lJtr F 1ji(al an. bl bm:

w 1 .* *
e a so have assoclated with each such ~ a formula ~ of LA got by

suppressing types, i.e. each variable Vi of ~ is replaced bya distinct variable

y.

i, i

!f $(xl'...'xn' V, ,...,Vmm) is a formula of L!Dl

T

~ al'...'an £ RK'~2.

bl bm £ Uo 1!!!!!.

i i

Proof. By induction on ~. There are a few points to consider here. We use

repeatedly the fact that a preserves all Skolem functions ~x~ and in particular

that a(a) = a for each a ~ R1 (o-ary Skolem functions).
K

(i) If ~ has the form tl = t2 we can write it in the form

tl(Xl'...'Xn'Y~'...'Y~) = t2(Xl'...'Xn'Y~'...'Y~) (not all variables need actually

occur on each side); is uniquely determined except in case both tl't2 are

indefinite terms, in which case the statement is trivial. Then byapplying ai to

both sides we get

,an'b1'...'bm) = t2(a1'...'an'b1'...'bm)

(each term evaluated in the appropriate structure)
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( ; i ) If w has the form t1 ( t2 we can write it in the form

( i i ) ( i+' i+'
tl xl'...'xn'Vl'...'Vp � t2 xl'...'xn.Vp+l Vm )

for some O ~ p ~ m, where again is uniquely determined except when both tl ' t2

are of indefinite type; in that case the statement is again trivial. Let

dl = tl(al""'an'bl".'.bp) and d2 = t2(al""'an'bp+l 'bm)' We have

*

dl £ d2- dl £0 a(dZ) (by defn.)

i i i
The result follows from a (dl) = tl(al'...'an'a (bl)'...'a (bp»'

i+l i+l i+l
a (d2) = t2(al'...'an'a (bp+l)'...'a (bm».

(iii) The induction step is trivial for -, v, and existential quantification

with a set variable az. We suppose then that it holds for e and prove it for ~

when

-(3d£Uj) ~* 1= e(a1'...'an'b1'...'bm'a-j(d»

i i

-(3d£Uj) ~TF e(a1'...'an'a 1(b1)...'a n(bm)'d)

;1 i

-~ F ~(a1'...'an.a (b1) a n(bm» .

*
I. lTPS-Stratified Comprehension is true in ~ .Consider an instance

(3A)(YX)[X ~ A ++ ~] of this scheme. let the parameters of ~ be xl'...'xn'

Vl'...'Vmi we write ~ as ~(xl'...'xn' Vl'...'Vm'X). Since ~ is

This completes the proof of Lemma 2.

*
While by the definitions of §3.2. the properties ~ of ~ are completely de-

termined by those of ~. we get a usable reduction only in certain cases; in par-

*
ticular this is provided by Lemmas 1 and 2 when ~ is stratified. so ~ = ~ for
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*
LTPS-stratified we can find $ in ~r such that ~ = $ ; without loss of

generality we can assign X the type O in this stratification. Write $ as

.il im o
~(xl xn. Vl Vm .X ). By Lemmas 1 and 2. for any al'...'an ~ RK,

b1 bm I! U and X ( Uo
0

i
*

~ ~ (j)(al an. bl bm.x) -~ F 1ji(al an.a (bl) a m(bm).X)

i
m(bm) .x)-(;JJ!.< c; );/Oz F 1/I-(al'...'an'a

11
(b, ) , ...,a

-~ F e(x)

together with a finite number of constant symbols

By separation in ~ we can find b+ f M with

e(x) is a forrnula of l

{ci}i~Z.
from R' and from

K

and ~ F e(x) .

But P(co) £!Dl cl and cl is transitive

and a-l(b+) £:m coo Let b = a-l(b+);

Since b+ £ ~ Co we have b+ ~ P(co

+
in ~ from §3.2(11). Hence b f~ c

we have for al x ~ co:

w
x ( b -x ~ o(b) and a(b) .s. ~ c

. 0

+
~x ~ b

*

~ F $(al an. bl bn.x)

(Vx1'...'xn' V1'...'Vm)(3B)(VX)[X E B ++ ~(x1'...'xn' V1'...'Vm'X)] is true

*
in ~ .

* *
II. Weak Extensionality is true in ~ .For. if a,b ~ Uo and (~x ~ Uo) (x ~ a)

and (Vx ~ uo) [x ~* a .-x ~ * b] then (~x � UO)(x ~~ a(a) & a(a) ~ co) and

(Vx ~ uo)[x �~a(a) &a(a) S Co -x ~~a(b)& a(b) s.~ co]. Hence both

a(a), a(b) S~ Co and (Vx ~ co)[x �~a(a) -x ~~a(b)]. so a(a) = a(b) by

Extensionality in ~. and then a = b.
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This is a special case of the following:III. Ihe Pairing Axiom is true in ~~.

(6) symbol andIf <I>

~ 1= <I>
a

1= <I> .members of c -So :m
0

Remark. (6) is the essential point which permits extension of Jensen's proof to

systems with additional axioms which may contain Skolem function symbols. but are

*
free of '~'. By Schema I. we cannot extend (6) to all ~ in LA; for example.

*
-(3A)(VX)(X~A) is true in !IR but false in !IR .It is instructive to see what goes

wrong with another example. using the symbol for the singleton function. !IR satis-

*
fies (VX.Y)[Y ~ {X} ++ Y = X], but this is false in !IR since for a ~!IR Co we

have a ~* {c-l} -a ~!IR a({c-l}) & a(c-l) S..m ~o. But a({c-l}) = {a(c-l)}

*
= {c } t1'"' c , so {c 1 } has no ~ -members. This does not contradict

o !:0"" o -

!IR* F (VX)(3A)(VY)[Y ~ A ++ Y = X] by Schema I; we return to this in connection

with Axiom X below.

* *
Axioms IV. V. VI and VII of S are true in ~ .These are the axioms relating sets

and meta classes and stating closure of Vo under the usual operations. Theyare

jreted as R and 0" is the identity on R'.
K K

By this we may further strengthen our con-

easily checked because V is inter~
o

*
so £ agrees with £~ on this set.

sistency result as follows:

* (V)(7) ~ F <I> o for any sentence <I> 2!- L which 1str~Lm RK.
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This depends only on the interpretation of the set variables as ranging over R

*
aDd that 'l)1 is an end-extension of (RK.~). For the same reason we have:

K

IX~ £-Induction on V is true in ~ .
0

x. Universal Choice is true in ~~. If we write this axiom out without the

abbreviations of §2.4, it takes the form

(8) (3B)«YX.Yl.Y2)[(X.Yl) £ B " (X.Y2) £ B... Yl = Y2]

A (VX){(3U)(UEX) + (3U.Y)[(X,Y) E B A (VZ)(ZEY ++ Z = U)}

This is a stratified sentence; we may write it as ~w for ~ in ~. assigning

ype 1 to each of X.Vl.V2.V. and type O to U and ,

*
just in case ~ F ~. equivalently by lemma 1. .if

type 2 to the variable B. t,

By Lemma 2. (8) is true in ~

(!IJ!, ( ti )i£Z) F 1/1.

In this case 1/1 is directly equivalent to:

(9) (3b�C2)((Vx,yl'Y2 �Cl)[(x,yl) � b " (x'Y2) � b " b £ cl ...Yl = Y2]

A (VX Ecl){(3uECO)(uEx A X .S.CO

+ (3u£co)(3y£cl)[(x.y) £ b " b s. cl " (Vz£Co)(z £ y " y s. Co -+-+- z = y]}).

In ~ we have the existence of

r = {(x.y)ly s. x s. Co A (3!Z)(Zfy)} .

Dr = {x ix c c " x ~ 0}. Since Pc. c c '" +l and each c. is closed under pairing,
-o , -,

by 3.2(11), we have r ~cl hence r E c2. By the Axiom of Choice in ~, there

exists b ~ r with Fun(b) " Db = Dr. Hence also b ~ cl and finally b E c2

(all these statements in the sense of ~). It is direct to show that b satisfies

(9) in !IJI.

*
This completes the proof that ~ and hence of Theorem 3.1.is a model of s'
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cussion relevant to this point cf. also the end of the next subsection.

(ii) The language ~ used as a tool for the consistency proof may actually

be thought of as providing a much more liberal stratification set-up, with $

*
stratified if it is of the form ~ for some finite ~ in ~ without any

I but also Vl = PVo'constant symbols from :m. For example, not only sets and Vo

V2 = PV1' etc. can be assigned any type when stratifying by this set-up. We

could further permit the use of variables ranging over Vl' V2' etc. which would

again be assigned any type. The problem would be to give this a simple organization.

category theory, known as Yoneda's Lemma. At the same time we shall see that the

defect (discussed in §2.4) of the present stratification set-up for pairing blocks

us from establishing a completely unrestricted formulation of this theorem.

We must first indicate in more detail how the basic notions and examples of

category theory(ll) are to be represented in S*. For this purpose it is convenient

to use Greek letters a,6,y,...,~,n,~ as additional variables ranging over meta-

classes; these will only be used, though, for morphisms in a category.

A category i~ here taken to be a structure of the form

A = (O.M.C.DO.Dl)(1)
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Horn (X.V) = [ala f M A Dn(a) = X A Dl(a) = V]{2)

When indicating dependence offor the meta-class of all A-morphisms ~: X + V.

these various collections and notions on A. we use subscripts 'A'. e.g.

§§2.1, 2.3,

OAt MAt HomAt etc.

The conditions to be a category are first-order SOt following

*
we have the existence in S of a meta-class Cat such that

(3} A � Cat -A has the structure of a category.

Suppose ~ is any finite-order property of structures of a certain signature

for which we have associated a finite-order definition of homom-~~map between

structures satisfying ~. We then form

x such that $(X)the ca teqory 4>v 2Lm(4}

This is the structure A of the form (1) whose objects are given by O = [XI;(X)]

and whose morphisms are triples a = (F.X.Y) where X. Y � O and F is a homo-

morphic map of X into Y. The members of C are the triples (a.6.Y) of the

form a = (F.X.Y} 6 = (G.Y.Z) and Y = (F o G.X.Z) where F o G is the usual

each of M,C,Do'Dl is defined byanJust as for 0.composition of maps.

LTP-stratified condition. Then the structure A = ~V so formed can be shown in

*
S to satisfy all the conditions to be category. i.e.

~ «Pv £ Cat)(5) s

In particular we may speak in S' of

ClassV of all meta-~lasses.(6) the category

ieee the category of all X in V without any additional structure
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{~(X) ++ (VU~X){u=U)). Similarly we may deal with GrpV = the category of all group$.

ToPV = the category of all topological spaces. etc. Finally. we write Catv for

the category of all categories. This takes the form

Catv = (Cat. Funct. 0. Do. Dl){7)

where Funct consists of all functors between categories. The statement

*
(Catv � Cat) is established in S

informal statement §1(3).

Given categories A = (OA'MA'...) , B = (OB'MB'...)'

ned bya pair of maps FOb: OA + OB and FMor: MA + MB. As

, for FOb(X) and F(a) for FMor(a). Finally we put

as a special case of (5); this represents the

each functor F: A ~ B

in Catv is determi

usual we write F(X)

to B]Funct(A,B) = [FIF is a functor from A

= HomCat

V

(8)

{A.B) .

The natural transformations n: F + G between FtG £ Funct(AtB) may be considered

to be maps n: OA + MB satisfying n(X): F(X) + G(X) (in B) for each X £ OAt

and the usual commutativity conditions. We can then form

(9) Nat(A,B) = [T11 T1: F + G for some F,G ~ Funct(A,B)] .

with the usual composition. domain and codomain of natural transformations we obtain

th~ structure

BA = (Funct(A.B). Nat(A.B). 0. Do. Dl)(10)

That is now the formulation of theto belong to Cat.which can be shown in S.

*
statement §1(4) in S. As already noted, A, B are considered here to be variable

categories, and this is the only one of the statements in §1(1)-(4) which makes

*
essential use of parameters in the comprehension schema for S. We have also used

parameters implicitly at various points, e.g. in the definition (2) above.

Now let U be any meta-class and A = (O,M,...) any category. We denote by

A t U the substructure of A obtained by restricting both 0, M to U,
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A r u = (0 n U, M n U,...).

When A is <Pv we write <PU for A ~ U. Instead of (ClassV)U we write ClassUt

similarly GrpUt ToPUt etc. A is said to be a U-category if A ~ U = A.

We wish particularly to consider the cases U = V = the (meta)-class of all
o

~ and U = Vl = PVo = the meta-class of all (meta)classes of sets.(13) Note

that this is the first place where we begin to make use of the special class V in
o

*
S; all of the development sketched up to this point can actually already be carried

*
out in Sl. We write

(i) Set = ClassV .

0

(ii) Class = ClassV

1

for the cateQory of all sets and the ~ateQory of all classes of sets, resp.

If A = (OAIMA"...) is a V~-category then
0

(13) a.b £ °A- HomA(a.b) £ V,

This permits us to establish a functor

(14) Ha: A ~ Class for each a ~ OAt

given by (;) Ha(b) = HomA(a.b) for each b £ °A and

(Ha(S))(a) = S o a for each a: a + b .1.!!.

Written out more explicitly. (ii) takes the form

(;;)1 Ha(8) = [(a. 8 ° a)1 a: a + Do(8)]

or

(ii)" Ha = [(6. Ha(6»1 6 ~ MA]

= [(~.Z)I ~ ~ MA 1\ z = [(a.~oa)1 a: a + b]]

Since sets can be paired with classes without restriction in LTPS' the defining
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condition for Ha is LTPS-stratified. But we are blocked from defining an

analogous

for arbitrary A because HX(B) is essentially of one type higher than B.

AFor any functor category B and F,G: A + B, let

Nat(F,G) = [11111 is a natural transformation of F into G](15)

= Horn A(F,G)

B

The following is a form of Yoneda's Lemma which can be established in A".

v: F(a) + Nat(Ha.F)

is determined byThe usual proof defines v(x) as n for x ~ F(a). where n
x x

(i) nx(b): Ha(b) ~ F(b) for b ~ OAt and

(ii) (nx(b»(a) = (F(a»(x) for each a ~ Ha(b).

Again writing (ii) out more explicitly gives us

(ii)' nx(b) = [(a,y)1 a f Ha(b) A y = (F(a»(x)]

= [(a,y)1 a £ Hom(a,b) A (a,(x,y)) £ F] ,

and

(ii)" T)x = [(b,Z)1 b ~ QA and Z = T)x(b)].

Once more the defining conditions is LTPS-stratified. Finally.

v = [(x.nx)1 x ~ F(a)] is defined by one further abstraction involving pairs of

sets and classes. Thus the existence of v with its expected properties can be

*
proved in S .

Note that once more we are blocked from making a more general statement (for A

an arbitrary category) because nx makes essential use of (intuitively) mixed types



38

On the other hand, a typical restricted fonnulation YL of Yoneda's Lerrma (such as

given in [M2] p. 61, but re-expressed in present tenns, reading "member of V" for
o

"small") requires that A be a V -category for which Hom A (a,b) ~ V for all
o o

*
a.b ~ OA. YL is prima-facie stronger than such YL.

It is also usual to express YL in the form of a natural equivalence between

two functors E. N: A x (SetA) ~ Set. with E(a.F) = F(a) for F ~ Funct(A.Set).

*
We meet a problem when attempting a corresponding fonnulation in S for functors

E.N: A x (ClassA) + Class

because of the mixed type levels in the definition of E. This problem would not

arise if one used a more liberal kind of stratification scheme of the kind suggested

in Remark ii) of the preceding subsection.

Remark. To avoid possible confusion about aims. something should be said comparing

the kind of foundation for category theory sought here and the set-theoretical

foundations pursued in [F]. There the aim was to eliminate unusual hypotheses. e.g.

about the existence of inaccessible cardinals. from the foundations of category

theory by examining the kinds of closure conditions on "universes" that are actually

needed in practice. Here the aim is to set up a formal theory to encompass unre.

stricted statements from the theory of structures and categories more or less as

they are presented to us. As discussed in the preceding section, we have not

hesitated to assume the existence of inaccessible cardinals to establish the exis-

tence of such a theory. These aims are evidently not in conflict. Nevertheless,

one might expect that an improved solution for the present aims would converge with

the other ones.
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(cf. espec.

Annendix I. Models of L sentences with indiscernibles.
row The following definitions and facts are taken from Keisler [K]

Lectures 13. 14) and Barwise and Kunen [B-K]. The formulas of Lrow

using arbitrary conjunctions and disjunctions in addition to the usual finitary

operations of the lst-order predicate calculus. By a fragment LA of Lrow we

of formulas closed under subformulas and the finitary

are built up

mean one with a ~ FmA

operations. LA is a Skolem fragment if it contains for each formula

3x ~(x.Yl Yn) (n ~ 0) an n-ary function (or constant) symbol f3x~ ; every

fragment can be enlarged to a Skolem fragment. If LA is such, SkA denotes the

set of sentences in LA of the form

VY1 Yn[3x <t>(X.Yl Yn) ...<t>(f3X<t>(Yl Yn).Yl Yn)]1)

In the following, LA is assumed to be any Skolem fragment.

~ ranges over one-sorted LA-structures; the domain of ~ is denoted by M.

~.al'...'an) is the structure ~ with al'...'an adjoined as distinguished

elements. Given a linearly ordered structure (1,<) with I S M, I is called a

set of n-variable indiscernibles for ~ (relative to LA) if whenever

andand b, < ...< b
n

al'...'an' bl'...'bn £ I and al < ...< al

~(xl'...'xn) is in LA then

-:IJI F 0) ( b1 bn )(2) ~ F cp(al an

is called a set of indiscernibles if it is a set of n-variable indiscernibles for

each n.

is a model of SkA and

in (In' <n> and bl < ...< b

Lemma 1 [B-K] (p. 314). Suppose th2t for each n, !Dln

(In' <n) is an infini-te linearlv ordered set of n-variable indiscernibles -in !Dln.

Suppose further that for aJl al < ...< an n 1!!.

(In+l' <n+l) we have

(~n+l.bl bn) .
~n. al an) =L

A
(4)

Then given any infinite linearly ordered set (It<)
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( I. <) is a set of indiscernibles an~

(5) (~.al an) =LA (!rt.b1 bn

(6) f: [Dl" -t- c.

(This is proved by making use of the Erdos-Rado generalization of Ramsey's Theorem.

Lenma. 3. Suppose cS is inaccessible and

:D1 = (M ) and that

-IFmAI < a. Suppose ~ ~-a structure

.10 s. M ~ 1101 = a. btl < be any linear ordering of

10. Then there is for each n an infinite set In s. 10 2!. n-variable indiscern-

~such that for~ al < ...< an .1!!. In ~ bl < ...< bn .1!!. 1n+l we have

tm.al an) =L tm.bl bn) .
A

(7)

f!.Q.Qi. Let y = 21FmAI .so y < ~. Now. as in [J]. consider the following family

of partitions f of [Io]n in P(FmA):
n
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fn ({al"'.'an}) =(8) ~ al
...< an'

with at most x1'...'xn f.r.e.g.= {4>(x, xn)l 4> ~ FmA

and ~ F ~(al an

By Lelm1a 2 there exists a realizing sequence (Tn)n::.l for (fn)n::.l; each

I c 1
n- 0

(9) for each k ~ n.

In particular.

fn([In]n) = 'T }
n(10) 'T

n

in In+l we havein IHence if a1 < ...< a and b, < ...< b
nn

and fn({b1 bn}) = Tfn({a1 an}) = Ti
11

so that for any ~(Xl xn) in LA

~ F ~(al an)~~ F ~(bl bn) ;

.e. (7) holds.

This is now a corollary of Lemmas 1 and 3.Proof.

Tn S FmAo By the definition above, there is for each n an infinite set

for which
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Remark. The main new point is that !)1. I can be chosen to satisfy prescribed

conditions in the sense of (iii). But even without (iii). the formulation seems to

be new.

Appendix II. Some fonnalsystems for structural properties relative to any universe.

The systems considered here develop a suggestion due to Kreisel giving a

different means for treating statements of the sort considered in §1.(14) This is

obtained by analyzing a common explanation of such. which runs something as follows

for the first statement of §1 (to take a specific example),

(1} (POtS) £ PO.

Namely. consider any reasonably closed universe of sets Vo. Let c~o. c~ be

o o

respectively the classes of all structures x = (xl.x2) in Vo which are partially

ordered and of all pairs (x,y) = «xl'x2)' (Yl'Y2)) of such structures which are

in the substructure relation x ~Y. Then the pair (C~O, C~ ) itself satisfies

o o

In this sense (1) is true.the property of being partially ordered.

More generally, suppose given a lst-order property A expressed bya lst order

formula eA. Thus we know exactly what is meant by saying that a structure

x = (xl'...'xn)' consisting of definite ~ xl'...'xn' ~atisfies A; namely,

x 1- In particular, this is determined if x lies in a specified universe

(whichof V
0

F 8A'

Vo (each xi ~ Vi

we would call ~ Hence for each such A and Yo we can

of A on Vo'
'0

with each xi £ Vo' and x F eA} .(2)
0

Now suppose all the properties A.B X.Y.Z we have to deal with determine

extensions in this way. Then we can explain

(3) EO A .
(Xl Xn
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(Xl X ) (15)

n
i.e. that the Eroperty A applies to the n-tuple of properties

as follows:

Xl X

(CV cv")
o 0

satisfies the property At for anv reasonable closed

universe Voo

(4)

This does not pretend to be a general explanation of the relation of

it depends on dealing with properties for which weapplication between properties;

Thus nothing is said ofhave a prior set-theoretical definition of satisfaction.

properties expressed by fonnulas involving quantified variables which are themselves

1) can be

interpreted as ranging over properties.

The next step is to set up a formal system in which statements like

This can be done in the languageestablished directly. following this approach.

*
L. Moreover. it is not necessary to restrict attention to lst-order properties

eA of structures in the usual sense; we can deal with properties expressed by

*
formulas e(Xl Xn) of L in which all the quantified variables range over

V. and where the determination of whether e holds depends only on the extensions
o

*of the x. ; 0 ( I n L we read: x 'L --,-- ° -for x £ X. )

, c
on V. is in the extension of X.o --~ -~

Finally. e may contain meta-class parameters under the same conditions. (We

continue to call A.B.C X.Y.Z variables for meta-classes. though we have more

*
definite properties in mind here.) Then a formula e of L is said to be

VO-determined if'

(5) (i) each bound variable of e is a set-variable. and

ii) if X is a meta-class variable which occurs in e then each

such occurrence is in an atomic formula of the form (s£X).

wher~ s i s a set:,-~rm and

'V I
O

in place of 'XI(iii) the S~!!1~~r the constan~

in the following

Set-terms are built up from set-variables only by means of pairing.

*
Let TPl be the theory obtained from the theory S of §3.l

way. The stratified comprehension scheme is replaced by:
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" e]}ITP,(3A){VX){XEA ++ (3Xl' Xn)[X = t(Xl'...'Xn

t is a term with variables Xl'...'Xn each of
where e is VO-determined,

which occurs in e (but 'A', do not).'x'

*
Axioms II-IX are the same as for S. but the axiom X of Universal Choice is

replaced by one of the usual forms of the Axiom of Choice for sets(16). Thus
TP1

*
!r. the consistency of TPl

*
.S .more or less following the introductory

Briefly. this proceeds as follows:

Let M = R~ where K is inaccessible.

can be proved by muchis asubtheory 9f S. HowevE

more elementary methods than fo!

ideas.

We interpret the set variables as

*
ranging over M and Vo as M. The language L (M) has set-constant symbols for

*
each element of M. A formula e of L (M) is said to be M-determined just as in

(5), though now set-terms may contain set-constants. Let g[ be the class of pairs
o

(t,e> where e is M-determined and t,e have the same free meta-class variables

PutXl' Xn' and only these free variables

c~t.e) = {t(al'...'an)1 al'...'an t: M ~ (M,t:) F e(al'...'an)}(6)

Let jO" be the closure of ~ under pairing; oN. .'?lJ range over .~. Then G-:

is extended to arbitrary vd in M in such a way that each G1f~ M; here we use

the pairing operation (Go.Gl) = (Go x {0} u Cl x {1}) for subclasses Gi of M.

Define

;:1JT1,Yi -..#E ~ 1 $ E $,(7)

$1 ~n
."11 is of the form t~ ,.~J and M ~ e(cM CM )

Note that only ,~ objects have n-members. We can identify two such objects if

they agree on ,:g-. We can also identify certain ..11 with elements!. of M. Then

which satisfies the axioms of TP1. For

, one first checks the case without parameters and

Irl

then gets the general case bya substitution argument.

n gets mapped into a relation

verification of the schema ITD ,
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*
.-If S ? It seems unlikely but it is not

*
could be builtPerhaps a model of S

Question. Is this model already a model o

easy to test impredicative formulas in it.

bya certain transfinite iteration of the process used in forming this model

Now we return to the formulation of the uniimited theory of structures in TP1.

For any Vo-determined 8(Xl Xn.Al An). the meta-class

[t(Xl xn)18(Xl Xn.Al Am)] provably satisfies its defining condition.

In particular we can define PO = [(Xl.X2)1~1(Xl.X2)] and S = L«Xll.X12>.

(X2l.X22)1 82(Xll.X12.X2l.X22)] taking 81 to be the conjunction of formulas

Stra(Xl.X2) and epO(xl.X2) of 2.1 with all' quantifiers relativized-~ Vo. and

similarly 82 using iliSub(Xll.X12.X2l.X22);

properties of (Xl.X2) being partially ordered or of the substructure relation.

using 2]ly set-variables with the QUantifier~17)(restricted quantifiers (3x£ X(...)

are all right since these are really of the form (3x)(x£X A ...)). Then

TPl ~ {PO.S) £ PO. In the proof of this we consider only the ~ (xl.x2) which

belong to PO. This is in accord with the idea at the beginning of this section.

We can also treat the statement §l(3) in the same way. But §1(2) and §l(4)

in other words we simply write out th~

present

TP1. We first consider the latter.

Given two categories A,B we can form the structure BA = (Funct(A,B).

Nat(A.B) ); we use here Vo-determined formulas with parameters A.B to define

Funct(A.B). etc. (This essentially reduces to the definition of x: Al + A2 by

the Vo-determi ned property (VxEA1) (3 !yEA2) [ (x ,y)E X] " (VZE X) (3xEAl ) (3yEA2 ) (z=(x .y) ) .)

The problem for §1(4) is not the definition of BA. but the proof that (BAECat).

Here we are to use the definition of Cat in TPl which requires us to verify that

a given (O,M,...) belongs to Cat by quantifying over all ~ in 0. ~ in

MI etc. In the case of BA. this means quantifying over all sets which are

If A.B are "large" categories such as Grp. Class, etc..

special problems for

functors from A to B.

there simDlv are no such sets.

As to the statement of §1(2) in TP2t the problem is that this uses the 2nd

order notion of well-ordering which is not realized by an object WQ of TPlt in

How-the sense that it is not given bya V -determined property in the above sense.
o

evert we can expand TPl to a theory TP2 for a theory of properties of sets~
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classe~, i.e. properties of elements of Vo and PVo' where we may also allow

quantifiers over PVo. TP2 can be proved consistent in much the same way as TP1.

In TP2 we can now give sense to application of certain 2nd order properties to

other 2nd order properties. The problem about functor categories disappears partly,

since we can p;-ove (VA, B�PV )[A,BfCat... BA�CatJ. But we are still blocked from
o

establishing this for arbitrary B,A. One has further problems with a general

formulation of Yoneda's len11la. Finally. the formalism of TP2 is more cumbersome

then would be hoped for.

Appendix 111. Unrestrtcted pairing in stratified systems; a problem.

To overcome the main defect of LTP or LTPS stratification. but still using

some sort of stratification set-up. we would want to start with a typed language in

which objects from arbitrary types can always be paired. One way of doing this was

presented in §2.3 Remark (ii). denoted L+p. But a more natural way is to use the

following language LTp. First the type symbols (t.s.) are generated inductively

as follows:

(1 )

The idea is that (cr.T) is the type of a ~ of objects of respective types cr

and T and that [T] is the type of a .collect~ of objects of type T. The basic

symbbls of LTp are then specified as follows:

(2) for each t.s( ) .T '£ T '£ '£ Z '£

i varlables A .B .C X. y .

(ii) relations =. EO

(iii) binaryoperation ( .).

The sets of terms of type T are defined inductively by:

(3)

.!.!!!.!!.
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The atomic formulas of LTp are just those of the form

(i)

(ii)

(4)

It is then explainedfor any toSo '[0LTp-fonnulas are built up using -.v. (3X'r)

*
in the usual way when a fonnula $ of Ll is said to be LTp-stratified.

This leads us to consider a system Sl based on LTp-Stratified Comprehension

and Pairing. as basic Axioms. LTp-stratification is finer than LTp-stratification

since the typing doesn't confuse pairs with collections. Nevertheless. the system

Slightly rewritten. they are:sion.

(3A,)(VX){X ~ A1 (3Y.Z)(X=(Y.Z) " Y ~ I)}( i )(5)

(ii) (3A)(YX){X E A+-+- (X.X) t A1}.

Note that the only way to stratify (i) in the present set-up is to assign y

some type 'r. then Z type ['r]. X type ('r.['r]) and Al type [('r.['r])]. The

only way to stratify (ii) is to assign X some type a and then Al type [(a.a)]

(and finally A type [a]). In other words. there is something incoherent in this

in aset-up. since we may substitute a stratified definition for a parameter

stratified formula. where the result cannot be stratified.

There are certain formulas ~ for which this situation does not arise. Write

$ as $(X.Al An) with distinguished variable X and parameters Al An.

Call $ uniformly stratified if whenever el(X) en(X) are stratif;ed and

without parameters then

[X � Ai ++ e;(X)] + ~(X.Al An)
M (VX)

l.::.;.::.n

(6)

is also stratified. We may think of <I> as determining a stratified operation

F(Al An) which takes stratified definable Ai to the result of substituting

their definitions in [XI<1>(X.A l A )] .
n
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Now the formulas

(7) i ) (X.X) ~ A, . (ii) X £ AlII X c A2

are ~ uniformly stratified though they are stratified. For example. for (i).

take 81 so that (VX)[X � Al ++ 61(X)] can be stratified only if Al receives

a type of the form ('.[,]). There are non-trivial uniformly stratified formulas.

for example

(8) (;) (ii)x! Al x A2 ~ x: Al + A2

where ((X £Al xA2) is

as defined in §2.1(6).)

(3V,Z){X = (V,Z) " V! A1 " Z ! A2}' and (x: A1 ...A2) is

The notion of uniformly stratified formula applies to any stratification set-up

It turns out that ~ lTP .Q..!:. lTp-stratified formula is unifo~ly stratified.

This follows simply from the fact that if we can stratify $ by $+ in one of

those languages. then the result $~ of raising al' types by m in $+ also

gives a stratification of $.

formulas is not proof against contradiction.

Thus restricting attention to uniformly stratified

*
Nevertheless it seems to me that the following system S2 may well be

*
consistent: S2 has the schema of comprehension restricted to L"TP-uniformly

stratified formulas and the Pairing Axiom.

*
Question. h 52 consistent?

By (7)(i) the immediate inconsistency (5) is blocked. In any case. even though we

*
may overcome the defect of pairing in this way. the restriction in 52 is quite

severe. It is not implausible to reject the formation of Al n A2 in general.

'-"
but DAl and Al are not forthcoming for relations Al. and these as well as

other operations should be available.

Problem. Assuming the answer to the question is positive. find a simple consistent

*

extension of 52 in which the unlimited theory of structures can be developed ~ith-

out obstacles.
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FOOTNOTES

(1) Guggenheim Fellow 1972:.73; visiting the Mathematical Institute.

Oxford. Fall 1972 and U.E.R. de Math~matiques. Universit~ Paris VII. Spring 1973.

I am grateful to the Guggenheim Foundation and to these institutions for their kind

and generous assistance during which most of the work for the present paper was

carried out. This had its source in work (done at Stanford University) summarized

in Appendix II. The material there was presented in extended form in a talk to the

Congr'es de Logique dlOrleans Sept. 3-14. 1972 under the title 'The "category of all

categories" etc.. in a theory of classes and properties.1 The new theories here

provide an improvement in a particular but important respect. necessitating a con-

siderable change in presentation.

(2) The principal means (in category theory) are in terms of Grothendieck's idea of

"universes" satisfying certain set-theoretical closure conditions, developed further

by Gabriel and Sonner, and by MacLane's distinction between "small" and "large"

categories in terms of a theory of sets and classes; c.f. further [Ml] and [F].

(3) I have in mind here particularly Quine's [Ql]. type-free systems of Ackermann

developed further by 5chUtte [5] Chp. VIII. and Gilmore [G]. The work on type-free

combinatory or A-calculi seems so far to be only marginally related.

(4) The choice of language for the kind of systems we are seeking is not uniquely

determined. In particular, the familiar simplifications made here which are per-

fectly well justified in the usual set-theoretical context could be taking us off on

the wrong path at this point. It may be that operations and relations should play

quite different roles, as they do in constructive mathematics. Martin-Lof [ML] gives

an attractive formulation of the latter which brings this out.

(5) To be more precise, in NF andis treated as defined in terms of ~

Extensionality is rewritten accordingly,

(6) I am indebted to Dana Scott for bringing aspects of this defect to my

attention and for related discussions.
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(7) It is even worse in the case of G � nX�AF(X) where we would have to use the

notion ('f function in two different senses for F and G. in order to stratify

the definition

(8') Note that the replacement in §2.l of designated individuals c in structures

by their singletons {c} already implicitly used the device of a separate pairing

operation.

standard sets.

assigning type indices as possible.

(11) We assume familiarity with these; cf. e.g. [M2].

(12) An ambiguity of notation is introduced here; this will be compounded below.

The context will determine whether we are dealing with maps Z: x... y in the sense

of §2.l, or the relation a: X + y in a category A as just defined, or F: A + B

is a functor from A to B, as explained below. It should also be notedwhen F

that for simplicity we have omitted explicit use of I in A where I: ° + M,

I(X) = 1 for each X � 0. However, in detailed explanations of the conditions to
x

be a category, a functor, etc., simplicity would require displaying I.

are classes. We can without harm identify such triples again with classes
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Otherwise we should consider the closure of Vl under pairing instead of Vl.

This suggestion was presented in unpublished notes. Some points of difference

of the present development are noted below.

Bernays had used the symbol 'n' for the relation of application to

distinguish it from the relation of membership in his theory of sets and classes,

thinking of classes as properties. Kreisel follows Bernays in this notation.

especially since one is now considering axioms which are distinctive for properties.

*
I have used the same symbol IEI to simplify the relationship with S .

from the theory proposed by Kreisel is in16) The main difference of TPl

permitting meta-class parameters in the comprehension scheme. This seems necessary

if one is to try to account for statements like §(1(4); cf. below.

To be sure there is no confusion, note that this is different from the

*
(§2.4(4» where the variables in thein the system s.definition of PO and S

quantifiers range over arbitrary meta-classes
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