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Plan

1. “Absolute” computability: machines and recursion 
theory.

2. Relative computability: degrees of unsolvability

3. Uniform relative computability: partial recursive 
functionals

4. Computability/recursion theory generalized to 
arbitrary structures

5. Significance of notions of relative computability for 
actual computation



1. “Absolute” effective computability
Origins

• Explication of the concept of effective 
computability (1933-1937)

• Church, Herbrand-Gödel, Turing, Post, Kleene

• Turing machines (1936-1937)

• Equivalence of the definitions

• The Church-Turing Thesis

• Register machines (Shepherdson, Sturgis, 1963)



‘Theory of Computation’ or
‘Recursion Theory’?

• Theory of computation emphasizes rule directed 
processes

• Recursion theory emphasizes a principal form of 
rule 

• Ironically, Theoretical Computer Science is more 
concerned with the rules than the processes

• Soare’s campaign (e.g., ‘c.e.’ instead of ‘r.e.’, etc.)



Primitive Recursive Definition
(Dedekind, Skolem)

• N = the natural numbers, n′ = n+1 = sc(n)

• Defining effectively computable f: Nk → N by 
recursion equations.  

• Primitive recursion: Explicit definition from          
0, sc and previous functions, and 

• for k ≥ 0 and given g, h, and for y = (y1,…,yk),          
f(0, y) = g(y),   f(x′, y) = h(x, y, f(x, y))



General Recursive Definition
(Herbrand-Gödel)

• E a finite system of equations in f and auxiliary 
function symbols

• E ⊦ s = t if (s = t) is derivable using substitution of 
numerals n* for variables, and equals for equals. 

• E computes f (say for f: N → N) if                             
f(n) = m  iff  E ⊦ f(n*) = m*

• f is general recursive if it is computable by some 
finite system of equations E.



General Recursive and 
Partial Recursive Functions

• Theorem The general recursive functions are the 
same as the Turing computable functions.

• Partial computable and partial recursive functions 
f : Nk →p N (in the following, typically for k = 1)

• f(n)↓, f(n) ≃ m

• E computes partial recursive f if whenever            
E ⊦ f(n*) = m* and E ⊦ f(n*) = p* then m = p.  



Enumeration of Partial Rec. Fns.

• Kleene’s Normal Form Theorem Each partial 
recursive f : N →p N is representable in the form 
f(x) ≃ U(µy. T(e, x, y)) for some e ∈N, where U, T 
are primitive recursive, µy(…) = min y(…).

• Enumeration Theorem The function {z}(x) ≃ 
U(μy.T(z, x, y) is partial rec. and enumerates all 
unary partial rec. fns. for z = 0, 1, 2,...          
(∼Universal Turing machine)

• The Halting Problems                                                    
H = {(z,x): {z}(x)↓},     K = {x : {x}(x)↓}



Decision Problems for A ⊆ N

• A is recursive (or decidable) if its 
characteristic fn. cA is recursive

• The decision problem for A is effectively 
unsolvable if A is not recursive                 



Some Effectively Unsolvable Problems

• H

• K

• The Entscheidungsproblem for 1st order 
predicate logic

• Hilbert’s 10th problem (Diophantine 
equations)

• The Word Problem for groups



Many-One Reduction and R.E. Sets

• A ≤m B  iff for some general rec. f,                    
∀x[x ∈ A ⇔ f(x) ∈ B]

• If A ≤m B and A is not recursive then B is not 
recursive

• A is recursively enumerable (r.e.) if A is ∅ 
or the range of some (prim.) rec. f

• If B is r.e. and A ≤m B then A is r.e. 



R. E. Sets (cont’d)

• The r.e. sets A are just those definable in the form 
∀x[x ∈ A ⇔ ∃y R(x, y) where R is (prim.) rec

• The unsolvable prob’s above (H, K, etc.) are all r.e.

• If T is an effectively presented formal system then 
the set of Gödel nrs. of theorems of T is r.e.

• Every recursive set is r.e.

• Fact: If A is an r.e. set then A ≤m K

• {z : {z} is total} is not r.e. (∀x∃yT(z, x, y))



2. Relative Effective Computability

• ‘Oracle’ computability (Turing 1939).  A is 
effectively computable from B if it is computable by 
a machine which may call on an “oracle” for B.

• Write f ≤ g if f is computable from an oracle       
for g, and A ≤ B if cA ≤ cB

• Can define f ≤ g iff for system of eqns. E                 
f(n) = m ⇔ E ∪ Diag(g) ⊦ f(n*) = m*, where         

Diag(g) is the set of all true g(j*) = k*.



Degrees of Unsolvability

• Post (1944): Define A ≡ B ⇔ A ≤ B & B ≤ A,     

• deg(A) = {B : A ≡ B},  deg(A) ≤ deg(B) iff A ≤ B

• 0 = deg(N), 0′ = deg(K)

• Fact: If A is r.e. then deg(A) ≤ 0′



Post’s Problem and Degree Theory

• Post’s Problem Do there exist r.e. A with               
0 < deg(A) < 0′?

• Yes! (Friedberg and Muchnik, independently, 1956) 
Construct A, B r.e. of incomparable degrees

• The priority method

• Structures of degrees of r.e. sets and degrees of 
arbitrary sets are both very complicated. 



3. Uniform Relative Computability over N

• Define f ≤ g (via e) if f is computed from              
E ∪ Diag(g) where e = #(E). 

• In degree theory f, g are given (or sought for) and 
ask whether there exists e s.t. f ≤ g (via e)

• Alternatively, fix e and define f as a uniform 
(partial) recursive function of g for all g: N → N   
via e; in general f is partial even for g total.



Partial Recursive Functionals

• Defn.  A finite system of equations E determines a 
partial recursive functional  f = F(g) if for all         
partial g and n, m, p,                                                   
if E ∪ Diag(g) ⊦ f(n*) = m*, f(n*) = p* then m = p.  

• Also write F(g, n) for (F(g))(n)

• Lemma.  If F is a partial rec. functional then it is    
(i) monotonic (g⊆h ⇒ F(g)⊆F(h)), (ii) continuous 

(F(g,n) = m ⇒F(h, n) = m for some finite h⊆g), and 

(iii) effective ( g partial rec. ⇒ F(g) partial rec.)   



The Recursion Theorems

• First Recursion Theorem (Kleene 1952).                   
For each partial rec. functional F there is a least 
solution to the equation                                                       
f = F(f),   i.e.  f(x) ≃ F(f, x) for all x.                                          
Moreover the least fixed point (LFP) f is partial 
recursive.  

• Second Recursion Theorem (Kleene 1938). For 
each partial rec. f we can find an index e such that    
{e}(x)≃ f(e, x) for all x.  



Recursive Functionals of 
Finite Type over N

• Primitive rec. functionals of finite type over N 
(Gödel 1958)

• Partial rec. functionals of finite type over N 
(Kleene 1959)

• Theorem (Recursion in quantifiers, Kleene 1959).                                                  
Let E(g) = 0 iff ∃n(g(n) = 0), else 1.                        
Then f is partial rec. in E [f ≤ E] iff f is 
hyperarithmetic. 



4. Generalized Recursion Theory (g.r.t.)

(a) Recursion over all ordinals (Takeuti 1960)

(b)Recursion over admissible ordinals and admissible 
sets (Kripke, Platek, 1964).  The least admissible 
ordinal is ω; the least admissible ordinal > ω is the 
least non-recursive ordinal (“Church-Kleene” ω1).

(c)  Degree theory on admissible ordinals (Sacks, 
Simpson, et al--generalization of the priority 
method) 



Generalized Rec. Theory (cont’d)

• Computability/Recursion Theory over arbitrary 
structures (many workers from 1961 on).

• Turing machines and register machines on 
arbitrary structures (Friedman 1971).

• Partial rec. functionals of finite type on arbitrary 
structures (Platek 1966).

• Type two LFP schemata, uniform over structures 
(Moschovakis 1984, 1989).  

• “While” schemata (Tucker and Zucker 2000).



5. Significance of Notions of Relative 
Computability for Actual Computation

• Computational practice and the theory of 
computation

• Turing machines are not a good model of actual 
computers (desktop or mainframe)

• Register machines are a better model (RAMs)

• Church-Turing thesis is accepted in principle by 
computer scientists, without effect on practice



Computational Theory and Practice

• Notions of absolute effective computability have 
little significance for practice

• Claim: The notions, but not the results, of relative 
computability, have much greater significance for 
practice

• Reasons: The requirements of efficiency, reliability, 
versatility and user-friendliness demand a modular 
organization of hardware and software.



Examples

• Built in functions and black boxes, for example for 
Boolean, arithmetical and analytic functions.  
Programs for an f from such g give f ≤ g, but 
programmer doesn’t need to know how box for g 
works.

• Functional programming languages, e.g. Lisp, ML, 
Scheme, Miranda, Haskell, etc.  Moreover, flowchart 
diagrams are implicitly functional.  



Examples (cont’d)

• Abstract data types (ADTs), e.g. integers, 
booleans, reals, lists, arrays, trees, etc.  ADTs are 
structures considered up to isomorphism, 
independent of representation. 

• “Hypercomputation”: Online and Interactive 
Computation (cf. Soare 2009, and Nayebi 
presentation to come).



Coda: What has degree theory done for 
the theory of computation?

• On the face of it, complexity theory is a form of 
degree theory

• P, NP, co-NP, Exp, etc. complexity classes, space, 
time forms

• Many open separation problems: P =(?)NP, etc.

• It has been observed that recursion theoretic 
results generally relativize to any oracle.

• But relativized P = NP can go both ways (Baker, 
Gill, Solovay 1975).
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