
COMPOSITIO MATHEMATICA

SOLOMON FEFERMAN
Recursion in total functionals of finite type
Compositio Mathematica, tome 35, no 1 (1977), p. 3-22.
<http://www.numdam.org/item?id=CM_1977__35_1_3_0>

© Foundation Compositio Mathematica, 1977, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http://
http://www.compositio.nl/) implique l’accord avec les conditions générales
d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commer-
ciale ou impression systématique est constitutive d’une infraction pé-
nale. Toute copie ou impression de ce fichier doit contenir la pré-
sente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1977__35_1_3_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/

3

RECURSION IN TOTAL FUNCTIONALS OF FINITE TYPE

Solomon Feferman*

COMPOSITIO MATHEMATICA, Vol. 35, Fasc. 1, 1977, pag. 3-22
Noordhoff International Publishing
Printed in the Netherlands

1. Introduction

Let (MT)T be the maximal finite type structure over any domains of
individuals M(o), M(l),..., M(p) with M(") = N. We use here all types T
obtained from ground types 0("), 0(’), ..., O(P) by iteration of (u T). F,
G, H, ... range over UT MT and S is used for sequences (Fi, ..., Fn).
A relation

is inductively generated by some simple closure conditions I-V given
in §2. It is shown (in §4) that for the case p = 0 this is equivalent to:

(2) G is Kleene recursive in B,

i.e. as defined in [6].
The basic generating conditions are those for explicit definition

(1-111), primitive recursion (V) and a rule called secondary reference
(IV). This last underlies effective enumeration, for which the informal
idea is that if Go,..., Gm,... is a sequence of objects (of the same
type T) presented recursively in % then Àx . Gx is also recursive in J.
The hypothesis is here taken to mean that we have a function D
recursive in % which enumerates a sequence D(O), ..., D(m), ... su,ch
that for each m, D(m) is a definition of Gm as an object recursive in
S. Such definitions may be coded in the natural numbers. Hence what
we actually generate is a relation

where e E N is a code for G from J.
Partial functionals À J . [e]J are naturally introduced in this frame-

work, where

* Research supported by NSF Grant GP 34091X.

4

holds just in case G ~e B. But they are not given the central role as in
[6]. Thus one avoids well-known annoying aspects of dealing with the
relation of being partial recursive in, such as failure of transitivity.
The tack here is thus completely opposite to that taken by Platek [11],
which makes thoroughgoing use of partial objects to act as arguments
as well as functionals. Since much work on recursion in higher types,
e.g. Sacks [12], has concentrated on getting information about all the
total G of a given type recursive in a given % (the sections of J), it

may be that the present kind of formulation is more directly useful
for current purposes.
The equivalence of (1) and (2) for p = 0 may be established by

fairly routine methods using the ordinary recursion theorem. To

prepare the ground for deeper results, one must show how higher
types can be eliminated in the relation restricted to given types.
This is provided in §6 by a theorem on the normalization of the tree
of predecessors of a derived G ~e J. The proof is by direct adaptation
of standard normalization techniques which have been used with
infinité terms for functionals in proof theory.’ Some immediate con-
sequences of normalization are presented in §7. In particular, it is

shown that certain reduced schemata R1-R5 for restricted types are

equivalent to I-V on those types. These schemata are of the same
character as Kleene’s S1-S9, but fall out quite naturally at this point.
Some possible directions for further work are explored in §7. The

development should move fairly directly into a treatment of ordinals,
selection theorems and hierarchies associated with (suitable) S. The
present schemata should also be compared with other proposed
generalizations of recursion theory to arbitrary structures, par-

ticularly those of Moschovakis [10] and Platek [11]. In this con-

nection a new rule VI called unique selection is introduced, which

happens to be derivable when the only ground domain is N.
While the rules here are quite perspicuous and intuitively appealing,

their consideration is open to the same objections as for Kleene’s
S 1-S9. The paper concludes with some speculation and questions to
see if there is more basic significance to such schemata.
We concentrate throughout on definitions and statements of results.

Most proofs are straightforward and/or adaptations of arguments

’ Platek had also used a kind of normalization in [11] to get equivalence with Kleene’s
theory over N and for selection theorems, but the details there are quite different and
more complicated. It is interesting that normalization is not needed to establish the

equivalence results here.

5

from the literature; only indications are given for the most part, with
some delicate points given more attention. Two principal sources
(conceptually and technically) are: Moschovakis [9] and Tait [14];
connections with this and other work is explained where appropriate
in the text.

Notation: The type symbols (t.s.) over p + 1 ground domains are
generated as follows:

0(0) is also written simply as 0, and n + 1 = (n - 0). (u, --~. - - - ---> 03C3n -~ T)
abbreviates (o-i-(... (r)...)) (association to the right). ii

denotes a séquence d- = (Ub ..., un).
The level lev (u) of a type is defined by:

For sequences, lev (ii) = max lev (Ui). The pure t. s. are generated by
(1)(i) and (1)(ii) restricted as follows: if a is pure and lev (T) = 0 then

(o- is pure. These are just the types n when p = 0.
The maximal type structure (Mu) over M(O),..., M(p) is given by:

Let M = U M, [all t.s. u]. We use F, G, H, a, 16, y to range over M.
Type (F) = u for F EMu. J, (S, 9t, 58, are used for sequences of
elements of M. For % = (Fb ..., Fn), Typ (J) = à = (ai, ... , (Tn) where
(Ti = Typ (Fi). If Typ (F) = (03C3~ T), Typ (G) = a then the value of F at
G is denoted both by F(G) and FG. For Typ (F) = (o,, ---> - - - ---> o,,, --->,r),
Typ (Gi) = oi, FG1 ··· Gn designates (... (FGI) ...)Gn (association
to the left). A denotes the empty sequence.

a, b, c, range over U p o M(i) and all remaining letters d, ..., z range
over N. Pk(k = 0, 1, ...) is any standard enumeration of all primitive
recursive functions Pk : N nk --> N (nk ~ 0). (,) is a standard prim. rec.
pairing function on N 2---> N. T.s. are coded as natural numbers using
this function. By the primitive recursion theorem we mean the result

giving for each prim. rec. F(z, x, s) an e satisfying Pe(x) =
F(e, x, P,(x» for all x (where Pe(x) is the sequence number for

(Pe(i)ix). This is easily proved by the same method as the ordinary
recursion theorem.

6

2. The generating rules

Each rule except the first "axiom" has the general form

The code e’ is built from one or more of the e;. In the following list,
this formation is shown under "code", and any restrictions on types
involved is given in the r.h. column.

It suffices to take a few special cases of V to obtain all, using I-IV.

2.1. DEFINITION: (i) G e J holds if it is derivable using I-V, i.e., if
(G, e, S) is in the smallest class of triples closed under these rules.

2.2. LEMMA: If G e J and G’ e J then G = G’.

2.3. DEFINITION: For e E CJ, [e]J is the unique G with G e ÍS.

7

2.4. DEFINITION: The prim. rec. function Ty (z) is defined by:

2.5. DEFINITION: For any z with Ty (z) = (ii; T), [z] is taken to be
the (possibly) partial functional from MUt x ... x M ---> MT with [z](U)
defined just in case z E Cx, in which case [z](2t) = [z]x. More general-
ly, take [z]J(U) = [z](J, U)= [z]J,U, which is defined just in case

z E CJ,U.
When Ty (z) = (A; T) i.e., with à empty, then [z] is an object of MT,

if its value is defined at all, i.e. if z E C A. As examples: for nk = 1,
[(3, (5, k, (1, 1, (1»)))] = Pk which is in Mi and for nk = 0, [(5, k, A)] = Pk
in Mo.

3. Derived rules

These take the form

i.e. if each {3i Ui is derivable by 1-V then so is G J. To prove
these it is shown how, given zi with {3i Sz, Ui, to find z’ with G Z J. In
all cases this is done by the primitive recursion theorem, so that z’
may be chosen as a primitive recursive function of one or more of the

Zi.

3.1. LEMMA: The following are all derivable rules :

(i) (Expansion)

(ii) (Interchange)

(iii) (permutation]

7Ti,j interchanges Fi, Fj

7T any permutation

8

(iv) (Identification)

3.2. LEMMA (Abstraction-Extended Enumeration): If

then

This is proved using Abstraction and Secondary Reference. It is

first established for G of type (p~O(") and then in general for types
(p - r) == (p - ri - - - - ---> r, --> o(i».
Note that Secondary Reference can be written in the form

whenever e E CJ [e]J E Col,) and e’= (4, e, i). It might also be called a
reflection principle. With any T in place of OU) it is the following
special case of 3.2.

3.3. COROLLARY: We have a prim. rec. function T(z) such that

whenever

3.4. THEOREM (Substitution, or Transitivity): We have a prim. rec.
function Sub (w, z) such that whenever

then

PROOF: The definition of Sub (which must be used in §6 below) is

by the primitive recursion theorem:

for suitable k and prim. rec. H. This follows out the inductive

generation of G e F, ÍS. Let Typ (F) = ao, Typ (J) = à = (ai, ..., u,,),

9

In the case corresponding to Indirect Reference we will have e =

(4, eo, i) and d where d ~ F, J and G :5 d F, S. (Here G is an object of
type O(i).) Proceeding by induction we have for el = Sub (f, eo):

But Sub (f, d) = Sub (f, [e1]J) = Pk(f, [ei]J). Let Hl be prim. rec.

with t ~Ht(f) J for any é. Then from f ~Ht(f) ÍS and [el]J e, ÍS we
get Pk(f, [e1]J e- J for e’ = (5, k, H1(f), e 1). Thus we take

(iv) Sub (f, (4, eo, 1)) = (4, (5, k, ~HI(f), Sub (f, eo)), i).
This completes the definition.
Substitution can be rewritten

3.5. COROLLARY (Numerical parameters): We have a prim. rec.

So(z, x) such that whenever e E Cm@"J’ then So(e, m) E Cff and

The basic rules II-V are uniquely invertible. For example,
G ~(2, el, e2) a- implies el, e2 E CJ and G = G,(G2) for G1= [el]J, G2 =
[e2]J. As another example, a ~(4,e,i) ÍS implies e E CJ and m = [e]J E
CJ and a ~m S’ Put another way: whenever G ~e J there is a unique
derivation of this by I-V.

3.6. THEOREM (Enumeration): For each à, T we can find an e such
that for any J of type 0-’ and any z,

and

The Recursion Theorem for the partial functionals given by Defi-
nition 2.5 follows directly from 3.5, 3.6. This is not needed below.

10

4. Relationship with Kleene’s schemata

We take p = 0 in this section, i.e. N is the sole domain of in-

dividuals.

4.1. DEFINITION: For G of type m + 1 and % of type à where the o-j
are pure, we say G is Kleene recursive in Ç§ via e if

The main result of this section is that G J => G is Kleene

recursive in J. The arguments used are analogous to certain ones
given by Moschovakis [9] for functionals of type 3. His results
concern recursion of type 1 objects G in ÍS = (F3, F2, F1). Mos-
chovakis defines by induction (for arbitrary J) a set N(%) of numbers
and for each e E N(B) a function fe of type 1. He shows that G (of
type 1) is Kleene recursive in J ~ G = f é for some e E N (J). If we
write G e J in place of G = fJé then the clauses for the inductive
definition of [9] may be considered to be special consequences of I-V
for pure types of level ~ 3. (In particular, abstraction is applied there
only to types 0 and 1.)

If we follow the method of proof of Theorem 3 in [9] we obtain:

4.2. LEMMA: There is a prim. rec. function q(z, s) such that

whenever {e }(U* x) :=:::: y where all ai in % are of pure type > 0, and
x = (xo,..., Xk-1), then y ~q(e,x)U.

The following is then a corollary. However, we shall give a simpler
direct proof using the machinery developed in §3 above.

4.3. THEOREM: There is a prim. rec. function ql(z) such that

whenever {e}(U):=:::: y, then y q,e, U..

PROOF: ql(z) or-as we shall simply write it in the proof-q(z), is
found as a certain Pk(z) by the prim. recursion theorem. k is chosen
to make possible the following proof by induction on e corresponding
to Kleene’s schemata S1-S9. SI, S2, S3, and S6 are treated quite
simply. As is familiar, S5 can be derived from S9 using ordinary
primitive recursion, so it is also obtained directly. This leaves S4, S8,
and S9.

11

Here e = (4, (ro, ..., rn), f, h) in Kleene’s indexing, so f e, h e.

By induction we have for {h}(U) = x and {f}(x, 9t) - y:

Thus by our substitution Theorem 3.4, if we take q(e) ==
Sub](q(h), q(f)) we have y Çq(e) U.

S8. {e}(aj,B) = aj(À{3j-2{f}(aj, (3j-2, B)).
Here again f e is found primitive recursively from the Kleene

index e. We drop the superscripts j, j - 2; 8 ranges over Mi-2-
{f}(a, (3, B) is defined for each {3 if {e}(a, B) is defined. By induction

hypothesis for each 16 E Mi-2

By permutation we get prim. rec. H with
Then by the Abstraction rule III,

Choosing e, with a:~ea,B by rule 1 we may take q(e)=
(2, ei, (3, H(q(f)))) in view of the Application rule II.

S9. {e}(z,U,B):=:::: {z}(U).
By induction hypothesis, {z}(U) ~ q(z) U so IZI(%):5H,(q(z» Z, U, B for

suitable prim. rec. HI. Using q(z) = P,(z) we may find prim. rec. H2
with H,(q(z)) ~ H2(k) Z, U, B by rule V.

This permits us to take q(e) = (4, H2(k), 0) by secondary référence.

4.4. COROLLARY: We have a prim. rec. function q2(Z) such that
whenever G is Kleene recursive in J via e then G ~q2(e) ÍS.

For a converse we must use a representation of finite type objects
by those of pure type, more specifically an operation * which maps
M, into M1ev(u) for each a such that * preserves application:

More generally, if and {3i E MP, then we should have

where m + 1 = level u and (’Yb..., ’Yk)m is an object of type m

representing the k-tuple yi,..., ’Yk) (for y; E M,, ~ m). A definition
of * is given in [5] §5.

12

4.5. THEOREM: There is a primitive recursive function p(z) such
that whenever G $:e Fb ..., Fn and G is of type (Ti - --->,rk--->0) then
for all {3i of type ri

This is analogous to Theorem 4 of [9], slightly complicated by the
larger type structure here. The proof is again by the primitive recur-
sion theorem, following the inductive generation of G ~e ÍS.

4.6. COROLLARY: If G and F,, ..., Fn are of pure type and G:5e
then G is Kleene recursive in J via p (e).

N.B. These results do not establish that the partial functionals

À U . [z](U) of Definition 2.5 are the same as the Kleene partial
recursive functionals k là {w }(U). The above statements only assert
inclusions, e.g. that À U . [e](U) is a subfunction of À U . {p(e)}(U). But
using invertibility of the rules I-V remarked at the end of §3 and
corresponding invertibilities for S1-S9, it should be possible to refine
the arguments for this section to show that the two theories of partial
recursive functionals are indeed equivalent.

5. Connections with the use of infinité terms

Infinite terms of finite types have been used in proof theory, for

example, those built up as follows.
(1) (Variables) Every variable x’, y’, zU,... is a term of type (T.

(2) (Application) If tl is of type (p - T) and t2 is of type p then t 1 t2
is of type T.

(3) (Abstraction) If t is of type T then ÀXP . t is of type (p - T).
(4) (Sequencing) If tn is of type T for each n and there are at most

finitely many free variables in all tn, then (tn)nEN is of type (0- T).
(5) (Primitive recursion) If t 1, ..., tnk are of type 0 then

Pk(tb..., tnk) is of type 0.
Let Tm be the set of arbitrary terms generated by (1)-(5). In certain
cases it is useful to fix some of the variables as parameters or

constants ; in this case we denote them instead by c’, d’,....
For each t E Tm and assignment % to the free variables of t, let

[t](ÎJ-) be the value of t at % (defined in the natural way). When Ç§ is
assigned to constants and t is closed we write [t]J for this. M denotes
[t](A).

Each t E Tm has the structure of a coded well-founded tree in N. It

13

may thus be represented in a canonical way by a function Jt of type 1.
We call t recursive if Jt is recursive, similarly for prim. rec., etc.
Gôdel [2] made use of a class PR of primitive recursive functionals

(based on impredicative primitive recursion R: Ra{30 = a, Ra{3x’ =
(3(Ra{3x)x for any suitable combination of types) in his functional
interpretation of (intuitionistic) number theory. One easily associates
with each G E PR a (prim. rec.) term tG such that G = M. Tait [14]
applied the Gentzen-Schütte method of normalization to these terms.
In this way he could characterize the 1-section of PR (and thence
recapture Kreisel’s characterization of the provably recursive func-
tions of arithmetic). My work [1] made use of a direct extension of
Tait’s for terms t with a constant c2, to characterize the 1-section
generated by PR + F2 for any F .

It is inappropriate for general recursion theory to restrict the

structure of terms in advance, e.g., to those which are prim. rec.

Rather one wants to allow the set of terms to increase as the stock of

functions which are defined by terms increases. In unpublished notes
1 introduced the following for any % : Tm iY is the smallest set which
contains the constants ci 1, ..., cnn and the variables of each type, is
closed under application, abstraction, primitive recursion and:

(4’) (Autonomous enumeration) If tn E TmJ for each n and t =

(tn)nEN and Jt = [s]J (under the assignment cri H Fi) for some closed s
in TmJ then t E Tm J.

1 showed that

(t) for % of level2, the functionals [t]J are the same as the

functionals Kleene recursive in J.

This was re-established by Schwichtenberg and Wainer [16] by a
different method. They also showed that (t) is in general false if we

replace the type level 2 by a level m > 2.

The relation G = [t]ÎJ has certain analogies to G = [e]J above. The
closure conditions (1)-(3) and (5) correspond to the rules 1-111 and V

resp., while as we have seen IV can be used to give a form of
enumeration which is analogous to (4)’. The analogy can be made
even closer by generating a class of numerical codes for terms, rather
than the terms themselves. But there still remains an essential

difference, namely: in the inductive generation of the relation G =

[t]J, îJ is kept fixed, but in that of G = [e]J, J is variable. We can
associate with each term t a code et such that for any J, [et]J = [t]J’,
but an attempt to go in the reverse direction breaks down at

Abstraction (III).

14

Returning to the subject of normalization, if a term t contains a

sub-term of the form (ÀxP . tl)t2 it is said to be reducible. Otherwise t

is said to be irreducible or in normal form (n.f.). Tait’s method

provides a suitable order of attack on sub-terms so that repetition of
the reduction step

leads eventually from each t to a term t* in n.f. with [t*B(Í!) = [t](îJ-)
for any J. The method of proof in the next section is similar, except
that the choice of e* depends also on J, i.e. we must work with pairs
(e; J) for e E CJ.

6. Normalization

It is convenient here to use the following abbreviations.

6.1. DEFINITION: :

We write e1e2... em for (... (e1e2) ...)em (association to the left).

6.2. DEFINITION: For e E CJ, the direct predecessors (z; 91) of

(e ; J) are determined as follows:
(i) If Id (e) then (e; J) has no direct preds
(ii) (e,e2; S) has (el; %) and (e2; S) as its direct preds
(iii) (ê; J) has (e; a) for each a E Mp as its direct preds, where

Ty (ê) = (0-’; p r)
(iv) (é; J) has (e; %) and ([e]"; J) as its direct preds
(v) (Pk(ej,..., enk); J) has (ei; J) (1 i nk) as its direct preds .

By unique invertibility, if (z; 21) is a direct pred. of (e; J) then
z E CI.

6.3. DEFINITION (Transitive closure): For e E CiY, (z; U) ~ (e; J) if
there is a sequence (z; 2t) = (zo; 2fi),..., (zi; 21j),..., (zn; Un) = (e; U)
such that each (zi; 3Î,) is a direct pred. of (zi+,; Ui+l). (z; N) (e ; J) if
this holds for n > 0.

15

6.4. LEMMA: is well founded.

6.5. DEFINITION: (e ; S) is called reducible if there exist Zj, Z2 and 9t
with (zlz2; U) (e; J). Otherwise, (e ; J) is called irreducible or nor-
mal.

6.6. DEFINITION:

(i) rnk (êle2) = lev (p - T) where Ty (êl) = (à ; p ~ T).
(ii) For e E C J, with (e ; g) reducible

rnk (e; S) = sup {rnk (2Iz2)1 for some U, (2Iz2; U) ~ (e ; J)},
rnk (e ; J) = 0 for (e ; J) normal.

The function rnk is analogous to the cut-rank for derivations or

terms; it measures the complexity of reducible sub-pairs (z; U).
We shall have to examine codes of the form ef, so that Ty (e) is of

the form (0-1; p It is seen by induction that e has the form

e = eoel, ..., ek where Id (eo) or the form e = êoel, ..., ek, in either case
with k - 0.

6.7. LEMMA: If ef E CJ and rnk (ef ; J) m and lev (e) > m + 1
then for some k > 0, e = eoel, ..., ek and Id (eo).

This is analogous to [14], Lemma 3.

6.8. LEMMA: If e E CJ and 7Tij(e) is given by 3.1(ii) so that 7Tij(e)E
CTr,/-iY), [7Tij(e)]1T,/-iY) = [e]J then rnk (e) = rnk (7Tij(e)).

6.9. LEMMA: Suppose
(i) F f J and G -e F, J
(ii) Ty(f)=(ii;p), Ty(e)=(p,ii;’T), lev (p) = m

(iii) rnk (f ; J) S m and rnk (e ; F, J) m.

Then rnk (Sub (f, e); J) m.

The proof of this proceeds by induction on e, using the definition of
Sub (f , e) in 3.4.

This result is analogous to [14], Lemma 2. It is the main lemma for

lowering cut-rank. For if ê E C", f E CiY, let F = [f]J and G = [e]J, F,
so also G = [êf]J. Suppose Ty (ê) = (ii; p ~ ’T), lev (p - T) =
max (lev (p) + 1, lev (,r» = m + 1. When rnk (e ; J, F):5 m, rnk (f ; J) ~
m then rnk (êf ; J) = m + 1. Then G = [Sub (f, 7TI,n+l(e))]iY and

rnk (Sub (f, 1Tl,n+l(e)); J) ~ m by 6.8, 6.9.

16

6.10. THEOREM: We have a prim. rec. function No(m, z) such that
whenever a code e E CJ and rnk (e; J) m + 1 then e’ = No(m, e) E
CJ, [e’]J _ [e]J and rnk (e’ ; J) m.

PROOF: By the primitive recursion theorem, to be set up for a proof
by induction on e, the following are the two cases which need

attention:

(i) The code given is of the form ef. Let Ty (e) = (à; p - T).
(a) Lev (p ~ T) > m + 2. In this case for e = eoel ... ek with k ?

0 and Id (eo), take (ef)’ = eoe ... ekf’. This gives the desired
result by 6.7.

(b) Lev (p ~ T) m + 1. Form e’f’. If e’ # êô, take (ef)’ = e’f’. If
e’ = êô take (ef)’ = Sub (f’, 7TI,n+l(e)). By the preceding, this
gives the desired result.

(ii) The code given is of the form é. Let k be a prim. rec. index for
Àz . No(m, z). Take (é)’ _ (S, k, e’). To show this gives the

desired result, suppose e E CJ. The direct predecessors of

(é; B) are (e; J) and (d ; J) where d = [e]J. By induction, [e’]J _
[e]J, [d’]J= [d]J, and rnk (e’; J) ~ m, rnk (d’; J) m. Then for
el = (5, k, e’), el E C J, [e]J = Pk ([e’] iY) = pk([e]J) = pk(d) = d’,
and also rnk (el; J) m.

6.11. COROLLARY: We have a prim. rec. function N1(m, z) such
that whenever e E CJ and m = rnk (e; J) 03C9 then e’ = N1(m, e) E CJ,
[e’]J = [e]J and rnk (e’; S) = 0.

6.12. THEOREM: We have a prim. rec. function N(z) such that

whenever e E CJ then e* = N(e) E CJ, [e*]iY = [e]iY and (e*; Í!) is
normal.

PROOF: By the primitive recursion theorem. In the case that e is a
product ele2, and et is not an êo, take e* = e * e 2 . Otherwise take
e* = N1(m, e*e 2) where Ty (el) = (à ; p ~ T) and m = lev (p ~ T).

7. Conséquences of normalization

7.1. LEMMA: Suppose e E CJ. Then (e ; Í!) is normal if and only if
one of the following holds :

(i) Id (eo)
(ii) e = eoel - - - ek where k > 1, Id (eo) and each (ei, Í!) is normal

(1ik:)

17

When (e; J) is normal and (z;U) ~ (e; U) we can establish some
sub-type relationships analogous to sub-formula properties for normal
derivations. We do not state the most general form, but only some
consequences for type levels.

7.2. LEMMA: Suppose lev (J) ~ m + 2 and G ~e J with lev (G)
m + 1 and (e ; J) normal. Then each (z ; U) (e; B) is of the form
(z; S, S) where lev (B) m and lev ([z]J’B) 1 m + 1.

This is direct from 7.1. In words, under the given hypotheses,
G e J is generated entirely from H ~ J, B where the level of H is
also s m + 1 and level 93 is m. Abstraction is applied only to types p
of levels:5 m.

We get particularly nice relationships for pure types (defined for
any number p of domains in § 1). Call a sequence of types pure if it

consists of pure types.

7.3. LEMMA: Suppose (e; J) is normal and suppose Ty (e) = (à ; T)
is pure. Then each (z; J) (e; J) has Ty (z) of the form (ü, p; 03BC,) and

Ty (z) pure.

If [e]J is of pure type (p->v) (thus lev (v) = 0) we write [e]J =
À{3 . [e]iY({3), thus expressing it by abstraction in terms of a level 0

object. This suggests the following schemata RI-R5 for a system of
coding partially defined (e)(%) of type level 0 l’R’ for reduced).

In these schemata, U = (a., ..., an) where (tri is of pure type o-i;

à = (ai, ..., an) and Typ ((e)(lll)) = v where v is a type of level 0.

18

We can define prim. rec. TYN (z) so that Typ ((e)(lll)) = v when
T YN (e) = (ii; v).

7.4. THEOREM: Suppose à, T, p are pure, lev (v) = 0.

(i) Whenever e E CJ and (e; B) is normal and Ty (e) = (&; p ---> v)
then we can find e’ such that

we can find e’ such that

(ii) For each e we can find e’ such that for all U,

(e)(U)~ implies e’ E C21 and [e’]U = (e)(U).

Thus R1-R5 can serve to replace I-V for recursion restricted to pure
types. The proof of 7.4 is direct from 7.1-7.3.
The schemata RI-R5 are of a character similar to Kleene’s SI-S9.

In the case that p = 0 they are equivalent to them by 7.4 and the
results of §4. Of course the equivalence can be established directly by
the same methods as §4.

8. Directions of further work

We start out with a definition and some likely steps which may be
taken and then become progressively more speculative.

(a) Ordinals, selection theorem, hierarchies. If the generating rules
I-V are used for a development ab initio of recursion in higher type
objects over N, then the normalization theorem seems essential for
obtaining the selection theorems of Gandy, Moschovakis, and Platek
(refs. below).

8.1. DEFINITION: For e E CJ, let lelJ’ be the ordinal length of the
well-founded relation on {(z;U): (z; U) (e; lJ)}. Let K be the

supremum of all such lelJ+ 1.
It can be shown that lelîJ is also the ordinal of first appearance of

[e]J e J in the inductive generation of the - relation. Thence

19

One defines lelJ = K when e~ CJ.
For economy, one will work with normal (e ; S)- Then if J consists

of functions Fi where

S can be kept fixed and one considers ordinals

Now let p = 0. It should be possible to define a functional ~, partial
recursive in J, m+lE, giving ordinal comparison relationships for IzliY,J,U
and lwlJ’@B analogous to [9], Theorem 6 (m = 1). The prim. rec. function
N of 6.12 can be used to reduce to the case of normal pairs (when
z E CJ,U or w E CJ,B). The general methods of Grilliot [3] should then
apply for the selection of type 0 objects.’

It should also be possible to generalize Shoenfield’s treatment [13]
of hierarchies recursive in ÍS, 2E where m = 0, and that of Mos-
chovakis in [9], §3 for J, 3E where m = 1; cf. also [15].

(b) Recursion theory over arbitrary structures. A Ist order structure
over ground domains Mo = N, M,, ..., Mp is given by any J of

level 1. (Equality on Mi is not assumed; it can be supplied by
placing its characteristic function in S’) More generally, any à may be
thought of as specifying a higher type structure over these domains.
One thing to do is compare the present I-V with other proposals for

recursion in % over arbitrary domains, particularly those of Mos-
chovakis [10] for % of type level ~ 2 and Platek [11] for arbitrary g.

In the first case one will compare recursion over N, M in the

present sense with Moschovakis’ over the domain M* = the closure
of M U {0} under pairing. The schemata RI-R5 are of the same

character as those for Moschovakis’ notion of prime computable. 1

expect these give equivalent theories under a suitable match up of the
type structures. In addition, being recursive in 2Em should be

equivalent to being hyperprojective in Moschovakis’ sense.2 ,

It is also not unreasonable to conjecture that the recursion theory

1

According to MacQueen [8] there is an essential error in the proof of [3] for selection
at higher types; he and Harrington give a correct proof there as well as more abstractly
in [4].
2 By this 1 mean the restricted sense without scheme C9, i.e., what is elsewhere called
prime computable in EM*. It is likely, as the referee of this paper has suggested, that the
closely related notion of prime recursion in a list ÍS used by Fenstad and Moldestad in
their recent development of abstract recursion theory is equivalent to being recursive in
ÍS in the present sense, at least when 3 is total (and of type level S 2). It is possible that
use of R1-R5 could then simplify their exposition.

20

using I-V over any M with N is equivalent to Platek’s theory for M
within which N is suitably represented.
The next thing to do would be to consider what rules might be

reasonably added for stronger recursion theories. One such has been
given by Moschovakis [10], namely the schema C9 for a search

operator. However, this differs from SI-S9, 1-V, RI-R5, all of which
have a deterministic character in the sense that they are uniquely
invertible. The following is a deterministic rule which should be

adjoined to I-V, but seems not as strong as the search schema. It is
based on the idea that if a relation is recursive in 6, and the relation is
the graph of a function (or functional) then the function is recursive
in J. Since the unicity condition on a relation to be a function (from
Mp) into MO(i) requires the identity relation on Mo(i), it is appropriate
only if that relation is recursive in given J.

VI. Unique Selection

The following is then derivable from VI and abstraction.
(Functionals from graphs) For G of type (p , O(i)),

VI is dispensable in the case that N is the only ground domain,
since there we can take

which is recaptured by use of the recursion theorem. This makes

special use of the particular structure of the natural numbers.
All the work of §§3, 6, 7 on derived rules and normalization can be

extended directly to include rule VI. Thus a recursion theory based
on I-VI should also have good properties. Again, one would want to
compare this with other proposals.

(c) Significance of the schemata. One would hope that there is a

clear informal notion of relative recursiveness for which the kind of

schemata here considered are correct and complete, analogous to the
situation with the notion of mechanically computable function and the
familiar schemata for recursive functions. This is the main gap in the

foundations of the subject of recursion theory of finite type objects.
It is possible this gap cannot be filled, in particular as suggested by
Kreisel [7], pp. 175ff (cf. also back references) there may be something

21

incoherent about assuming the maximal type structure and looking
for a class of definitions for this structure with a certain constructive
character. Nothing done so far deals with such objections.

It should be possible though to isolate some mathematically general
features of the schemata considered and to see what rules would be

correct and complete for them. One feature, of being deterministic,
ought to make sense for quite arbitrary structures.

(1) Is there a general notion of a deterministic recursion theory
over any domain?

(2) If so, are there finitely many schemata correct and complete for
this notion?
A second feature applies particularly to typed structures satisfying
very strong forms of the comprehension schema, in particular the
maximal structure. For these, any operation G : MP ~ MT which is

already defined is thereby recognized to be an element G E M(p~T).
(3) Is there a way of subsuming recursion in functionals of finite

type under a general recursion theory for arbitrary structures, by
building in abstraction as a basic operation?

Since abstraction acts on syntactic objects, it would seem for this
that one would have to deal with such as members of some new kind

of basic domain. Syntactic objects in general are certain kinds of
coded well-founded trees. In the end it may be possible to denote
these by natural numbers, but that should not be the starting point.

REFERENCES

[1] S. FEFERMAN: Ordinals and functionals in proof theory. Proc. Int’l. Cong. of
Mathematicians (Nice, 1970) 1, 229-233.

[2] K. GÖDEL: Über einer bisher noch nicht benützten Erweiterung des finiten Stand-
punktes. Dialectica 12 (1958) 280-287.

[3] T. J. GRILLIOT: Selection functions for recursive functionals. Notre Dame J.
Formal Logic 10 (1969) 225-234.

[4] L. A. HARRINGTON and D. B. MACQUEEN: Selection in abstract recursion theory.
J. Symbolic Logic 41 (1976) 153-158.

[5] S. C. KLEENE: Countable functionals, in Constructivity in Mathematics, N-H,
Amsterdam (1959) 81-100.

[6] S. C. KLEENE: Recursive functionals and quantifiers of finite types. Trans. Amer.
Math. Soc. 91 (1959) 1-52.

[7] G. KREISEL: Some reasons for generalizing recursion theory, in Logic Colloquium
’69, N-H, Amsterdam (1971) 139-198.

[8] D. B. MACQUEEN: Post’s problem for recursion in higher types. Dissertation,
M.I.T. (1972).

[9] Y. N. MOSCHOVAKIS: Hyperanalytic predicates. Trans. Amer. Math. Soc. 129

(1967) 249-282.

22

[10] Y. N. MOSCHOVAKIS: Abstract first order computability. Trans. Amer. Math.
Soc. 138 (1969) I. 427-464, II. 465-504.

[11] R. PLATEK: Foundations of recursion theory. Dissertation, Stanford Univ. (1966).
[12] G. SACKS: The 1-section of a type n object, in Generalized Recursion Theory (eds.

Fenstad, Hinman), Amsterdam (1974) 81-93.
[13] J. SHOENFIELD: A hierarchy based on a type 2 object. Trans. Amer. Math. Soc.

134 (1968) 103-108.
[14] W. W. TAIT: Infinitely long terms of transfinite type, in Formal Systems and

Recursive Functions, N-H, Amsterdam (1968) 465-475.
[15] S. S. WAINER: A hierarchy for the 1-section of any type two object, J. Symbolic

Logic 39 (1974) 88-94.
[16] H. SCHWICHTENBERG and S. S. WAINER: Infinite terms and recursion in higher

types. Kiel Proof Theory Symposion, 1974. Lecture Notes in Mathematics V. 500
(1975) (Springer, Berlin) 341-364.

(Oblatum 27-XI-1974 & 6-111-1975) Department of Mathematics
Stanford University
Stanford, California 94305
U.S.A.

