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Recursion theory and set theory: &' merriage ¢f convehience
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Solomon Feferman

1. Introduction. We expand here on a program which was initiated in [FL] and

elaborated in one direction in [F2]. The aim of the program is to provide an

abstract axiomatic framework to explain the success of various ansloguei

classical (set-theoretical) mathematics which have been fotrmmta& in op

nally explicit terms. These anelogue developments fall roughly into twe groups:

(a) recursive and/or constructive mathematics, end (b) hyperarithmetic and/ or

predicative mathamatics.

The framework proposed in [Fl] was given by two theories To and Tl

with the following fesatures:

(1) they are theories whose universe of discourse includes oper:

clasges as elements;

(11) the notions in (1) are not interreducible, operations 'bainig" glven by rules

of computation (in scme sense or other) and classes by predicates (from & fad.rly “

rich language).

(14i) operations may be appl;i.ad to any ei,mmts, including. wpara.’omns a,mi iy

claaaea,

(iv) the theories are gggréﬁfgnﬂiana}i

1
which gives guantification over N ;

(v) T, is obtained from T é by adjunction of a single axiom for an dmarabizm

&y
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(vi) T, restricted to intuitionistic logic is constructively justified;

ory of generalized inductive definmitions is predicatively
 Jusbified.
(viii) T, hes a model in which the elements of N — N represent all the re-

cursive functions;

(ix) T. has a model in which the elements of N — N represent all the hyper-

1

azfithmetiq func‘tyirons .

(x) T, bhasa model in which the elements of N — N represent all set-functions

of netural r;urhbefs.‘

| The plan of the program is to explain cases in which analogues have been
successful, e.g. in recursive mathematics as follows. Say one has a theorem
¢<88t) of set-theoretical mathematics which has a positive recursive analogue
47%¢) | Dhen one tries to find a theorem § of T, such that on the one hend
¢ specializes to .¢.(x'ec) in the model (viii) and on the other hand to ¢(set)

in the model (x). Bimilarly for the other esnalogues, using (vi)-(ix).

This plen was cerried out in some detail for a portion of model theory in
[F2], using an extengion Tl(o) of T, that theory had the seme features as
Tl , but also axioms for a class Q of ordinals were adjoined. We explained
thereby the success of Cutland's analogu,e' development [C] in which: hyper-
arithmetic models ~ countable models, and I‘L:Ll chains of hyperarithmetic models

~ models of cardinality < Rl .

In this paper we expend the systems T_, T, *to new theories To(s),
Tl(s) s0 a8 to increase their flexibility and renge of applicablility. S is a

class which acts like the class of all sets in set-theory, and the new axioms

(in § 2 below) provide strong, naturel closure conditions on 8. Otherwise the
principal features of TO(S) and Tl(s) are the same as for T  and T, .

These now constitute our proposed marriage of recursion theory and set theory for
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the "eonvenience" of achieving the program explained sbove, It ge bt sy

such framework must give up some significent features or principles of ardi oy

set theory. Qur choles 1ls to g

6 up the identiffcation of funct
up extensionality, As to the latter, the prineiple of ext

and to

has no essentlial mathemationl wse; 1ts stendard purpose 1s to map an equivelence

relation ® in s clasa A onto the equality relation by paseing to @/% .
Instend, one slmply works with the structure (A, %? BERE
"oauall ty* %@ﬁ «  However, it 12 posvalble that

can also be used for our purposes, (85 has been suggedted by M. Fri

any case, the cholce of axloms should be bused on pragestisc oo

necessarily in conflict with constructive prineiples) and, as sueh, is still sube

Jeet to experimenteation.

83 goen foto some detall about how & variety of

models of @gg@y
’Jﬁliﬁﬁ) en be constructed directly., There are two steps to be conpldersd, Dipst

ig the eholes of an Liley resureieon Y

ples of the Lormer are depoted Beclw) {epal
{w) {ﬁi rosursion theory),
set-thesrebioal al W, resuiting in thees i
=Pun{h)s i the first two

or by generation,

oursion theory) and @@ "

ape glven over

steuctures Beo(l), @gw@%ﬁm%@ and ¥
T - Rec(w) are Lifted to M,

 in the third all set Dunctions of B are
fed into o gensralized recursion theory. Wewt, given as spplioative structurs

f 4t io shovwn bhow to bolld a

a* of T,(8) in which sny given sollecticn
Lo # W

2 enoo(w))”, %@

ﬁ%’

e to wmodels such as

of 7,(8).

b4  outlines how the sbetract construetiv

Cheng [B1,C] can be 4 ped in %g@m“ imvolved prien-Tacie use of &

pr-glees operation which had been an cbhetacle in T, and other spprosches.]t
is now hesdled essentlally wis %{;ﬁ-@%% s8ant ], A possible applioution
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dels' Rec(w)  or -mRec of TO(S): if a re-

e senge of [Bi,C] and Ww(A) > O then

In §5 a theory of accessible 'ordinals 6y and (regular) number Gl&SSﬂS(Q}(f )and)

Q, for xé@s is developed wWithin TO(S). In any model of T0<S) there are

associated ordinals |(§] = sup{]xl ' x e@,} and IO | (defined similarly).
Under the 1nterpretatlon by %et Fun we have ]Cs | = least inaccessible ordinal

[Q | =W e On ‘the other hand in both Rec( u.‘) and ‘T Rec(w) we have |Q

X

wi = l@gst nonpecur wg ordlnal Tt is conjectured that |®S| = least re-

cursively ipaccegsible ordinal end ¥x e@s[ |x| = =>|Q}({r)| =w§l( ='ra)] in these

la:ttér models. If so, this theory provides an approach to recursively accessible

ordinals which is co’hceptually superior to that of Richter [R].

The paper concludes 1in 5.4 with a dlscusmon of some further axioms which

may be. added to ']31(8) and which are true in m 5 such a8 the selection
' s ~Rec
grincig le S’e],.n 'fo'x'-«‘:“'ﬂl LT L (8)+ (S'eln‘ ) can be used for all the purposes in

model theog Wh.lch had been provided by T_.E_Q) in [F2]. Now one can look for
further appllcatlons lIl model theory by use of the develcpment of higher number
cla.sses in Tl(S) Another possible application is to "long'" hierarchies of

normal (crlta.cal) ;:E'unctlons (orlg:.nally due to Bachmann), which make use of higher

mmber - classes o define large} counta.ble ordinals. In certain specific cases

these have been. ver : ecursive by tedious calculations. The idea

would be to obtai Stéad*as a:cons_equence of a treatment of these

¢

lin

hierarchies within the framework of T.(5), using the fact that |2 =0

'f\!-Rec e

2. The theories- 'TO‘(S‘) : 9_n§ Tl(S)- Knowledge of [F1], [F2] is not presumed
here. - o ' |

El ,S&ntéx’cf the ‘bhéories' The bagic language is described as follows.
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(Expensions of this syntax will consist simply in the adjunctiod of ﬁuxﬁnﬁr

constant symbols.)

Individual (general) variables: a,b,¢,...,8,8,H, .. ,%,¥, 8

Clans varisbles: A,B,C,...,X%,Y,%

Individual constanta: Q,g,g,ﬁgy,yl,g%,a,én(m < w)

Class conatant: B

Basic terms: wvarlables or constants of either sort.
Individual terms are denoted ‘ts,tzl,tg,

Class terms are denoted T,Tl,%,. e

Atomlc formulas:

(1) Equations between terms of elther sort

(141) Aw(tl,tg,%), also written tt, o~ b,

(444) t e

Formulss are generated by =2, A,V , =, and the quantifiers T and ¥
spplied to elther sort of variable.

#:4,8,... renge over formules, We may write § with a dletinguished free
variable as @(x,... ) or (x). Then @(t,... ), P(t) resp., denctes
Bub(t/x)¢; eimllarly for cless varisbles, The GBdel-musber of a formuls § 1is
denoted 4",

We write Cf{a) for HA(a=A) and xesn for HA(ns=i A xg A).

2.2 8tratified and slementary it

 formalas., By a stratified formls we

which containe equations only between individusl terms. If @#(X) 1 stratified
and  y(x) is eny formuls then B(R ¢(x)) or #(§) 1s defined to be the remuilt
of substituting ¢(t) for emch occurrence of (t eX) in #. This is ase

i
avold collislon of varisbles. Also for shratifled for

ag 1t

o8 nense to

write ﬁ(x*) for a formule with enly positive ccourrences of subforsules ([t e%).
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2 nrula is meant a stratified formula without bound class

_constant S. -

c4(a), xea are not stratified.

2.3 Ajaplicatidn térnis. These ai‘e generated in an extension of the basic language
as follows:
(1) every basic term of either sort is an application term;

(i) if ™

l’,,TE‘ arek:app}?%a?iq?nwtems so{a.lso is’ TTg

. range over spplication tems. T,T, ... T is

In the follow:.ng, ’r,'rl,'re,‘ 125
'w:citten for N (ng) )frn ‘(a‘s'sociation to the left). Certain formulas in-
volvixig applicratlon terms are translated into the basgic language as follows:

v

To~x is 7T =x when T 1is a basic term

T, x ds Hyy B, [T ey AT, T, MYy x]

12
Ty T is ,VXLTl(:XQTEﬁ x]
T is :Ex('r ~vx)  ("rois defined'")

PR -

: ¢(.;r.)' 15 Ex{to xA x)]

Tl -:w’rreﬂ-f‘ls W;ﬁitten :ﬁ‘or') TN T, when 'rll and 'rzl is known or assumed.
fri'“;é T, is written for - '(lef_\_' 12) under the same conditioms.

'I;he_constant p:, will act as a pairing operator. We write

(vpp7p) = p 7T, nd

" <Tl’ o ’Tn’ “tn+i ) ‘=; ( (Tl” " '-’Tn)" Tn+l)

| Tu;ples are indicated by bars: T = ‘(TZL’ . "”Th)'
2.k - Class terms. Conmsider eny stratified formula #(x, X yi &), for which
we also write H(x,X). We write Clos¢(x) for Vx[@(x,X) = xeX]. We write

¢c(x’ - 73 R) or ¢ -) for ,{,,Cl05¢(X) =xeX].
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Then we shall use _ﬂ:,w(ir,ﬁ) to denote the smallest class X satisfying am% s

1,e. the class inductively defined by ¢. We thus write

(x|g.(x, -5 ¥5R8)) or NX[Clos, (X)] for i .{F,A)
¢ ﬁ .

Note that this is glven as an operation ;_wk applied to the tuples of indi-
viduel and class paremeters of ¢ (for k= $'). As a speciel case of this,
given $(x;¥ 3+ A) which does not conteln X we write [x|#(x;§:14)) or

(x| #(x)} tor (x[%(x% Y3 A)). As snother special case we write

(x|xeBA B (x,-15,8)) tor (xlfiix,-5734, 8
where ¢ (x,Xi ¥, A,B) is xeBA @(x, Xy, ). The axioms will gusrentes that
all these operstions lead to classes.
We write

A%B fTor Ve(xed wx ¢B), and
ASE for ACSBABEA,

Fuarther we write

TPA —B for Vxe ARy s Bifx~y) (or Yrxe A(fxgB)).

2.5 ZIhe sxiams of 7 (8).
I. ” ’ ﬁ:ﬁ}

(1) (uUnlelty) xy o Xy AXyox B, ™ a8,
(11) (Constants) (k xyd) Akxy » x

(113) (Buvetitution) (xyi ) A sxysn xa(ys)

(iv) {(Definition by casen) (dabayi) A (xey @ dabry = a)

Alxfymdgabry=b)



XEU ’ ’(‘Ei'm.) A py (pxox,) =%,

(1) (Classes sre elements) VX Ex(X=x)

(ii) (Totality of class opé:r'ations on elements) (gnz¢ IA(Gzl).

ns. For each elementary ¢(X,X+) and

ITI. Elementary inductive defini

any  ¥(x),

dl;OBp(C) A'[Closgé(@) =Vx ¢C.y(x)]}.

Iv.: Join
Vx e A.CA(fx) = HC{J(A, L) ~ C A

Vz[z eCox e Ay (y efx A 2= (x,¥)) ]}

V. S-axioms.
These will be explainecl after drawing. consequences of I-IV, end introducing more
notation. (NWot all of that will be needed to state V, but serves later purposes

as well).

Remarks. (1) The &xji;oms I-IV are slightly stronger than the system T, Latro-
duced in [FLl]. The axioms of elementery comprehension and inductive generation
in T, ere subsumed under the present . IV. Also the logic: is not restricted to

be intuitionistic as it Wa.ain l] (2) By TI(Li), operations applied to

classes are specialxcééi‘ejs of ope; ations spplied to elements. II(1i) is taken

for convenience. Theopemﬁ cm g | applied to any element z alweys give some
element. It is only assume&“;‘b‘dj‘_lgi‘ve‘ a;.clasg when z is of the form (A,f)
ﬁnere le eA‘.Cﬁ(fx). Similarly _jL_kga is alweys defined but it is only assumed
we get a class when z 1s of the form (¥,A) where 7= (yl, ...,yn), A=

(Al’ ‘. "Am) and k= @(x’x N FRREEY Al’ e ""Am)ﬂ with ¢ elementary.
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2.6 Consequences of the applicative axioms (Refer to [F1l] 3.3 for more details,)

(1) (Explicit definmition)., With each applicative term «t(x) 1is assoclated a ,

term Ax.7(x) such that
(Ax.r(x) )b A Wy (e (x) )y v(y)).

Informally, Ax.tv(x) "exists as & rule" whether or not t(x)! for any given x.

(2) (Zero, successor). Define x'=(x,0). By I(v), (vi) we conclude x'j O,

x'my' ® Xay, Xay' @ y=pX.

(3) (Recursion theorem). By the usual diagonalization we can define r such

that

VE((r £ ) A Ve[ (e f)x~ £(rf)x]).

(k)  (Hon-extensionslity) ([F1]53.4)., wWe can disprove Y£,g(Vx(fx o gx) =feg],

The ldea is to assonlete with esnch £ an f% with the same domain and which is
tdentically © on that domaln (use defn., by cases), Then f is total
@ f’% = A%.0, 1f extensionality holds. Disgonslizing glves a contradiction.

2.7 Consegquences of axiom TIE.

(1) (Elementary inductive definitions). Given elementary @(x, X" yi k), let

nx[mg%(x)l ~ . Then
Ya[x eC ® W(m@%(x) »xeX)].
For the proof of = , conslder sny X, apply c:::un%(%) = g(x) to #{(x) =

(2 X)), For the proof of & , apply CZ,@%(C).

() (Elementary comprehension). Given elementary flx;ys &) we have defined

(]#(x)} as  (x]f (x)); ecall thiz €. Then c:a.o%(c:) shows
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¢shows Vx eC.f(x). Hence (x|¢(x)} is a class

|¢x) ) :'“ ‘¢(Y) .

; (3) (ClQSS :c\:on,s‘-t‘mctions)f The following are obtained directly as special cases

o,:‘f‘“(e): ’4

Ve Gxlxaxd, A= (xlx Ax)

llsffxl;;c;:-e;yl‘v v X'T"yn}

J, AUB= (x|xeAV xeB)

AxBe (e AT eB x=(r,0)]
A .93) =(£[f:A ~»B)

£lA] =‘ {ylgx e A (fox ~ )}
01 =l (ex)).

cases we obtain e

I‘N(O) a)f) ':.," 8. 3 ’TN(X",B,;,f) ﬁ f.(x, rN(x’ a,f)).

Note thet for any A, o NeAxAM*® L L With explicit definition we can

now generate all primitive recursive operators, in 'pa.rticular ‘pounded minimum and
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bounded gquantificatlon.

(6) (Partial recuraion on N). The unbounded minimum uf is defined as g(f,0)
where g(f,x)x (py S %)(fym 0) 1f G < x(fy & 0 A Vs < y(£at)) and . e
6(f,x) o2 g(£,x") 4f Yy S x(fy) A fy #0) (g obtained by recursion theorem and

def. by ceses). Then we can get for each kel exlstence of £, with

fix ey (k](x) for all xeN. Also A(z,x).(x)(x) 1is obtained.

(7) (Non-extensionality for clesses). Similarly to 2.6(k) we can disprove

VA, B(A® B= A = B); cf. [FLI3.k.

X for 3(at) 50 that

2.8 Consequences of the join exiom IV. We write Z,
zeL, fx®dxeh By(yefx Az = (x,y))

whenever Vx ¢ AEX(fx o X). HNote that the defining property of ﬂ’i’:k %fx e not
atratified,

(1) (Product). Suppose Yx eA.CL{fx). The class

My on T% = gop (BIVX €A((x,8%) 6 C) )

wheres ( = i:x A %

existe by join and elementary comprehension, and satisflies

%3%%&3& w Yxeh (gxe %),

In other words, once we have £ , the unsbrabtified definition of I can be ves
duced to the stratified (indeed elementary) definition given sbove. Hote that
if fx=B for sach xeh then (E:m &Afx} & AXE  and (ux%m}@ (A = B).




iion. Thus we camnot in general introduce P(B), a class of

all 'Asubnclas.sés' of B

iven any class A of classes, we can form

],ie. [ala’sA/\Vx((a,x)eEA =xe¢B).

" athemat

evelopnent.

models of To(j,S,)z apd T,

(8). ¢

is a set of the model.:
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(1) Notation. Given Cl-Eq(a), a= (A,I), we write B, or =y for T end
xea for Xepa. By (A;=) we mean A with the relation :1:m[z(ae,y);lxg@ay‘}}‘,;;@g:_”

e (4, =) 1is called a dscrete class in this case. The natural mmbers will be

dealt with as a discrete class, for example,

(2) (The subclass relation in Cé-Eq). We write a Cpb or hia&b for

h:A —B /\Vx,yeA[x%A;y%mc %Bhy] when &sw(A,iﬁﬁA), hm(B,@ﬂB). ( Thus in
the set-theoretic interpretation, h induces an injection of ﬂ/?@A inty E/%*)
a™b is written for fﬁh(aﬁ?}hb). a,b are isomorphic when there exist h;l,%

inverse to each other (on A, B resp,) such that a C,bAb f}}n B
1 “1

We put

b m&,(fﬂ‘, @B )'

(3) (Finitary operstions on Ci-Eq). Let &= (A, %) ,

axb =« (AXE, %Axﬂ) , WVhere

(1)
(e ) @ xp ) @ 3y B4 vy Ay By,
We put
v = CBA,A ﬁ%ﬁ ), where
(11) fept@ria +B AYx, yeAlx 8 ‘mm%ﬁf‘y], ad

f‘%@ﬁﬁ% wvxgig[fxmﬁ 1. '

The operation (1) is distinguished from Carteslan product on classes (2,7(3)) by

the conbext.

(4) Infindtery operstions on Cé-Eq. Suppose A 1is & discrete class and thst

for each xe¢ A, fx s in Cd-Bg, eay Trmb, = (Bw@@x?‘ Then we put

%eﬁfﬁ = {E‘x @&ﬁx’ mg) whare
(1)
(%30;?1) @% (KQ” %) & ml %x& A }*‘1 %‘éﬁgﬂyg .
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B . is pe(fx). Under the same conditions on A

SR EH) where

g snn o Yx ¢ A[gxthx].

We rely on the conbtext to distinguish £ and T as operations on seguences of

classes (2.8) or on sequeng

ces of classes with equality relations, as here.

; The pres; op va.tiens can 'be generalized atill further to define

. ':‘Ex o £x and II fx Ufor 8= ( ) and fx = (B x) under the following

" eiroumstences.. Namely we must be provided with a gyatem of maps hx y :fx & Ly
7

for x,¥ eA with x=,¥ such that h:x:,y and. hy,x are inverses and hx,z =
= 7. : 4 .
h‘y % © x,;y when X A k2 Az For full gemerality, closure under these ex

tended operations’ could and should be included in the 8 -axioms; however, only
the operations with discrete index classes will be used in the applications and,

for simpliciby, clbéurq will be assumed only for these.

(5) (Inductive separation). Given &, = <Ai , Ei) where = is I, (L<1<m)

ve write & for (al,...,am) and @( ...,2) for a formula which includes among
its class paramebers A, end I, (L<1i<m). Given b= (B, EB) end elementary

¢(x, i ¥,3) we shell consider the process of separation applied to b, yielding

(1) ‘ o (IxlxeB A ¢c(;;, -3 ¥, 87, = )
when we make no change in the equivalence relatlon.

(6) (Coersening). Suppose given a class with equality a= (A,I). By a coarsening
of a We mean & structure a'=(A, I') where 22ns CI'. Only explieitly de-
finable coarsenings will be consldered below. (In the set-theoretic interpre-

tation there is a natural map of A/I omto A/I'.)
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We now formulate the remaining axioms of To(s).

2.10 The S-axioms - (group V of T,(8)).

(1) aes =ClL-Eg(a)
(11) (W, =)es
(1ii) a,beS =axbe s A b e S

(iv) (4, =)e8S ALf:A 8= Zx erS/\IIsterS.

e A
(v) For each elementary ¢(x,}(+ 3 ¥,8) with & = (a’l"”’am) and

8,.-,8 8 and for each b= (3B, EB) ¢ 8 we have:

([X!X eB A ¢C(x’ - ;ira)): EB)Q 8.

(vi) Under the same hypothesis as (v) we have: if I'= [z|¢c(z, -3¥,8))

and Vx,yeB[x =y = (x,y) eI] then (B,I')e S.

Remark. These axloms are related to the ones for "bounded classes" given in
[F1]7.53. An essentiel difference is that the predicate Bd is replaced here by

the clasg constant 8.

2.11 The system Tl(s). This has only one additional axiom, which is really an
expansgion of the applicetive saxioms I. It involves a new constant ey for the

operation of existentlal quantification over N.

T(vii) (& - axiom)

[eyf ™ O ® IxeN(fx~ 0)] A [gf ~ 1 # Vx eN(fx ~ 1)].

2.12 (Qther axioms. It 1s natural to consider some further possible axioms.
First of all, note that in the separation axiom V(v) for 8, it was assumed the
parameters of the definition are also in 8. It is possible to strengthen this,

ot least up to =, and most simply for discrete gets. We shall write Ae 8 to

mean (A,=) ¢ 5.

v(vi) (Discrete separation). VA,B{B¢eS = E{Bl(BleS/\ By =B N A)).

It will be shown in 3.6 how to get a model of Tl(s) together with V(vi). The

following will also be obtalned in the same model:



~ SOLOMON FEFERMAN

S = EC[CCB ACeB ATX er‘I yeC (xmBy)]
e to repreaent all sets.

Ano’uher gtrengthening to be considered is the

gol (x| g(x)) ~ € A Vx(x eC ® $(x))]
nong other things this would allow us to introduce ﬂX[Clos¢(X)] as an ab-
stract, namely [x|VX(Cloa¢('X) =%e x)}. (However this would not give the full

‘ strength of the elemen'tary induction a.xwm, since it only yields proof by in-

Prop i{qug, y(x) ) It is also possible to model Tl( )

onger azciems will be considered in commection with ordi-

There are quite a variety of models to be con-

: bb@ g:gnera;L pattern of constructlon. By an applicative
GH(A, ':‘. 5 k,&,ﬁ,’}a,bl,pz,o) of the applicative
,;:,;&ihm"r&cursicn theory and its generallzations pro-

s 'es bf guch gtructures; some familiar ones are recalled in

3.2. Por our ‘purposes, & ‘,airinr structure is any structure G, = (A, P, Pl’Pg’o)

"‘_o)mo P (O)’u 0, P, (P(xl,x )) = %, , and P(xl, ) #0

Any pa.iring s’cruewze gammtes an applicative model Ct as will

ws can incorpora,ta any pre-assigned c:ollec*biun‘ '

on l‘n- to the ‘imorpo;ra*&mn of 8ll set-functions (3.h).

Following Friedma.n [Fr 1 ], I previau.aly called these enumerstive structures.
Their scurce is in the Wagner-Strong exioms for abstract emumerstive re-
~oursion theory.
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Any pelring structure provides us with Finite coding ability. First of -

gll, the natural numbers are represented via the successor operation Koy x' o=
P(x,0). We may regard A as providing the alphabet for a symbolic system.' A.ny "

word from A dis represented by a code in A, then any finite sequence of such :

words is represented by another code, etc. We shall refer to coding procedures

without giving specific detalls.

Given eny applicative sgtructure G we shall show in 3.5 how to construct
*
amodel G of TO(S), by interpreting the class variables to range over a

certain collection of codes in A. Actually, interpretation of s and the

membership relationship on § are explained first and these are then used to ex-
plain the interpretation of ¢4 and e in general. The basic method of 'modei

building goes back to [Fl]pp.104-107 for T, -

0f speclal interest to us will be the case where we afart with an appli-
cative structure (O over a model M= (M, eM) of met theory. By feeding in a
code for each set of M in 8, we can arrvange that 0" 18 a model of TO(S:)‘

in which 8 1s a system of representatives of all ordinery sets(3.6). Taking ‘

Q= W&F) for various F from 3.4, we can thus compare ordinary recursion
theory, hyperarithmetlc theory and full seb-function theory as operative :Ln &

full set-theoretical situation.

There 18 only one addlitional point to be mede for the theory Tl(»s)' Ve

ghall call G plus ey (in A) an EIN- applicative model if i1t ﬁ&“c:i.sfias'aﬂ wall

the EN- axiom I(vii). Here the relation x el 4is to be given i‘baia'b éL . o

interpretation i.e.i x belongs to the smallest subset of A which c@nmins

and is clogsed under the "successor' operstion u + (1,0), {Note thafb m‘ i"o'
will appear as & code for this set in A). Then G* is automa'bic&lly & model :ﬂ@

T,(8) 4f it is & model of T (S) and G is T . applicative.
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' We write Rec(w) for the applicative model

xy: z @ {x)(y) @ z and the constants are

' subset I\T is in effective 1-1 correspondence with @ and the functions

aw.Ey for which f :N —» N are the images of the recursive functions under

this correspondence.

gain G has domain . Teke a II% predi-
" enumerates all H?L' partial functions
‘xy &z e @(x,y,2). (f may be obtained by

o, [Ro]§l65) We may choose a mumber e_ to satisfy

N

eﬁfgdéu’:O/\ﬂyeN_(fyr_v_ 0) Vu=lAVyeN Tz(z40 A fy o 2),

condition ig arithmetical. (We assume the same effective

ns a.s in (l),) Thus 0 with ey is en g -

ed EI,\T_wRéc(w‘). The total functions here are exactly

2

g "q’bt,'_a'»ined from Kleene recursion in “E [K] with

sz (0CEy)

£

e 2By (£)(PR,y)) 1is defined only when 2\ (£} (PR, y)

is total. The tot ; igﬂejnérated are the same.)

], Let ‘A be an sdmissible set in which
A.=La Wlth ‘o admissible, or more

v-biﬁ/‘dei‘ihg‘_.. 'U'sing'a El enumeration of

n obtain an.‘apiﬁiicative model G=(A, & ,... ).

We write Ei-fRe‘c‘(Af)ﬁ“r for G , and. 21'- Rec(Q)  when A=L, . When a>w,

i I - Rec(a) 'is @N- applicative. For 'o,':w;:_ (the least "non-constructive"

ordinal) the Ty bartial functions from N to N in ‘EléRec(wz) coincide

with the o - partial recursive functions of (2).
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3,5 Generating applicative models. Let CEO - (A’P’Pl’Pa’o) be a palring

2 1-1 . '
gtructure, i.e. Pi A~ w4, Pi(P(xl’xa)) - X, P(xl’xa> 40 ang Lgi(o.)‘ -

Pg(o) = 0. Let 3 be any famlly of unary partiel functions on A with

cord(¥) < card(A). Choose codes Xk, &,d‘,p,pl,@@,f?(ﬁ' e &), k‘x’ % xy’ﬁ“ s Sy, 2

dgpy * Px which are distinct from O eand from each other for all a,b,x,y in

A. Then we take ~ to be the least relation satisfylng: kx~ kx, kxy ~¥,

sX v By By zZ~u vwhenever Xz~ W, yzo~v and wvoou, ﬁﬂ,gﬂ,&,

%y Pxy
ab’ dap® T Yoy dap¥ T @ A xey, Qv b AF XAy, pxop
P N B(KY), Py Py(x), px oy By(x), and fox~ F(x) for each F inm 3.-_

db:d

The resulting structure is an applicative model, denoted H;(B) such that emh

F in ¥ is represented by an element f, . Similarly e can define ‘&‘;(m"",ai)f o
vhich 1s the SN - pplicative etructure generated from &. When & is empty we

obtain applicative models ﬁ; and '&;(EN), respectively.

Given GQ, let A, C A and (mny(.%) = the elosure of A, under palring.
, 4 ! «

A, 1s said to be an stomic base for € 1f PFi A" = (A-A ) end A=Geny(A)
and Py(x)=x for xeA . We get a nice mapping from G to B when both
G, B, heve stomic bases A, B , resp. and we have H: A, - B, with - H(0) mi), i
H extends cenonically to H: A B with H(P(xl‘,xg)) - ?’(H(xl), H(xg))‘s it s
seen that H(Pi(x)) @ ?i(H(x)) for 1=1,2, PFor simplielty fix k, 8,8, Dy Py,
p, eGeny({0}) (& Geny(A)) since Oe A ), and fix o (kx), (kX)y~x,
#x~ (8,x), (8,2)y~ ((8,%),¥), ({(s,%),¥)2 ~ x8{yz), ete. in the sume way both
in @; and %;; . Thus H(k) =k, H(8) = 8, ete.; it 1s then proved by in-

duction that
(%) xy~ 2z = (He)(Hy) ~ Hz,

Hence if f determines & total funetion FtN —¥ in T then Hf determines
the same function in B . We apply this in particular to ’% w (Geng({0)), o000,
which is effectively isomorphic to Rec{w). It follows thet the total functions
from ¥ to W in ﬁ; repregent just the ordinary recursive fusotdons. In thils

aense ﬁ; is a mm%w@ﬁiwa ifting of ordinary recursion theory to A m&%@%{%%
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(It is ;&gra,llyz‘{"e; form ofMoschc;xvak:Ls' prime computebility theory [M] on the pure

- domain

actly éxfénded to “é; (E{N) and Tﬁ—;(HN) when
o, ,f_,éa‘ Ako’,:ﬁe‘,: resp. It is proved that (¥) continues to
hold ’by ;EhOWiI:l.g 'thateN behaveé in EE(EN) on HE just as ey beheves on f
in a (EN). In pé;rticulax, by teking B [o 1} we obtain that G";(:«:N) is

! conserva’cive lift;mg of E{N—recursion ‘cheory to A = GenP A . Hence the total

functiong fy from N to N An EN Rec(G.) are Just the hyperarithmetic

funetionaa

fe‘b:tca,l structures. We now simply specialize

the precading ‘oo *bha pairing stamcture Q= (M, P,Py, B, ,0) obtained from a model
= (M, GM) of‘ Set ‘t;heory.by taking the standard set-theoretical palring and
pro,jectioh functions. Using well-foundedness it follows that ( has atomic base

consisting of the elem&nts o;f’ M which are not palrs. We write Rec(l) and

T'-Rec m) for Ra'

C&N *B&c(’@bk) s res;p, These sbructures thus constitute

y,rwp | @N»recursion theory to M.

conserv@tive

ed,ing We w’isb also to conslder the applicative model

Q’G:l.cm off al,l partial functions from M to M whose

graph ig a set in ,M We dancte this by Set-Fun(h). Woen M = (M, eM) is a
standard rmodal?‘, ,sa;w ~ f}cm J,mi‘u @, end F=ix.fx is a partial function

in G, (), L. e, £ eM a,ncl . F(x) for x€ tiom(l‘f'), then the restriction of

by to any sebt in M No‘tﬂa for cx> w thet Set-Fun(h) is also an

e -applicative mx:z.d;a ‘

For illuatr 5 ellowﬂ,ng e shall concentrate on the
(‘”): o
i“-aec(m) and  Seb-Pun(m).

'a,;pplicaty‘ive' ‘ni'é‘a&éls " Red 2 eam) emd (for standard M = )) Rec(m),

3.5 Generating models of T (:3) and - Tl(s) ‘
et ¢ be any a.;pzplicativa model emd J.e'tz binary E be given. This de-
termines sets (x:xE a) for each ae A. We shall bv.:l.ld a model of Ta(ﬁ)
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in which each such set 1s represented by some member of §. TFirgh ‘Wé" a.ﬁterid_.y to
codes. Let i 2= (1,n,2), jz=(2,2), and c, = (3, a) for each ‘ayg.~’;71;13,gis§ ewe :
thus total operations. TFor any elementary ¢(x,X+; "RRRRTL R A ,Ym) Cand
¥ = (yppeensyy), &= (81,.+,8 ) the object (X|¢c(x, -3y )} at Ty o= a,j‘
(in other words, NX[Vx(#(x,X;y,2) = x e X)]) is teken by definition to be the )
code i%,(&,a). In particular this is the code for (x|@(x;y;a)) when X does
not occur in ¢ . We shall define 8 inductively and along with this inductive
definition the membership relation x ¢ & for each a in 8. When Bx37:¥) is
elementary the variables Yi only occur to the right of e in ¢ a;nd. 'nyc claéé"
quantifiers are used (nor does 'S' appear in ¢). Thus if .membez‘-sh:‘tp in 1'3,3
been determined forx each Jj=1,...,m, 1t is automabically determiﬁed for "
(x|g(xsy3a)) by zelx|¢(x;¥:8)) @ @(z:¥,8). More generally, membership

z eNX [Vx(@(x,X3¥,8)) = xe X] is determined to hold just in case z belongs
to every subset X of A (in the real world) which satisfies the closure con-
dition shown. In particular membership in N is determined in the standard way.
Next, suppose membership in a 48 determined as well as membership in fx for

each xe &3 then membership in j(e,f) (or £ fx) is determined so a8 o

satisfy the join exiom IV. From this we define I fx and membership im &%

as in 2.8(1). let (a,=) be (a,{x|x= (py%s 2,%) A PX=D,x)). Define 8t as
the smallest subset of A wWalch (1) comtains (e, =) for esch ae 8,
(i1) conteins (N, =), (1i1) contains (aXxb, Eaxb) and  (b%, Eba) whenever
it contains (a, Ea), (b, @b) (iv) contains I, 6a‘fx end I o fx vhenever it
conteins (&, =) and fx for esch xea, (v) contains ((x|xebA ¢c(x,-;§s
(8, I, ):L< nls B®)) vhenever it contains (s.l,:ﬁl),...,(am,;[m) and (b, = ),
and (vi) c;mtains (b,1') whenever it contains (b, Eb) and I' = (xiﬁc(x, —;i,',
(a,i,:l‘:i)i < m} and P*NI' is an equivalence relation on b. 8Simltaneously
“wi’ch thiaminductiwa generation we determine xee and x By for each (a, aa)f
in 8t Yy the procedure described above combined with the explanations in

2.9(3) - (6); to begin with put xec, ® (x,a) eE .

Next we give Bt a code 8§ in A, and put ag8 1f 1t belongs Lo 8b.
To complete the construction of the model, we simply take £ to be the smallest
subset of A such that (1) Bt S ©f, (i) (x[§_(x,-5¥;8)) isin CF
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‘ist';élementary ‘and. each a.j is in C©4, and (iii)
s and £x are in Of, for esch xca. Again this

the membership relation xe¢a for each a

f“ei,j@n: procedure described above.

Tt 1is now readily checked that ‘(CE, Cf, e, 8) is a model of TO(S). The

only point to be observed in the inductive generation axlom IIT is that for

= {'xl;é (%, =)} andany \b(x) we have ClOS¢<‘¢!) = ¥x ¢C.y(x). This is because
o4 eC :Lff z belongs to every subse't of A in the real world which is closed

ot ular to. {x \V(x)] when Clos¢(¢ even if there is no

”en‘ts tha.h set. (To distinguish real set formation

,‘?Qm"‘%h"egcde (x|¢(x) . we write [x y(x)) in the first case.)

We write CL*/EO for the structure (G, C4,e, 8) Jjust constructed (or
simply G* ir Eo ig empty). When G dis an EN~ applicative structure then

G*/EO 18 8 model of Tl(s). In particular

oy o)™ b 2,(8)

Ram&rk By a m@difica'bion of this construction using the technique given in
[Fl]p 154 We can ob'bain a mo&el Ct /E of T (8) + (Btretified comprehension).
The idea is to start wi’bh the fuJ_’L End ord.er structure over 0, introduce
Skolem functions for?th ylforxmllas :Ln this structure and then close under codes

r:f'or tnase fanctions

3.6 Mo els of T ("S)‘; ‘-a,m';l Tl(S) ‘over set-theoretical structures.
' Por simplicity, take M= (M, eM) with M=V, wiere O 1s inaccessible. Thus

i‘o.ll (2nd order) repla.camant holds in M, i.e. &f & 45 e set in M and

F:ia-M is a subfunction of M then Flal=(F(x):xeya) belongs to M. Let
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Q=M ~,k,s,d,p Ps Py 0) be an applicative structure over M ﬁ\sing the .o
standerd set-theoretical palring and projective functions, and let "‘E’o’:‘" e vﬁhe

membership relation ey on M. Thus G /eM is a model of TO(S),; such that

(1) for each a in M, we have (ca,m)es and xec, ¥ Xe 8.

We shall now associate with each a= (A, EA) ¢ 8 & function H, and a set &

such that

(1) &8 eM and
(2)

(i1) H, (A/EA) ~ & is one-one and onto.

The definition of & and H, ~is by induction on the generation of § in 35

We shall only follow the former, the latter accompanying it in a natural manmer.
For convenience we also write a" for 8. When (A,=)e & we write A for

8. The definition is:

(i) (Oa, m)” w &

(11) (M, =)* = N (the smallest set in M containing O and cloaed

under x - (x,0)).

(111) (axb)” = & xD and
(*)" = (F:T is & function in M from & to b and

for some £, Vxe A(F(H([x])) = B([£x]))] .

(iv) (T

xeAfx) = & A(fx)" and

Xeh

(n, %) = (Gel,_,(£x)": for some 8 Vx e A(6(H, (x))=Hy, ((ex]))} s

(v) ({x|xeB A ¢c(x, -3 y,8l, =;)"  is the smallest subset X of b

such that Vx[x eMﬁ/\ g(x,%x;y,8") »x eMx].

(vi) (B,1")", for I'=(x|g.(x,-3¥,8)) with b=(B,I), ISI' and

°NI' an equivalence relation, is the imege in M of D" under
the equivalence relation x,= xeﬁ'v:x[;d ((xl,xg),xzir, at) =(x,, xe)gmx].
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Pl replacement for M is used in (iV) and full seperation is used in (v) and

"ng A belongs to M.

sumna.rized by saying that the sets of M are exactly

bet “_‘:gemsad. in @ /e by the members of S. For illustrative

purposes, we shall concen“crate in the following on the three structures G /e
obtained by starting with the three applicative models G = Rec(M), HN Rec(l) and

Set-Fun(n) of 3.k, which will ’bg more simply designated as follows:

| (4) i) mRec 5 Recs(M)) /e wh:Loh satisfies T (S))

: m& il
:EN Rec ’

(;Lii m‘ae*b Fan = (Se't—lf’un /e (vhich setisfies T,(8)).

(ii)‘ "' ec(M)/eM (which satisfies Tl(S))

In the first of these, (N —»N) consists of codes of the recursive functions, in
the second it conalsts of codeﬁ of the hyperarithmetic functions and in the third
of codes of all seb- “Ghaow'bic&l functions from N to N. In all of these, &

' i&‘a't;s p;f M.

consia‘ms of coéta& mf @J,:L s

B We now shew "bh,ad:- G /eM 18 also & model of the further axioms of Discrete
Separa.tion and of Ghoice fo:cmula'bed in 2.12, Tor the first of these V(vi), note
thet d.iacreta gete can ’be ganemtacl only from the ca's and N by x,I and in-
ductive Bepa.r&tion, aince wa, I and (proper) coarsening never lead to discrete

sets. We can then :prove b’y indnction that

(3)

€8 then xeyh ®xeh.

To establish v(vi) from th j,, givem digerew B and any class A, form the subset

| a% (xtxeBNA) of M. ‘l‘han xcM& » x eMB/\ xehA, 80 aeM by full separa-

: tion; Then ¢, e 8 a,n,d ¢, ® B NA as required, To prove the cholce axiom

V(vii), consider any (B,% B) e, Bince BEM and B/aB is equivalent to &

o , get b in M, there 18 & cholce set & in M for B, 1.e. Vx[x Gy P X e B
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~and  Vx eBEly cMa(x EBy). Then c = is a discrete choice set for B ~in the model,ﬁ

This completes our model-theoretic work. 1e now turn to a.n"outii‘né‘ of‘ f
several recursion-theoretic applications of the theories T _(8), T,(8) via the
models of 3.5 and 3.6.

J

4. Bishop's constructive measure theory in TO(S).

L.l Introduction. It was claimed in [F1] §5.1 that all of Bishop's gdns_ﬁ;'ucblivée;;
- analysis [BL] could be formalized in T, Where Bishop's basic notienrof,‘gj ers
f applied to an element x is read fx and where one tekes for the notion of.

set (4, =A) (=A being an equality relation on A) pairs (A,E) with A,E classes

for which E C A2 ig an equivalence relation on A. In other words, in the
terminology of 2.9 above we are dealing with members of C4~Eq. Bishop's notion -

of function

£: (A;”"’A) 3 (B,%B>
is formelly expressed by

(£:A~B)AVxe A Vye A[xmAyafx:mey] s

i.e. by f eBA in the sense of 2.9(3) ebove. It is a direct matter to proceed
from this basis to transcribe the work of [Bil] into T, - This will be modi-
fied to an interpretation of [Bil] into To(a) in 4.2; the reason for passing to
mﬁ‘(s) will be given in & moment. Bome elaboration of general approach and inn‘béB o
involved has been given in [F3], E/ We wish here to concentrate on _aﬁ:péc;‘cs of %
the constructive theory of measure and so only relevant preliminary notions will
be mentioned in 4.2, The treatment in [Bil] was superseded by that in B1.5hop md
Cheng [Bi,C], which is both more natural and more powerful, It was also cldiﬁed '
in [FL1] that the latter could be formalized in Ty - Literally spesaking this is

not correct, since as will be seen below the abstract notion of intgﬁrat;l,op space

o Unpublished notes, a published version of which is eventually planned.
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ie, & power set operation X »®(X). That has
rmal representations of Bishop's work such as
- [Fr2 ]in éxt‘ensional systems, in consequence

,.Qdmfjiﬁg: the mathematics to fit the systems. (In any

roblem ‘fo‘r To or these other systems to deal with conerete

- case,

“bh’e‘rt_a .
constiuétive mea.sﬁre and integration theories such as Lebesgue measure on
Euclidean spaces jR beca.u.se only the notions of being measurable and integrable
are then needed. ) I‘b Wlll be shown here how to formallze the abstract theory of

[Bi,0] in T (S), R B of the operation X v PS(X). The possible signifi-

ecursive mathematics will be discussed in

h.o Basic conc st s‘.;-‘, We shall work informally within To(S), calling members of
C4 the ¢lasses a,nd‘members of S the sets. Following [BRil] we shall write

=, instead of ,E" : and we shall talk about sets A rather than (A, =A) (as is

frequent in mgthema'tz.cs, one des:Lgnates a strueture by its domain). Thus, instead

of usipg,j;l,owejr" 's for sets ag ‘in 2.9, we here use capital letters ang

erat _Qng defined in 2.9(3) and ZeenBy Ty aBy for

) when A is discrete. Also AC B is, as de-

e " . A. ; )
bya function ieB  such that iag Blae = aq A ag H
n map in this case and A & subset of B. Our classes
Lty relations atteched to them, though every class A
prescribed for it. We now

‘Ii,"ffa.,cjt_‘ have an =,

from [Bil] are to be treated in T _(S).
tegers Z are defined by separatlon from
and then the ratlonals Q are defined

XN 7
the usual coarsening of

::ZXZ .. The

&rlth.me'tlcal operatlons are ex‘tended to Z and Q. Zf can be identified with

the discrete set [xlx eN A x ;(O | G:Lven any set X, the seguence X =

’[xn]nsz+ or x [x } f'rom X are sn.mpl‘y ‘the members of X - (writing
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x  for xn). The class of all these seguences thus forms a set., The set R of
" ‘

real numbers is defined to be the seb of regular sequences of rationals ,J‘c‘_w{;xﬁly e

i.e, for which Vm, ne 2 * (Ixm - xnl < '11; + —i—) R is thus defined by B‘agpwa‘bmw ar
ot :
Fron QZ . Equality of reals (xn} o [yn] is defined by Vn e Z+_( lxn— ynl < %)

(which is a coarsening of equality of sequences of rationals). ?,IR+ 1s the subset

of T which consists of the pairs (x,n) where xeTR, n eZ and X, >% H

the inclusion map is L(x,n) = x. In other words, these are resls with an ex-

plicit positive lower bound % +  Bishop continually stresses the requirement of

such expliclt witnessing or side information, but for notational eimplicity mostly

does not show 1t in practice. This is potentially ambiguous, e.g. when we speak i
about a real mumber x being in ] without specifying n for the lower bound, |
However, the context determines whaet additional infommation is to be understood
as supplied - e.g. when talking sbout reals in TR . We shall follow [BL11) in

thia practice of casual deslgnation.

The relation y <x (or x> y) is defined to hold if (x-y) is in
® , end x fy A2 y<x or x <y clesrly, both of these relatiens require
witnessing information, e.g. y < x (by n) 12 (x-y,n)e mﬂﬂ » FPor each pair
of real numbers a,b with a <b, the open interval (a,b) 49 defined ss s
subset of IR; its members are those x with a <x and x <D (together with
the appropriste witnessing information). Closed or partially closed intervals
are treated simllarly., The set of all sequences of resl numbers X« [x ] is
®Z . he relation :x.m X, @y 16 defined to hold with the side-information

n -
(n,) when Va2 nk(lx ~5rl ). then % o = ¥ 18 defined as usual. The

remeinder of [BLi1] Ch.2 is devoted to a constructive development of the caleulng,

which we do not need to follow,

We next look at some set-theoretical notions from Ch.% of [Bi 1], Home
of these have already been denlt with in 2.9 and at the beginning of this section.
A family of subgets of & set B with index set A 4is given by an operation o

which associates with each xe A 4 subset Bx of B, in such a4 way that e
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: a«éubis;eté&ame~ ags0e With equal elements of A. To be more precise we are to

s for esch x - an inclusion map :'LX (or ix) of

¢s for each x,yeA with x=)y amap J

~iﬁc1’ﬁsibn map of Bx in By, and where all these maps

comxrrute approprlately When A is discrete only the maps i, ere needed; we

"’ shall only have to deal wifh families over discrete sets. What Bishop denotes by

U B is here written Ex‘eABx’ which is & subset of B by the inclusion map

X gl

wh(:g,y) =iy,

| on the other hand, B, 1is defined to consist of the members.
e X6 A

T, yeh (4 (ex) - iy(g‘y))-

? _kn”é‘;parfness relation # on X(i.e. one which satis-
"‘ffiikes“g:aﬁditicﬁs‘i_ii{ef‘ftk‘mé.é of # on IR) we call a pair of subsets (A7, A%) of
x rcomj;il‘.rement_ed;lif (xe At Ay ea® 2 x £y). (For example if a < b < c then the
pair consist‘ing of the 6pen intervals (a,b), (b,c) 1is complementéd.) For each

(A A ) we can agsociate a characteristic function x, %o

complemented seb

L. This is simply given by XA(x,l) =1 and

) ie e
1
).

A=At UA®
The

emn ntofa, complemented set (A ) AQ) is (A s A
= (Ai‘x"Ai) of complemented sets is defined to
where U and N are as defined in the preceding

‘pa.ragraph Sn.mil‘ :Ly the intersection is taken to be A Al (ﬂnA Un Aen).

5 generated from a given class B, of complemented sets is

the smallest _cl'as,rs‘ B which includes B, and which is closed under countable

. such that-ﬂ%_(‘]g(_f) isa subset of X and f is a function from D(f) to the set

of real numbers TR, with the property that x % y whenever f£(x) # £{y)." He’re_w

is where the operation X > P(X) mekes a prime-facie appesrance. In place of




RECURSION THEORY AND SET THEORY: A MARRIAGE OF CONVENIENCE 83

2 %

it we shall use in T _(8) what will be defined as the class of all subsets
where we are taking the notlon of subget in Llts wider mepping sense, i.e. ag a

pair (a,1) with a=(A, =,)e8 and a C,X. To define this class, we meke use

)
of the membership relation on 8 glven by

1 ;
(1) Eg = 2 P8 .
aed

Thus for a= (A, asa) or (A, mA) we have (a,x) eﬁ::éf *paeB A xeA. We shall
also write xe a for x €p 8 in this case, The corresponding sum of equallty

relations glvea usg
o .

(2) Eﬁ “Bz ;pga ?
80 that for a= (A, %) we have (a,(x,y)) e Eg waeld A x=y. 1% follows that
the property (of & and 1) a g:‘_:ix is expressible by the elementary formmla
. L , L , A ( ; EQ
(3)  vxl{(a,x) ¢ BEg »dxe X] A Ve,y{(a,x)eBgA(a,y)eEy = ((a,(x,y))e By @

ix B iyll

Hence the oless

() Py(x) = ((8,1)]ae8A 0 €, X)

exists by the Elementary Comprehension esxiom schems IT11 . However, 1t need not
exist as e set since it Ls not obitasined by separation and since it lmvolves the
parameter £,

The definition of F(X) in T,(8) is given similarly:
(5) B(X) » ({(£(e,8)) s eBA & S, X A V[ (0,%) sﬁ% = fx ¢ R}

AVey((a,%) ¢ B A (0,9) 6 Eg = [(a,(x,7)) o = fx=pty]

A [fx ;émf“y = ix o iy]})

Again F(X) exists as o class in ';("Q(fﬁ%), which we designate more simply by
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) |ae S/\ a Sl}{/\ f:ra—-IR A
aAy éae."/\ﬂc‘%mfy = ix # iy]}

'( )' for ’(a.,i) when (f,(&,1))eF(X) and we write

for Ey(yea A :Ly x) We also write f salone for (f,D(f)).

x éD(f)

Following this on p.2 in [Bi,C] we meet the basic definition (1.1) of

integration space. This is read in T(S) as follows: a triple (X,I,I) is an

1ntegrat3.on space 1f X is & non-emp’cy set with an apartness relation and L is

‘-IR “has the propertles (1)-(4) of [Bi,C]1.1.

n the ‘sense .of T (S) (we are using a capital
. notation of [Bl,C]) The idea of 1.1 is that L is
an initial stock of intﬁégfa‘ble functions each defined "almost everywhere" and

that I(f) is?ﬁhe integral of f. (More precisely this is I(f,(a,1)) where

(z, (a,i))eL .‘) CAn integrable function ig then defined (1.6) to be a pair

(£,{2) ;) for which feF(x), [f ] is a 'sequence in L, ZnI(Ifn|) exists

n n= 1 ,
and  fx= 2 :ﬁ” X holds‘whenever 2 |f xl converges. Let Ly be the class of all

def:Lned on Ll by Ilf =3 Il(f ). The first main
‘;Lis-f"agaa,n an in*begra'blon space; furthermore it is

" Constructive Lebesgue integration

egrable; dn this case the measure of A

stions with b may be carried out as usual,

worth: noting ‘are 2.6 and 2.10:

<1 #) 1o n integrote set with 40)> 0 then 1

contains st lesst one element, and
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(2)  Aif Mk]‘:al is & sequence of integrable sets and @ = nlimwu'(vﬁmlﬁk)

% ; ~ .
exists then V, A, is integrable with measure ¢

k.5 TO(S) and constructive mathematics. Following these lines, all of [Bi,¢]
can be formelized in cr:o(s). Indeed, only intuitionistic loglc need be used in
the process. Thus if To(a)(i) , l.e. intultionistic Tc(s) is regarded as

congtructively Justified, it provides us with & constructive formalizstion of the

whole of [BL1] and [B1,C]. While I argued in [F1] that T(i) is construectively = .

justified, T em & litble hesitant about extending this claim to To(ﬁ)(i> , ﬁtwugh
T think & cage can also be made for th&t.y However, I do believe it has the o
cherscter of a theory which would both be recognized on direct grounds &s con-
structively valid and be adequate to the body of mathematics in [Bil], [Bi,¢)

and the further publications contimuing Bishop's methematical progrem.

4.6 T.(8) and yecursive measure theory., Using models of 1T _(8) such es
(Ewc;z(cn))%b (3.5) and rn;% (3.6) in which the funetions in (W - W) are just

the recursive functions, every notion and result of T (8) has & recursion-

theoretic interpretation. In perticular, the members of I are just the re«
cursively regulsr sequences of rationa) mumbers, which are one form of the m«
cursive real nmumbers. Borel sets over IR are what would otherwise be called

recursively coded Borel sets. Every such set (regarded ss & complemented set)

ig definable in To(a). Hence we can apply the conclusion of [Bi,¢] 2.6 noted in
L.4 above to obbtain:

(1) 4if & recursive Bovel set A= (A',A%) 1is integrable with w(A) > O then A
conteins some recursive real muber,

The potential utility of (1) is limited by the hypothesis of integrebility, which
is strong, It is not true (as might first be expected) that every recursive

Borel set is integrable. Indeed, let X, be & monotone incressing recursive

57Tt 18 onily wesk evidence that T (8) is consistent %ﬁh Church's theals
Ve H-+N He e NVx e N(Lx~ (e)x), b§ the model (Rec(w))
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g6

Ofxn £1 such that Iim x  is not recursive.

gequence of recursive reals
T T T T n - ®

PRI I -%X . Then V_A is re-
. n nn

‘ the: puild-up éf‘ A (No doubt, with this understanding, one could give a re-

latively simple direct stetement and proof of (1) which does not need to pass
through the formalization in *To(s) outlined above.) It is of interest to
compare (1) with recursion-theoretic basis resylts, e.g. [ 8], where one gets in-
. ' ‘ :ﬁ‘c;rd "i able A rof dei‘inable members when w(A) > O,

'? _kch weaker than (1) (we cannot get recursive

S he otheﬂm’: since p is read there in terms of

standard measure theory.

4.7 Remarks on T, (8) end recursive mathematics. Some expectations about the

rela“cions of T, to ;cecursive ma:bhemmicm were formulated in [Fl] 5.2 ; these
are cont:.nuad &nd in carta,in reax:ecta better borne out by T (S) As explained in
iﬁ ﬁimgply hh&h 8. theoren ¢(Mt) of clapsical get-

the in’oroducﬁijo 5

theoretit,t ,m@hema'tif . Wh i has & poaitiv*e recursgive analogue ¢(r ec) can be

assimilated to a ccmmon ganeral :t’:'o:cm ¢ which is proveble in T ( ). ‘The classi-

;. i . oy 2 " 'X"
cal resujl,.j: canbethen read off by the interpretation of T o(B) in Mooy, Fu.n
while the recursive dné is given by the specialization to (Rec(w * or mRec .

On the other hand, .:if ¢(rec) “burns cmt negatively, use of the latter models

shows the indapendence of ¢ frqm T (8). Note that there is no reason to expect ‘
intuitionistic lo e L

%o [FL] - thet in

em;p*t%s o gi'v*a a8 cms*bmctiva redevelopment of classlical

% algsbra, which has turned out to Be surprisingly difficult. To begin with, as
,mem:ioned in [Bi 2 ] s it :La not comﬁbmativaly true that the ring 2 is Noetherian.
S Given an mea,l A in 2 we cammot in general decide whether A ® (0] or mot,

: and even 1f A ?‘ (0) - is lmown, we cannot find a Pinite basis fo:t: A. On the other

«: nand, if we allow use of ela.aaical og;i. in T (B), then'we can prove that 2 is
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a principal ideal domain. This follows from the statement in T O(S‘) thet every ; ',:‘

non-empty subset A of N contains a least element min(A). Of course this i

weaker than the would-be constructive statement, since it is not asserted that the

map A v min(A) is provided by a function of the system. While these distine-
tions are clear in principle, it is a matter of detailed study to see how much
methematics of recursion-theoretic interest can be formulated in TO(S) which is

not already derivable in TO(S)(i) .

5+ Accessible ordinals and mumber classes in TO(S) and Tl(s).

5.1 Introduction. Various recursion-theoretic analogues of the set theoretical

notion of accessible ordinal have been developed, most extensively by Ri'chtier
[R]. This involves defining classes 0, of mubers by s complicated inductive
definition which regulates the choice' of n from "previous classes" as well as
the generation of each class separately. We provide here an abstract development
in TO(S) which ie much like that in set-theory: we first define the class Gs
of accessible ordinels and then & mep x 0O for x e@s where cax is the

ordinel mmber cless associated with x (5.2). Classical and recursive ordinal

mimber theories come out as special cases in the models of TO{S) (5.3). For
further applications of ordinals we show that a selection operator for Q.’L can
be found in certain of these models which satisfy TJ.(B)‘ This and other princi-

ples and applications are discussed at the conclusion in 5.4.

5.2 Definiti_.qnﬁ of the concepts. Throughout this section we work informelly in

T,(8). We shall first set up the general definition of 6, , vhere A is eny

class of clagses with eguality. @A
and sup £x for & in A and urbounded f:a -6, . This will then be specia- =
Xea . ;

lized to A=8.

is supposed to be the closure under 0, '

(L) Buprema. These are given by codes using the definition

gup £ = (f,a,1),
a
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dis*tingu.ishes the result from that of successor x'=(x,0).

,‘e‘;,Ly,, récover both - £,8 from Sup f. We also write

sup £x = sup T .
x€a a

(2) The class GA of ordinals with suprema from A . Suppcse A 1s a class of

clagses with equality &= (p,&, =,). We continue to write xea for xepa .

The classes GA and LA will be defined by a simultaneous inductive definition.

’»Wewrlte x<®y or simply x<y for (x,y)el, . Then we put x <y ®

~< X ancl x < ¥ & x' < y The g¢lauges of the inductive definition

: “a.re as fellows

(1) 0 e@A'

1 '
(11) xeB, =x'e N

(111) ae A A Vxe a(fx e@A) AVx,yea[xs y=Tx= £y ]
‘/\Vxee.ﬂyea(fx<fy)=s&pfe%

(1v) e, 20Sx |

“(v) X,’YGGA/\X<yﬁx' <y

(vi) ye@A/\EU;pfa@A/\'v'xca(fx< y) = s £ <y

(vii) ¥eb, A sup fefsA/\ Bx ealy < fx) =y' < eup T

(viti) sup fe 6 Aa%;pgeGAAsz aﬁyeb(fxfgy)ﬂsupffa%yg.
& &

A
We may write O, ‘n‘(xl(i:"}‘c,O)’ ¢ WAJ epd L, = (2](z,1) ¢ WA] where W, =
‘ (x|¢ (%; =3 A, El E‘E for. vsw[;table‘ elementary ¢ x,x”" ; A,B,C). Here Ei -

aandEm

APIL AE “-paa g0 for ae A we can replace the unstratified con-
a1~,, ;Lons (x € a) ‘and _(«:;Fay) by the stratified conditions (a,x) El and,

(e (7)) e E, resp.

(3) Inductionon 6,. Ifwefix < as S, in () - (441), then ©, 1is
equivalent to the least class which aaﬁismea the closure conditions (i)-(iid).
;'Dhua we can carry out proof by :!.m:duct:l.on to show Vx eG, .§(x) for any property ¥
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which satisfies the closure conditions (i) - (1ii) in place of 6 In-par’cic:ul@r
We can prove the converses of (i)-(iii), i.e. Sl

(1) 26y =2=0 or z=x' for xe¢®, or z=sup f where aech,
a

fe:((E)A)‘EL and Vx e ally ea(fx < fy).

Of course we can also carry out proof by induetion on SG .
A
established, the conclusions of (2) (iv)-(viii) give all possible comparisons of

Using (1) Just

elements of the form O,x', sup £; in particular, we obtain x <0 only if x=0.
b =

Some properties that can be proved of <, < and = are:

Xeb, = x <x

)

) %¥,2e0, AxSyAy<Lz=x<ua
(iv) = 4is an equivalence relation on N

)

x,ye@Aﬁx<x' ANy <x' =y <x)
(vi) ye®, Asup fed =[sup £ <y ® Vxea(fx <y)]
a a - -

Aly < mépf'ﬁﬂxea(yﬁfx)].

(4) Recursion on 6, « We can carry out definition by transfinite recursion on“i”;f_ﬁ

6, by epplying the recursion theovem 2.6(3). Given sny g 078178, Ve find h
such that ‘
(i) ho = go

(11) bx' o g (x,h)
(111) h(sup £) ~ g,(a,f,h)
&,

for any x,a,f. (If 81,8, ore total then h can be chosen total.) This can

also be done wnlformly in & parsmeter:

(1)' h(z,0) = g 2
(41)' h(z,x') = g (2,%,h)
(1i1)" n(=, sz.p £) gg(z,é.,f,h).
Usually for epplications the functions g,, By take the form gl(x,h) ggi(x,hx)
and g,(a,f,h) = gy(8, £, .h(fx)), and similarly in (i1)', (111)' .
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' For example we can define ordinsl addition by these means, giving:

__ sup (z +fx) = sup Ax(z+Ix) .
Xxea a

Then for any (class of classes) A we can prove by induction on @A
(v) ‘ z,x ¢ 8, = (z+x) e6,

- Similarly further :_f'a.miliar‘ ‘oi'd.i,na.l functions may be introduced and treated as

‘usual.

Remark. The process of r-ecursiori is independent of A in (i)-(iii) or (i)'-(ii1)',
Of course it .is only for suitable gl,g2 that we will be sure that @A is closed

under h, as in (v).

(5) g_lrig accessible ordinals O and the regular number classes ng)

o is simply ‘the 5peai&l' case of G, for A=S8.

B

‘The g_ggul&r num’ber clagses Q( ") with equal.ity relations ﬁir) are de-

fined by recurslon as follows'

Qgr) =N and E<or) is the relation = ;

(1) for xe® with x40, 0 ’“GB and (Eff)) is (%, )
%3{

k WhereBx ﬁff r) 5(r )z < :x]

're < is the rel&tion ‘<® e 'J.'his recursion is Justified by the princi;plaa in

we are to obtain ‘B functi.en h such that for each x esg s
: T
(31) o @), ")) .

Recall from (2) thet for any class B of clesses With equality a=(pa, 2 ),
5, = (x[(x,0) e Wy} and Ly = (2](5,1) ¢ Wwy) wnere Wy =(x|g (x,»;B,E‘%,Kg)} for -
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suiteble elementary ¢, and where E; =L, pP2 for i=1,2. Furtheil,

x < @By @ (x,7) eL, and xEGByﬁ (x,y) elg A (y,%) e Ly . Thus we want

hoo (N, =) and, for x 40,

(112) ) e (2006w, ), () (L) e Wy A ((v,%),1) e W, 1)

where Ax o~ {[u|Hz(z < x A uw hz)). L

Now for any b, whether or not it is a class of classes with equality, both
- = ‘ 2y = ) =T
(iv) e = j(b,_‘pl) = L, pPe end €b = j(b,p2) = I, pPo®

are ‘alwa.ys defined by axiom II(ii). Further

(v) Wo = 1 ,—W(b, e'b, % )

1s defined by the same axiom. Thus for any class B of classes with equality,

certainly

(vi) wB v WB )

Further, for sultable elementary 61‘ and 62 we have

(vid) i,nei\ (wb) = (x|(x,0) ¢ wb) and
ireé\(Wb) = ((XJY)“(X::V))J-) ewb A ((y,vx):l) e wb ).
Finally, for suitable elementary ¢ we have

(viti) i W‘(x,h) = (u|82(z < , x Au hz)).

g

Combining these we put

() gln) = (1 (V3 o ()], L) (Wigy Gom))),

80 that (iii) can be rewrltten as




- SOLOMON FEFERMAN

‘ho e (N, =) and

Z,‘,_:g(z_c,lr;) for x £ 0.

Ly ec*hly by the recursion theorem., Then it is proved by in-
on &g thaﬁ: fo each X c6, , hx isa class with equality and By

“(hz|z < 2} 1is a class of such classes, interrelated as required by (i).

A case from the definition (i) of special interest below is Q(f) which

is @{ ,=)) i.e, 18 the closure under successor and countable suprema, starting
x

 with 0.

Remark,. I'tis ncis‘c:; claimed as might be expected that the . (n(}f), Ex(r))e s for
::i; x t,e'.(ss:‘.. .'The‘ﬁeasoné‘ are tWon:LS.. First the parameter & is used in the defi-
n:.tlon (i) with the < relation. Secondly, the classes @Bx are not obtained
from given sets ’b_y inductive separation, but rather by full inductive compre-

hension. This leads us to the following:

guestion Is there & reaaon&bl@ extension of T (ﬁ) (or of 'I."l( )) which has the
game kinds of models as that theory and in which we h&ve(ﬂ(r) E(r)) e 8 for

gach ’x eGS 2

x
in (5) (i) (here, inclusion under the identity injection). We thus have

(6)  Ihe sccessible mumber classes 0, . Obviously if y <x then B B

Q(;> c ﬂ(;) and the relation (ﬁz(rr)) is contained in (a)(cr)), This permits us
to define the nunber classes Qx as follows.
Q= aé”’ , fbr‘ X N
: ’(i); nx, mﬂff) for xp’m‘ and :iceQS

fon o)
QB%P g = xganfx forg BUp f‘e&s

(14) 0we® U olPe U oa .
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The relations Ex on Qx are defined correspondingly.

5.5 Interpretation in the models of TO(S), Tl(s).

(1)  Assignment of set-theoretic ordinals. Given any model X of T,(8) end
any A in X which is a class of classes with equality relations we can in-

ductively assign to each xe®, a set-theoretic ordinal ]xl® , or simply |x|,
A

by the expected conditions:

(1) lol =0, Ix'| = |x| +1, [sup £] = sup|ex| .
& Xea

Then it is proved by induction on WA that
(11) xSy e lxl <lyl, hence x< y  [x| <|y| and x=_ye |x| = |y],
- @A - @A @A
for x,ye (S\A . It follows that
(111) a= (P12,% ) e A A X,yeahx=y A sup £ 6, = |£x| = |£y] .

Next, given any B © @, closed under successor, define

(iv) Bl = sup |x| .
XeB

We then obtain from 5.2 (5), (6)

flnér)' _—

o] [ﬂ(r)[ (6 |  for xe6y, x#0
\ * ((Oér)’ ﬁér))lz < x] ) S, '
(I0] = w

() Il =18 myjagxy o for xeg

o, o] = supla, |, for supfet, .
s:pf % & fx! 7 a 8

ot e
(2) Interpretation in the full set-theoretical models. Let nzmse,c_m , where

m=(V, ,e) for some inaccessible ®, » It may be seen in this case that
o
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|6l = the least insccessible ordinal

wlxl forea.ch xe by

IO}((T)] enumerates the accessible regular ordinals.

In the proof of Iﬂx| Swjy| e use that every ae S represents a set a/s,
in M (3:6) end in the proof that wlxl < IQXI we use that every set-function

1n B | is re@reﬁeh‘t@d by a function in ¥ (3.4).

(3) Interpretation in the models. Rec (w), mRec . In Rec (w) all the functions

net are pertial recursive, so Ql ig Jjust another form of the first Church-Kleene

number class Ol , and so

(]
(i) lﬂll =Wy o= T;]_ P
where T, lists the ad;nisﬂibla (or recursively regul. a_:r) ordinals [Ba]. PFurther
it may be seen, e.g. by Richter [R] that

el
(1) || = IOn | =7 for neN.

o]
This suggests our first conjecture here:

(r)
(c !Qx | = Tlx] for each xe O .

1)

The second conjecture is that

(c ]'(95[ = the lesst recursively ineccessible ordinal.

5)

¥
The situation in %Bc, should come out the same, using the homomorphic
mepping of the applicative structure Rec(m) onto Rec(w) from 3.5 and 3.k,
This ig clear fox nl , but the detsils remain to be worked out for the higher

mumber classes. We may read (CJ.>’(C?) equally well as comjectures applying to

*
hh&c '
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. ; B :
(4) ZInterpretation in the models B Rec (w), m . In these cases all the

~Rec L e
functions are partial Hi and the total ones on- N are hyperaritnmaticm ‘The . "

version of Ol obtained using hyperarithmetic functions gives no nGW»ordinaiS*&df

again we have

(1) [Ql|=w§ =7, and IOnlzIQér)|=Tn for neN.

and C. to hold for the models HN—Rec*(m),

One would expect the conjectures Cl 5

m* » if they hold in (3).
ENwRec

Remark . If the conjectures of (3) (or (4)) are correct, the development of-5.2'i 

provides a conceptually superior way of introducing the recursively accessible
ordinals and initial numbers: first, because it follows the set-theoretic pattern
and second, beceuse it provides a simultaneous generalization of both the classical

and recursion-theoretic cases.

5.4 Further principles and applications.

(1) The encestor relation in 0 Define < +to be the least relation guch

§

l L]
that
(1) x<x'

(11) xeN Ay<fx =y <pgupf
N : .

(111) x<yAy<z=mx<z.

Write y g x for y<xV ysx. It may be seen that we have a function e
("enumeration'') so that
(iv) =x e, = ex:N - (yly = x}.
onto
Further for xeQ;, (y|y ¢ x) is linearly ordered by the < reletion, and
finally
(V) % ye Ay S x=Fy(y, sxAyEy ).

The relation < corresponds to the r.e. relation fequently used on Ol .



s,theory we have ey which provides for

|y <%}, Then further if f: Q, -V ang

"e;,'; dan decidek”,(by an operation) whether &y < x(fy = 0)

s is ‘equl,valent to {Hy ¢ x (fy = 0). Hence bounded quantification on

is decidable in this sense in Tl(S).

(3‘) The seleéfj.,o::;'_:‘aéciom for: Qi ,is the following statement, which makes use

of @ ney. constant -¢ ("choice")

¢

‘ ; * *
Sel, is true in T-Rec (w) and in W
1 ) ' -Rec

The reason is-that in:these models Ol is_‘a‘ I'Ii‘ get; then Seln is a conse-

quence Oif ]'[l-uniform:.z ‘

(b) Rela'blons W:L'bh the theory T(Q) . The theory T(O) set up in [F2] is an

extens:Lon of Tl in Wthh. ‘the cl.ass  of ordinals is linearly ordered by < .
~It has & model in ’.I-N-Rec (w or m obtained by taking a 1'I path thru

g = - Rec

0 as & system of un:n.que representatlves. The theory Tl(S )+ (SelO ) can be

used for all the same pur;poses as Tm) (ef. (5) next). (We do not have an

evident translation _'o,f ’che, f,’l.a.tter theory into the former since there are no

S . obvious abstra.ct means. o:E‘ def:.mng a path through Ql

the theory Tj(_ﬂ): ) & form of the contlnuum hypothesis CH is satisfied in the

ordered by < .) As with

EN—models, l e there :J.s a ma,:p g Ql - NN which takes equivalent ordinals
i onto
: onto equlvalen‘b :E‘unct:l_ons. Thls is by 'a l'[i' emmeration of the hyperarithmetic

: f“unctions .

(5) Actual and possible applications to model theory. It was shown in [F2] how

certain portions of set-theoretical model thedry dealing with models which are
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countable or €, - enumerated can be carried out in Ti?) * (CH), thereby
generalizing both the classicel case and certain hyperarithmetic versions due
to Cutland. The same can of course be done here using the theoxy Ty (8) +
(selnl) + (CH). The adventage offered by the latter theory now is a 5yat&m&tic
way of dealing with the higher number classes. Thus one would hope that this
could be used &8 & means to draw further hyperarithmetic congequencen, Pro-
miging areas of investigation would be Morley-8helah theory, the logics
L(Qx), and the stetionary logic of [B,K,M]. (I have learned from Barwise that
his student E. Wimmers has recently given an abstract treatment of the logic
Le) in 1"
sions found by Bruce and Keisler [Br, X].)

which generalizes both the classical case and admiééibla Ve~

(6) Possible applications to long hierarchies of ordinal functions.

Bachmenn hed introduced hierarchies of normsl "eritical” functions on higher
mmber classes whilch were used eventually to define "large'" counteble ordinals,
In unpublished work by myeelf and Aczel, new and somewhat slmplified hierarchies
were proposed as substitutes. Mateh-up with the Bechmann ordinals in various
cases was accomplished by Bridge [Br) and Buchholz [Bu)., Purther, it was shown
in these special cases that the countable ordinals genersted sre recuraive, by
detalled work with explicit order relstione on the terms. One would like to
obtain a theoretical resson for this cutcome. Tt 48 possible that the devalop-
ment of the mumber classes ﬁx in Tl(g) initiated in 5.2 provides a means to
do this. The ldea would be to show that the hierarchies in guestion can be
established sbstraotly on the basls of these principles as o combinuation of
5.2(5). Then under the interpretation of T,(8) in #nec(w) or ng o
every specific countable ordinel gensrated is < wi s hence regursiv ; hec
Schiitte [Sch] has lsclated the set-theoretic properties of ordinals and functions
which are sufficlent for a development of the "long" hierarchies. This work may
be & useful starting point for the proposal just made,
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