
Notes on Operational Set Theory, I.

Generalization of \small" large cardinals

in classical and admissible set theory.

Solomon Feferman1

\Small" large cardinal notions in the language of ZFC are those large cardinal notions

consistent with V = L.

We have the original (1) and analogues (2{7) of small large cardinal notions in:

1. Classical set theory (ZFC)

2. Admissible set theory (KP)

3. Admissible recursion theory

4. Constructive set theory (CST)

5. Explicit mathematics (T0)

6. Constructive type theory (Martin-L�of)

7. Recursive ordinal notation systems

\The existence of analogies between central features of various theories implies the ex-

istence of a general theory which underlies the particular theories and uni�es them with

respect to those central features." (E. H. Moore, 1910, re linear algebra and linear analysis)

Main aim here: to develop a common language for small large cardinal notions to include 1{

7. This is a program in progress. Show how this could be done for 1{3. Should be reasonably

adaptable to 4{5.

Approach: expand language of set theory to allow us to talk about general set theoretical

operations (possibly partial); formulate the large cardinal notions in question in terms of

operational closure conditions. This is a partial adaptation of Explicit Mathematics notions

to the set-theoretical framework. The large cardinal notions treated here are for inaccessibles,

1These notes are expansions of material originally intended for the �rst part of a lecture in the section

on Proof Theory and the Foundations of Mathematics, meeting of the Amer. Math. Soc., Columbus, OH,

21{23 Sept. 2001. The second part (to be prepared) concerns applications of operational set theory to the

foundations of category theory.
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Mahlo cardinals and weakly compact cardinals. A general re
ection principle is formulated

below from which these should all follow.

An early version of the present approach was presented in [Feferman 1996]. For analogues

of large cardinals up to Mahlo in the Explicit Mathematics setting, see [J�ager t.a.]. (More

historical notes and references at the end).

OST (\Operational Set Theory")

LOST, the language of OST, extends the language LZF(=;2) by a three place relation

symbol App(x; y; z) and various constants (to be seen). The interpretation of App(x; y; z) is

that x represents an operation which when applied to y is de�ned and has value z.

A further extension of LOST allows us to introduce application terms

s; t; ::: : = variable j constant j st

The Axioms of OST divide into four parts:

A. Applicative axioms

B. Logical operations

C. Extensionality and foundation

D. Set existence axioms

We take up notation for the A axioms �rst.

Abbreviations:

t ' x for t = x when t is a var. or const.

st ' z for 9x; y[s ' x ^ t ' y ^ App(x; y; z)]

t # for 9x(t ' x)

s = t for 9x; y(s ' x ^ t ' y ^ x = y)

s ' t for (s # _t #! s = t)

Remark: this is the original (1975) approach to the applicative language for systems of

Explicit Mathematics. Since then we have included application terms in the basic language

with Beeson's Logic of Partial Terms (LPT), featuring 8x'(x)^ t #! '(t) (and the dual for

9) in the underlying logic. Here there are reasons for hewing to the basic language of App

with only vars. and consts. as terms.

NB. Operations are regarded as intensional objects, or representations in the universe V of

all sets, of extensional operations on V . In the axioms A, we have two constants k, s for the

(partial) combinators. As usual, in s t1 : : : tn association is to the left.
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A. Applicative axioms of OST.

(i) xy ' z ^ xy ' w ! z = w

(ii) kxy = x

(iii) sxyz ' xz(yz)

As usual from (i) { (iii) we can introduce for each term t a term �x:t whose variables are

those of t other than x and such that

�x:t # ^(�x:t)y ' t(y=x);

and then a recursor rec with

recf # ^ [recf = g ! gx ' fgx]

In the axiom groups B and D we write

t 2 b for 9x(t = x ^ x 2 b)

f : a! b for 8x(x 2 a! fx 2 b)

f : a2 ! b for 8x; y(x; y 2 a! fxy 2 b)

The sets a and/or b may be replaced by the \class" V [classes are not oÆcially part of the

systems OST, and V is not a separate constant]. So, for example, f : a ! V , means f is

total on a, and f : V ! b means f maps all sets into b, and f : V ! V means f is a total

operation. Similarly for V 2 in place of V , etc.

Note that under our de�nition, if f : a! b and a0 � a then f : a0 ! b.

In the axioms B we have two further constants t and f, for Truth and Falsity; axioms

D will guarantee the existence of a set ft; fg. When f : a ! ft; fg, we may regard f as a

de�nite predicate on the set a; similarly with V; V 2 in place of a.

n-ary Boolean operations are f : ft; fgn ! ft; fg: In this group we also have constants

el, cnj, neg, all, respectively for the predicate of elementhood , the Boolean operations of

conjunction and negation, and the operation of bounded universal quanti�cation; bounded

quanti�ers 8x 2 a(: : :) and 9x 2 a(: : :) are explained as usual.

B. Logical operations

(i) t 6= f

(ii) el : V 2 ! ft; fg ^ 8x; y[elxy = t$ x 2 y]

(iii) cnj : ft; fg2 ! ft; fg ^ 8x; y[cnjxy = t$ x = t ^ y = t]

(iv) neg : ft; fg ! ft; fg ^ 8x[x = t _ x = f ! negx 6= x]

(v) (f : a! ft; fg)! allfa 2 ft; fg ^ [allfa = t$ 8x 2 a(fx = t)]
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C. General set axioms.

(i) Extensionality as usual

(ii) 2-Induction, Ind2,

8x(8y 2 x'(y)! '(x))! 8x'(x)

for all formulas '(x; : : :) of the language.

Using the operator rec we can de�ne operations by recursion on sets, resp. ordinals, and

use the scheme Ind2 to prove that they are total on V , resp. ORD.

The set existence axioms D make use of three new (functional) operation constants, S

for separation, R for replacement (or range) and C for choice. In addition, classical OST

makes use of the constant P for the power set operation.

D. Set existence axioms

(i) Empty set, unordered pair, union and in�nity as usual

(ii) Separation for de�nite properties

(f : a! ft; fg)! Sfa # ^8x[x 2 Sfa$ x 2 a ^ fx = t]

(iii) Replacement (or range)

(f : a! V )! Rfa # ^8y[y 2 Rfa$ 9x 2 a(y = fx)]

(iv) Choice

9x(fx = t)! Cf # ^f(Cf) = t:

(v) Power set axiom (only for classical OST)

P : V ! V ^ 8a; x[x 2 Pa$ x � a]

We denote the optional axiom (v) by (P), so the systems we are considering are OST�(P).

De�nition. The ess-
P
(App+) formulas  ; �; : : : are generated as follows:

 := (x = y)j:(x = y)j(x 2 y)j:(x 2 y)jApp(x; y; z)j

j ^ �j _ �j8y 2 x j9y 2 x j9y 

The �0 formulas are generated without App and unrestricted 9.

In the following  (x) indicates a formula with free variables contained in x = x1; : : : ; xn,

and tx is written for tx1 : : : xn
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Lemma 1.

(i) With each �0 formula  (x) is associated a closed term t such that

t # ^(t : V n
! ft; fg) ^ 8x[ (x)$ t x = t]

(ii) With each ess-
P
(App+) formulas  (x) is associated a closed term t such that

t # ^8x[ (x)$ t x = t]

Proof (idea). First de�ne a characteristic function eq using the logical operations in B, since

x = y$ x � y^y � x . Then the rest of (i) follows by B. For (ii), �rst use k and s to de�ne

ap with apxy ' xy . Then App(x; y; z)$ eq(apxy)z = t . The only new thing that has to

be considered in (ii) is unrestricted 9. Given  (x) = 9y�(x; y) and t� for �(x; y); then we

can take t = �x:t�x(C(�yt�xy)), using the general choice operator C.

Corollary 2. We have closed terms 0 for the empty set, ! for the �rst in�nite ordinal, p for

unordered pair, and
S
for union.

Proof. Each is given by an axiom of the form 9y where  is in �0 form, and where y is the

unique set speci�ed in terms of the parameters of  . Then apply C to choose that y.

Theorem 3. (Strength of OST)

(i) KP! + AC � OST

(ii) OST is interpretable in KP!+V = L.

Proof (idea) (i) is direct from Lemma 1 and the set axioms C, D. For (ii) we interpret the

applicative structure in the codes for
P

1 de�nable functions, obtained by uniformizing the
P

1 predicates.

We thus get conservation of OST over KP! for absolute formulas.

Theorem 4. (Strength of OST + (P) )

(i) ZFC� OST + (P)

(ii) OST + (P) is interpretable in ZFC+ V = L.

Proof (idea). This time, for (ii), interpret the applicative structure in the codes for functions
P

1 de�nable in terms of P.

For (i) some work must �rst be done. Use the remark following axioms C to de�ne the

cumulative hierarchy V� by recursion on �, and then show that every set belongs to some V�.

Then use C to de�ne Skolem functions (from the inside out) for all formulas in the language

of ZF. Then prove re
ection in the form that for each such '(x)

8a9b[a � b ^ Trans(b) ^ 8x 2 a('(x)$ '(b)(x))]:
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We can take b to be some V� by the usual argument of closing under Skolem functions

and then up the next level in the cumulative hierarchy. From this we get full Separation

(Replacement) from Separation (Replacement) for �0 formulas.

Again we have conservation over ZF for absolute formulas.

Next are a few useful observations.

De�ne, as usual, hx; yi = ffxg; fx; ygg, and dom(a); rng(a) for the set a restricted to its

subset of pairs, considered in the set-theoretical sense as a binary relation. We write Fun(a)

if 8x 2 dom(a)9!yhx; yi 2 a, and if this holds, a(x) for the unique y such that hx; yi 2 a.

Lemma 5. We have a closed term prod such that for each a; b;prodab # and prodab = a�b.

Proof. Let f be such that for each x; y; fxy = hx; yi, and let fx = �y:fxy. Then for each

x 2 a, fx : b! fxg � b, and Rfx = fxg � b.

The operation g = �x:R(�y:fxy) thus has

Rg = ffxg � bjx 2 ag and so a� b =
S
(Rg):

Lemma 6.

(i) We have closed terms p0 and p1 such that for each x; y

p0hx; yi = x ^ p1hx; yi = y:

(ii) We have closed terms dom and rng such that for each a,

doma = dom(a) and rnga = rng(a):

(iii) We have a closed term op such that for each a, opa # and if Fun(a) and f = opa then

for each x 2 dom(a); fx = a(x):

Proof. By Lemma 1, Cor. 2 and the choice operator C. (ii) is obtained from the fact that

dom(a) and rng(a) are � the double union of a, and we then apply the separation operator

S. For (iii) we can take

opa = �x:C(�y:t(x; y)) where t(x; y) = t$ hx; yi 2 a:

Note that by (iii) every function in the set-theoretical sense is represented by an operation

(in a uniform way). The following gives a partial converse, namely that the restriction of an

operation to a set is extensionally equivalent to such a function.

Lemma 7. There is a closed term fun such that for each f , a, if f : a ! V then funfa #

and if c = funfa then Fun(c) and for each x 2 dom(c), c(x) = fx.

Proof. Let b = Rfa, so f : a ! b. We want c = fhx; yijx 2 a ^ y 2 b ^ fx ' yg. This is

given by c = fzjz 2 a� b ^ eq(apfx)y = tg, which is constructed via S and prod.

We're now ready to consider the operational formulation in the language of ZFC of some

(small) large cardinal axioms.2 In the following we use l.c. Greek letters �; �; : : : ; �; �; : : : ; �; �; �

for ordinals, de�ned as usual.

2These can just as well be formulated as (small) large universe axioms as has been done in Explicit

Mathematics and Constructive Set Theory and Constructive Type Theory.
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De�nition

(i) Reg(�) :$ � > 0 ^ 8�; f [� < � ^ (f : �! �)! 9� < �(f : �! �)]

(ii) Inacc(�) :$ Reg(�) ^ 8� < �9� < �[Reg(�) ^ � < �]

(iii) Reg1(�) :$ � > 0 ^ 8f [(f : �! �)! 9� < �(0 < � ^ f : �! �)]

(iv) Mahlo(�) :$ � > 0 ^ 8f [(f : �! �)! 8� < �9� < � (� < � ^ Reg(�) ^ f : �! �)]

(v) The statements Reg, Inacc, Reg1 and Mahlo are obtained by replacing � by the class

ORD of all ordinals.

By Lemmas 6, and 7, the meanings of Reg, Reg1, Inacc and Mahlo are the same whether

the `f ' variables are interpreted in the intensional operational sense or in the extensional

set-theoretical sense.

Lemma 8.

(i) Reg1(�)$ Reg(�) ^ � > !

(ii) Reg1 $ Reg

Proof idea for (ii). De�ne normality for operations as usual, show that every such operation

has arbitrarily large !-co�nal �xed points, and show that every f is majorized by a normal

g (and such that g0 is arbitrarily large). Then to show Reg! Reg1, given f : ORD! ORD,

using such g, �nd � > 0 with g� = �, so that then g : � ! �, hence also f : � ! �.

Conversely, given � > 0 ^ (f : �! ORD), choose normal g majorizing f with g0 = �, and

�nd � > 0 with g : � ! �. Then � < � and so f : � ! �. The proof of (i) relativizes the

argument to �.

The statement corresponding to Lemma 8(i) in ZF, with functions in the set-theoretical

sense instead of operations as here was stated in [Aczel and Richter 1972]. This was used by

them to motivate a de�nition of Reg2, again with set-theoretical functions. Here we do the

same with operations instead of functions.

De�nition. (f � g) :$ 8x(fx ' gx)

(f j� � gj�) :$ 8� < �(f� ' g�)

De�nition. Write f 2 �� if f : �! �, and F : �� ! �� if

8f 2 ��(Ff 2 ��) ^ 8f; g 2 ��[f � g ! Ff � Fg]:

We say F is �-bounded if

8f 2 ��8� < �9
 < �8g 2 ��[f j
 � gj
 ! Ff� = Fg�]:

� is a �-witness for F if

0 < � < � ^ 8f 2 ��[f 2 �� ! Ff 2 ��]:
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Similarly, de�ne f 2 ORDORD; F : ORDORD
! ORDORD; F is bounded, and � is a witness

for F , by replacing � by ORD throughout.

De�nition.

Reg2(�) :$ 8F [F �-bounded! 9�(� is a �-witness for F )]

Reg2 :$ 8F [F bounded ! 9�(� is a witness for F )]:

[Aczel and Richter 1972] state, and [Richter and Aczel 1974] prove, that if we use set-theoretic

functions in place of operations, then in ZFC, � is Reg2 i� � is weakly compact. By Lemmas

6 and 7, the set-theoretical interpretation of Reg2(�) is equivalent to its de�nition above,

since �� can be replaced by the set of all functions from � to � in the set-theoretical sense,

and then F can be replaced by a function on that set to itself. On the other hand, it is not

clear if the operational sentence Reg2 has a set-theoretical interpretation.

The two Aczel and Richter papers also give an analogue formulation of these notions in

terms of recursion theory on admissible sets. If � is an admissible ordinal and we interpret

fx ' y as ffg(x) ' y in the sense of the
P

1 recursion theory on � (or L� ) then each

statement ' translates into a statement 'Ad which gives the analogue notion. In the case of

Reg2 the analogue notion is proved by them in [Richter and Aczel 1974] to be equivalent to
Q
3-re
ection. Formalizing the arguments of Aczel and Richter, one should have the following

(I have not checked the details):

Theorem 9

(i) OST + (Inacc) is interpretable in KPi + V = L.

(ii) OST + (Mahlo) is interpretable in KPM +V = L.

(iii) OST + (Reg2) is interpretable in KP! + (
Q
3 -re
ection)+ V = L.

In each case we interpret the theory on the left in the theory on the right using the

translation of ' as 'Ad. While it is not obvious that the theories on the right are contained

in those on the left, it is hard to believe that they are any stronger. In terms of the relation

� of proof-theoretical equivalence, I thus make the following

Conjectures.

(i) OST + (Inacc)� KPi

(ii) OST + (Mahlo)� KPM

(iii) OST + (Reg2) � KP! + (
Q
3 -re
ection).

It should be noted that in the interpretation (Reg2)
Ad the assumption that the functional

F is bounded can be dropped, since F is represented by an e�ective operation, and so is

continuous by a generalization of the Myhill-Shepherdson theorem.

In [Aczel and Richter 1972] a generalization called n-regularity of Reg2 is indicated for

each n � 2, which we write here as Regn, and they state that the interpretation of Regn on an
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admissible � is equivalent to
Q
n+1-re
ection. Unfortunately, the indicated de�nition is not

supplied, and they did not pursue the matter further in the 1974 paper. The idea is to carry

the notion of boundedness, which is a form of continuity, to higher types. One way this might

be done is to generalize to recursion theory on L� the notion of hereditarily continuous (or

countable) functional due, independently, to Kleene and Kreisel (cf. [Kreisel 1959]), but the

details don't look simple. In the admissible interpretation by e�ective operations of higher

type, the boundedness or continuity condition can be dropped, but that is not suitable for

an abstract formulation. Alternatively, one could simply adjoin the assumption that all

functionals of �nite type are suitably bounded and work from there. Finally, it would be

of interest to generalize these ideas to trans�nite types to get operational equivalents in the

admissible setting to
Q
�-re
ection.

The last thing I want to do here is describe an abstract re
ection principle covering both

classical and admissible set theory, from which the above \small large cardinal" principles

and others follow, and which has a certain plausibility. For this, it is convenient to expand

the language of OST further by Op-variable f; g; h; : : : with or without subscripts. These

still range over V , but in formulas they will only occur in special positions.

De�nition. An Op-formula is one generated from the atomic formulas x = y, x 2 y,

App(f; x; y), where x; y are set variables and f is an Op-variable, by the Boolean opera-

tions and quanti�cation with respect to both set variables and Op-variables.

By a 8-Op formula we mean one in which all quanti�ed occurrences of Op-variables are in

positive 8 form. If ' is an Op-formula, then '(a) is the result of relativizing all set quanti�ers

8x(: : :) and 9x(: : :) in ' to a, i.e. as 8x 2 a(: : :) and 9x 2 a(: : :), resp.

NB. Under this process of relativization, Op-quanti�ed variables are not changed.

Op-Re
ection Principle. For each Op-formula '(x; f), we have

'(x; f)! 9a[ Trans(a) ^ x 2 a ^ '(a)(x; f)]

By the 8-Op-Re
ection Principle we mean the same restricted to 8-Op formulas '.

Claim. Inacc and Mahlo follow from the 8-Op-Re
ection Principle. The same holds for

obvious generalizations of Mahlo (hyper-Mahlo, hyper-hyper-Mahlo, etc.) The argument is

that, �rst, Reg is a consequence of OST. Then use the re
ection principle to prove that there

are arbitrarily large � with Reg(�); thus Inacc holds. To prove Mahlo, given f , let '(f) be

(f : ORD ! ORD)^ Reg. Then if we get an a such that '(f)(a) and � = a \ ORD then

(f : �! �) ^ Reg(�). (So on for hyper-Mahlo, etc.)

On the other hand, it is not obvious whether Reg2 is a consequence of the Op-Re
ection

Principle, let alone its 8 form. For the very formulation of Reg2 in terms of functionals is not

given as an Op formula. But there should be an equivalent reformulation of Reg2 by means

of an Op formula, by replacing the functionals by associated \neighborhood functions". This

has to be checked out.

Conjecture. We can prove in ZFC that OST + (8-Op-Re
ection Principle) is consistent.

Question. Is OST (Op-Re
ection Principle) consistent?
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Historical notes and acknowledgments.

The axiomatization by [von Neumann 1925] of a theory of sets and functions is a precursor

in spirit of OST. Von Neumann's functions are of type 1 over the universe of sets and are

closed under combinatory and logical axioms; it would be of interest to re-examine that work

in the light of OST.

[J�ager and Strahm 1998] presented a form of Reg2 in the Explicit Mathematics setting

at a conference in Castiglioncello. I did not take in at that time their motivation from

the work of Aczel and Richter. I owe it to Michael Rathjen for bringing the form Reg2 of

weak compactness and the work of Aczel and Richter to my attention at the Mittag-Le�er

Institute in Sweden in the spring of 2001.

I wish to thank Gerhard J�ager, Sergei Tupailo and Thomas Strahm for some corrections

to a draft of the above notes.
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