THE OPERATIONAL PERSPECTIVE

Solomon Feferman

Advances in Proof Theory In honor of Gerhard Jäger's 60th birthday Bern, Dec. 13-14, 2013 Operationally Based Axiomatic Programs

- The Explicit Mathematics Program
- The Unfolding Program
- A Logic for Mathematical Practice
- Operational Set Theory (OST)

Foundations of Explicit Mathematics

- Book in progress with Gerhard Jäger and Thomas Strahm, with the assistance of Ulrik Buchholtz
- An online bibliography

The Unfolding Program

- Open-ended Axiomatic Schemata; language not fixed in advance
- Examples in Logic, Arithmetic, Analysis, Set Theory
- The general concept of unfolding explained within an operational framework

Aim of the Unfolding Program

- S an open-ended schematic axiom system
- Which operations on individuals--and which on predicates--and what principles concerning them ought to be accepted once one has accepted the operations and principles of S?

Results on (Full) Unfolding

- Non-Finitist Arithmetic (NFA); $|\mathcal{U}(NFA)| = \Gamma_0$
- Finitist Arithmetic (FA): $U(FA) \equiv PRA, U(FA + BR) \equiv PA$
- (Feferman and Strahm 2000, 2010)

Unfolding of ID₁

- $|U(ID_1)| = \psi(\Gamma_{\Omega+1})$ (U. Buchholtz 2013)
- <u>Note</u>: $\Psi(\Gamma_{\Omega+1})$ is to $\Psi(\epsilon_{\Omega+1})$ as Γ_0 is to ϵ_0 .

Problems for Unfolding to Pursue

- Unfolding of analysis
- Unfolding of KP + Pow
- Unfolding of set theory

Indescribable Cardinals and Admissible Analogues Revisited

- <u>Aim</u>: To have a straightforward and principled transfer of the notions of indescribable cardinals from set theory to admissible ordinals.
- A new proposal and several conjectures, suggested at the end of the OST paper.
- <u>NB</u>: Not within OST

Aczel and Richter Pioneering Work

- Aczel and Richter [A-R] (1972)
 Richter and Aczel [R-A] (1974)
- In set theory, assume K regular > ω .
- Let f, g: $\kappa \rightarrow \kappa$; F(f) = g type 2 over κ .

- F is bounded $\Leftrightarrow (\forall f: \kappa \rightarrow \kappa) (\forall \xi < \kappa)$ [F(f)(ξ) is det. by < κ values of f]
- α is a witness for $F \Leftrightarrow (\forall f: \kappa \rightarrow \kappa)$ [f : $\alpha \rightarrow \alpha \Rightarrow F(f): \alpha \rightarrow \alpha$]
- к is 2-regular iff every bounded F has a witness.

[A, R]-3

- Notions of bounded, witness, n-regular for n > 2 are "defined in a similar spirit", but never published.
- <u>Theorem I</u>. κ is n+I-regular iff κ is strongly Π^I_n-indescribable.
- Proved only for n = I in [R-A](1974).

- Admissible analogues:
- Assume κ admissible > ω
- K is n-admissible, obtained by replacing 'bounded' in the defn. of n-regular by 'recursive', functions by their Gödel indices, and functionals by recursive functions applied to such indices.

[A, R]-5

- <u>Theorem 2</u>. κ is n-admissible iff κ is Π⁰_{n+1} reflecting.
- Proved only for n = 2 in [R-A](1974).
- <u>Proposed</u>: Least Π⁰_{n+2}-reflecting ordinal ~ least [strongly] Π¹_n-indescribable cardinal.

A Proposed New Approach

- Directly lift to card's and admissible ord's notions of *continuous functionals* of finite type from o.r.t.
- Kleene (1959), Kreisel (1959)
- Deal only with objects of pure type n.
- $\kappa^{(0)} = \kappa; \kappa^{(n+1)} = \text{all } F^{(n+1)}: \kappa^{(n)} \rightarrow \kappa.$

"Sequence Numbers" in Set Theory

- Assume к a strongly inaccessible cardinal.
- Let $\kappa^{<\kappa}$ = all sequences s: $\alpha \rightarrow \kappa$ for arbitrary $\alpha < \kappa$.
- Fix $\pi: \kappa^{<\kappa} \to \kappa$, one-one and onto; so $\pi(\mathfrak{g} \upharpoonright \alpha)$ is an ordinal that codes $\mathfrak{g} \upharpoonright \alpha$.

Continuous Functionals and Their Associates

- Inductive definition of $F \in C^{(n)}$, and of *f* is an associate of *F*, where f is of type 1:
- For n = I, f is an associate of F iff f = F.
- For $F \in K^{(n+1)}$, f is an associate of F iff for every G in $C^{(n)}$ and every associate g of G,

Continuous Functionals and Their Associates (cont'd)

- (i) $(\exists \alpha, \beta < \kappa)(\forall \gamma)[\alpha \le \gamma < \kappa \Rightarrow$ $f(\pi(g \upharpoonright \gamma)) = \beta + 1]$, and
- (ii) $(\forall \gamma, \beta < \kappa) [f(\pi(g \upharpoonright \gamma)) = \beta + 1 \Rightarrow$
 - $F(G) = \beta$].
- F is in $C^{(n+1)}$ iff F has some associate f.

Witnesses

- For F in $C^{(n)}$ and $\alpha < \kappa$, define α is a witness for F, as follows:
- For n = I, and $F = f, \alpha$ is a witness for F iff $f: \alpha \rightarrow \alpha$.
- For $F \in C^{(n+1)}$, α is a witness for F iff $(\forall G \in C^{(n)})[\alpha \text{ a witness for } G \Rightarrow$ $F(G) < \alpha].$

C⁽ⁿ⁾-Regularity; Conjectures

- K is $C^{(n)}$ -reg for n > 1 iff every F in $C^{(n)}$ has some witness $\alpha < \kappa$.
- <u>Conjecture I</u>. For each $n \ge I$, the predicate *f* is an associate of some *F* in $C^{(n+1)}$, is definable in Π^{I}_{n} form.
- <u>Conjecture 2</u>. For each $n \ge 1$, κ is $C^{(n+1)}$ -reg iff κ is strongly Π^{1}_{n} -indescribable.
- Conj-2 holds for n = I by [R-A] proof.

Analogues over Admissibles

- Consider admissible $\kappa > \omega$.
- For analogues in (κ-) recursion theory replace functions of type I by indices ζ of (total) recursive functions {ζ}.
- But then at type 2 (and higher) we must restrict to those functions {ζ} that act extensionally on indices.

Effective Operations over Admissibles

- Following Kreisel (1959), define the class E_n of (K-) effective operations of type n, and the relation \equiv_n by induction on n > 0:
- E₁ consists of all indices ζ of recursive functions;
 ζ =₁ ν iff for all ξ, {ζ}(ξ) = {ν}(ξ).

Effective Operations over Admissibles (cont'd)

- $\zeta \in E_{n+1} \Leftrightarrow \{\zeta\}: E_n \to \kappa \text{ and}$ $(\forall \xi, \eta \in E_n)[\xi \equiv_n \eta \Rightarrow \{\zeta\}(\xi) = \{\zeta\}(\eta)];$ $\zeta \equiv_{n+1} \nu \Leftrightarrow (\forall \xi \in E_n)[\{\zeta\}(\xi) = \{\nu\}(\xi)].$
- <u>Conjecture 3</u>. Every type n+leffective operation is the restriction of a functional in C⁽ⁿ⁺¹⁾.
- This would show why can drop the boundedness hypothesis in analogue.

Witnesses for Effective Operations

- For ζ in E_1 , α is a witness for ζ iff $\{\zeta\}: \alpha \to \alpha$.
- For ζ in E_{n+1} when $n \ge 1$, α is a witness for $\zeta \Leftrightarrow (\forall \xi \in E_n)$ $[\alpha \text{ a witness for } \xi \Rightarrow {\zeta}(\xi) < \alpha].$
- κ is E_n -admissible if each ζ in E_n has some witness $\alpha < \kappa$. (Equiv. to [A, R] n-admiss.)

Further Work

- Settle the conjectures.
- (Scott)The partial equivalence relation approach to types in λ -calculus models over $\mathcal{P}(N)$ gives a "clean"definition of the Kleene-Kreisel hierarchy. Can this idea be generalized to $\mathcal{P}(\kappa)$? [What about effective operations?]

Further Work (cont'd)

 The present approach leaves open the question as to what is the proper analogue for admissible ordinals--if any--of a cardinal κ being Π^m_n-indescribable for m > 1.

The End