
 1 

The Operational Perspective: Three Routes  

Solomon Feferman 

For Gerhard Jäger, in honor of his 60th birthday.   

 

Let me begin with a few personal words of appreciation, since Gerhard Jäger is 

one of my most valued friends and long time collaborators.  It’s my pleasure to add my 

tribute to him for his outstanding achievements and leadership over the years, and most 

of all for having such a wonderful open spirit and being such a fine person.  

I first met Gerhard at the 1978 logic colloquium meeting in Mons, Belgium.  He 

was attending that with Wolfram Pohlers and Wilfried Buchholz, with both of whom I 

had long enjoyed a stimulating working relationship on theories of iterated inductive 

definitions.  From our casual conversations there, it was clear that Gerhard was already 

someone with great promise in proof theory. But things really took off between us a year 

later when we both visited Oxford University for the academic year 1979-1980.  Gerhard 

had just finished his doctoral dissertation with Kurt Schütte and Wolfram Pohlers. I 

remember that we did a lot of walking and talking together, though I had to walk twice as 

fast to keep up with him.  We talked a lot about proof theory and in particular about my 

explicit mathematics program that I had introduced in 1975 and had expanded on in my 

Mons lectures; Gerhard was quick to take up all my questions and to deal with them 

effectively.  Since then, as hardly needs saying, he became a leader in the development of 

the proof theory of systems of explicit mathematics and related systems in the 

applicative/operational framework (among many contributions to a number of other 

areas), and he went on to establish in Bern a world center for studies in these subjects.   

It was also through Gerhard that I was able to come in useful contact with a 

number of his students and members of his group, and most particularly with Thomas 

Strahm, who then became a second very important collaborator of mine, both on explicit 

mathematics and the unfolding program, of which I’ll say something below.  Since some 

time now, Gerhard and Thomas have been working with me on a book on the foundations 
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of explicit mathematics, and in the last few years we have made great progress on that 

with the assistance of my former student Ulrik Buchholtz, for which I’m very grateful.1 

Finally on the personal front I want to add that my wife, Anita, and I have had the 

pleasure over the years of visiting Gerhard and his family, first in Zürich, and then in 

Bern, and we want to thank him and his wife Corinna for their generous, ever-ready 

welcome and hospitality.  

*************** 

This article consists of four sections, beginning in sec. 1 with an explanation of 

the general features of the operational perspective.  That is then illustrated in the 

remaining three sections by the explicit mathematics program, operational set theory, and 

the unfolding program, resp. The material of this article is by no means exhaustive of the 

work carried out under the operational perspective; instead, it concentrates on those areas 

with which I have been personally involved and that I thus know best, but references with 

a wider scope are given where relevant.  I have two readers in mind: the general reader 

with a background in logic on the one hand and the expert in applicative theories on the 

other.  For the former I have emphasized the aims of the work and filled in its 

background. For the latter, I have added new points toward the end of each of secs. 2-4 

that I hope will be worthy of attention.  In particular, sec. 2 has material on the 

development of constructive and predicative mathematics in systems of explicit 

mathematics, sec. 3 deals with problems that arose in my development of OST and 

sketches Gerhard Jäger’s solution to them, and sec. 4 concludes with new conjectures on 

the unfolding of systems of operational set theory.     

 

1. The operational perspective. Operations are ubiquitous in mathematics but not 

adequately accounted for in current global (or universal) foundational schemes.  In 

particular, the only operations that have a direct explanation in set theory are those 

represented by functions qua many-one relations, so cannot explain operations such as 

union and power set that are supposed to be applicable to arbitrary sets.  The attempt of 

                                                
1 Let me also take this opportunity to thank Thomas Strahm and Thomas Studer for 
organizing the December 2014 meeting in honor of Gerhard Jäger, and for arranging for 
me to participate via Skype since I was unable to attend in person.     
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Church (1932, 1933) to provide a foundation of mathematics in purely operational terms 

that would be an alternative to set theory was shown to be inconsistent, and later efforts 

at similar programs such as that of Fitch (1963) have had only very limited success. In 

any case, one should not expect a “one size fits all” theory of operations; witness the 

great conceptual variety of computational, algebraic, analytic and logical operations 

among others.  Nevertheless, there is a core theory of operations that can readily be 

adapted to a number of local purposes by suitable expansions in each case.  This has the 

following features: 

(i) Operations are in general allowed to be partial. For example, the operations of 

division in algebra and integration and differentiation in analysis are not 

everywhere defined.   

(ii) Operations may be applied to operations.  For example, one has the operation 

of composition of two operations, the operation of n-times iteration of a given 

operation, the “do…until…” operation of indefinite iteration, etc. 

(iii) In consequence of (ii), a generally adaptable theory of operations is type-free.  

(iv) Extensionality is not assumed for operations.  For example, the theory should 

allow the indices of partial recursive functions to appear as one model.  

(v) The language of the theory is at least as expressive as the untyped lambda-

calculus and the untyped combinatory calculus. 

(vi) Though logical operations of various kinds on propositions and predicates 

may appear in particular applications, first-order classical or intuitionistic 

predicate logic is taken as given.   

These features form the general operational perspective.    

In accordance with (i)-(iii), in any particular expansion of the basic theory, we 

will want some way of introducing application terms s, t, u,…, generated from variables 

and constants by closure under application, written s(t) or st, and then to express that a 

term t is defined, in symbols t↓.  In the original operational approach that I took in my 

article (F 1975) on explicit mathematics, the basic relations included a three place 

relation App(x, y, z), informally read as expressing that the operation x applied to y has 

the value z.  Then application (pseudo-)terms were introduced contextually, first in                     
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(pseudo-)formulas t ≃z expressing that t is defined and has the value z: for t a variable or 

constant, this is simply taken to be ordinary equality, while for t of the form t1t2, this is 

taken to be ∃x,y(t1 ≃x ∧ t2 ≃y ∧ App(x, y, z)).  Finally, t↓ is defined to be ∃z(t ≃z) and           

t1 ≃t2 is defined to be ∀z(t1 ≃z ↔ t2 ≃z).  An elegant alternative to this approach was 

provided by Beeson in 1981 (cf. (Beeson 1985) Ch. VI.1) under the rubric, the Logic of 

Partial Terms (LPT). In LPT, terms are now first class citizens and the expressions t↓ are 

taken to be basic formulas governed by a few simple axioms and rules, among which we 

have suitable restrictions on universal and existential instantiation.  In this system, t1 ≃t2  

is defined by the formula t1↓∨ t2↓ → t1 = t2. Most of the work after 1981 on the systems 

within the operational perspective has taken LPT as basic, but we will see in sec. 3 below 

that there may still be cases where the original approach is advantageous.  Note that LPT 

contains the “strictness” axioms that if a relation R(t1,…,tn) holds then ti↓ holds for each 

i; in particular, that is the case for the equality relation.  By t1t2…tn we mean the result of 

successive application by association to the left.  

The minimal theory we use has two basic constants k and s (corresponding to 

Curry’s combinators K and S) with axioms: (i) kxy =y, and (ii) sxy↓ → sxyz ≃xz(yz). 

These serve to imply that with any term t(x,…) we may associate a term λx.t(x,…) in 

which the variable x is not free, and is such that (λx.t(x,…))y ≃t(y,…).  Moreover we can 

construct a universal recursor or fixed point operator r (sometimes denoted rec), i.e. a 

term for which rf↓ ∧ rfx ≃f(rf)x is provable. In all the applications of the operational 

perspective below, axioms (i) and (ii) are further supplemented by suitable axioms for 

pairing and projection operations p, p0, and p1, and definition by cases d.2 For the 

purposes below, let’s call these the basic operational axioms, whether with respect to the 

App formulation or that in LPT.    

                                                
2 There are several possible formulations of the definition by cases operator.  In the one 
originally taken in (F 1975), sometimes called definition by cases on V, this takes the 
form dxyuv = (x if u = v, else y). However, when added to the axioms for k and s, 
extensionality is inconsistent for operations.  More restrictive versions have subsequently 
been used, mainly definition by cases on the natural numbers, allowing both 
extensionality and totality of operations; cf. Jäger and Strahm (1995).  
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2. Explicit Mathematics.  My work with the operational approach began with the 

explicit mathematics program in (F 1975).  Here is what led me to that. In the years 

following the characterization (F 1964, Schütte 1965) of predicative analysis in terms of 

an autonomous progression of ramified analytic systems whose limit is at the ordinal Γ0, I 

had explored various ways to simplify conceptually the formal treatment of predicativity 

via unramified systems.3 Moreover, that would be important to see which parts of 

mathematical practice could be accounted for on predicative grounds going beyond 

(Weyl 1918).  Independently of that work, in (F 1971) I had made use of extensions of 

Gödel’s functional (“Dialectica”) interpretation to determine the proof-theoretical 

strength of various subsystems of analysis by the adjunction of the unbounded minimum 

operator as well as the Suslin-Kleene operator.  The two pursuits came closer together in 

the article “Theories of finite type related to mathematical practice” (F 1977) for the 

Handbook of Mathematical Logic.  As with Gödel’s interpretation, that made use of the 

functional finite type structure over the natural numbers.   

Meanwhile, Errett Bishop’s novel informal approach to constructive analysis 

(Bishop 1967) had made a big impression on me and I was interested in seeing what kind 

of more or less direct axiomatic foundation could be given for it that would explain how 

it managed to look so much like classical analysis in practice while admitting a 

constructive interpretation.  Closer inspection showed that this depended on dealing with 

all kinds of objects (numbers, functions, sets, etc.) needed for analysis as if they are given 

by explicit presentations, each kind with an appropriate “equality” relation, and that 

operations on them are conceived to lead from and to such presentations preserving the 

given equality relations.  In other words, the objects are conceived of as given 

intensionally, while a classical reading is obtained by instead working extensionally with 

the equivalence classes with respect to the given equality relations.  Another aspect of 

Bishop’s work that was more specific to its success was his systematic use of witnessing 

data as part of what constitutes a given object, such as modulus of convergence for a real 

number and modulus of (uniform) continuity for a function of real numbers.  Finally, his 

                                                
3 First steps in that direction had already been made in (F 1964) via the system IR. For 
subsequent explorations cf. (F 1968, 1974 and 1979a).   



 6 

development did not require restriction to intuitionistic logic (though Bishop himself 

abjured the Law of Excluded Middle).   

Stripped to its core, the ontology of Bishop’s work is given by a universe of 

objects, each conceived to be given explicitly, among which are operations and classes 

(qua classifications).  This led to my initial formulation of a system T0 of explicit 

mathematics in (F 1975) in which that approach to constructive mathematics could be 

directly formalized. In addition, I introduced a second system T1, obtained by the 

adjunction of the unbounded minimum operator so as to include a foundation of 

predicative mathematics. The theory T0 was formulated in a single sorted language with 

basic relations =, App, Cl, and η where Cl(x) expresses that x is a class(ification) and yηx 

expresses that y has the property given by x when Cl(x) holds.  Variables A, B, C,… X, 

Y, Z, are introduced to range over the objects satisfying Cl, and y ∈X is also written for 

yηx where x = X.  The basic logic of T0 is the classical first-order predicate calculus.4 

The axioms of T0 include the basic operational axioms, and the remaining axioms are 

operationally given class existence axioms.  For example, we have an operation prod 

which takes any pair X, Y of classes to produce their cartesian product, X×Y and another 

operation exp which takes X, Y to the cartesian power YX, also written X → Y.  The 

formation of such classes is governed by an Elementary Comprehension Axiom scheme 

(ECA) that tells which properties determine classes in a uniform way from given classes. 

These are given by formulas ϕ in which classes may be used as parameters to the right of 

the membership relation and in which we do not quantify over classes, and the uniformity 

is provided by operations cϕ applied to the parameters of ϕ.5 But to form general products 

we need further notions and an additional axiom. Given a class I, by an I-termed 

sequence of classes is meant an operation f with domain I such that for each i ∈ I  the 

value of f(i) is a class Xi; one wishes to use this to define  ΠXi[i ∈ I].  It turns out that in 

combination with ECA a more basic operation is that of forming the join (or disjoint 

sum) ∑Xi[i ∈ I] whose members are all pairs (i, y) such that y ∈Xi; an additional Join 
                                                
4 In (F 1979) I also examined T0 within intuitionistic logic.   
5 The scheme ECA can be finitely axiomatized by adding constants for the identity 
relation, the first-order logical operations for negation, conjunction, existential 
quantification, and inverse image of a class under an operation.  
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axiom (J) is needed to assure existence of the join as given by an operation j(I, f). Finally, 

we have an operation i(A, R) and associated axiom (IG) for Inductive Generation which 

produces the class of objects accessible under the relation R (a class of ordered pairs) 

hereditarily within the class A.  In particular, IG may be used to produce the class N of 

natural numbers, then the class O of countable tree ordinals, and so on.   

In later expositions of systems of explicit mathematics, the language of LPT was 

used instead of the App relation for the operational basis, and the natural numbers N were 

taken to be a basic class for which several forms of the principle of induction were 

distinguished for proof theoretic purposes, as will be explained below. Also, in the 

approach to the formalization of Explicit Mathematics due to Jäger (1988), it turned out 

to be more convenient to treat classes extensionally but each with many possible 

representations within the universe V of individuals.6  Membership has its usual meaning, 

but a new basic relation is needed, namely that an object x names or represents the class 

X, written R(x, X).  In these terms, for example, one has operations prod and exp such 

that whenever R(x, X) and  R(y, Y) hold then R(prod(x, y), X × Y) and                    

R(exp(x, y), X → Y) hold.   

The only difference of T1 from T0 lies in the adjunction of a numerical choice 

operator µ  as a basic constant, together with the axiom: 

(µ)  f ∈(N → N) → µf ∈ N ∧ [∃x(fx = 0) → f(µf) = 0],7 

from which the unbounded least number operator can be defined.  This is equivalent to 

assumption of the operator E0 for quantification over N.  Later on a third system T2 was 

introduced by adjoining a constant for the Suslin-Kleene operator E1 for choosing a 

descending sequences g from a non-well-founded tree in the natural numbers represented 

by an operation f.   Models of the basic operational axioms of T0 are provided in the 

natural numbers by taking App(x, y, z) to be the relation {x}(y) ≃z; thus the extensions of 

the total operations are just the recursive functions.  Similarly, a model of the operational 

                                                
6 There is a difference in terminology, though: Jäger used ‘types’ for our classes.  
7 In certain subsystems of T1 with restricted induction we need to add to the (µ) axiom 
that if µf ∈ N then f ∈(N → N). 
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part of T1 is given by indices of partial ∏1
1 functions, so in this case the extensions of the 

total operations are just the hyperarithmetic functions.  Finally, in the case of T2, one uses 

indices of the functions partial recursive in the E1 functional.  In general, given any 

model (A, App,…) of the operational axioms with or without these special operators, one 

obtains a model of the class construction axioms by a transfinite inductive definition of 

names of classes with suitable codes for the operations on classes.8    

The proof-theoretical study of subsystems of T0 began in (F 1975) and was continued 

in (F 1979).  Since then the proof theory of subsystems of the Ti (either given directly or 

by interpretation) has greatly proliferated and has become the dominant part of research 

in explicit mathematics, continuing until this day.  The paper Jäger, Kahle and Strahm 

(1999) provides a useful survey of a considerable part of such work that begins with a 

relatively weak theory BON (Basic Theory of Operations and Numbers).  That adds to 

the applicative language the constants N, 0, and sc as well as a constant rN for primitive 

recursion on N.  Over the basic operational theory, BON has the usual axioms for 0 and 

successor; for primitive recursion, we have an axiom which asserts that for arbitrary f and 

g, total on N and N3
 (each to N), resp., the operation h = rNfg is total on N2 to N, and 

satisfies hx0 = fx and hx(sc(y)) = gxy(hxy).  Several forms of induction are considered 

over BON; the full scheme, called formula induction, (F-IN) is of the usual form for each 

formula ϕ(x) in the language, namely ϕ(0) ∧ (∀x ∈N)(ϕ(x) → ϕ(sc(x)) → (∀x ∈N)ϕ(x).  

The single special case of this for ϕ(x) of the form fx = 0 (where f is a variable) is called 

operation induction (O-IN), and when f is further assumed to be total from N to {0, 1} 

that is called set induction (S-IN).  Finally, the case for ϕ(x) of the form fx ∈N is called 

N-induction (N-IN). The paper Jäger, Kahle and Strahm (1999) summarizes the proof-

theoretical strength of all combinations of these with BON and then with BON plus the 

                                                
8 Parts of T0 relate to Aczel’s Frege structures and Martin-Löf’s constructive theory of 
types; cf. for example, Beeson (1985), Chs. XI and XVII.  But neither of these 
approaches goes on to the adjunction of non-constructive functional operators like µ (or 
E0) and E1.  
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axioms for µ  and E0.9  For reasons to be seen in a moment, let me single out only two of 

their theorems:  

(i) BON + (F-IN) ≡ PA, and  

(ii) BON(µ) + (S-IN) ≡ PA, 

where ≡ is the relation of proof-theoretical equivalence; we also have conservation of the 

l.h.s. over the r.h.s in each of these results.  (BON(µ) is BON plus the (µ) axiom.) The 

result (i) is part of the folklore of the subject, and (ii) was established in Feferman and 

Jäger (1993).   

Let us now look at these systems within the language of T0 and T1, resp.  There it is 

natural to also consider class induction (C-IN), i.e. the case of the induction scheme where 

ϕ(x) is of the form x ∈X.  Under the Elementary Comprehension Axiom scheme (ECA), 

that implies (F-IN) for the formulas of the language of BON.  Moreover, under the 

assumption of the (µ) axioms we can alternatively use set induction to obtain all those 

instances.  Put in these terms it turns out that we have the following from Feferman and 

Jäger (1996): 

(iii)  BON +ECA + (C-IN) ≡ PA, and 

(iv)  BON(µ)+ ECA + (S-IN) ≡ PA.  

These results are of significance with respect to the question: what parts of mathematics 

are accounted for in different parts of the explicit mathematics systems?  The results (iii) 

and (iv) are relevant to constructive and predicative mathematics, resp., as follows.   

A careful examination of Bishop and Bridges (1985)⎯a reworking and expansion 

of Bishop (1967)⎯shows that all its work in constructive analysis can be formalized in 

the theory BON + ECA + (C-IN), hence requires no more principles for its justification 

than given by Peano Arithmetic.  The typical choice of notions and style of argument is 

presented in (F 1979), pp. 176ff.  Closer inspection shows that much of Bishop and 

Bridges (1985) can already be carried out in BON + ECA + (S-IN), which is equivalent in 

                                                
9 For the proof theory of systems of explicit mathematics with E1 see Jäger and Strahm 
(2002) and Jäger and Probst (2011). 
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strength to PRA.  Although the theory of measure and integration presented in Bishop 

(1967) made use of Borel sets, and thus of the countable join of classes and the countable 

tree ordinals, Bishop and Bridges (1985) substituted for that an approach to measure and 

integration that does not require J or IG at all.   

Turning now to predicative mathematics, it is easily seen that all the 

redevelopment of 19th century analysis on those grounds as sketched in (Weyl 1918) can 

be carried out in the system BON(µ)+ ECA + (S-IN) of (iv) above.   The natural question 

to be raised is how much of modern analysis can be carried out in that system.  In that 

respect we can make use of extensive detailed notes that I prepared in the period 1977-

1981 but never published at the time; a scanned copy of those notes with an up-to-date 

introduction is now available in (F 2013). That work supports my conjecture (F 1988, 

1993) that all scientifically applicable mathematics can be formalized in a system 

conservative over PA, namely BON(µ) + ECA + (S-IN).  To carry this out in the case of 

19th c. analysis, systematic use is made of Cauchy completeness rather than the 

impredicative l.u.b. principle, and sequential compactness is used in place of the Heine-

Borel theorem.  Then for 20th c. analysis, Lebesgue measurable sets and functions are 

introduced directly via the Daniell approach without first going through the impredicative 

operation of outer measure; the existence of non-measurable sets cannot be proved in the 

system.  Moving on to functional analysis, again the “positive” theory can be developed, 

at least for separable Banach and Hilbert spaces, and can be applied to various Lp spaces 

as principal examples.  Among the general results that are obtained are usable forms of 

the Riesz Representation Theorem, the Hahn-Banach Theorem, the Uniform 

Boundedness Theorem, and the Open Mapping Theorem. The notes conclude with the 

spectral theory for compact self-adjoint operators on a separable Hilbert space.  

This of course invites comparison with the work of Simpson (1988) that examines 

various parts of mathematics from the standpoint of the Reverse Mathematics program 

initiated by Harvey Friedman.  That centers on five subsystems of second order 

arithmetic: RCA0, WKL0, ACA0, ATR0 and Π1
1-CA0. Each of these beyond the first is 

given by a single second-order axiom scheme in addition to the induction axiom for N in 

the form (C-IN).  In contrast to our work, which permits the free representation of practice 

in the full variable finite type structure over N, all mathematical notions considered by 
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Simpson are represented in the second-order language by means of considerable coding.  

The main aim of the Reverse Mathematics program is to show that for a substantial part 

of practice, if a given mathematical theorem follows from a suitable one of the five 

axioms above then it is equivalent to it, i.e. the implication can be reversed.  For 

comparison with our work, much of predicative analysis falls under these kinds of results 

obtained for WKL0 and ACA0, of proof-theoretical strength PRA and PA respectively.  

Thus, on the one hand Simpson’s results are more informative than ours, since the 

strength of various individual theorems of analysis is sharply determined.  On the other 

hand, the exposition for the work in WKL0 and ACA0 is not easily read as a systematic 

development of predicative analysis, as it is in our notes.  Still, the Simpson book is 

recommended as a rich resource of other interesting results that could be incorporated 

into our approach through explicit mathematics.  

Of course, predicative analysis⎯as measured by the explication of (F 1964) and 

Schütte (1965)⎯in principle goes far beyond what can be reduced to PA. First of all, 

there are a number of interesting subsystems of second-order arithmetic that are of the 

same proof-theoretical strength as the union of the ramified analytic systems up to Γ0.  

Among these we have the system Σ1
1-DC + BR, where BR is the Bar Rule; the proof-

theoretical equivalence in this case was first established in Feferman (1979a) and later (as 

a special case of a more general statement) in Feferman and Jäger (1983).  In the latter 

publication, another system of this type is formulated as the autonomous iteration of the 

Π0
1 comprehension axiom.  Finally, Friedman, McAloon and Simpson (1982) showed by 

model-theoretic methods that the system ATR0 is also of the same strength as full 

predicative analysis.10 Since that may be given by a single axiom over ACA0 (cf., ibid. p. 

204), it follows that results in analysis and other parts of mathematics that are provably 

equivalent to (that axiom of) ATR0 are impredicative. Simpson (1998, 2010) gives a 

number of examples of theorems from descriptive set theory that are equivalent to ATR0, 

such as that every uncountable closed (or analytic) set contains a perfect subset.   

By contrast to these systems of second order arithmetic, in (F 1975) I conjectured 

                                                
10 Then Jäger (1984) and Avigad (1996) showed that they are of the same proof-
theoretical strength, by proof-theoretical methods, the first via theories of iterated 
admissible sets without foundation and the second via fixed point theories. 
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that a certain subsystem T1
(N) of T1 is equivalent in strength to predicative analysis; in the 

notation here, that system may be written as BON(µ) + ECA + (F-IN) + J.   However, 

Glass and Strahm (1996) showed that T1
(N) is proof-theoretically equivalent to the 

iteration of Π0
1-CA through all α < ϕε00, hence still far below Γ0.  It is an open question 

whether there is a natural subsystem of T1 of strength full predicative analysis.  Marzetta 

and Strahm (1998) give a partial answer to this question by the employment of axioms 

for universes.11   

Finally, let us turn to the evaluation of the proof-theoretical strength of the full 

systems T0 and T1 of explicit mathematics.  In unpublished notes from 1976, I showed 

how to interpret T0 in Δ1
2-CA + BI (cf. (F 1979a) p. 218). Then Jäger and Pohlers (1982) 

determined an upper bound for the proof-theoretic ordinal⎯call it κ⎯of the latter system, 

and Jäger (1983) gave a proof in T0 of transfinite induction on α for each α < κ, thus 

closing the circle.12 One of the main results of Glass and Strahm (1996) is that proof-

theoretically, T1 is no stronger than T0.  In a personal communication, Dieter Probst has 

sketched arguments to show that also T2 is no stronger than T0, but natural variants of E1 

lead to stronger systems.13  

NB. Currently, work is well advanced on a book being coauthored with Gerhard Jäger 

and Thomas Strahm with the assistance of Ulrik Buchholtz in which much of the 

foundations of explicit mathematics will be exposited in a systematic way. In the 

meantime, Buchholtz has set up an online bibliography of explicit mathematics and 

closely related topics at http://www.iam.unibe.ch/~til/em_bibliography/ that can be 

                                                
11 In sec. 4 below I conjecture that the unfolding of a suitable subsystem of T0 is 
equivalent in strength to predicative analysis.   
12 Recently, Sato (2014) has shown how to establish the reduction of Δ1

2-CA + BI to T0 
without going through the ordinal notation system for κ. 
13 Another interesting group of questions concerns the strength over T0 (or its restricted 
version T0⨡) of the principle MID that I introduced in (F1982).  That expresses that if f is 
any monotone operation from classes to classes then f has a least fixed point.  Takahashi 
(1989) showed that T0 + MID is interpretable in Π1

2-CA + BI, and then Rathjen (1996) 
showed that it is much stronger than T0.  Next, exact strength of T0⨡ + MID was 
determined by Glass, Rathjen, and Schlüter (1997). A series of further results by Rathjen 
for the strength of T0 + MID and T0 + UMID, where UMID is a natural uniform version 
of the principle, are surveyed in the paper Rathjen (1998). 
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searched chronologically or by author and by title.  The plans are to maintain this 

independently of the publication of the book.  At the time of writing it consists of 127 

items; readers are encouraged to let us know if there are further items that should be 

added.   

 

3. Operational set theory.  I introduced operational set theory in notes (F 2001), 

eventually published in detail in (F 2009).14 This is an applicative based reformulation 

and extension of some systems of classical set theory ranging in strength from KP to ZFC 

and beyond.  For the system of strength ZFC, this goes back in spirit to the theory of sets 

and functions due to von Neumann (1925), but Beeson (1988) is a direct predecessor as 

an operational theory.  In addition to extending the range of this approach through 

intermediate systems down to KP, my work differs from both of these in its primary 

concern, namely to state various large cardinal notions in general applicative terms and, 

among other things, use those to explain admissible analogues in the literature.  

Significant further work on the strength of various systems of operational set theory has 

been carried out by Jäger (2007, 2009, 2009a, 2013) and Jäger and Zumbrunnen (2012).15 

The last of these is of particular significance for the following, since it shows that one of 

the main conjectures of (F 2009) is wrong and that it (and related other conjectures) need 

to be modified in order to obtain the intended consequences; Gerhard Jäger has suggested 

two ways to do that that will be described later in this section.  

 The system OST allows us to explain in uniform operational terms the informal 

idea from Zermelo (1908) that any definite property of elements of a set determines the 

subset of that set separated by the given property.  Namely, represent the truth values 

“truth” and “falsity” by 1 and 0, resp., and let B = {0, 1}.  In the applicative extension of 

the usual set-theoretical language, write f :a → b for ∀x(x ∈a → fx ∈ b), and f :a →V for 

∀x(x ∈a → fx↓). Then definite properties of subsets of a set a may be identified with 
                                                
14 To explain some anomalies of the dates of subsequent work on this subject, it should 
be noted that my 2009 paper was submitted to the journal Information and Control in 
December 2006 and in revised form in April 2008.  In the meantime, Jäger (2007) had 
appeared and so I could refer to it in that revised version.    
15 Further important work is contained in Zumbrunnen (2013) and Sato and Zumbrunnen 
(2014).  Constructive operational theories of sets have been treated by Cantini and 
Crosilla (2008, 2010) and Cantini (2011). 
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operations f :a → B, and the uniform separation principle is given by an operation S such 

that for each such a and f, S(f, a) is defined and exists as a set, {x: x ∈ a ∧ fx = 1}.  

Furthermore, it allows us to explain in uniform operational terms the idea from von 

Neumann (1925) that if a is a set and f is an operation from a into the universe of sets 

then the range of f on a is a set.  Namely, we have an operation R such that for each         

f :a → V, R(f, a) is defined and exists as a set,{y: ∃x(x ∈a ∧ y = fx)}.  Finally, OST 

allows us to express a uniform form of global choice by means of an operation C such 

that for each f, ∃x(fx = 1) then Cf is defined and f(Cf) = 1. 

 In a little more detail, here is a description of the theory OST essentially as 

presented in (F 2009).  Its language is an expansion of the language of usual set theory by 

the atomic applicative formulas, together with a number of constants to be specified 

along with their axioms.  The basic logic is LPT, the logic of partial terms. The axioms of 

OST fall into five groups. Group 1 axioms are those for k and s.  Group 2 axioms consist 

of extensionality and the existence of the empty set 0, unordered pair, union and ω ; we 

take 1 = {0} and B = {0, 1}.  Group 3 axioms are for the logical operations el, cnj, neg 

and unib (bounded universal quantification), with the obvious intended axioms, the last of 

which is that if f : a → B then unib(f, a) ∈B and unib(f, a) = 1  ↔ (∀x ∈a)(fx = 1).  The 

Group 4 axioms are for S (Separation), R (Replacement) and C (Choice), as described 

above.  Finally, Group 5 is the scheme of set induction for all formulas in the language of 

OST; when that is restricted to the formula x ∈a we write OST↾	  for	  the	  system.	  

From the Group 3 (logical) axioms it is shown that one can associate with each Δ0 

formula ϕ(x) in the language of ordinary set theory (where x = x1,…,xn) a closed term tϕ 

that is defined and maps Vn into B, and which satisfies ∀x(tϕ(x) = 1 ↔ ϕ(x)).  Thus OST 

satisfies the separation axiom for bounded formulas.  Then using Replacement and 

Choice, one obtains the Δ0-Collection axiom.  Hence KP (here taken to include the axiom 

of infinity) is contained in OST.  This leads us to the ≥ direction of the following.   

(i) OST ≡ KP. 

My proof in (F 2009) for the ≤ direction went via an interpretation of OST in KP + V= L, 

beginning with an interpretation of the operations as those given by codes for the partial 

functions that are Σ1 definable in parameters.  An alternative proof of that bound was 
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given by Jäger (2007) using his theories of numbers and ordinals for transfinite inductive 

definitions.   

To obtain systems of strength full set theory and beyond, one adds constants uni 

for unbounded universal quantification with axiom (Uni) like that for unib, and P for the 

power set operation, the latter with axiom (Pow) which states that for each x, Px is 

defined and ∀y(y ∈Px ↔ y ⊆ x).16  Then we have: 

(ii) OST↾ + (Pow) + (Uni) ≡ ZFC. 

The proof that ZFC is contained in the left side is easy, using that every formula is now 

represented by a definite operation.  The proof that OST↾ + (Pow) + (Uni) can be reduced 

to ZFC + (V=L) was given by Jäger (2007).  On the other hand, as shown in Jäger (2009) 

and Jäger and Krähenbuhl (2010), the unrestricted system OST + (Pow) + (Uni) is of the 

same strength as NBG extended by a suitable form of Σ1
1-AC.       

Next, in view of (i) and (ii) it is natural to ask what the strength is of OST + 

(Pow).  Of course we have that this contains KP + (Pow), where that is formulated with 

an additional constant P as above. The problem concerns the other direction.  In this case 

Jäger (2007) showed that 

(iii) OST + (Pow) is interpretable in KP + (Pow) + V = L. 

But the latter theory is much stronger than KP + (Pow) as shown by Rathjen (2014),17 so 

one can’t use (iii) to determine the strength of OST + (Pow).  Nevertheless, Rathjen 

(2014a) has been able to establish the following there, using novel means:  

(iv) OST + (Pow) ≡ KP + (Pow).   

 

Let’s turn now to the problematic conjectures of (F 2009). These concern the 

natural formulation in operational terms of an ordinal κ being regular, inaccessible, and 

Mahlo, resp., as well as a notion of being 2-regular due to Aczel and Richter (1972) that 

is equivalent to being Π1
1-indescribable (cf. Richter and Aczel (1974) pp. 329-331).  

                                                
16 Rathjen (2014) uses (Pow(P)) for our formulation in the language of KP as well, in 
order to distinguish it from the usual power set axiom formulated without the additional 
constant.  It would have been better to do that in (F 2009), but not having done so I here 
follow the notation from there.   
17 An earlier such result for the system with a restricted form of set induction is due to 
Mathias (2001).   
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Using lower case Greek letters to range over ordinals, the first of these is defined in the 

language of OST by 

Reg(κ): = (κ > 0) ∧ ∀α,f [α < κ ∧ (f :α → κ) → ∃β < κ (f :α → β)]. 

Then being inaccessible is defined by 

      Inacc(κ): = Reg(κ) ∧ ∀α < κ ∃β < κ [Reg(β) ∧ α < β]. 

The statements of regularity and inaccessibility of the class Ω  of ordinals are defined 

analogously by: 

Reg: = ∀α, f [(f :α → Ω) → ∃β(f :α → β)]. 

      Inacc: = Reg ∧ ∀α ∃β [Reg(β) ∧ α < β]. 

 

       Let Fun(a) be the usual set-theoretical formula expressing that the set a is a 

function, i.e. a many-one binary relation; for x in dom(a), a(x) is the unique y with          

〈x, y〉 ∈a. Then among the immediate consequences of the OST axioms are, first, that 

there is a closed term op such that for each set a, opa↓ and if Fun(a) and f = opa then for 

each x ∈ dom(a), fx = a(x) and, second, there is a closed term fun such that for each f, a, 

if f :a →V then fun(f, a)↓ and if c = fun(f, a) then Fun(c) and for each x ∈ dom(c),      

c(x) = fx.  Thus the above notions and statements of regularity and inaccessibility can be 

read as usual in the ordinary language of set theory.  That led me mistakenly to assert in 

Theorem 10 of (F 2009) that OST + (Inacc) is interpretable in KPi + V = L, and to 

conjecture that OST + (Inacc) is equivalent in strength to KPi.18   This has been proved to 

be wrong by Jäger and Zumbrunnen (2012), who show that OST + (Inacc) is equivalent 

in strength to the extension KPS of KP by the statement Inacc when read in ordinary set-

theoretical terms, denoted SLim for “strong limit axiom.”  KPS proves that for any κ that 

satisfies Reg(κ), Lκ is a standard model of ZFC without the power set axiom; hence KPS 

is much stronger than second-order arithmetic.    

      My mistake was that the notion of regularity here⎯while natural in the context of 

ordinary set theory⎯does not correspond to that used in KP viewed as a theory for 

admissible sets.  Namely, as presented in Jäger (1986), that is given by the additional 
                                                
18 However, I did say that I had not checked the details.  In fact, I hadn’t thought them 
through at all.   
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predicate Ad(x) expressing that x is admissible, with the appropriate axioms.  Then KPi 

asserts the unboundedness of the admissibles, in the sense that ∀x∃y[Ad(y) ∧ x ∈y].  So 

the question arises as to whether there is a natural extension of OST that is equivalent in 

strength to KPi.  My first thought was that there should be some notion of universe, 

Uni(x), formulated in the language of OST, that is analogous to the notion of 

admissibility, Ad(x), in the language of KP, such that when we extend OST by the 

statement ∀x∃y[Uni(y) ∧ x ∈y] we obtain a system of the same strength as KPi.  In        

e-mail exchanges with Gerhard Jäger early in the summer of 2014, I made several 

proposals for the definition of Uni(x) to do just that, but each proved to be defective.  One 

of these proposals was to say that u is a universe if it is a transitive set that contains all 

the constants of OST, is closed under application, satisfies the basic set-theoretic axioms 

of OST and the axioms for S, R and C under the hypotheses suitably relativized to u.  But 

Jäger pointed out that the system OST + ∀x∃u[Uni(u) ∧ x ∈u] is still stronger than KPi, 

by the results of his paper Jäger (2013).   

     In going over this situation, Jäger noted that the applicative structure must also be 

relativized in explaining the notion of a universe in the language of OST.  This first led 

him to make the following suggestion. Namely, one returns to the formulation of the 

applicative basis in terms of the ternary App relation, rather than the logic of partial terms.  

Then a universe is defined to be a pair 〈u, a〉 such that (i) u is a transitive set with a ⊆ u3, 

(ii) whenever (f, x, y) ∈a then App(f, x, y), (iii) u contains ω and all the constants of OST, 

and (iv) all the axioms of OST hold when relativized to u provided that the App relation 

is replaced by the set a.  Jäger outlined a proof that OST + ∀x∃u,a[Uni(〈u, a〉)∧ x ∈u] is 

proof-theoretically equivalent to KPi.  More recently, in work in progress Jäger (2015), 

he has proposed another way of modifying the notion of regularity (and thence 

inaccessibility) so as to stay within the language and logic of partial terms while 

relativizing it to a universe in the preceding sense.  In the new approach one adds a 

predicate Reg(u, a) to the language satisfying certain axioms similar to (i)-(iv) and in 

addition an assumption of the linear ordering of those pairs 〈u, a〉 for which Reg(u, a) 

holds.  Then in place of the above condition Inacc on the class of ordinals one can 
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consider the statement Lim-Reg (abbreviated LR), which asserts that ∀x∃u,a[Reg(u, a) ∧ 

x ∈u].  The main result of Jäger (2015) is that OST + LR is proof-theoretically equivalent 

to KPi.  The advantage of his second approach is that one can re-express further large 

cardinal notions such as Mahlo, etc., much as before.  Assuming this is successful, we 

can look forward to a reexamination of my original aim to use OST as a vehicle to restate 

various large cardinal notions in applicative terms in order to explain the existing 

admissible analogues that are in the literature.  

4. The unfolding program.  In sec. 2 I spoke of my work on unramified systems of 

predicative strength19 as being one precursor to the development of explicit mathematics.  

That mainly had to do with the potential use of such systems as a means to determine 

which parts of classical analysis could be justified on predicative grounds.  But one of the 

articles indicated, (F1979a), was concerned with more basic conceptual aims, namely 

those advanced by Kreisel (1970) who suggested the study of principles of proof and 

definition that “we recognize as valid once we have understood (or, as one sometimes 

says, ‘accepted’) certain given concepts.” The two main examples Kreisel gave of this 

were finitism and predicativity, and in both cases, he advanced for that purpose the use of 

some form of autonomous transfinite progressions embodying a “high degree of self-

reflection.”  My aim in (F 1979a) was to show in the case of predicativity how that might 

be generated instead by “a direct finite rather than transfinite reflective process, and 

without alternative use of the well-foundedness notion in the axioms.”  The motivation 

was that if one is to model actual reflective thought then one should not invoke the 

transfinite in any way.  But not long after that work I realized that what is implicit in 

accepting certain basic principles and concepts can be explained more generally in terms 

of a notion of reflective closure of schematic systems, where schemata are considered to 

be open-ended using symbols for free predicate variables P, as in the scheme for 

induction on the natural numbers.  One crucial engine in the process of reflection is the 

employment of the substitution rule A(P)/A(B), where B(x) is a formula that one has 

come to recognize as meaningful in the course of reflection, and where by A(B) is meant 

the result of substituting B(t) for each occurrence P(t) in A(P).  I described the notion of 

                                                
19 Cf. fn 2. 
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reflective closure and its application to the characterization of predicativity in a lecture 

for a meeting in 1979 on the work of Kurt Gödel, but was only to publish that work in the 

article, “Reflecting on incompleteness” (F 1991).  For the technical apparatus I 

introduced there an axiomatization20 of the semantic theory of truth of Kripke (1975) in 

which the truth predicate may consistently be applied to statements within which it 

appears by treating truth and falsity as partial predicates.   

 Though the axiomatic theory of truth employed in (F1991) proved to be of 

independent interest, as an engine for the explanation of reflective closure it still had an 

air of artificiality about it.  I was thus led to reconsidering the entire matter in (F 1996) in 

which the notion of unfolding of open-ended schematic systems was introduced in close 

to its present form by means of a basic operational framework.  As formulated there, 

given a schematic system S, the question is: which operations and predicates⎯and which 

principles concerning them ought to be accepted if one has accepted S?  And under the 

heading of operations one should consider both operations on the domain DS of 

individuals of S and operations on the domain Π of predicates; both domains are included 

in an overarching domain V.  For the underlying general theory of operations applicable 

to arbitrary members of V, in (F1996) I made use of a type 2 theory of partial functions 

and (monotone) partial functionals, generated by explicit definition and least fixed point 

recursion, and that is what was followed in the paper Feferman and Strahm (2000) for the 

unfolding of a schematic system NFA of non-finitist arithmetic.  Later, in order to 

simplify various matters in the treatment of finitist arithmetic, the work on NFA was 

reformulated in Feferman and Strahm (2010) so as to use instead the basic operational 

language and axioms on V essentially as described at the end of sec. 1 above, and that is 

what has been followed in subsequent work on unfolding.    

Here are a few details for the unfolding of NFA, which in many ways is 

paradigmatic. The axioms of NFA itself are simply the usual ones for 0, sc and pd 

together with the induction scheme given as P(0) ∧ ∀x[P(x) → P(sc(x))] → ∀x(P(x)) 

where P is a free predicate variable.  The language of the unfolding of NFA adds a 

                                                
20 Since referred to as KF in the literature.   
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number of constants, the predicate symbol N(x), the predicate symbol Π(x), and the 

relation y ∈x for x such that Π(x). The axioms of the unfolding U(NFA) consist of the 

following five groups: (I) The axioms of NFA relativized to N. (II) The partial 

combinatory axioms, with pairing, projections and definition by cases. (III) An axiom for 

the characteristic function of equality on N. (IV) Axioms for various constants in the 

domain Π of predicates, namely for the natural numbers, equality, and the free predicate 

variable P, and for the logical operations ¬, ∧, and ∀. (V) An axiom for the join of a 

sequence of predicates, given by j(f) when f : N → Π.  The full unfolding U(NFA) is then 

obtained by applying the substitution rule A(P)/A(B) where B is an arbitrary formula of 

the unfolding language. A natural subsystem of this called the operational unfolding of 

NFA and denoted U0(NFA) is obtained by restricting to axiom groups (I)-(III) with the 

formulas B in the substitution rule restricted accordingly.  In U0(NFA) one successively 

constructs terms t(x) intended to represent each primitive recursive function, by means of 

the recursion operator and definition by cases.  Applying the substitution rule it is then 

shown by induction on the formula t(x)↓ that each such term defines a total operation on 

the natural numbers.  Thus the language of PA may be interpreted in that of U0(NFA) and 

so by application of the substitution rule once more, we have PA itself included in that 

system.  Moving on to U(NFA), the domain of predicates is expanded considerably by 

use of the join operation.  Once one establishes that a primitive recursive ordering ≺ 

satisfies the schematic transfinite induction principle TI(≺, P) with the free predicate 

variable P, one may apply the substitution rule to carry out proofs by induction on ≺ with 

respect to arbitrary formulas. In particular, one may establish existence of a predicate 

corresponding to the hyperarithmetical hierarchy along such an ordering, relative to any 

given predicate p in Π.  Then by means of the usual arguments, if one has established in 

U(NFA) the schematic principle of transfinite induction along a standard ordering for an 

ordinal α, one can establish the same for ϕα0, hence the same for each ordinal less than 

Γ0.  Thus U(NFA) contains the union of the ramified analytic systems up to Γ0.  The main 

results of Feferman and Strahm (2000) are that U0(NFA)  is proof-theoretically 

equivalent to PA and is conservative over it, and U(NFA) is proof-theoretically 
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equivalent to the union of the ramified analytic systems up to Γ0 and is conservative over 

it.  In other words, U(NFA) is proof-theoretically equivalent to predicative analysis. In 

addition we showed that the intermediate system U1(NFA) without the join axiom (V) is 

proof-theoretically equivalent to the union of the ramified systems of finite level.  

The unfolding of finitist arithmetic was later taken up in Feferman and Strahm 

(2010); two open-ended schematic systems of finitist arithmetic are treated there, denoted 

FA and FA + BR, resp. The basic operations on individuals are the same as in NFA 

together with the characteristic function of equality, while those on predicates are given 

by ⊥, ∧, ∨, and ∃. Reasoning now is applied to sequents Γ → A, and the basic 

assumptions are the usual ones for 0, sc and pd, and the induction rule in the form: from 

Γ → P(0) and Γ, P(x) → P(sc(x)), infer Γ → P(x), with P a free predicate variable.  Now 

the substitution rule is applied to sequent inference rules of the form Σ1, Σ2, …,Σn ⇒ Σ; 

we may substitute for P throughout by a formula B to obtain a new such rule.  The first 

main result of Feferman and Strahm (2010) is that all three unfoldings of FA are 

equivalent in strength to PRA.  That is in accord with the informal analysis of finitism by 

Tait (1981).  On the other hand, Kreisel (1965), pp. 169-172, had sketched an analysis of 

finitism in terms of a certain autonomous progression and alternatively “for a more 

attractive formulation” without progressions but with the use of the Bar Rule, BR, that is 

equivalent to PA.  The rule BR allows one to infer from the no-descending sequence 

property NDS(f, ≺) for a decidable ordering ≺, where f is a free function variable, the 

principle of transfinite induction on the ordering TI(≺, P), with the free predicate variable 

P.  The second main result of Feferman and Strahm (2010) is that all three unfoldings of 

FA + BR are equivalent in strength to PA, thus in accord with Kreisel’s analysis of 

finitism.  

Extending the unfolding program to still weaker theories, Eberhard and Strahm 

(2012, 2015) have dealt with three unfolding notions for a basic system FEA of feasible 

arithmetic.  Besides the operational unfolding U0(FEA) and (full) predicate unfolding 

U(FEA), they introduced a more general truth unfolding system UT(FEA) obtained by 
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adding a truth predicate for the language of the predicate unfolding.21 Their main result is 

that the provably total functions of binary words for all three systems are exactly those 

computable in polynomial time.    

The most recent result in the unfolding program is due to Buchholtz (2013) who 

determined the proof-theoretic ordinal of U(ID1), where the usual system of one 

arithmetical inductive definition ID1 is recast in open-ended schematic form.  That is 

taken to expand NFA and for each arithmetical A(P, x) in which P has only positive 

occurrences one assumes the following principles for the predicate constant PA associated 

with A: (i) ∀x(A(PA, x) → PA(x)) and (ii) ∀x(A(P, x) → P(x)) → ∀x(PA(x) →P(x)), with 

P the free predicate variable.  The axioms of U(ID1) are similar to those of U(NFA), 

except that for Axiom (V), the join operation more generally takes an operation f from a 

predicate p to predicates fx = qx to the disjoint sum j(f) of the qx’s over the x’s in p.  The 

main result of Buchholtz (2013) is that ⎪U(ID1)⎪ = ψ(ΓΩ+1) (= ψΩ(ΓΩ+1)).   This invites 

comparison with the famous result of Howard (1972) according to which ⎪ID1⎪ = ψ(εΩ+1), 

previously denoted ϕεΩ+10.22  In addition, Buchholtz, Jäger and Strahm (2014) show that 

a number of proof-theoretic results for systems of strength Γ0 have direct analogues for 

suitable systems of strength ψ(ΓΩ+1). Finally, Buchholtz (2013) p. 48 presents very 

plausible conjectures concerning the unfolding of schematic theories of iterated inductive 

definitions generalizing the results for ID1.  

Readers may already have guessed that the unfolding of NFA and ID1 can be 

recast in terms of systems S of explicit mathematics.  For that purpose it is simplest to 

return to the original syntax of those systems and use Cl(x) in place of Π(x).  Note that 
                                                
21 This follows the proposed formulation of U(NFA) via a truth predicate in Feferman 
(1996), p. 14.    
22 Ulrik Buchholtz originally thought that ψ(ΓΩ+1) is the same as the ordinal H(1) of 
Bachmann (1950).  This seemed to be supported by Aczel (1972) who wrote (p. 36) that 
H(1) may have proof theoretical significance related to those of the ordinals ε, Γ0 and 
ϕεΩ+10.  And Miller (1976) p. 451 had conjectured that “H(1) [is] the proof-theoretic 
ordinal of ID1* which is related to ID1 as predicative analysis ID0* is to first-order 
arithmetic ID0.” However, Wilfried Buchholz recently found that the above 
representation of H(1) in terms of the ψ function is incorrect.  This suggests one should 
revisit the bases of Aczel’s and Miller’s conjectures.  



 23 

with the variables X, Y, Z,… taken to range over Cl, every second-order formula over the 

applicative structure is expressible as a formula of the language. The substitution rule 

now takes the form ϕ(X)/ϕ({x: ψ(x)}} where ψ is an arbitrary formula of the language, 

and where in the conclusion of the rule each instance of the form t ∈X that occurs in ϕ is 

replaced by ψ(t). In place of the operations on predicates in Π we now use the 

corresponding operations on classes.23  Thus, in place of U(NFA) we would consider the 

system U*(S) generated by the substitution rule from the system S = BON + ECA + J + 

(C-IN), where the class induction axiom on N takes the place of the induction scheme of 

NFA.  So it is reasonable to conjecture that U*(S) in this case is of the same strength as 

predicative analysis.24   Similarly, we may obtain an analogue of U(ID1) by making use 

of the Inductive Generation Axiom IG of T0.  Recall that IG takes the form that we have 

an operation i(A, R) that is defined for all classes A and R, and whose value is a class I 

that satisfies the closure condition  

Clos(A, R, I): = ∀x ∈A[(∀y((y, x) ∈R→ y ∈I) →x ∈ I]  

together with the minimality condition  

Min(A, R, ϕ): = Clos(A, R, ϕ) →(∀x ∈I)ϕ(x),  

where ϕ is an arbitrary formula.  In its place the schematic form IG⨡ restricts the 

minimality condition to formulas ϕ(x) of the form x ∈X, i.e. 

 Clos(A, R, X) → I ⊆ X. 

Let us denote by IG(O) the instance of IG used to generate the class of countable tree 

ordinals and by IG(O)⨡ the same with the restricted minimality condition.  Then with S 

as above, the system S + IG(O)⨡ is analogous to ID1, so we may expect that                

                                                
23 Alternatively, one can of course work with the formulation of explicit mathematics in 
terms of the representation relation R(x, X).   
24 This would provide another answer to the question of finding a system of explicit 
mathematics of the same strength as predicative analysis. 
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U*(S + IG(O)⨡) is equivalent in strength to U(ID1) and so its proof theoretic ordinal 

would be equal to ψ(ΓΩ+1).  But now we can also form the system S + IG⨡ and it is 

natural to ask what the strength is of its unfolding U*(S + IG⨡).  This would seem to 

encompass autonomously iterated systems IDα (cf. Pohlers (1998) p. 332).   

One of the motivations for (F 1996) was to give substance to the idea of Gödel 

(1947) that consideration of axioms for the existence of inaccessible cardinals and the 

hierarchies of Mahlo cardinals more generally “show clearly, not only that the axiomatic 

system of set theory as known today is incomplete, but also that it can be supplemented 

without arbitrariness by new axioms which are only the natural continuation of those set 

up so far.” (Cf. Gödel (1990), p. 182).  My idea was that this could be spelled out by the 

unfolding of a suitable schematic system of set theory, but the details in (F1996) sec. 5 

were rather sketchy.  These now can be spelled out as follows, using the language of OST 

as a point of departure.  For unfoldings, we could either take the U(·) approach by adding 

the predicate Π(x) or the variant U*(·) approach by adding the predicate Cl(x) as in 

systems of explicit mathematics.  For simplicity I shall follow the latter here. Take         

S-OST to be the schematic version of OST, which is obtained by replacing the set 

induction axiom scheme by its class version ∀x[∀y(y ∈x →y ∈X) → x ∈X] →∀x(x ∈X).  

Then we can consider U*(S-OST ± Pow ± Uni), where (Pow) is formulated as in sec. 3 

above with a symbol P for the power set operation, and (Uni) is the axiom for unbounded 

universal quantification with uni as the corresponding basic operation.  In particular, we 

would be interested in characterizing the three systems, U*(S-OST), U*(S-OST + Pow) 

and, finally U*(OST + Pow + Uni).   

Now with OST ≡ KP ≡ ID1, one may think of S-OST as analogous to schematic 

ID1, so that I conjecture that U*(S-OST) ≡ U(ID1).  Secondly, Rathjen (2014a) has 

studied KP + AC + Pow(℘) using relativized ordinal analysis methods, and shown that 

this system proves the existence of the cumulative hierarchy of Vα’s for all α < ψ(εΩ +1) 

and moreover that that is best possible.  Thus I conjecture that U*(S-OST + Pow) proves 

the existence of the cumulative hierarchy of Vα’s for all α < ψ(ΓΩ +1) and that that is best 
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possible.  Finally, I expect that the analogous results for the unfolding of                                 

S-OST + Pow + Uni would make use of the ordinal notation system up to ψ(ΓORD +1) in a 

suitable sense. Thus the unfolding of the system S-OST + (Pow) + (Uni) would be 

equivalent in strength to the extension of ZFC by a certain range of small large cardinals.  

It would then be another question to see how far that goes in terms of the standard 

classifications of such. 
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