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Logic, Mathematics and Conceptual Structuralism 

Solomon Feferman 

Abstract.  Conceptual structuralism is a non-realist philosophy of mathematics according 
to which the objects of mathematical thought are humanly conceived “ideal-world” 
structures.  Basic conceptions of structures, such as those of the natural numbers, the 
continuum, and sets in the cumulative hierarchy, differ in their degree of clarity.  One 
may speak of what is true in a given conception, but that notion of truth may be partial.   
Mathematics proceeds from such basic conceptions by reflective expansion and carefully 
reasoned argument, the last of which is analyzed in logical terms.  The main questions for 
the role of logic here is whether there are principled demarcations on its use.  It is 
claimed that in the case of a completely clear conception, such as that of the natural 
numbers, the logical notions are just those of first-order classical logic and hence that that 
is the appropriate vehicle for reasoning.  At the other extreme, in the case of set theory, 
where each set is conceived of as a definite totality but the universe of “all” sets is an 
indefinite totality, it is proposed that the appropriate logic is semi-intuitionistic in which 
classical logic applies only to (set-) bounded formulas.  Certain subsystems of classical 
set theory in which extensive parts of mathematics can be formalized are reducible to 
these semi-intuitionistic systems, thus justifying the de facto use of classical logic in 
mathematical practice at least to that reach. 

 

The nature and role of logic in mathematics: three perspectives.  Logic is integral to 

mathematics and, to the extent that that is the case, a philosophy of logic should be 

integral to a philosophy of mathematics.  In this, as you shall see, I am guided throughout 

by the simple view that what logic is to provide is all those forms of reasoning that lead 

invariably from truths to truths.  The problematic part of this is how we take the notion of 

truth to be given. My concerns here are almost entirely with the nature and role of logic 

in mathematics.  In order to examine that we need to consider three perspectives: that of 

the working mathematician, that of the mathematical logician and that of the philosopher 

of mathematics.   

The aim of the mathematician working in the mainstream is to establish truths about 

mathematical concepts by means of proofs as the principal instrument.  We have to look 

to practice to see what is accepted as a mathematical concept and what is accepted as a 

proof; neither is determined formally.  As to concepts, among specific ones the integer 

and real number systems are taken for granted, and among general ones, notions of finite 

and infinite sequence, set and function are ubiquitous; all else is successively explained in 
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terms of basic ones such as these.  As to proofs, even though current standards of rigor 

require closely reasoned arguments, most mathematicians make no explicit reference to 

the role of logic in them, and few of them have studied logic in any systematic way. 

When mathematicians consider axioms, instead it is for specific kinds of structures: 

groups, rings, fields, linear spaces, topological spaces, metric spaces, Hilbert spaces, 

categories, etc., etc. Principles of a foundational character are rarely mentioned, if at all, 

except on occasion for proof by contradiction and proof by induction.  The least upper 

bound principle on bounded sequences or sets of real numbers is routinely applied 

without mention.  Some notice is paid to applications of the Axiom of Choice. To a side 

of the mainstream are those mathematicians such as constructivists or semi-

constructivists who reject one or another of commonly accepted principles, but even for 

them the developments are largely informal with little explicit attention to logic.  And, 

except for some far outliers, what they do is still recognizable as mathematics to the 

mathematician in the mainstream.    

Turning now to the logicians’ perspective, one major aim is to model mathematical 

practice⎯ranging from the local to the global⎯in order to draw conclusions about its 

potentialities and limits.  In this respect, then, mathematical logicians have their own 

practice; here I shall sketch it and only later take up the question how well it meets that 

aim.  In brief: Concepts are tied down within formal languages and proofs within formal 

systems, while truth, be it for the mainstream or for the outliers, is explained in semantic 

terms.  Some familiar formal systems for the mainstream are Peano Arithmetic (PA), 

Second-Order Arithmetic (PA2), and Zermelo-Fraenkel set theory (ZF); Heyting 

Arithmetic (HA) is an example of a formal system for the margin.  In their intended or 

“standard” interpretations, PA and HA deal specifically with the natural numbers, PA2 

deals with the natural numbers and arbitrary sets of natural numbers, while ZF deals with 

the sets in the cumulative hierarchy.  Considering syntax only, in each case the well-

formed formulas of each of these systems are generated from its atomic formulas 

(corresponding to the basic concepts involved) by closing under some or all of the 

“logical” operations of negation, conjunction, disjunction, implication, universal and 

existential quantification.   
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The case of PA2 requires an aside; in that system the quantifiers are applied to both the 

first-order and second-order variables.  But we must be careful to distinguish the logic of 

quantification over the second-order variables as it is applied formally within PA2 from 

its role in second-order logic under the so-called standard interpretation.  In order to 

distinguish systematically between the two, I shall refer to the former as syntactic or 

formal second-order logic and the latter as semantic or interpreted second-order logic. In 

its pure form over any domain for the first-order variables, semantic second-order logic 

takes the domain of the second-order variables to be the supposed totality of arbitrary 

subsets of that domain; in its applied form, the domain of first-order variables has some 

specified interpretation.  As an applied second-order formal system, PA2 may equally 

well be considered to be a two-sorted first-order theory; the only thing that acknowledges 

its intended second-order interpretation is the inclusion of the so-called Comprehension 

Axiom Scheme: that consists of all formulas of the form ∃X∀x[x ∈X ↔ A(x,…)] where 

A is an arbitrary formula of the language of PA2 in which ‘X’ does not occur as a free 

variable.  Construing things in that way, the formal logic of all of the above-mentioned 

systems may be taken to be first-order.   

Now, it is a remarkable fact that all the formal systems that have been set up to model 

mathematical practice are in effect based on first-order logic, more specifically its 

classical system for mainstream mathematics and its intuitionistic system for constructive 

mathematics.  (While there are formal systems that have been proposed involving 

extensions of first-order logic by, for example, modal operators, the purpose of such has 

been philosophical.  These operators are not used by mathematicians as basic or defined 

mathematical concepts or to reason about them.)  One can say more about why this is so 

than that it happens to be so; that is addressed below.   

The third perspective to consider on the nature and role of logic in mathematics is that of 

the philosopher of mathematics.  Here there are a multitude of positions to consider; the 

principal ones are logicism (and neo-logicism), “platonic” realism, constructivism, 

formalism, finitism, predicativism, naturalism, and structuralism.1  Roughly speaking, in 

all of these except for constructivism, finitism and formalism, classical first-order logic is 
                                                
1 Most of these are surveyed in the excellent collection Shapiro (2005). 
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either implicitly taken for granted or explicitly accepted. In constructivism (of the three 

exceptions) the logic is intuitionistic, i.e. it differs from the classical one by the exclusion 

of the Law of Excluded Middle (LEM).   According to formalism, any logic may be 

chosen for a formal system.  In finitism, the logic is restricted to quantifier-free formulas 

for decidable predicates; hence it is a fragment of both classical and intuitionistic logic.  

At the other extreme, classical second-order logic is accepted in set-theoretic realism, and 

that underlies both scientific and mathematical naturalism; it is also embraced in in re 

structuralism.  Modal structuralism, on the other hand, expands that via modal logic.  The 

accord with mathematical practice is perhaps greatest with mathematical naturalism, 

which simply takes practice to be the given to which philosophical methodology must 

respond.  But the structuralist philosophies take the most prominent conceptual feature of 

modern mathematics as their point of departure.     

Conceptual structuralism.  This is an ontologically non-realist philosophy of 

mathematics that I have long advanced; my main concern here is to elaborate the nature 

and role of logic within it. I have summarized this philosophy in Feferman (2009) via the 

following ten theses.2  

1. The basic objects of mathematical thought exist only as mental conceptions, though the 

source of these conceptions lies in everyday experience in manifold ways, in the 

processes of counting, ordering, matching, combining, separating, and locating in space 

and time. 

2. Theoretical mathematics has its source in the recognition that these processes are 

independent of the materials or objects to which they are applied and that they are 

potentially endlessly repeatable.  

3. The basic conceptions of mathematics are of certain kinds of relatively simple ideal-

world pictures that are not of objects in isolation but of structures, i.e. coherently 

conceived groups of objects interconnected by a few simple relations and operations.  

They are communicated and understood prior to any axiomatics, indeed prior to any 

                                                
2 This section is largely taken from Feferman (2009), with a slight rewording of theses 5 
and 10.   
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systematic logical development. 

4. Some significant features of these structures are elicited directly from the world-

pictures that describe them, while other features may be less certain.  Mathematics needs 

little to get started and, once started, a little bit goes a long way.   

5. Basic conceptions differ in their degree of clarity or definiteness.  One may speak of 

what is true in a given conception, but that notion of truth may be partial.  Truth in full is 

applicable only to completely definite conceptions.   

6. What is clear in a given conception is time dependent, both for the individual and 

historically. 

7. Pure (theoretical) mathematics is a body of thought developed systematically by 

successive refinement and reflective expansion of basic structural conceptions. 

8. The general ideas of order, succession, collection, relation, rule and operation are pre-

mathematical; some implicit understanding of them is necessary to the understanding of 

mathematics.   

9. The general idea of property is pre-logical; some implicit understanding of that and of 

the logical particles is also a prerequisite to the understanding of mathematics.  The 

reasoning of mathematics is in principle logical, but in practice relies to a considerable 

extent on various forms of intuition in order to arrive at understanding and conviction.    

10. The objectivity of mathematics lies in its stability and coherence under repeated 

communication, critical scrutiny and expansion by many individuals often working  

independently of each other.  Incoherent concepts, or ones that fail to withstand critical 

examination or lead to conflicting conclusions are eventually filtered out from 

mathematics.  The objectivity of mathematics is a special case of intersubjective 

objectivity that is ubiquitous in social reality. 

Two basic structural conceptions. These theses are illustrated in Feferman (2009) by 

the conception of the structure of the positive integers on the one hand and by several 

conceptions of the continuum on the other.  Since our main purpose here is to elaborate 
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the nature and role of logic in such structural conceptions, it is easiest to review here 

what I wrote there, except that I shall limit myself to the set-theoretical conception of the 

continuum in the latter case.   

The most primitive mathematical conception is that of the positive integer sequence as 

represented by the tallies: |, ||, |||, ....  From the structural point of view, our conception is 

that of a structure (N+, 1, Sc, <), where N+ is generated from the initial unit 1 by closure 

under the successor operation Sc, and m < n if m precedes n in the generation procedure.  

Certain facts about this structure (if one formulates them explicitly at all), are evident: 

that < is a total ordering of N+ for which 1 is the least element, and that m < n implies 

Sc(m) < Sc(n).  Reflecting on a given structure may lead us to elaborate it by adjoining 

further relations and operations and to expand basic principles accordingly.  For example, 

in the case of N+, thinking of concatenation of tallies immediately leads us to the 

operation of addition, m + n, and that leads us to m × n as “m added to itself n times”. 

The basic properties of the + and × operations such as commutativity, associativity, 

distributivity, and cancellation are initially recognized only implicitly. We may then go 

on to introduce more distinctively mathematical notions such as the relations of 

divisibility and congruence and the property of being a prime number. In this language, a 

wealth of interesting mathematical statements can already be formulated and investigated 

as to their truth or falsity, for example, that there are infinitely many twin prime numbers, 

that there are no odd perfect numbers, Goldbach’s conjecture, and so on.  

The conception of the structure (N+, 1, Sc, <, +, ×) is so intuitively clear that (again 

implicitly, at least) there is no question in the minds of mathematicians as to the definite 

meaning of such statements and the assertion that they are true or false, independently of 

whether we can establish them in one way or the other.  (For example, it is an open 

problem whether Goldbach’s conjecture is true.)  In other words, realism in truth values 

is accepted for statements about this structure, and the application of classical logic in 

reasoning about such statements is automatically legitimized.  Despite the “subjective” 

source of the positive integer structure in the collective human understanding, it lies in 

the domain of objective concepts and there is no reason to restrict oneself to intuitionistic 
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logic on subjectivist grounds.  Further reflection on the structure of positive integers with 

the aim to simplify calculations and algebraic operations and laws leads directly to its 

extension to the structure of natural numbers (N, 0, Sc, <, +, ×), and then the usual 

structures for the integers Z and the rational numbers Q.  The latter are relatively refined 

conceptions, not basic ones, but we are no less clear in our dealings with them than for 

the basic conceptions of N+. 

At a further stage of reflection we may recognize the least number principle for the 

natural numbers, namely if P(n) is any well-defined property of members of N and there 

is some n such that P(n) holds then there is a least such n. More advanced reflection 

leads to general principles of proof by induction and definition by recursion on N.  

Furthermore, the general scheme of induction, 

   P(0) ∧ ∀n[P(n) → P(Sc(n))] → ∀nP(n), 

is taken to be open-ended in the sense that it is accepted for any definite property P of 

natural numbers that one meets in the process of doing mathematics, no matter what the 

subject matter and what the notions used in the formulation of P.  The question⎯What is 

a definite property?⎯requires in each instance the mathematician’s judgment.  For 

example, the property, “n is an odd perfect number,” is definite, while “n is a feasibly 

computable number” is not, nor is “n is the number of grains of sand in a heap.” 

Turning now to the continuum, in Feferman (2009) I isolated several conceptions of it 

ranging from the straight line in Euclidean geometry through the system of real numbers 

to the set of all subsets of the natural numbers. The reason that these are all commonly 

referred to as the continuum is that they have the same cardinal number; however, that 

ignores essential conceptual differences.  For our purposes here, it is sufficient to 

concentrate on the last of these concepts.  The general idea of set or collection of objects 

is of course ancient, but it only emerged as an object of mathematical study at the hands 

of Georg Cantor in the 1870s.  Given the idea of an arbitrary set X of elements of any 

given set D, considered independently of how membership in X may be defined, we write 
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S(D) for the conception of the totality of all subsets X of D.  Then the continuum in the 

set-theoretical sense is simply that of the set S(N) of all subsets of N. This may be 

regarded as a two-sorted structure, (N, S(N), ∈), where ∈is the relation of membership of 

natural numbers to sets of natural numbers.  Two principles are evident for this 

conception, using letters ‘X’, ‘Y’ to range over S(N) and ‘n’ to range over N.    

I. Extensionality   ∀X∀Y[∀n(n ∈ X ↔ n ∈Y)  → X = Y]  

II. Comprehension For any definite property P(n) of members of N, 

     ∃X∀n[n ∈X ↔  P(n)]. 

What is problematic here for conceptual structuralism is the meaning of ‘all’ in the 

description of S(N) as comprising all subsets of N.  According to the usual set-theoretical 

view, S(N) is a definite totality, so that quantification over it is well-determined and may 

be used to express definite properties P.  But again that requires on the face of it a realist 

ontology and in that respect goes beyond conceptual structuralism.  So if we do not 

subscribe to that, we may want to treat S(N) as indefinite in the sense that it is open-

ended. Of course this is not to deny that we recognize many properties P as definite such 

as⎯to begin with⎯all those given by first-order formulas in the language of the structure                                  

(N, 0, Sc, <, +, ×) (i.e. those that are ordinarily referred to as the arithmetical properties); 

thence any sets defined by such properties are recognized to belong to S(N). 

Incidentally, even from this perspective one can establish categoricity of the 

Extensionality and Comprehension principles for the structure (N, S(N), ∈) relative to N 

 in a straightforward way as follows.  Suppose given another structure                                    

(N, S′(N), ∈′), satisfying the principles I and II, using set variables ‘X′’ and ‘Y′’ ranging 

over S′(N).  Given an X in S(N), let P(n) be the definite property, n ∈X.  Using 

Comprehension for the structure (N, S′(N), ∈′), one obtains existence of an X′ such that 

for all n in N, n ∈X iff n ∈X′; then X′ is unique by Extensionality.  This gives a one-one 

map of S(N) into S′(N) preserving N and the membership relation; it is seen to be an onto 
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map by reversing the argument. This is to be compared with the standard set-theoretical 

view of categoricity results as exemplified, for example, in Shapiro (1997) and Isaacson 

(2011).  According to that view, the subject matter of mathematics is structures, and the 

mère structures of mathematics such as the natural numbers, the continuum (in one of its 

various guises), and suitable initial segments of the cumulative hierarchy of sets are 

characterized by axioms in full second-order logic; that is, any two structures satisfying 

the same such axioms are isomorphic.3 On that account, the proofs of categoricity in one 

way or another then appeal prima facie to the presumed totality of arbitrary subsets of 

any given set.4 

Even if the definiteness of S(N) is open to question as above, we can certainly conceive 

of a world in which S(N) is a definite totality and quantification over it is well-

determined; in that ideal world, one may take for the property P in the above 

Comprehension Principle any formula of full second-order logic over the language of 

arithmetic.  Then a number of theorems can be drawn as consequences in the 

corresponding system PA2, including purely arithmetical theorems.  Since the truth 

definition for arithmetic can be expressed within PA2 and transfinite induction can be 

proved in it for very large recursive well-orderings, PA2 goes in strength far beyond PA 

                                                
3 Those who subscribe to this set-theoretical view of the categoricity results may differ on 
whether the existence of the structures in question follows from their uniqueness up to 
isomorphism.  Shapiro (1997), for example, is careful to note repeatedly that it does not, 
while Isaacson (2011) apparently asserts that it does (cf., e.g., op. cit. p.3).  In any case, it 
is of course not a logical consequence.   
4In general, proofs of categoricity within formal systems of second-order logic can be 
analyzed to see just what parts of the usual impredicative comprehension axiom scheme 
are needed for them. In the case of the natural number structure, however, it may be 
shown that there is no essential dependence at all, in contrast to standard proofs.  Namely, 
Simpson and Yokoyama (2012) demonstrate the categoricity of the natural numbers (as 
axiomatized with the induction axiom in second-order form) within the very weak 
subsystem WKL0 of PA2 that is known to be conservative over PRA (Primitive Recursive 
Arithmetic). By comparison, it is sketched in Feferman (2013) how to establish 
categoricity of the natural numbers in its open-ended schematic formulation in a simpler 
way that is also conservative over PRA. For an informal discussion of the categoricity of 
initial segments of the cumulative hierarchy of sets in the spirit of open-ended axiom 
systems, see Martin (2001), sec. 3.   
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even when that is enlarged by the successive adjunction of consistency statements 

transfinitely iterated over such well-orderings.  What confidence are we to have in the 

resulting purely arithmetical theorems?  There is hardly any reason to doubt the 

consistency of PA2 itself, even though by Gödel’s second incompleteness theorem, we 

cannot prove it by means that can be reduced to PA2.  Indeed, the ideal world picture of  

(N, S(N), ∈) that we have been countenancing would surely lead us to say more, since in 

it the natural numbers are taken in their standard conception.  On this account, any 

arithmetical statement that we can prove in PA2 ought simply to be accepted as true.  But 

given that the assumption of S(N) as a definite totality is a purely hypothetical and 

philosophically problematic one, the best we can rightly say is that in that picture, 

everything proved of the natural numbers is true.   

Incidentally, all of this and more comes into question when we move one type level up to 

the structure (N, S(N), S(S(N)), ∈1, ∈2) in which Cantor’s continuum hypothesis may be 

formulated.  A more extensive discussion of the conception of that structure and the 

question of its definiteness in connection with the continuum problem is given in 

Feferman (2011).  We shall also see below how taking N and S(N) to be definite but 

S(S(N)) to be open-ended can be treated in suitable formal systems.  

Where and why classical first-order logic? Logic, as I affirmed at the outset, is 

supposed to provide us with all those forms of reasoning that lead invariably from truths 

to truths, i.e. it is given by an essential combination of inferential and semantical notions.  

But from the point of view of conceptual structuralism, the classical notion of truth in a 

structure need not be applicable unless we are dealing with a conception (such as that of 

the structure of natural numbers) for which the basic domains are definite totalities and 

the basic notions are definite operations, predicates and relations.  It is clear that at least 

the classical first-order predicate calculus should be admitted both on semantical and 

inferential grounds, since we have Gödel’s completeness theorem to provide us with a 

complete inferential system.  But why not more?  For example, model-theorists have 

introduced generalized quantifiers such as the cardinality quantifiers (Qκx)P(x) 

expressing that there are at least κ individuals x satisfying the property P, where κ is any 
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infinite cardinal; one could certainly consider adjoining those to the first-order formalism. 

A much more general class of quantifiers defined by set-theoretical means was 

introduced by Lindström (1966); each of those can be used to extend first-order logic 

with a model-theoretic semantics for arbitrary first-order domains.  But for which such 

extensions do we have a completeness theorem like that of Gödel’s for first-order logic?  

It is well known that no such theorem is possible for the quantifier (Qωx)P(x) which 

expresses that there are infinitely many x such that P(x).  For, using that quantifier and 

thence its dual (“there are just finitely many x such that P(x)”) we can characterize the 

structure of natural numbers up to isomorphism, so all the truths of that structure are valid 

sentences in the logic.  But the set of such truths is not effectively enumerable, indeed far 

from it, so it is not given by an effectively specified formal system of reasoning.   

Surprisingly, Keisler (1970) obtained a completeness theorem for the quantifier 

(Qκx)P(x) when κ is any uncountable cardinal; as it happens, that has the same set of 

valid formulas as for the case that κ is the first uncountable cardinal.  In view of the leap 

over the case κ = ω, one may suspect that the requirement that the set of valid formulas 

be given by some effective set of axioms and rules of inference is not sufficient to 

express completeness in the usual intended sense.  We need to say something more about 

how such axioms and rules of inference ought specifically to be complete for a given 

quantifier.  The key is given by Gentzen’s (1935) system of natural deduction NK (or 

sequent calculus LK) where each connective and quantifier in the classical first-order 

predicate calculus is specified by Introduction and Elimination rules for that operation 

only. Moreover, for each pair of such rules, any two connectives or quantifiers satisfying 

them are equivalent, i.e. they implicitly determine the operator in question.  So a 

strengthened condition on a proposed addition by a generalized quantifier Q to our first-

order language is that it be given by axioms and rules of inference for which there is at 

most one operator satisfying them.  That was the proposal of Zucker (1978) in which he 

gave a theorem to the effect that any such quantifier is definable in the first-order 

predicate calculus. In particular, that would apply to the Lindström quantifiers. However, 

there were some defects in Zucker’s statement of his theorem and its proof; I have given 

a corrected version of both in Feferman (t.a.).  To summarize: we have fully satisfactory 



 12 

semantic and inferential criteria for a logic to deal with structures whose domains are 

first-order and that are completely definite in the sense described above, and these limit 

us to the standard first-order classical logic.   

Let us turn now to conceptions of structures with second-order or higher order domains, 

such as (N, S(N), ∈, …) where the ellipsis indicates that this augments an arithmetical 

structure on N such as (N, 0, Sc, <, +, ×).  Again, if S(N) is considered as a definite 

totality, the classical notion of truth is applicable and the semantics of second-order logic 

must be accepted.  But as is well known there is no complete inferential system that 

accompanies that, since again the arithmetical structure is categorically axiomatized in 

this semantics and in consequence the set of its truths is not effectively enumerable.  In 

any case, as I have argued above, S(N) ought not to be considered as a definite totality; to 

claim otherwise, is to accept the problematic realist ontology of set theory.  As Quine 

famously put it, second-order logic is “set theory in sheep’s clothing.” Boolos (1975, 

1984) tried to get around this via a reduction of second-order logic to a “nominalistic” 

system of plural quantification. This was incisively critiqued by Resnik in his article 

“Second-order logic still wild”: “Boolos is involved in a circle: he uses second-order 

quantification to explain English plural quantification and uses this, in turn, to explain 

second-order quantification.” (Resnik 1988, p. 83).   

Though the Lindström quantifiers are restricted to apply to first-order structures and thus 

bind only individual variables they may well be defined using higher order notions in an 

essential way, in particular those needed for the cardinality quantifiers.  Another example 

where the syntax is first-order on the face of it but the semantics is decidedly second-

order is IF (“Independence Friendly”) logic, due to Hintikka (1996).  This uses formulas 

in whose prenex form the existentially quantified individual variables are declared to 

depend on a subset of the universally quantified individual variables that precede it in the 

prefix list.  Explanation of the semantics of this requires the use of quantified function 

variables; over any given first-order structure (D, …) those variables are interpreted to 

range over functions of various arities with arguments and values in D.  Indeed, 

Väänänen (2001) p. 519 has proved that the general question of validity of IF sentences is 

recursively isomorphic to that for validity in full second-order logic.  Thus, as with the 
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Lindström quantifiers, the formal syntax can be deceptive.  See Feferman (2006) for an 

extended critique of IF logic.   

Where and why intuitionistic first-order logic?  Now let us turn to the question which 

logic is appropriate to structural conceptions that are taken to lack some aspect of 

definiteness.  Offhand, one might expect the answer in that case to be intuitionistic logic, 

but the matter is more delicate.  The problem is that there is not one clear-cut semantics 

for it; among others that have been considered, one has the so-called BHK interpretation, 

Kripke semantics, topological semantics, sheaf models, etc., etc.  Of these, the first is the 

most principled one with respect to the basic ideas of constructivity; it is that that leads 

one directly to intuitionistic logic but it does not determine it via a precise completeness 

result.  By contrast, as we shall see, not only does Kripke semantics take care of the latter 

but it relates more closely to the question of dealing with conceptions of structures 

involving possibly indefinite notions and domains.  For the details concerning both of 

these I refer to Troelstra and van Dalen (1988), a comprehensive exposition of 

constructivism in mathematics that includes treatments of the great variety of semantics 

and proof theory that have been developed for intuitionistic systems.   

The BHK (Brouwer-Heyting-Kolmogoroff) constructive explanation of the connectives 

and quantifiers is described in Troelstra and van Dalen (1988), p. 9.  It uses the informal 

notions of construction and constructive proof; for each form of compound statement C 

necessary and sufficient conditions are provided on what it is for a construction to be a 

proof of C, in terms of proofs of its immediate sub-statements.  Namely, a proof of A ∧ B 

is a proof of A and a proof of B; a proof of A ∨ B is a proof of A or a proof of B; a proof 

of A → B is a construction that transforms any proof of A into a proof of B; and a proof 

of ¬A is a construction that transforms any proof of A into a proof of a contradiction ⊥, 

i.e. is a proof of A → ⊥. In the case of the quantifiers, where the variables range over a 

given domain D, a proof of (∀x)A(x) is a construction that transforms any d in D into a 

proof of A(d); finally, a proof of (∃x)A(x) is given by a d in D and a proof of A(d).  (D 

must be a constructively meaningful domain, so that it makes sense to exhibit each 

individual element of D and for constructions to be applicable to elements of D.) 
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A statement A of the first-order predicate calculus is constructively valid according to the 

BHK interpretation if there is a proof of A, independently of the interpretation of the 

domain D and the interpretation of the predicate symbols of A in D.  The axioms of 

intuitionistic logic in any of its usual formulations are readily recognized to be 

constructively valid and the rules of inference preserve constructive validity.  But since 

there are no precise notions of proof and construction at work here, we cannot state a 

completeness result for the BHK interpretation.  Instead, the literature uses “weak 

counterexamples” to show why it is plausible on that account that a given classically 

valid form of statement is not constructively valid.  Thus, for example, to show that        

A ∨ ¬A is not constructively valid as a general principle one argues that otherwise one 

would have a general method for obtaining for any given statement A, either a proof of A 

or a proof that turns any hypothetical proof of A into a contradiction.  But if we had such 

a universal method, we could apply it to any particular statement A that has not yet been 

settled, such as the twin prime conjecture, to determine its truth or falsity.  Similarly, the 

method of weak counterexamples is used informally to argue against the constructive 

validity of many other such schemes, for example ¬¬A → A, though the converse is 

recognized to be valid.5   

 

Let us turn now to Kripke semantics for the language of first-order predicate logic 

(Troelstra and van Dalen 1988, Ch. 2.5-2.6).  A Kripke model is a quadruple (K, ≤, D, v), 

where (i) (K, ≤) is a non-empty partially ordered set, (ii) D is a function that assigns to 

each k in K a non-empty set D(k) such that if k ≤ k′ then D(k) ⊆ D(k′), and (iii) v is a 

function into {0, 1} at each k in K, each n-ary relation symbol R in the language and n-

ary sequence of elements of D(k), such that if k ≤ k′ and d1,…,dn ∈D(k) and                 

v(k, R(d1,…,dn)) = 1 then v(k′, R(d1,…,dn)) = 1.  One motivating idea for this is that the 

elements of K represent stages of knowledge, and that k ≤ k′ holds if everything known in 

                                                
5 Various methods of realizability, initially introduced by Kleene in 1945, can be used to 
give precise independence results for such schemes, but are still not complete for 
intuitionistic logic.  Cf. Troelstra and van Dalen (1988), Ch. 4.4.   
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stage k is known in stage k′.  Also, v(k, R(d1,…,dn)) = 1 means that R(d1,…,dn) has been 

recognized to be true at stage k; once recognized, it stays true.  The domain D(k) is the 

part of a potential domain that has been surveyed by stage k; the domains may increase 

indefinitely as k increases or may well bifurcate in a branching investigation so that one 

cannot speak of a “final” domain in that case.   

 

The valuation function v is extended to a function v(k, A(d1,…,dn)) into {0, 1} for each 

formula A(x1,…,xn) with n free variables and assignment (d1,…,dn) to its variables in 

D(k); this is done in such a way that if k ≤ k′ and d1,…,dn ∈D(k) and v(k, A(d1,…,dn)) = 1 

then v(k′, A(d1,…,dn)) = 1. The clauses for conjunction, disjunction and existential 

quantification are just like those for ordinary satisfaction at k in D(k). The other clauses 

are (ignoring parameters): v(k, A → B) = 1 iff for all k′ ≥ k, v(k′, A) = 1 implies v(k′, B) 

= 1; v(k, ⊥) = 0; and v(k, ∀x A(x)) = 1 iff for all k′ ≥ k and d in D(k), v(k′, A(d)) = 1. As 

above, we identify ¬A with A → ⊥; thus v(k, ¬A) = 1 iff for all k′ ≥ k, v(k′, A) = 0. We 

say that k forces A if v(k, A) = 1; i.e. A is recognized to be true at stage k no matter what 

may turn out to be known at later stages.  A formula A(x1,…,xn) is said to be valid in a 

model (K, ≤,  D, v) if for every k in K and assignment (d1,…,dn) to its free variables in 

D(k), v(k, A(d1,…,dn)) = 1.  Then the completeness theorem for this semantics is that a 

formula A is valid in all Kripke models iff it is provable in the first-order intuitionistic 

predicate calculus.  We shall see in the next section how Kripke models can be 

generalized to take into account differences as to definiteness of basic relations and 

domains.    

 

Satisfying as this completeness theorem may be, there remains the question whether one 

might not add connectives or quantifiers to those of intuitionistic logic while retaining 

some form of its semantics.  Though intuitionistic logic is part of classical logic, the 

semantical and inferential criterion above for classical logic doesn’t apply because of the 

differences in the semantical notions.  But just as for the classical case, on the inferential 

side each of the connectives and quantifiers of the intuitionistic first-order predicate 
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calculus is uniquely identified via Introduction and Elimination rules in Gentzen’s natural 

deduction system NJ. Even more, Gentzen first formulated the idea that the meaning of 

each of the above operations is given by its characteristic inferences.  Actually, Gentzen 

claimed more: he wrote that “the [Introduction rules] represent, as it were, the 

‘definitions’ of the symbols concerned” (Gentzen 1969, p. 80).  Prawitz supported this by 

means of his Inversion Principle (Prawitz 1965, p. 33): namely, it follows from the 

normalization theorem for NJ that each Elimination rule for a given operation can be 

recovered from the appropriate one of its Introduction rules when that is the last step in a 

normal derivation.  Without subscribing at all to this proposed reduction of semantics to 

inferential roles, we may ask whether any further operators may be added via suitable 

Introduction rules.  The answer to that in the negative was provided by the work of 

Zucker and Tragesser (1978) in terms of the adequacy of what they call inferential logic, 

i.e. of the logic of operators that can simply be marked out by Introduction rules.  As they 

show, every such operator is defined in terms of the connectives and quantifiers of the 

intuitionistic first-order predicate calculus.  To be more precise, this is shown for 

Introduction rules in the usual sense in the case of possible propositional operators, while 

in the general case of possible operators on propositions and predicates⎯now in accord 

with the BHK interpretation⎯“proof” parameters and constructions on them are 

incorporated in the Introduction rules, but those are eventually suppressed.6  

 

Semi-intuitionism: the logic of partially open-ended structures.  An immediate 

generalization of Kripke structures is to allow many-sorted domains, possibly infinite in 

number.  Let I be a collection of sorts.  Then the definition of Kripke structure is 

modified to have each of K, ≤, and D indexed by I, and the valuation function modified 

to accord with the different sorts.  Thus we deal with n-tuples k = (k1,…,kn) where km is 

of specified sort im; the ≤ relation then holds between such n-tuples if it holds term-wise. 

Of course the basic predicates come with specified arities to show what sorts of objects 

they relate, and the variables in the first-order language over these predicates are always 

                                                
6 Incidentally, as Zucker and Tragesser show (p. 506), not every propositional operator 
given by simple Introduction rules has an associated Elimination rule; a counterexample 
is provided by (A → B) ∨ C.  
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of a specified sort.  Then the definition of the valuation function on arbitrary formulas for 

a many-sorted structure (K, I, ≤, D, v) proceeds in the same way as above. Now an n-ary 

relation R may be considered to be definite if v(k, R(d1,…,dn)) = v(k′, R(d1,…,dn)) 

whenever k ≤ k′ . A domain Di is definite if Di(k) = Di(k′) for all k and k′ in Ki, otherwise 

indefinite or open-ended.  While the formulas valid in the structure obey intuitionistic 

logic in general, one may apply classical logic systematically to formulas involving 

definite relations as long as the quantified variables involved range only over definite 

domains.    

 

This is illustrated by reasoning about the ordinary two-sorted structure (N, S(N), ∈, …) 

where (N, …) is conceived of as definite with definite relations, while S(N) is conceived 

of as open-ended.  To treat this as a two-sorted Kripke structure, take I = {0, 1} where N 

is of sort 0 and S(N) is of sort 1.  We may as well take K0 to consist of a single element, 

while K1 could be indexed by all collections k of subsets of N, ordered by inclusion.  

Now the membership relation is definite because sets are taken to be definite objects, i.e. 

if X is in both the collections k and k′ then n ∈ X holds in the same way whether 

evaluated in k or in k′. So classical logic applies to all formulas A that contain no bound 

set variables, though they may contain free set variables, i.e. A is what is usually called a 

predicative formula. But when dealing with formulas in general, only intuitionistic logic 

is justified on this picture.  This leads us to the consideration of semi-intuitionistic (or 

semi-constructive) theories in general, i.e. theories in which the basic underlying logic is 

intuitionistic, but classical logic is taken to apply to a class of formulas distinguished by 

containing definite predicates and quantified variables ranging over definite domains.  A 

number of such theories have been treated in the paper Feferman (2010), corresponding 

to different structural notions in which certain domains are taken to be definite and others 

indefinite.  They fall into three basic groups: (i) predicative theories, (ii) theories of 

countable (tree) ordinals, and (iii) theories of sets.  The general pattern is that in each case 

one has a semi-intuitionistic version of a corresponding classical system, and they are 

shown to be proof-theoretically equivalent and to coincide on the classical part.  

Moreover, the same holds when the semi-intuitionistic system is augmented by various 
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principles such as the Axiom of Choice (AC) that would make the corresponding 

classical system much stronger.  It is not possible here to explain the results in adequate 

detail, so only some of the ideas behind the formulations of the systems involved is 

sketched.  The reader who prefers to avoid even the technicalities that remain can easily 

skim (or even skip) the rest of this section.   

 

(i) Semi-intuitionistic predicative theories.  Here the language of arithmetic is extended 

by variables for function(al)s in all finite types; following Gödel (1958, 1972) in his so-

called Dialectica interpretation, we also add primitive recursive functionals in all finite 

types.  In many-sorted intuitionistic logic, the system obtained is denoted HAω.  In the 

process of obtaining reduction to a quantifier-free system, Gödel showed that this system 

is of the same strength as Peano Arithmetic, PA; in fact the same holds for HAω + AC.  

Now the latter is turned into a semi-intuitionistic system by adding the Law of Excluded 

Middle for all arithmetical formulas.  For the proof-theoretical work on that, it proves to 

be more convenient to add the least-number operator µ and an axiom (µ) that says that 

when the operator is applied to a function f: N → N for which there exists an n with f(n) 

= 0, it yields the least such n.  Under this axiom, all arithmetical formulas become 

equivalent to quantifier-free (QF) formulas, for which the LEM then holds.  Thus one is 

led to consider HAω + AC + (µ), which turns out to be proof-theoretically equivalent to 

PAω + QF-AC + (µ), and both are equivalent to ramified analysis through all ordinals less 

than Cantor’s ordinal ε0. If one adds the Bar Rule for arithmetical orderings in both the 

semi-intuitionistic and the classical systems, we obtain systems of proof-theoretical 

strength full predicative analysis, i.e. ramified analysis up to the least impredicative 

ordinal Γ0. (The Bar Rule on an ordering rule allows us to infer transfinite induction w.r.t. 

arbitrary formulas from well-foundedness of the ordering.) On the other hand, if in the 

basic system we restrict the primitive recursive functionals to those with values in N and 

restrict induction to QF formulas, we obtain a semi-intuitionistic system Res-HAω + AC 

+ (µ) that turns out to be of exactly PA in strength.   
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(ii) Semi-intuitionistic theories of countable tree ordinals. By countable tree ordinals one 

means the members of the open-ended collection Ω of countably branching well-founded 

trees.  Add a sort for the members of Ω to the preceding systems; extend the higher type 

variables accordingly; add the operator of supremum that joins a sequence of trees          

f: N → Ω into a single tree sup(f) in Ω; add the inverse operator that takes each sup(f) in 

Ω and n in N and produces f(n); and, finally, add operators for transfinite recursion on Ω.  

The resulting system is denoted SOω in intuitionistic logic and COω
 in classical logic; then 

SOω + (µ) is a semi-intuitionistic system intermediate between these two.  The main 

result in this case is that the following are of the same proof-theoretical strength: SOω + 

AC + (µ), COω + QF-AC + (µ), and ID1, the theory of arbitrary arithmetical inductive 

definitions.   It is known that the latter has the same proof-theoretical strength in 

intuitionistic logic as in classical logic.  

 

(iii) Semi-intuitionistic theories of sets. We turn finally to the picture of the cumulative 

hierarchy structure, the standard classical view of which leads us to the system ZFC, i.e. 

ZF + AC.  However, if we identify definite totalities with sets then by Russell’s paradox, 

the “universe V of all sets” must be considered to be an open-ended indefinite totality if 

we are to avoid contradiction.  But in the Separation Axiom scheme for ZF,                  

∀a∃b∀x[x ∈b ↔ x ∈a ∧ A(x)], one allows the formula A to contain bound variables that 

range without restriction over V, and hence in general do not represent definite 

properties; the same criticism applies to the formulas A(x, y) in the Replacement Axiom 

scheme.  By a Δ0 formula is meant one in which all quantified variables are restricted, i.e. 

take the form ∀y(y ∈x → …) or ∃y(y ∈x  ∧ …), written respectively (∀y ∈x)( …) and 

(∃y ∈x)(…).  The system KP of Kripke-Platek set theory in classical logic has, like ZF, 

the axioms of extensionality, ordered pair, union, infinity, and the scheme of transfinite 

induction on the membership relation.  In place of the Separation Axiom scheme it takes 

Δ0-Separation, i.e. the Separation Axiom scheme restricted to Δ0 formulas.  And in place 

of the Replacement Axiom scheme, it takes what is called Δ0-Collection, i.e. the scheme 

that for each Δ0 formula A, (∀x ∈a)∃yA(x, y) → ∃b(∀x ∈a)(∃y ∈b)A(x, y). This implies 
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the Replacement Axiom scheme for Δ0 formulas. It is known that the system KP is of the 

same strength as ID1.  

 

The system IKP is taken to be the same as KP but restricted to intuitionistic logic. It turns 

out that we can strengthen it considerably by adding a bounded form ACS of the Axiom 

of Choice, namely (∀x ∈a)∃yA(x, y) → ∃f[Fun(f) ∧ (∀x ∈a)A(x, f(x))], where Fun(f) 

expresses that the set f is a function in the set-theoretical sense, and where now A is an 

arbitrary formula of the language of set-theory.  Under the assumption ACS we can infer 

Collection for arbitrary formulas and hence Replacement for arbitrary formulas.  Finally, 

since sets are considered to be definite totalities, we obtain a semi-intuitionistic system 

from IKP by adjoining the law of excluded middle for Δ0 formulas.  The main result of 

Feferman (2010) is that the semi-intuitionistic system IKP + ACS + Δ0-LEM is of the 

same proof-theoretical strength as KP and hence of ID1 in its classical and intuitionistic 

forms.  Moreover, if we add the Power Set Axiom (Pow) we obtain a system that is of 

strength between that of KP + Pow and that of KP + Pow + (V = L).7,8  

 

It is natural in the context of semi-intuitionistic theories T to say that a sentence A in the 

language of T is definite (relative to T) if T proves LEM for A, i.e. A ∨ ¬A.  A question 

in set theory that has caused considerable discussion in recent years is whether Cantor’s 

Continuum Hypothesis CH is a definite mathematical problem.  One formulation of it is 

that every subset of S(N) is either countable or in 1-1 correspondence with S(N).  Of 

course, that is definite in the theory IKP + Pow + Δ0-LEM , because quantification over 

subsets of S(N) is bounded once we have existence of S(S(N)) [i.e., S(S(ω))] by the 

Power Set Axiom.  That suggests⎯as I did in Feferman (2012)⎯considering the weaker 

system T = IKP + Pow(N) +ACS + Δ0-LEM, where Pow(N) simply asserts the existence 

                                                
7 There is a considerable literature on semi-intuitionistic theories of sets including the 
power set axiom going back to the early 1970s.  See Feferman (2010) sec. 7.2 for 
references to the relevant work of Poszgay, Tharp, Friedman, and Wolf.   
8 Mathias (2001) proved that KP + Pow + (V = L) proves the consistency of KP + Pow, 
so the usual argument for the relative consistency of (V = L) doesn’t work.    
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of S(N) as a set.  I conjectured there that CH is not definite relative to that system.9  Of 

course, that would not show that CH is not a definite mathematical problem, but it might 

be considered as an interesting bit of evidence in support of that.   

 

Conceptual structuralism and mathematical practice.  One criterion for a philosophy 

of mathematics that is often heard is that it should accord with mathematical practice. It’s 

very hard to know just what that means since there are so many dimensions along which 

practice can be viewed. One particular interpretation of the criterion is that philosophers 

have no business telling mathematicians what does or doesn’t exist.  Famously, David 

Lewis wrote: 

 

I'm moved to laughter at the thought of how presumptuous it would be to reject 

mathematics for philosophical reasons. How would you like the job of telling the 

mathematicians that they must change their ways, and abjure countless errors, 

now that philosophy has discovered that there are no classes? (Lewis 1991, p. 

59)10 

But this is a caricature of what philosophy is after; philosophers take for granted that 

mathematicians have settled problematic individual questions of existence like zero, 

negative numbers, imaginary numbers, infinitesimals, points at infinity, probability of 

subsets of [0, 1], etc., etc., using purely mathematical criteria in the course of the 

development of their subject. The existence of some of these has been established by 

reduction to objects whose existence is unquestioned, some by qualified acceptance, and 

some not at all.  But what the philosopher is concerned with is, rather, to explain in what 

metaphysical sense, if any, mathematical objects exist, in a way that cannot even be 

discussed within ordinary mathematical parlance.  Lewis could equally well have laughed 

at the idea that some general principles accepted in the mathematical mainstream such as 

the Law of Excluded Middle or the Axiom of Choice would be dismissed as false (or 

                                                
9 Michael Rathjen has recently announced a proof of this conjecture (private 
communication).   
10 Curiously, this quote is from Lewis’ book, Parts of Classes, which offers a revisionary 
theory of classes that differs from the usual mathematical conception of such.   
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unjustified) for philosophical reasons.  But again, the use of truth in ordinary 

mathematical parlance is deflationary and the reasons for accepting such and such 

principles as true has either been made without question or for mathematical reasons in 

the course of the development of the subject.  The philosopher, by contrast, is concerned 

to explain in what sense the notion of truth is applicable to mathematical statements, in a 

way that cannot be considered in ordinary mathematical parlance.  Whether the 

mathematician should pay attention to either of these aims of the philosopher is another 

matter.   

Conceptual structuralism addresses the question of existence and truth in mathematics in 

a way that accords with both the historical development of the subject and each 

individual’s intellectual development.  It crucially identifies mathematical concepts as 

being embedded in a social matrix that has given rise, among other things, to social 

institutions and games; like them, mathematics allows substantial intersubjective 

agreement, and like them, its concepts are understood without assuming reification.11  

What makes mathematics unique compared to institutions and games is its endless 

fecundity and remarkable elaboration of some basic numerical and geometrical structural 

conceptions.  To begin with, mathematical objects exist only as conceived to be elements 

of such basic structures.  The direct apprehension of these leads one to speak of truth in a 

structure in a way that may be accepted uncritically when the structure is such as the 

integers but may be put into question when the conception of the structure is less definite 

as in the case of the geometrical plane or the continuum, and should be put into question 

when it comes to the universe of sets.  One criticism of conceptual structuralism that has 

been made is that it’s not clear/definite what mathematical concepts are clear/definite, 

and making that a feature of the philosophy brings essentially subjective elements into 

play.12  Actually, conceptual structuralism by itself, as presented in the theses 1-10, takes 

no specific position in that respect and recognizes that different judgments (such as mine) 

may be made.  Once such are considered, however, logic has much to tell us in its role as 
                                                
11 For an interesting social institutional account of mathematics see Cole (2013); this 
differs from conceptual structuralism in some essential respects while agreeing with it in 
others.   
12 In particular, this criticism has been voiced by Peter Koellner in his comments on 
Feferman (2011); cf. http://logic.harvard.edu/EFI_Feferman_comments.pdf. 
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an intermediary between philosophy and mathematics.  As shown in the preceding 

section, one can obtain definitive results about formal models of different standpoints as 

to what is definite and what is not.  Moreover, the results can be summarized as telling us 

that to a significant extent, the unlimited (de facto) application of classical logic in 

mainstream mathematics⎯i.e., the logic of definite concepts and totalities⎯may be 

justified on the basis of a more refined mixed logic that is sensitive to distinctions that 

one might adopt between what is definite and what is not.13  In other words, once more 

they show that, at least to that extent, you can have your cake and eat it too.  

There are other dimensions of mathematical practice that reward metamathematical study 

motivated by the philosophy of conceptual structuralism.  One, in particular, that I have 

emphasized over the years is the open-ended nature of certain principles such as that of 

induction for the integers and comprehension for sets.  This accords with the fact that in 

the development of mathematics what concepts are recognized to be definite evolve with 

time.  Thus one cannot fix in advance all applications of these open-ended schematic 

principles by restriction to those instances definable in one or another formal language, as 

is currently done in the study of formal systems.  This leads instead to the consideration 

of logical models of practice from a novel point of view that yet is susceptible to 

metamathematical study.  One such is via the notion of the unfolding of open-ended 

schematic axiom systems, that is used to tell us everything that ought to be accepted if 

one has accepted given notions and principles.  Thus far, definitive results about the 

unfolding notion have been obtained by Feferman and Strahm (2000, 2010) for schematic 

systems of non-finitist and finitist arithmetic, resp., and by Buchholtz (2013) for 

arithmetical inductive definitions.  As initiated in Feferman (1996), I am optimistic that it 

can be used to elaborate Gödel’s program for new axioms in set theory and in particular 

to draw a sharper line between which such axioms ought to be accepted on intrinsic 

grounds and those to be argued for on extrinsic grounds.  

                                                
13 These kinds of logical results can also be used to throw substantive light on 
philosophical discussions as to the problem of quantification over everything (or over all 
ordinals, or all sets) such as are found in Rayo and Uzquiano (2006).  
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