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What Gödel accomplished in the decade of the 1930s before joining the Institute changed 

the face of mathematical logic and continues to influence its development.  As you gather 

from my title, I’ll be talking about the most famous of his results in that period, but first I 

want to indulge in some personal reminiscences.  In many ways this is a sentimental 

journey for me.  I was a member of the Institute in 1959-60, a couple of years after 

receiving my PhD at the University of California in Berkeley, where I had worked with 

Alfred Tarski, another great logician.  The subject of my dissertation was directly 

concerned with the method of arithmetization that Gödel had used to prove his theorems, 

and my main concern after that was to study systematic ways of overcoming 

incompleteness.  Mathematical logic was going through a period of prodigious 

development in the 1950s and 1960s, and Berkeley and Princeton were two meccas for 

researchers in that field.  For me, the prospect of meeting with Gödel and drawing on him 

for guidance and inspiration was particularly exciting.  I didn’t know at the time what it 

took to get invited.   Hassler Whitney commented for an obituary notice in 1978 that “it 

was hard to appoint a new member in logic at the Institute because Gödel could not prove 

to himself that a number of candidates shouldn’t be members, with the evidence at hand.”  

That makes it sound like the problem for Gödel was deciding who not to invite.  Anyhow, 

I ended up being one of the lucky few. 

 

Once I got settled, my meetings with Gödel were strictly regulated affairs.  There were 

few colleagues with whom he had extensive contact--Albert Einstein, as everyone knows, 

and Oskar Morgenstern among them, and a few of the more senior visiting logicians.  

There were some younger logicians who managed to see him more often than I did, but I 

was too intimidated to take full advantage of him, something I regret to this day.  Gödel’s 
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office was directly above the one that I shared with another visitor, the Japanese logician, 

Gaisi Takeuti.  We used to think we heard him pacing the floor above us.  When I wanted 

to meet Gödel and figured he was in his office, I’d phone him for an appointment and 

would hear the phone ring and hear him answer.  When it worked out, I would walk 

upstairs to his office.  There he would be seated at his desk, and I would sit down across 

from him; there was no work at the blackboard as is common among mathematicians.  It 

was clear to me that Gödel had read my papers and knew about the work in progress, and 

the latter would be the focus of our conversations.  He would raise some questions and 

make a few suggestions, and what he had to say would be very much to the point and 

fruit for further thought.  After precisely half an hour the alarm on his watch would go 

off, and he would say, “I have to take my pills.”   I took that as my cue to leave.   

 

The director of the Institute at that time was J. Robert Oppenheimer, and he arranged a 

short welcoming meeting with each new member.  In my meeting with him, I had in mind 

that I just might mention our contact--of a sort--a dozen years earlier when, as a student 

waiter in the faculty center at CalTech, I had served him lunch one day, but the right 

moment never presented itself.  In our conversation, I was surprised how much 

Oppenheimer knew and understood about the work that had brought me to the Institute.  I 

was reminded of that some twenty years later when I was a visiting fellow at All Souls 

College in Oxford.  One evening a dinner was held at which the guest of honor was 

Margaret Thatcher.  In the informal gathering afterward she circulated among all the 

fellows and visitors; when my turn came, within two minutes she had sized up what I was 

doing to her satisfaction and then told me what I ought to be doing.  Well, Oppenheimer 

didn’t go that far, but I bet he could have. 

 

To get back to Gödel, of the three major results that he obtained in mathematical logic in 

the 1930s, only the incompleteness theorem has registered on the general consciousness, 

and inevitably popularization has led to misunderstanding and misrepresentation.  

Actually, there are two incompleteness theorems, and what people have in mind when 

they speak of Gödel’s theorem is mainly the first of these.  Like Heisenberg’s 
Uncertainty Principle, it has captured the public imagination with the idea that there are 



 3 

absolute limits to what can be known.  More specifically, it’s said that Gödel’s theorem 

tells us there are mathematical truths that can never be proved.  Among postmodernists 
it’s used to support skepticism about objective truth; nothing can be known for sure.  And 

in the Bibliography of Christianity and Mathematics (yes, there is such a publication!) 
it’s asserted that “theologians can be comforted in their failure to systematize revealed 

truth because mathematicians cannot grasp all mathematical truths in their systems 

either.”  Not only that, the incompleteness theorem is held to imply the existence of God, 
since only He can decide all truths.   

 
Among those who know what the incompleteness theorems actually do tell us, there are 

some interesting views about their wider significance for both mind and matter.  In his 

1960 Gibbs Lecture, Gödel himself drew the conclusion that “either mind infinitely 
surpasses any finite machine or there are absolutely unsolvable number theoretic 

problems.”  He evidently believed that mind can’t be explained mechanically, but since 

he couldn’t give an unassailable argument for that--in his typical style he formulated this 

in a more cautious way as a dichotomy. A lot has been written pro and con about the 

possible significance of Gödel’s theorem for mechanical models of the mind by a number 

of logicians and philosophers; my own critique of Gödel’s dichotomy is published in the 

July 2006 issue of the journal Philosophia Mathematica, that you can also find on my 

home page.1  One of the most prominent proponents of the claim that Gödel’s theorem 
proves that mind is not mechanical is Roger Penrose (e.g. in Shadows of the Mind): 

“there must be more to human thinking than can ever be achieved by a computer”.  
However, he thinks that there must be a scientific explanation of how the mind works, 

albeit in its non-mechanical way, and that ultimately must be given in physical terms, but 
that current physics is inadequate to do the job.  As far as I know, Penrose does not say 

that Gödel’s theorem puts any limits on what one may hope to arrive at in the search for 

those needed new laws of physics.  But Stephen Hawking and Freeman Dyson, among 
others, have come to the conclusion that Gödel’s theorem implies that there can’t be a 

Theory of Everything.  Both the supposed consequences of the incompleteness theorem 

                                                
1 http://math.stanford.edu/~feferman/papers.html . You can also find earlier 
discussions referenced there. 
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for the nature of mind and the laws of the universe are quite interesting and should be 

examined on their own merits.  A discussion of the first of these here would take us too 

far afield.  But I do want to return later to say something about the argument contra any 

putative TOE.     

 

It’s time to say something a little more precise about just what the incompleteness 
theorems are.  For the non-experts who want to delve further into them, I strongly 

recommend two recent books, both by Torkel Franzén, who unfortunately died in mid-
life last spring of cancer:  

 

Inexhaustibility: A non-exhaustive treatment, is for readers with a moderate amount of 
logical and mathematical background. 

Gödel’s Theorem.  An incomplete guide to its use and abuse, is for the general reader.   
Both are published by A. K. Peters. 

 

Let’s start with a current formulation of Gödel’s first incompleteness theorem that is 
imprecise but can be made precise: 

 
 In any sufficiently strong formal system there are true arithmetical  statements that 

can’t be proved (in the system). 

 
Practically everything in this formulation needs to be elaborated.  First of all, we have to 

explain what is meant by a formal system, and to do that we need to say what is meant by 

a formal language L.  For that we have to prescribe a list of basic symbols and we have to 
say which finite sequences of basic symbols constitute meaningful expressions of the 

language, and we have to do this in a way that can be checked by a computer, at least in 
principle. 

 

This is illustrated by the formal language for arithmetic.  When mathematicians speak of 
arithmetic they mean what can be established in general about the whole numbers, more 

technically  
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  the positive integers 1, 2, 3,…, 

--not arithmetic in the sense of grade school rules of calculation.  The study of this higher 
arithmetic is also called number theory.  In the formal language for arithmetic we have a 

symbol for 1, symbols for addition, +, and multiplication, ×, symbols ‘n’, ‘m’,… that act 

as variables interpreted as referring to arbitrary (positive) integers, symbols for the 
equality and less-than relations, = and <, and symbols for the logical particles ‘and’ (&), 

‘or’ (∨), ‘not’ (¬), ‘implies’ (⇒), ‘if and only if’ (⇔) and what are called the quantifiers, 

‘for all n’ (∀n) and ‘there exists n’ (∃n) , as well as parentheses to avoid ambiguous 

expressions.  In this language we can express that a number m is prime—Prime(m)--by 
saying that m is greater than 1 and there do not exist n and k between 1 and m whose 

product is n: 
 

1 < m & ¬(∃n)(∃k)(1 < n < m & n × k = m ). 

 

There are many interesting problems in number theory that concern the prime numbers.  
The first few primes are  

 

  2, 3, 5, 7, 11, 13, 17, 19, 23,… 
 

The statement that there are infinitely many prime numbers can be expressed in our 
formal language in the form 

 

 (∀n)(∃m) (n < m & Prime(m)). 

 
This is in fact true, and was known to the Greeks;  a proof can be found in Euclid’s 

Elements.  Also proved there is that the prime numbers are another kind of building block 
for the positive integers, since every number greater than 1 can be written as a product of 

one or more prime numbers, in one and only one way in order of size.   

 
Mathematicians working on arithmetical problems became interested in primes with more 

special properties, for example what are called twin prime pairs, namely integers m and 
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m + 2 both of which are prime, like 3 and 5 or 11 and 13.  Note that m = 7 and m = 13 

don’t work as the first terms of twin prime pairs.  It is conjectured that there are infinitely 

many twin primes, i.e. that 
 

 (∀n)(∃m)(n < m & Prime(m) & Prime(m + 2)). 

 

A lot of work has gone into settling that conjecture, but to this day nobody knows 

whether it is true or not.  Another old speculation that can be expressed in the formal 
language for arithmetic is Goldbach’s conjecture, that every even number greater than 4 

is the sum of two odd primes, and we don’t know whether that is true or false, either.  
There are also problems that are originally stated in the language of the real and complex 

number systems used in the calculus, that turn out to be equivalent to problems that can 

be stated in our language of arithmetic.  One such is the Riemann Hypothesis (RH), a 
statement formulated by the brilliant mathematician Bernhard Riemann in the 19th 

century.  RH is one of the seven millennium prize problems set by the Clay Mathematics 
Institute, the solution of any one of which would be rewarded by a million dollar prize.  

So this shows that already in the formal language of arithmetic one can state very 

important problems that remain unsolved despite considerable efforts to determine which 
way they go.     

 

Once we have set up a formal language L, we can specify a formal system S in L by 
telling which sentences A of L are axioms and which relations between sentences are 

rules of inference.  As it happens, from the work of Gödel on the completeness of a 
system of pure logic, there is a standard set of axioms and rules of inference that suffice 

for all logical deductions and that can be specified once and for all.  So to fix a formal 

system S we have only to tell which are its non-logical axioms, i.e. the axioms that are 
specific to its subject matter.  Moreover, it is also required that we should be able to 

check by a computer (again in principle) which sentences are axioms and which sentence 
combinations count as applications of the rules of inference. By a proof in S is meant a 

finite sequence of sentences, each of which is either an axiom or is obtained from earlier 

sentences in the list by application of one of the rules of inference.  The sentence A is 
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said to be provable in S, if there is a proof in S which ends with A.  S is said to be 

consistent if there is no sentence A such that both A and not-A are provable in S.  There 
are two concepts of completeness related to Gödel’s theorem: (i) S is said to be formally 

complete for L if for every sentence A of L, either A is provable in S or not-A is provable 
in S.  (In Gödel’s terminology, every sentence of L is decided by S.  If S is not complete 

then there are undecidable L-sentences in S.)  (ii) S is truth complete for L if every true 

sentence of L is provable in S.  (This terminology is not standard.)  If S is consistent and 
truth complete for L it is formally complete, because each sentence A of L is either true 

or false, i.e. its negation is true.  But S may be consistent and formally complete and not 
truth complete, because it may prove false sentences; this is a consequence of Gödel’s 

theorem.  It is of course stronger to prove of a given S that it is not formally complete, 

than that it is not truth complete, and that’s what Gödel did in his original formulation.  
But there is a slight technical complication about his argument that I wanted to avoid 

here, which is why we’ll concentrate on the weaker incompleteness result.   

 
Taking the concept of truth in the integers for granted, we now understand everything in 

the above rough formulation of Gödel’s first incompleteness theorem except what it 
means to be “sufficiently strong”.  Usually that is taken to mean that S includes the 

system PA of Peano Arithmetic;2 that is a formal version of the axioms proposed for 

arithmetic by the Italian mathematician Giuseppe Peano in the 1890s.  Its axioms assert 
some simple basic facts about addition, multiplication and the equality and less-than 

relations.  Beyond those, its main axioms are all the instances of the principle of 
mathematical induction that can be expressed in the language of arithmetic, namely: 

 

  P(1) & (∀n)(P(n) ⇒ P(n+1)) ⇒ (∀n)P(n) . 

 
We can now formulate one current precise version of Gödel’s first incompleteness 

theorem as follows: 
 

The first incompleteness theorem.  If S is a formal system such that 
                                                
2 Actually, much weaker systems than PA are known to suffice for the theorem.   
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(i) the language of S contains the language of arithmetic,  

(ii) S includes PA, and  
(iii) S is consistent 

then there is an arithmetical sentence A which is true but not provable in S.   
 

Here is an idea of how Gödel proved his incompleteness theorem.  He first showed that a 

large class of relations that he called recursive, and that we now call primitive recursive, 
can all be defined in the language of arithmetic. Moreover, every numerical instance of a 

primitive recursive relation is decidable in PA.  Similarly for primitive recursive 
functions. Among the functions that are primitive recursive are exponentiation, factorial, 

and the prime power representation of any positive integer.    

 
He then attached numbers to each symbol in the formal language L of S and, using the 

product-of-primes representation, attached numbers as codes to each expression E of L, 

considered as a finite sequence of basic symbols.  These are now called the Gödel 

number of the expression E.  In particular, each sentence A of L has a Gödel number.  

Proofs in S are finite sequences of sentences, and so they too can be given Gödel 
numbers.  He then showed that the property:  

 

 n is the number of a proof of A in S,  
written 

 ProofS(n, A) 
is primitive recursive and so expressible in the language of arithmetic.3  Hence the 

sentence  

 
 (∃n) ProofS(n, A), 

written 

 ProvS(A) 
 

                                                
3 To be more precise, ProofS(n, A) is here written for ProofS(n, m), where m is the Gödel 
number of A.    
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expresses that A is provable from S.  Moreover, if it is true, it is provable in PA.  So we 

can also express directly from this that A is not provable from S, by ¬ProvS(A).  Finally, 

Gödel used an adaptation of what is called the diagonal method to construct a specific 
sentence, call it D, such that PA proves: 

 
 D ⇔ ¬ProvS(D).   

 
Finally, he showed: 

 
(*)  If S is consistent then D is not provable from S.   

 

The argument for (*) is by contradiction: suppose D is provable from S.  Then we could 
actually produce an n which is a number of a proof in S of D, and from that we could 

prove in PA that “n is the number of a proof of D in S”, from which follows “D is 
provable in S”.  But this last is equivalent in S to ¬D, so S would be inconsistent, 

contradicting our hypothesis.  Finally, the sentence D is true because it is equivalent, in 

the system of true axioms PA, to the statement that it is unprovable from S.    

 
It should be clear from the preceding that the statement that S is consistent can also be 

expressed in the language of arithmetic, as ¬ProvS(A&¬A), for some specific A (it does 

not matter which); we write ConS for this.  Then we have: 

 
The second incompleteness theorem.  If S is a formal system such that  

(i) the language of S contains the language of arithmetic,  
(ii) S includes PA, and  

(iii) S is consistent, 

then the consistency of S, ConS is not provable in S. 
 

The way Gödel established this is by formalizing the entire preceding argument for the 
first incompleteness theorem in Peano Arithmetic.  It follows that PA proves the formal 

expression of (*), i.e.  it proves 
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(**) ConS ⇒ ¬ProvS(D). 

But by the construction of D, it follows that PA (and hence S) proves 
(***)   ConS ⇒ D. 

 

Thus if S proved ConS it would prove D, which we already know to be not the case.   

 
………………….. 

 
There are several directions in which to explore the significance of the incompleteness 

theorems.  But first, a bit of history.  As John Dawson reminded me, by coincidence 

November 17, 1930 is the date of receipt for publication of “Über formal unentscheidbare 
Sätze der Principia Mathematica und verwandter Systeme I” [On formally undecidable 

propositions in Principia Mathematica and related systems, Part I] by the journal 
Monatshefte für Mathematik und Physik.  This is the paper in which the first 

incompleteness theorem was proved in full for a certain class of formal systems and in 

which the second incompleteness theorem was announced, for publication.  (It appeared 
there soon after submission, in January 1931.)  Gödel promised a Part II in which a proof 

of the second theorem would be given but that never appeared.  He said it was because 
his results were accepted so quickly but, as we shall see, that was by no means generally 

the case. 

 
Gödel had made an informal announcement of the first incompleteness theorem at a 

meeting on the philosophy of science and the foundations of mathematics at Königsberg, 
Germany in September 1930.  Except for John von Neumann, this was met with general 

incomprehension by the scholars in attendance.  Von Neumann was very impressed with 

the result.  Thinking about it a couple of months after the meeting, he realized that the 
second incompleteness theorem could be derived from the argument for the first and 

communicated that in a letter to Gödel dated Nov. 20, 1930—as it happens, three days 

after the acceptance of Gödel’s article by the Monatshefte.  Gödel sent von Neumann a 
copy of the article, and of course von Neumann readily accepted Gödel’s priority.  More 
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importantly, both Gödel and von Neumann realized that the second incompleteness 

theorem was of direct significance for Hilbert’s program in the foundations of 
mathematics, though just in what way was initially a matter of dispute between them, and 

then between them and Hilbert.  Here’s the background to that. 
 

David Hilbert, as we all know, was one of the most important mathematicians of the time, 

having made fundamental contributions to practically all the main areas of pure 
mathematics as well as applications of mathematics to physics.  Off and on from the end 

of the 19th century through the first third of the 20th century he was also very much 
concerned with the foundations of mathematics and was troubled by contradictions found 

by Cantor and Russell in the theory of sets, the most general mathematical theory to have 

been developed for foundational purposes.   
 

Hilbert’s idea was to secure the foundations of mathematics on a solid basis, and to do 

this in a convincing way.  He proposed to model mathematical reasoning in formal 
systems so as to be able to establish precise results about them.  Formal systems are an 

idealized model of mathematical reasoning; in practice, mathematicians don’t use strictly 
limited formal languages in which to carry out their reasoning and don’t appeal explicitly 

to axioms or rules of inference to justify their arguments.  But the work on formalization 

showed that mathematical reasoning as it is actually carried out can be faithfully 
represented in suitable formal systems.  Of course, one needs richer languages to include 

variables ranging over different kinds of number systems like the real numbers and the 
complex numbers, and over sets and functions of various types, in order to do that.  A 

minimal criterion for the acceptability of a formal system S is that it should be consistent.  

After all, if S is to be used to obtain truths about numbers and other kinds of 
mathematical objects, it should start from true axioms and use rules of inference that 

invariably lead from truths to truths.  In that case, we would never be able to prove a 
statement of the form (A & ¬A) from S.  So Hilbert’s first aim was to show for stronger 

and stronger systems for mathematics, beginning with arithmetic, that they are consistent.  

Because the concept of a formal system is explained in precise mathematical terms, the 

question of its consistency is a precise mathematical problem.  Looked at in this way, 
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Hilbert wanted to apply mathematics to secure mathematics, but he conceived of the 

enterprise as a new subject that he called metamathematics.   

 

However, it would be circular for this purpose to allow unrestricted mathematical means 
in metamathematics.  In particular, according to Hilbert, the metamathematical  program 

should completely eschew concepts and principles that involve the actual or completed 

infinite.  He believed that the contradictions like Cantor’s and Russell’s paradoxes had 
their source in the essential use of such concepts.  (In fact he was wrong about that, but 

that’s another story.)  Hilbert concluded that in order to prove the consistency of various 
formal systems for mathematics that embody the actual infinite, one must use only 

concepts and reasoning dealing solely with finite objects in a completely finitary way.  

However, Hilbert did not make precise exactly what methods are finitary (also called 
finitistic), but only gave examples.  This later became the point of contention, as I’ll 

explain.   

 
Peano Arithmetic provided the first real challenge for Hilbert’s program since it 

implicitly involves the actual infinite in its acceptance of such statements as: 
 

 (∀n)A(n) ∨ (∃n)(¬A(n)), 

 

which are intuitively verified by running through the positive integers 1, 2, 3,… one after 
another looking to see if we ever reach an n for which A fails; we must go through all the 

integers if there is no such n.  Gödel actually set out to prove the consistency of PA by 
finitistic means, but in the process met a basic obstacle, and when he analyzed the 

difficulty, he was led to the first incompleteness theorem.  When he went on to the 

second incompleteness theorem he thus turned the whole thing upside down.  By the way, 
in doing so, Gödel was the first person to fully exploit the metamathematical point of 

view, by working within the system to obtain results about the system.   
 

As I’ve said, the second incompleteness theorem raised a fundamental problem for 

Hilbert’s program.  According to it, no sufficiently strong formal system that happens to 
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be consistent proves its own consistency.  Thus, no formal system in which all finitistic 

methods can be formalized can be proved consistent by finitistic methods.  So the crucial 
question was whether all finitistic methods can be formalized in Peano Arithmetic.  After 

stating the second incompleteness theorem in his  paper, Gödel wrote: 
 

I wish to note expressly that [this theorem does] not contradict Hilbert’s 

formalistic viewpoint.  For this viewpoint presupposes only the existence of a 

consistency proof in which nothing but finitary means of proof is used, and it is 

conceivable that there exist finitary proofs that cannot be expressed in the 

formalism …  (Gödel 1931, Collected Works Vol. I , p. 195) 

 

But von Neumann, who had already contributed to Hilbert’s consistency program for a 
weaker system than PA, was convinced that Peano Arithmetic already encompasses all 

that can be done finitistically; this became a matter of exchange between him and Gödel.   

At first Gödel disagreed, but within a few years he too came around to that conclusion.  
Hilbert, however, never accepted it.  In the preface to vol. I, with Paul Bernays, of 

Grundlagen der Mathematik (1934), that was planned to be an exposition of his program 

and the contributions that had been made to it, he wrote: 
 

I would like to emphasize the following: the view, which temporarily arose and 

which maintained that certain recent results of Gödel show that my proof theory 

can’t be carried out, has been shown to be erroneous.  In fact that result shows 

only that one must utilize the finitary standpoint in a sharper way for the farther 

reaching consistency proofs…  

 

Gödel and Hilbert never met or corresponded and Hilbert never acknowledged what 
Gödel had accomplished, despite the fact that all his co-workers in the foundations of 

mathematics recognized its importance.  Nowadays, it is almost universally agreed that 
Hilbert’s program as originally conceived is already blocked at arithmetic.  In its place, 

much work has gone into extended (or relativized) forms of Hilbert’s program using 

constructive though non-finitistic means for consistency proofs.   
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But what about the significance of the incompleteness theorems for mathematics itself?4  
It is very tantalizing to think that the reason one hasn’t been able to settle some 

outstanding arithmetical problems is because they are independent of the systems that 
embody usual methods of proof.  But the proof of the incompleteness theorem sketched 

above doesn’t tell us anything about the status of still unsolved mathematical problems, 

like Goldbach’s conjecture or the twin prime conjecture, or the Riemann Hypothesis.  In 
fact, so far, no unsolved problem of prior mathematical interest like these has even been 

shown to be independent of Peano Arithmetic.  The true statement D shown to be 
unprovable by Gödel is just contrived to do the job; it doesn’t have mathematical interest 

on its own.  Logicians have found more natural looking arithmetical statements that are 

true but can’t be proved from PA and even from much stronger systems S, such as 
variants of Ramsey’s theorem and other combinatorial theorems, but none of prior 

interest, so the significance of that work is not clear for working mathematicians.  The 

case of the Fermat conjecture that resisted attack for over three hundred years suggests 
another view of the matter: some proofs require an enormous assemblage of sophisticated 

and complicated mathematics and delicate argumentation to push through to the end.  The 
Fermat conjecture (for all x, y, z positive integers and all n > 2, it is not the case that xn + 

yn = zn) is stated in the language of arithmetic, but the proof by Andrew Wiles makes 

profound use of notions and methods that go far beyond arithmetic.  Before Wiles 

obtained his result it was speculated that the Fermat conjecture would be an example of a 
statement whose truth is difficult to establish (assuming it is true) because it is 

independent of PA.  Now that we know that it is in fact true, the question of its 
independence can be revisited: despite the complexity of Wiles’ proof and its extensive 

use of non-arithmetical methods, it’s not excluded that a proof can be found that is purely 

arithmetical.  In that case, a search for an independence proof before Wiles’ discovery 
would have come to nothing.   

 

                                                
4 I have written about this at greater length in my article, “The impact of Gödel’s 
incompleteness theorems on mathematics” for the Notices of the American Mathematical 
Society 53 no. 4 (April 2006), that can also be found on my home page. 
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Let me return, finally, to the possible significance of the incompleteness theorems for 

physics, in particular for the search for a Theory of Everything.  For example, in a review 
for the New York Review of Books two years ago of Brian Greene’s, The Fabric of the 

Cosmos, Freeman Dyson wrote:  
 

Gödel’s theorem implies that pure mathematics is inexhaustible. No matter how 

many problems we solve, there will always be other problems that cannot be 

solved within the existing rules.  … because of Gödel's theorem, physics is 

inexhaustible too. The laws of physics are a finite set of rules, and include the 

rules for doing mathematics, so that Gödel's theorem applies to them. [NYRB, 

May 13, 2004]. 

 

So, according to Dyson’s argument, there can’t be a Theory of Everything.5   

 

In response to that, I wrote the NYRB (July 15, 2004) making the following points: 

 

1. It’s indeed the case that if the laws of physics are formulated in a formal system S 

which includes the concepts and axioms of arithmetic as well as physical notions such as 

time, space, mass, charge, velocity, etc., and if S is consistent then there are propositions 

of higher arithmetic which are undecidable by S.  But this tells us nothing about the 

specifically physical laws encapsulated in S, which could conceivably be complete as 

such.6    

 

                                                
5 The physicist and theologian Stanley L. Jaki has been arguing the same since the 1960s; 
see http://pirate.shu.edu/~jakistan/JakiGodel.pdf .  Jaki chides Stephen Hawking for 
taking so long to see the light; after having supported the pursuit of a TOE, Hawking 
concluded in his Dirac lecture of 2002 that there can’t be such a thing on account of 
Gödel’s theorem; see http://www.damtp.cam.ac.uk/strings02/dirac/hawking/ . 
6 Torkel Franzén makes the same point in his book Gödel’s Theorem, p. 87.  More 
picturesquely, he writes, “nothing in the incompleteness theorem excludes the possibility 
of our producing a complete theory of stars, ghosts and cats, all rolled into one, as long as 
what we say about stars, ghosts and cats can’t be interpreted as statements about the 
natural numbers.”  He also explains (pp. 88-89) why Hawking’s attempt to reduce certain 
problems about prime numbers to physical properties of blocks of wood is irrelevant.   
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2. Anyhow, all this is highly theoretical and speculative.  In practice, a much different 

picture emerges.  Beyond basic arithmetic calculations, the mathematics that is applied in 

physics rarely calls on higher arithmetic but depends instead mainly on substantial parts 

of mathematical analysis and higher algebra and geometry.  All of the mathematics that 

underlies these applications can be formalized in the currently widely accepted system for 

the foundation of mathematics known as Zermelo-Fraenkel set theory, and there is not a 

shred of evidence that anything stronger than that system would ever be needed.  

Actually, it has long been recognized that much weaker systems suffice for that purpose.  

In fact, I have conjectured that all scientifically applicable mathematics can be formalized 

in a certain system that is a conservative extension of Peano Arithmetic, and there is 

considerable evidence in support of that conjecture.7  Note well that the issue here only 

concerns applied mathematics.  It is another matter entirely whether, and in what sense, 

pure mathematics needs new axioms beyond those of the Zermelo-Fraenkel system; that 

has been a matter of some controversy among logicians.  

 

My own conclusion is that Gödel’s theorem is neither here nor there concerning the 

fundamental laws of physics.  That new theories are needed seems to be unquestioned, 

but whether there can be an end to the search for such is not something we can simply 

settle on metamathematical grounds.  

 

To return to mathematics, whatever its relevance to practice, Gödel’s theorem 

convincingly demonstrates the in principle inexhaustibility of pure mathematics in the 

sense of the never ending need for new axioms, and it invites us to ponder the question: 

just what axioms for mathematics ought to be accepted and why?  That is really a 

philosophical question, and like most important philosophical questions, has no answer 

commanding universal agreement.  Meanwhile, mathematics, like life, goes on without it.   

 

                                                
7 See the article, “Why a little bit goes a long way: logical foundations of scientifically 
appplicable mathematics”, reprinted in my collection of essays, In the Light of Logic; the 
article may also be found on my home page.   


