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Abstract. Some have claimed that Gödel’s incompleteness theorems on the formal 

axiomatic model of mathematical thought can be used to demonstrate that mind is not 

mechanical, in opposition to a Formalist-Mechanist Thesis.  Following an explanation of 

the incompleteness theorems and their relationship with Turing machines, we here 

concentrate on the arguments of Gödel (with some caveats) and Lucas among others for 

such claims; in addition, Lucas brings out the relevance to the free will debate.  Both 

arguments are subject to a number of critiques.  The article concludes with the 

formulation of a modified Formalist-Mechanist Thesis which prima facie guarantees 

partial freedom of the will in the development of mathematical thought.    

1. Logic, determinism and free will.  The determinism-free will debate is perhaps as old 

as philosophy itself and has been engaged in from a great variety of points of view 

including those of scientific, theological and logical character; my concern here is to limit 

attention to two arguments from logic.  To begin with, there is an argument in support of 

determinism that dates back to Aristotle, if not farther.  It rests on acceptance of the Law 

of Excluded Middle, according to which every proposition is either true or false, no 

matter whether the proposition is about the past, present or future.  In particular, the 

argument goes, whatever one does or does not do in the future is determined in the 

present by the truth or falsity of the corresponding proposition.  Surely no such argument 

could really establish determinism, but one is hard pressed to explain where it goes 

wrong.  One now classic dismantling of it has been given by Gilbert Ryle, in the chapter 

‘What was to be’ of his fine book, Dilemmas (Ryle 1954).  We leave it to the interested 

reader to pursue that and the subsequent literature.   



The second argument coming from logic is much more modern and sophisticated; it 

appeals to Gödel’s incompleteness theorems (Gödel 1931) to make the case against 

determinism and in favor of free will, insofar as that applies to the mathematical 

potentialities of human beings.  The claim more precisely is that as a consequence of the 

incompleteness theorems, those potentialities cannot be exactly circumscribed by the 

output of any computing machine even allowing unlimited time and space for its work.  

Here there are several notable proponents, including Gödel himself (with caveats), J. R. 

Lucas and Roger Penrose.  All of these arguments have been subject to considerable 

critical analysis; it is my purpose here to give some idea of the nature of the claims and 

debates, concluding with some new considerations that may be in favor of a partial 

mechanist account of the mathematical mind.  Before getting into all that we must first 

give some explanation both of Gödel’s theorems and of the idealized machines due to 

Alan Turing which connect the formal systems that are the subject of the incompleteness 

theorems with mechanism.     

2. Gödel’s incompleteness theorems.  The incompleteness theorems concern formal 

axiomatic systems for various parts of mathematics.  The reader is no doubt familiar with 

one form or another of Euclid’s axioms for geometry.  Those were long considered to be 

a model of rigorous logical reasoning from first principles.  However, it came to be 

recognized in the 19th century that Euclid’s presentation had a number of subtle flaws and 

gaps, and that led to a much more rigorous presentation of an axiomatic foundation for 

geometry by David Hilbert in 1899.  Hilbert was then emerging as one of the foremost 

mathematicians of the time, a position he was to hold well into the 20th century.  Axiom 

systems had also been proposed in the late 19th century for other mathematical concepts 

including the arithmetic of the positive integers by Giuseppe Peano and of the real 

numbers by Richard Dedekind.  In the early 20th century further very important axiom 

systems were provided by Ernst Zermelo for sets and by Alfred North Whitehead and 

Bertrand Russell for a proposed logical foundation of mathematics in their massive work, 

Principia Mathematica. Hilbert recognized that these various axiom systems when fully 

formally specified could themselves be the subject of mathematical study, for example 

concerning questions of their consistency, completeness and mutual independence of 

their constitutive axioms.    



As currently explained, a specification of a formal axiom system S is given by a 

specification of its underlying formal language L and the axioms and rules of inference of 

S.  To set up the language L we must prescribe its basic symbols and then say which 

finite sequences of basic symbols constitute meaningful expressions of the language; 

moreover, that is to be done in a way that can be effectively checked, i.e. by a finite 

algorithmic procedure.  The sentences (“closed formulas”) of L are singled out among its 

meaningful expressions; they are generated in an effective way from its basic relations by 

means of the logical operations.  If A is a sentence of L and a definite interpretation of 

the basic relations of L is given in some domain of objects D then A is true or false under 

that interpretation.  The axioms of S are sentences of L and the rules of inference lead 

from such sentences to new sentences; again, we need to specify these in a way that can 

be effectively checked. A sentence of L is said to be provable in S if it is the last sentence 

in a proof from S, i.e. a finite sequence of sentences each of which is either an axiom or 

follows from earlier sentences in the sequence by one of the rules of inference.  S is 

consistent if there is no sentence A of L such that both A and its negation (not-A) are 

provable in S.  One of the consequences of Gödel’s theorems is that there are formal 

systems S in the language of arithmetic for which S is consistent yet S proves some 

sentence A which is false in the domain D of positive integers (1, 2, 3,…).  

Hilbert introduced the term metamathematics for the mathematical study of formal 

systems for various branches of mathematics.  In particular, he proposed as the main 

program of metamathematics the task of proving the consistency of successively stronger 

systems of mathematics such as those mentioned above, beginning with the system PA 

for Peano’s Axioms.  In order to avoid circularities, Hilbert’s program included the 

proviso that such consistency proofs were to be carried out by the most restrictive 

mathematical means possible, called finitistic by him.  

In an effort to carry out Hilbert’s program for a substantial part of the formal system PM 

of Principia Mathematica Gödel met a problem which he recognized could turn into a 

fundamental obstacle for the program.  He then recognized that that problem was already 

met with the system PA.  This led to Gödel’s stunning theorem that one cannot prove its 

consistency by any means that can be represented formally within PA, assuming the 



consistency of PA.  In fact, he showed that if S is any formal system which contains PA 

either directly or via some translation (as is the case with the theory of sets), and if S is 

consistent, then the consistency of S cannot be proved by any means that can be carried 

out within S.  This is what is called Gödel’s second incompleteness theorem or his 

theorem on the unprovability of consistency. The first incompleteness theorem was the 

main way-station to its proof; we take it here in the form that if a formal system S is a 

consistent extension of PA then there is an arithmetical sentence G which is true but not 

provable in S, where truth here refers to the standard interpretation of the language of PA 

in the positive integers.  That sentence G (called the Gödel sentence for S) expresses of 

itself that it is not provable in S.   

3. Proofs of the incompleteness theorems. We need to say a bit more about how all this 

works in order to connect Gödel’s theorems with Turing machines.  It is not possible to 

go into full detail about how Gödel’s theorems are established, but the interested reader 

will find that there are now a number of excellent expositions at various levels of 

accessibility which may be consulted for further elaboration.1 In order to show for these 

theorems how various metamathematical notions such as provability, consistency and so 

on can be expressed in the language of arithmetic, Gödel attached numbers to each 

symbol in the formal language L of S and then⎯by using standard techniques for coding 

finite sequences of numbers by numbers⎯attached numbers as code to each expression E 

of L, considered as a finite sequence of basic symbols.  These are now called the Gödel 

number of the expression E.  In particular, each sentence A of L has a Gödel number.  

Proofs in S are finite sequences of sentences, and so they too can be given Gödel 

numbers.  Gödel then showed that the Proof-in-S relation, “n is the number of a proof of 

the sentence with Gödel number m in S”, is definable in the language of arithmetic.  

Hence if A is a sentence of S and m is its Gödel number then the sentence which says 

there exists an n such that the Proof-in-S relation holds between n and m expresses that A 

is provable from S.  So we can also express directly from this that A is not provable from 

                                                
1 In particular, I would recommend Franzén (2004 ) for an introduction at a general level, 
and Franzén (2005) and Smith (2007 ) for readers with some background in higher 
mathematics.   



S.  Next, Gödel used an adaptation of what is called the diagonal method to construct a 

specific sentence G, such that PA proves G is equivalent to the sentence expressing that 

G is not provable in S. Finally, he showed: 

(*)  If S is consistent then G is (indeed) not provable from S.   

It should be clear from the preceding that the statement that S is consistent, i.e. that there 

is no A such that both A and not-A are provable in S, can also be expressed in the 

language of arithmetic; we use Con(S) to denote this statement.  

The second incompleteness theorem (unprovability of consistency).  If S is a formal 

system such that S includes PA, and S is consistent, then the sentence Con(S) expressing 

the consistency of S in arithmetic is not provable in S. 

The way Gödel established this is by formalizing the entire argument leading to (*) in 

Peano Arithmetic.  And since the sentence expressing that G is not provable in S is 

equivalent to G itself, it follows that PA proves:  

(**)  If Con(S) then G.      

So if S were to prove its own consistency statement Con(S) it would also prove G, 

contrary to (*). 

Gödel obtained these remarkable theorems at age 24 as a graduate student at the 

University of Vienna.  The significance of the second incompleteness theorem for 

Hilbert’s program is that if S is a consistent system in which all finitistic methods can be 

formalized then one cannot give a finitistic consistency proof of S.  It was conjectured by 

Johan von Neumann that all finitistic methods can be formalized in PA and hence that 

Hilbert’s program would already meet a fundamental obstacle at that point.  Gödel did 

not accept von Neumann’s conjecture at first but came around to it within a few years and 

that is now the common point of view. On the other hand, Hilbert apparently never 

accepted that Gödel’s theorem doomed his consistency program to failure.   

4. Turing machines and formal systems.   Early in the 1930s, two proposals were made 

by the logicians Alonzo Church and Jacques Herbrand, respectively, to define the concept 



of effective computation procedure in precise mathematical terms. Gödel found a defect 

in Herbrand’s definition and then modified it so as to avoid its problem. It was then 

shown by Church and his students that his definition and that of Herbrand-Gödel lead to 

the same class of computable functions; even so, Gödel did not find either proposal 

convincing.  A couple of years later, the young Cambridge mathematician Alan Turing 

came up with still another definition in terms of computability on machines of an 

idealized kind, since then called Turing machines. In his paper Turing (1937) also 

showed the equivalence of his computability notion with those of Church and Herbrand-

Gödel. Church quickly accepted Turing’s explication of the informal notion of effective 

computation procedure as being the most convincing of the three then on offer.  Gödel 

apparently did so too, but the first statement by him in print to that effect was not made 

until almost thirty years later. That was in a postscript he added to the reprinting of 

lectures that he had given in Princeton 1934 in the collection The Undecidable (Davis 

1965): 

Turing’s work gives an analysis of the concept of “mechanical procedure” (alias 

“algorithm” or “computation procedure” or “finite combinatorial procedure”).  

This concept is shown to be equivalent with that of a “Turing machine”.  A formal 

system can simply be defined to be any mechanical procedure for producing 

formulas, called provable formulas.  For any formal system in this sense there 

exists one in the [usual] sense … that has the same provable formulas (and 

likewise vice versa) ... . (Gödel 1965) in (Gödel 1986, p. 369) [Italics mine] 

Turing’s idea was to isolate the most primitive steps of what human computors actually 

do.  The computational work of following a finite set of rules is that of entering (or 

erasing) a specified list of symbols in various locations and moving from one location to 

the next.  The amount of space and time needed for carrying out a given computation 

cannot be fixed in advance.  Turing reduced this to working on a (potentially) infinite 

tape divided into a series of squares, of which at any stage of the computation only a 

finite number are marked.  At any active stage in the computation procedure, exactly one 

instruction is being followed and exactly one square is being scanned; it may be empty or 

be marked with one of the symbols.  The possible actions for a given instruction, noting 



the state of the scanned square, are to enter a specified symbol or erase its contents, move 

right or left and proceed to another instruction.  (If one is at the left end of the tape, the 

instruction to move left has no effect.)  Beginning with any initial configuration starting 

at the leftmost square the computation terminates⎯if at all⎯when one arrives at an 

instruction that is designated as the final one.  A Turing machine M is specified by its 

instruction set. 

The most primitive alphabet for such computations consists of one symbol, the tally |; 

each positive integer is then represented by a finite sequence of tallies ||…|, successively 

marked off on the tape, directly preceded and followed by empty squares.  To compute a 

function f of positive integers such as squaring, i.e. f(n) = n2, one enters n tallies as the 

initial configuration; the computation is to terminate when it is scanning the rightmost 

tally of a sequence of n2 tallies.  In general, a function f from positive integers to positive 

integers is said to be effectively computable by a Turing machine M if for each input n as 

initial configuration the procedure terminates with f(n) as output.  By an effectively 

enumerable set of positive integers is meant the range {f(1), f(2), f(n),..} of an effectively 

computable function; there may be repetitions in this range so that it is in fact a finite set.  

A set is effectively decidable if the function f(n) =1 if n is a member of the set and f(n) =2 

if it is not (called the characteristic function of the set) is effectively computable.  Every 

non-empty effectively decidable set is effectively enumerable, but Turing showed there 

are effectively enumerable sets that are not effectively decidable.  The notion of 

effectively computable function is extended in a direct way to those with two or more 

arguments; a relation between two or more arguments is then effectively decidable if its 

characteristic function is computable.   

Given these definitions, Gödel’s above stated identification of the most general notion of 

formal system with “mechanical procedures for producing formulas” may be spelled out 

as follows.  First of all, given a formal system S, one replaces each formula of the 

language of S by its Gödel number.  By the effectiveness conditions on the specification 

of S, the set of axioms of S form an effectively decidable set, and each rule of inference, 

considered as a relation between one or more hypotheses and a conclusion, is an 

effectively decidable relation between the formulas in each place.  It is then an exercise to 



show that the Proof-in-S relation is effectively decidable.  Now define a function f as 

follows: if n codes a finite sequence whose last term is m, and n is in the Proof-in-S 

relation to m, then f(n) = m; otherwise, f(n) is the number of some fixed provable 

sentence selected in advance.  Thus the range of f is exactly the set of (Gödel numbers of) 

provable formulas of S.  In terms of the quote from Gödel above, this shows that given 

any formal system  there is an associated mechanical procedure for producing its 

provable formulas. 

Conversely, given a formal language L and a Turing machine M for computing some 

function f, form the set {f(1), f(2), f(3),…} and then successively eliminate all terms that 

are not numbers of sentences in L; the result is still effectively enumerable, and its set of 

purely logical consequences is the set of provable formulas of a suitable formal system S 

in the language L.  Thus any mechanical procedure may be effectively transformed into 

another such procedure for producing the provable formulas of a formal system.   

Given Gödel’s identification in these senses of formal systems with mechanical 

procedures, one is led to the following formulation of the thesis that the mathematical 

mind is mechanical: 

The Formalist-Mechanist Thesis I. Insofar as human mathematical thought is 

concerned, mind is mechanical in that the set of all mathematical theorems, actual or 

potential, is the set of provable sentences of some formal system.  

Note well that this is a thesis concerning mathematical thought only.  Of course that 

would be a consequence of all mental activity being determined in some way by a 

machine.  But the thesis is compatible with thought in general not being describable in 

mechanistic terms.  We shall abbreviate this thesis as FMT I.   

In the following we shall concentrate on two thinkers who deny FMT I to some extent or 

other, namely Gödel and Lucas.   

5. Gödel on minds and machines. Gödel first laid out his thoughts in this direction in 

what is usually referred to as his 1951 Gibbs lecture, ‘Some basic theorems on the 



foundations of mathematics and their implications’ (Gödel 1951).2  The text of this 

lecture was never published in his lifetime, though he wrote of his intention to do so soon 

after delivering it.  After Gödel died, it languished with a number of other important 

essays and lectures in his Nachlass until it was retrieved for publication in Volume III of 

Gödel’s Collected Works (1995, pp. 304-323).    

There are essentially two parts to the Gibbs lecture, both drawing conclusions from the 

incompleteness theorems.  The first part concerns the potentialities of mind vs. machines 

for the discovery of mathematical truths.  The second part is an argument aimed to 

“disprove the view that mathematics is only our own creation”, and thus to support some 

version of platonic realism in mathematics; only the first part concerns us here.3  Gödel 

there highlighted the following dichotomy: 

Either … the human mind (even within the realm of pure mathematics) infinitely 

surpasses the powers of any finite machine, or else there exist absolutely 

unsolvable diophantine problems ... (Gödel 1995, p. 310) [Italics Gödel’s] 

By a diophantine problem is meant a proposition of the language of Peano Arithmetic of 

a relatively simple form whose truth or falsity is to be determined; its exact description is 

not important to us.4  Gödel showed that the consistency of a formal system is equivalent 

to a diophantine problem, to begin with by expressing it in the form that no number codes 

a proof of a contradiction. According to Gödel, his dichotomy is a “mathematically 
                                                
2 Gödel’s lecture was the twenty-fifth in a distinguished series set up by the American 
Mathematical Society to honor the 19th century American mathematician, Josiah Willard 
Gibbs, famous for his contributions to both pure and applied mathematics.  It was 
delivered to a meeting of the AMS held at Brown University on December 26, 1951.   
3 George Boolos wrote a very useful introductory note to both parts of the Gibbs lecture 
in Vol. III of the Gödel Works.  More recently I have published an extensive critical 
analysis of the first part, under the title “Are there absolutely unsolvable problems? 
Gödel’s dichotomy” (Feferman 2006), followed by the closely related “Gödel, Nagel, 
minds and machines” (Feferman 2009) on both of which I draw extensively in the 
following.   
4 Nowadays, mathematicians reserve the terminology ‘diophantine equations’ and 
‘diophantine problems’ to a more specialized class than taken by Gödel.  However,  
Gödel’s have been shown to be equivalent to the non-existence of solutions to suitable 
diophantine equations.  



established fact” which is a consequence of the incompleteness theorem.  However, all 

that he says by way of an argument for it is the following: 

[I]f the human mind were equivalent to a finite machine then objective 

mathematics not only would be incompletable in the sense of not being contained 

in any well-defined axiomatic system, but moreover there would exist absolutely 

unsolvable problems…, where the epithet “absolutely” means that they would be 

undecidable, not just within some particular axiomatic system, but by any 

mathematical proof the mind can conceive.  (ibid.) [Italics Gödel’s] 

By a finite machine here Gödel means a Turing machine, and by a well-defined axiomatic 

system he means an effectively specified formal system; as explained above, he takes 

these to be equivalent in the sense that the set of theorems provable in such a system is 

the same as the set of theorems that can be effectively enumerated by such a machine.  

Thus, to say that the human mind is equivalent to a finite machine “even within the realm 

of pure mathematics” is another way of saying that what the human mind can in principle 

demonstrate in mathematics is the same as the set of theorems of some formal system, i.e. 

that FMT I holds.  By objective mathematics Gödel means the totality of true statements 

of mathematics, which includes the totality of true statements of arithmetic.  Then the 

assertion that objective mathematics is incompletable is simply a consequence of the 

second incompleteness theorem.   

Examined more closely, Gödel’s argument is that if the human mind were equivalent to a 

finite machine, or⎯what comes to the same thing⎯an effectively presented formal 

system S, then there would be a true statement that could never be humanly proved, 

namely Con(S).   So that statement would be absolutely undecidable by the human mind, 

and moreover it would be equivalent to a diophantine statement.  Note however, the tacit 

assumption that the human mind is consistent; otherwise, it is equivalent to a formal 

system in a trivial way, namely one that proves all statements.  Actually, Gödel 

apparently accepts a much stronger assumption, namely that we prove only true 

statements; but for his argument, only the weaker assumption is necessary (together of 

course with the assumption that PA or some comparable basic system of arithmetic to 

which the second incompleteness theorem applies has been humanly accepted).  



Though he took care to formulate the possibility that the second term of the disjunction 

holds, there’s a lot of evidence outside of the Gibbs lecture that Gödel was convinced of 

the anti-mechanist position as expressed in the first disjunct.  That’s supplied, for 

example, in his informal communication of various ideas about minds and machines to 

Hao Wang, initially in the book, From Mathematics to Philosophy (Wang 1974, pp. 324-

326), and then at greater length in A Logical Journey. From Gödel to Philosophy (Wang 

1996, especially Ch. 6).  So why didn’t Gödel state that outright in the Gibbs lecture 

instead of the more cautious disjunction in the dichotomy?  The reason was simply that 

he did not have an unassailable proof of the falsity of the mechanist position.  Indeed, 

despite his views concerning the “impossibility of physico-chemical explanations of … 

human reason” he raised some caveats in a series of three footnotes to the Gibbs lecture, 

the second of which is as follows: 

[I]t is conceivable ... that brain physiology would advance so far that it would be 

known with empirical certainty 

1. that the brain suffices for the explanation of all mental phenomena and is a 

machine in the sense of Turing; 

2. that such and such is the precise anatomical structure and physiological 

functioning of the part of the brain which performs mathematical thinking.  (ibid.) 

Some twenty years later, Georg Kreisel made a similar point in terms of formal systems 

rather than Turing machines: 

[I]t has been clear since Gödel’s discovery of the incompleteness of formal 

systems that we could not have mathematical evidence for the adequacy of any 

formal system; but this does not refute the possibility that some quite specific 

system … encompasses all possibilities of (correct) mathematical reasoning …  

In fact the possibility is to be considered that we have some kind of 

nonmathematical evidence for the adequacy of such [a system].  (Kreisel 1972, p. 

322) [Italics mine] 



I shall call the genuine possibility entertained by Gödel and Kreisel, the mechanist’s 

empirical defense (or escape hatch) against claims to have proved that mind exceeds 

mechanism on the basis of the incompleteness theorems, that is that FMT I is wrong.   

6. Lucas on minds and machines. The first outright such claim was made by the Oxford 

philosopher J. R. Lucas in his  article, ‘Minds, machines and Gödel’ (Lucas 1961): 

“Gödel's theorem seems to me to prove that Mechanism is false, that is, that minds cannot 

be explained as machines” (p. 112).  His argument is to suppose that there is a candidate 

machine M (called by him a “cybernetical machine”) that enumerates exactly the 

mathematical sentences that can be established to be true by the human mind, hence 

exactly what can be proved in a formal system for humanly provable truths.  Assuming 

that,  

[we] now construct a Gödelian formula [the sentence G described in sec. 3 above] 

in this formal system. This formula cannot be proved-in-the-system. Therefore the 

machine cannot produce the corresponding formula as being true. But we can see 

that the Gödelian formula is true: any rational being could follow Gödel's 

argument, and convince himself that the Gödelian formula, although unprovable-

in-the-system, was nonetheless…true. … This shows that a machine cannot be a 

complete and adequate model of the mind. It cannot do everything that a mind can 

do, since however much it can do, there is always something which it cannot do, 

and a mind can. … therefore we cannot hope ever to produce a machine that will 

be able to do all that a mind can do: we can never not even in principle, have a 

mechanical model of the mind. (Lucas 1961, p. 115) [Italics Lucas’s]  

Paul Benacerraf and Hilary Putnam soon objected to Lucas’ argument on the grounds that 

he was assuming it is known that one’s mind is consistent, since Gödel’s theorem only 

applies to consistent formal systems.  But Lucas had already addressed this as follows: 

… a mind, if it were really a machine, could not reach the conclusion that it was a 

consistent one. [But] for a mind which is not a machine no such conclusion 

follows. … It therefore seems to me both proper and reasonable for a mind to 

assert its own consistency: proper, because although machines, as we might have 



expected, are unable to reflect fully on their own performance and powers, yet to 

be able to be self-conscious in this way is just what we expect of minds: and 

reasonable, for the reasons given. Not only can we fairly say simply that we know 

we are consistent, apart from our mistakes, but we must in any case assume that 

we are, if thought is to be possible at all; … and finally we can, in a sense, decide 

to be consistent, in the sense that we can resolve not to tolerate inconsistencies in 

our thinking and speaking, and to eliminate them, if ever they should appear, by 

withdrawing and cancelling one limb of the contradiction. (ibid., p. 124) [Italics 

Lucas’s] 

In this last, there is a whiff of the assertion of human free will. Lucas is more explicit 

about the connection in the conclusion to his essay:  

If the proof of the falsity of mechanism is valid, it is of the greatest consequence 

for the whole of philosophy. Since the time of Newton, the bogey of mechanist 

determinism has obsessed philosophers. If we were to be scientific, it seemed that 

we must look on human beings as determined automata, and not as autonomous 

moral agents … But now, though many arguments against human freedom still 

remain, the argument from mechanism, perhaps the most compelling argument of 

them all, has lost its power. No longer on this count will it be incumbent on the 

natural philosopher to deny freedom in the name of science: no longer will the 

moralist feel the urge to abolish knowledge to make room for faith. We can even 

begin to see how there could be room for morality, without its being necessary to 

abolish or even to circumscribe the province of science. Our argument has set no 

limits to scientific enquiry: it will still be possible to investigate the working of 

the brain. It will still be possible to produce mechanical models of the mind. Only, 

now we can see that no mechanical model will be completely adequate, nor any 

explanations in purely mechanist terms. We can produce models and 

explanations, and they will be illuminating: but, however far they go, there will 

always remain more to be said. There is no arbitrary bound to scientific enquiry: 

but no scientific enquiry can ever exhaust the infinite variety of the human mind. 

(ibid., p. 127) 



According to Lucas, then, FMT I is in principle false, though there can be scientific 

evidence for the mechanical workings of the mind to some extent or other insofar as 

mathematics is concerned.  What his arguments do not countenance is the possibility of 

obtaining fully convincing empirical support for the mechanist thesis, namely that 

eventually all evidence points to mind being mechanical though we cannot ever hope to 

supply a complete perfect description of a formal system which accounts for its 

workings.5 Moreover, such a putative system need not necessarily be consistent. Without 

such a perfect description for a consistent system as a model of the mind, the argument 

for Gödel’s theorem cannot apply. Lucas, in response to such a suggestion has tried to 

shift the burden to the mechanist: “The consistency of the machine is established not by 

the mathematical ability of the mind, but on the word of the mechanist” (Lucas 1996), a 

burden that the mechanist can refuse to shoulder by simply citing this empirical defense.  

Finally, the compatibility of FMT I with a non-mechanistic account for thought in general 

would still leave an enormous amount of room for morality and the exercise of free will.   

Despite such criticisms, Lucas has stoutly defended to the present day his case against the 

mechanist on Gödelian grounds.  One can find on his home page6 most of his published 

rejoinders to various of these as well as further useful references to the debate.  The 

above quotations do not by any means exhaust the claims and arguments in his 

thoroughly thought out discussions.  

7. Critiques of Gödelian arguments against mechanism. 7 Roger Penrose is another 

well-known defender of the Gödelian basis for anti-mechanism, most notably in his two 

books, The Emperor’s New Mind (1989), and Shadows of the Mind (1994).  Sensitive to 

the objections to Lucas, he claimed in the latter only to have proved something more 

modest (and in accord with experience) from the incompleteness theorems: “Human 

mathematicians are not using a knowably sound algorithm in order to ascertain 

                                                
5 That would be analogous to obtaining fully convincing empirical support for the thesis 
that the workings of, say, the human auditory and visual systems are fully explicable in 
neurological and physical terms, though one will never be able to produce a complete 
perfect description of how those operate. I presume that we are in fact in such a position. 
6 http://users.ox.ac.uk/~jrlucas/  
7 This section is drawn directly from (Feferman 2009).   



mathematical truth.” (Penrose 1994, p. 76).  But later in that work he came up with a new 

argument purported to show that the human mathematician can’t even consistently 

believe that his mathematical thought is circumscribed by a mechanical algorithm 

(Penrose 1994, secs. 3.16 and 3.23).  Extensive critiques have been made of Penrose’s 

original and new arguments in an issue of the journal PSYCHE (1996), to which he 

responded in the same issue.  And more recently, Stewart Shapiro (2003) and Per 

Lindström (2001, 2006) have carefully analyzed and critiqued his “new argument.”  But 

Penrose has continued to defend it, as he did in his public lecture for the Gödel Centenary 

Conference held in Vienna in April 2006.   

Historically, there are many examples of mathematical proofs of what can’t be done in 

mathematics by specific procedures, e.g. the squaring of the circle, or the solution by 

radicals of the quintic, or the solvability of the halting problem.  But it is hubris to think 

that by mathematics alone we can determine what the mathematician can or cannot do in 

general.  The claims by Gödel, Lucas and Penrose to do just that from the incompleteness 

theorems depend on making highly idealized assumptions both about the nature of mind 

and the nature of machines.  A very useful critical examination of these claims and the 

underlying assumptions has been made by Shapiro in his article, ‘Incompleteness, 

mechanism and optimism’ (1998), among which are the following.  First of all, how are 

we to understand the mathematizing capacity of the human mind, since what is at issue is 

the producibility of an infinite set of propositions?  No one mathematician, whose life is 

finitely limited, can produce such a list, so either what one is talking about is what the 

individual mathematician could do in principle, or we are talking in some sense about the 

potentialities of the pooled efforts of the community of mathematicians now or ever to 

exist.  But even that must be regarded as a matter of what can be done in principle, since 

it is most likely that the human race will eventually be wiped out either by natural causes 

or through its own self-destructive tendencies by the time the sun ceases to support life 

on earth.  

What about the assumption that the human mind is consistent?  In practice, 

mathematicians certainly make errors and thence arrive at false conclusions that in some 

cases go long undetected. Penrose, among others, has pointed out that when errors are 



detected, mathematicians seek out their source and correct them (cf. Penrose 1996, pp. 

137 ff), and so he has argued that it is reasonable to ascribe self-correctability and hence 

consistency to our idealized mathematician.  But even if such a one can correct all his 

errors, can he know with mathematical certitude, as required for Gödel’s claim, that he is 

consistent?  

As Shapiro points out, the relation of both of these idealizations to practice is analogous 

to the competence/performance distinction in linguistics.   

There are two further points of idealization to be added to those considered by Shapiro.  

The first of these is the assumption that the notions and statements of mathematics are 

fully and faithfully expressible in a formal language, so that what can be humanly proved 

can be compared with what can be the output of a machine.  In this respect it is usually 

pointed out that the only part of the assumption that needs be made is that the notions and 

statements of elementary number theory are fully and faithfully represented in the 

language of first-order arithmetic, and that among those only simply universal 

(“diophantine”) statements need be considered,  since that is the arithmetized form of the 

consistency statements for formal systems. But even this idealization requires that 

statements of unlimited size must be accessible to human comprehension.   

Finally to be questioned is the identification of the notion of finite machine with that of 

Turing machine.  Turing’s widely accepted explication of the informal concept of 

effective computability puts no restriction on time or space that might be required to 

carry out computations.  But the point of that idealization was to give the strongest 

negative results, to show that certain kinds of problems can’t be decided by a computing 

machine, no matter how much time and space we allow.  And so if we carry the Turing 

analysis over to the potentiality of mind in its mathematizing capacity, to say that mind 

infinitely surpasses any finite machine is to say something even stronger.  It would be 

truly impressive if that could be definitively established, but none of the arguments that 

have been offered are resistant to the mechanist’s empirical defense.  Moreover, suppose 

that the mechanist is right, and that in some reasonable sense mind is equivalent to a 

finite machine; is it appropriate to formulate that in terms of the identification of what is 

humanly provable with what can be enumerated by a Turing machine?  Isn’t the 



mechanist aiming at something stronger in the opposite direction, namely an explanation 

of the mechanisms that govern the production of human proofs?   

8. Mechanism and partial freedom of the will.  This last point is where I think 

something new has to be said, something that I already drew attention to in (Feferman 

2006, 2009). Namely, there is an equivocation involved, that lies in identifying how the 

mathematical mind works with the totality of what it can prove.  Again, the difference is 

analogous to what is met in the study of natural language, where we are concerned with 

the way in which linguistically correct utterances are generated and not with the potential 

totality of all such utterances.  That would seem to suggest that if one is to consider any 

idealized formulation of the mechanist’s position at all in logical terms, it ought to be of 

the mind as one constrained by the axioms and rules of some effectively presented formal 

system.  Since in following those axioms and rules one has choices to be made at each 

step, at best that identifies the mathematizing mind with the program for a non-

deterministic Turing machine, and not with the set of its enumerable statements (even 

though that can equally well be supplied by a deterministic Turing machine).8 One could 

no more disprove this modified version of the idealized mechanist’s thesis than the 

version considered by Gödel, et al., simply by applying the mechanist’s empiricist 

argument.  Nevertheless, it is difficult to conceive of any formal system of the sort with 

which we are familiar, from Peano Arithmetic (PA) up to Zermelo-Fraenkel Set Theory 

(ZF) and beyond, actually underlying mathematical thought as it is experienced. 

As I see it, a principal reason for the  implausibility of this modified version of the 

mechanist’s thesis lies in the concept of a formal system S that is currently taken for 

granted in logical work.  An essential part of that concept is that the language L of S is 

fixed once and for all.  For example, the language of PA is determined (in one version) 

by taking the basic symbols to be those for equality, zero, successor, addition and 

multiplication and that of ZF is fixed by taking its basic symbols to be those for equality 

and membership. This forces axiom schemata that may be used in such systems, such as 

for mathematical induction in arithmetic and separation in set theory, to be infinite 
                                                
8 Lucas (1961, pp. 113-114), recognized the equivalence of non-deterministic and 
deterministic Turing machines with respect to the set of theorems proved by each.   



bundles of all possible substitution instances by formulas from that language; this makes 

metamathematical but not mathematical sense.  Besides that, the restriction of 

mathematical discourse to a language fixed in advance, even if only implicitly, is 

completely foreign to mathematical practice.   

In recent years I have undertaken the development of a modified conception of formal 

system that does justice to the openness of practice and yet gives it an underlying rule-

governed logical-axiomatic structure; it thus suggests a way, admittedly rather 

speculative, of straddling the Gödelian dichotomy.  This is in terms of a notion of open-

ended schematic axiomatic system, i.e. one whose schemata are finitely specified by 

means of propositional and predicate variables (thus putting the ‘form’ back into ‘formal 

systems’) while the language of such a system is considered to be open-ended, in the 

sense that its basic vocabulary may be expanded to any wider conceptual context in 

which its notions and axioms may be appropriately applied.  In other words, on this 

approach, implicit in the acceptance of given schemata is the acceptance of any 

meaningful substitution instances that one may come to meet, but which those instances 

are is not determined by restriction to a specific language fixed in advance (cf. Feferman 

1996 and 2006a, and Feferman and Strahm 2000).  The idea is familiar from logic with 

such basic principles as “P & Q implies P” and rules such as, “from P and P implies Q, 

infer Q”, for arbitrary propositions P and Q.  But it is directly extended to the principle of 

mathematical induction for any property P (“if P(1) and for all n, P(n) implies P(n+1), 

then for all positive integers n, P(n)”), and Zermelo’s separation axiom for any property P 

(“if a is any set then there is a set b such that for all x, x is a member of  b if and only if x 

is a member of  a and P(x) holds”).  All of these may be considered (and are actually 

employed) without restriction to any specific language fixed in advance. 

This leads me to suggest the following revision of FMT I: 

The Formalist-Mechanist Thesis II. Insofar as human mathematical thought is 

concerned, mind is mechanical in that it is completely constrained by some open-ended 

schematic formal system.   



If the concepts of mathematics turned out to be limited to those that can be expressed in 

one basic formal language L, the two theses would be equivalent.  So the point of this 

second thesis is that the conceptual vocabulary of mathematics is not necessarily limited 

in that way, but that mathematics is otherwise constrained once and for all by the claimed 

finite number of open-ended schematic principles and rules. The idea is spelled out in the 

final section of (Feferman 2009), to which the reader is referred given the limitations of 

space here.  But I will repeat some of the arguments as to why the language of 

mathematics should be considered to be open-ended, i.e. not restricted to one language L 

once and for all.   

Consider, to the contrary, the claim by many that all mathematical concepts are definable 

in the language of axiomatic set theory.  It is indeed the case that the current concepts of 

working (“pure”) mathematicians are with few exceptions all expressible in set theory.  

But there are genuine outliers.  For example a natural and to all appearances coherent 

mathematical notion whose full use is not set-theoretically definable is that of a category; 

only so-called “small” categories can be directly treated in that way (cf. Mac Lane 1971 

and Feferman 1977 and 2006b).  Other outliers are to be found on the constructive fringe 

of mathematics in the schools of Brouwerian intuitionism and Bishop’s constructivism 

(cf. Beeson 1985) whose basic notions and principles are not directly accounted for in set 

theory with its essential use of classical logic.  And it may be argued that there are 

informal mathematical concepts like those of knots, or infinitesimal displacements on a 

smooth surface, or of random variables, to name just a few, which may be the subject of 

convincing mathematical reasoning but that are accounted for in set theory only by some 

substitute notions that share the main expected properties but are not explications in the 

ordinary sense of the word.  Moreover, the idea that set-theoretical concepts and 

questions like Cantor’s continuum problem have determinate mathematical meaning has 

been challenged on philosophical grounds (Feferman 2000).  Finally, there is a theoretical 

argument for openness, even if one accepts the language L of set theory as a 

determinately meaningful one.  Namely, by Tarski’s theorem, the notion of truth TL for L 

is not definable in L; and then the notion of truth for the language obtained by adjoining 

TL to L is not definable in that language, and so on (even into the transfinite).   



Another argument that may be made against the restriction of mathematics to a language 

fixed in advance is historical.  Simply witness the progressive amplification of the body 

of mathematical concepts since the emergence of abstract mathematics in Greek times. It 

would be hubris to suppose that that process will ever be brought to completion. But 

having generally granted that certain open-ended schematic principles and rules 

completely govern all logical thinking, it is not hubris to grant the there are some finitely 

many open-ended schematic principles and rules that completely constrain all 

mathematical thinking now and ever to come, no matter what new concepts and 

specifically associated principles one comes to accept. Of course, by the mechanist’s 

empiricist argument one could no more disprove this version FMT II of the mechanist’s 

thesis than the version FMT I considered by Gödel, Lucas, Penrose, et al.9  

That mathematics is constrained by its modes of reasoning in some way or other accords 

with ordinary experience; that and much work in the formalization of mathematical 

thought is what gives plausibility to the FMT II thesis.  That the practice of mathematics 

provides extraordinary scope for the exercise of creative free will is also a feature of 

everyday experience.  But that that free will may only be partial in the sense of FMT II 

need be no more surprising than that the human exercise of free will as applied to bodily 

actions is constrained by the laws of natural science.   I am taking all this in a prima facie 

sense.  Lacking any sort of convincing argument for genuine free will, what is at issue 

here is whether the laws of nature or thought as we know them leave open the possibility 

of making real choices at each step in our physical and intellectual lives, in particular in 

                                                
9 Another kind of suggested combination of openness with mechanism that could evade 
the arguments from Gödel’s theorems has recently been brought to my attention by 
Martin Solomon: “[I]f we treat mechanical theorem recognizers as open systems, 
continually interacting with their environment, they may enjoy increases in power 
(possibly through ‘random inspirations’ from this environment) which could occur in a 
‘surprising’, i.e. non-computable manner.” (Lyngzeidetson and Solomon (1994), p. 552)  
The idea is that these systems respond to varying input data that may be non-computable 
in a completely computable way in order to generate mathematical theorems.  However, 
no criterion could be built into such a system to insure that only true statements are 
proved.  My open-ended schematic formal systems are also not immune to that problem 
if faulty concepts are adopted. For example, the concept of “feasibly computable 
number” leads to the conclusion that all numbers are feasible by applying the induction 
scheme.   



the case of mathematical thought, new choices as to the concepts with which mathematics 

may deal.     

On the other hand, one may well ask to what extent FMT II fits with a mechanistic view 

of the human mind as a whole.10 Indeed, one ought to pose that of the stronger thesis 

FMT I as well, even though Gödel, Lucas and Penrose all considered that a proof of its 

falsity would amount to a rejection of mechanism, at least in the mental realm. There are 

actually two competing mechanistic theories of the mind in current cognitive science, the 

digital computational model identified with such figures as Alan Turing and John von 

Neumann, and the connectionist computational model exemplified by the work of John 

McClelland and David Rumelhart; see (Harnish 2002) for an excellent historical 

introduction to and expository survey of these two approaches.  It is only the digital 

computational conception that is the target of the anti-mechanists who argue from 

Gödel’s incompleteness theorems. Though FMT I is a consequence of that viewpoint, the 

converse does not hold since FMT I only concerns the mathematizing capacities of the 

human mind.  Despite the empirical defence in possible support of it, the evidence for 

FMT I in mathematical practice is actually practically nil.  Nevertheless, what has been at 

issue here is whether it can be disproved on the basis of Gödel’s theorems, and I have 

argued along with others that it cannot.  If that is granted, it is theoretically possible that 

FMT I holds without that making the case for the digital computational model of the 

mind as a whole.  FMT II is even farther from that point of view but it seems to me to be 

similar enough to FMT I to warrant being called a Formalist-Mechanist Thesis.  Speaking 

for myself, I believe something like FMT II is true but do not subscribe to any 

mechanistic conception of the mind as a whole.   

Stanford University 
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