Systems of explicit mathematics with non-constructive μ-operator. Part I

Solomon Fcferman*
Departments of Mathematics and Philosophy, Stanford University, Stanford, CA 94305, USA

Gerhard Jäger

Institut für Informatik und angewandte Mathematik, Universität Rern, Iänggassstrasse 5I, CH-3012 Bern, Switzerland

Communicated by D. van Dalen
Received 6 April 1992
Revised 2 June 1993

Abstract

Feferman, S. and G. Jäger, Systems of explicit mathematics with non-constructive μ-operator. Part I, Annals of Pure and Applied Logic 65 (1993) 243-263.

This paper is mainly concerned with the proof-theoretic analysis of systems of explicit mathematics with a non-constructive minimum operator. We start off from a basic theory BON of operators and numbers and add some principles of set and formula induction on the natural numbers as well as axioms for μ. The principal results then state: (i) $B O N(\mu)$ plus set induction is proof-theoretically equivalent to Peano arithmetic $P A$; (ii) $B O N(\mu)$ plus formula induction is proof-theoretically equivalent to the system $\left(\Pi_{\infty}^{0} C A\right)_{<\epsilon_{0}}$ of second-order arithmetic.

1. Introduction

Systems of explicit mathematics were introduced in Feferman [4]; these provide axiomatic theories of operations and classes for the abstract development and proof-theoretic analysis of a variety of constructive and semi-constructive approaches to mathematics. In particular, two such systems T_{1} and T_{1} were introduced there, related roughly to constructive and predicative mathematics, respectively. T_{1} is obtained from T_{0} by adding a single axiom for the nonconstructive but predicatively acceptable quantification operator e_{N} over the

Correspondence to: S. Feferman, Departments of Mathematics and Philosophy, Stanford University, Stanford, CA 94305, USA. Email: sf@csli.stanford.edu.

* Research supported by a grant from the National Science Foundation, USA.
natural numbers. However, since T_{1} (like T_{0}) contains an axiom $I G$ for a general impredicative inductive generation operator, it actually goes far beyond the limits of predicativity as measured by the Feferman-Schütte ordinal Γ_{0}.

Much precise proof-theoretic information was subsequently obtained about T_{0} and various of its subsystems; cf. Feferman [7], the two chapters of Feferman and Sieg in [2], Jäger and Pohlers [16] and Jäger [14]. Corresponding work on subsystems of T_{1} has been slower to be achieved. The first was for a theory $V T(\mu)$ of variable types with non-constructive μ-operator (interdefinable with e_{N}) in Feferman [5], which may be considered to be a subtheory of T_{1} without the J (join) and $I G$ axioms. A proof was sketched there of the proof-theoretic equivalence of $V T(\mu)$ with $\left(\Pi_{\infty}^{0}-C A\right)_{<\varepsilon_{0}}$ (corresponding to ramified or predicative analysis up to level ε_{0}), and of the equivalence of a subsystem $\operatorname{Res}-V T(\mu)$ with Peano arithmetic PA, where in $\operatorname{Res}-V T(\mu)$, induction is restricted to (abstractly) decidable sets. Improved versions of these systems with corresponding results due to the present authors were stated in Feferman [9], but without proofs.

The purpose of this paper is to present full proofs of these results, in two parts. In this first part we deal only with theories of operations and numbers which may contain the μ-operator. Then, in Part II, we shall consider the effect of adding class axioms. Essential use will be made in this part of proof-theoretic results by Jäger [15] on certain formal theories of ordinals over PA.

2. The basic theory $\boldsymbol{B O N}$ of operations and numbers

A useful fragment of T_{0} with axioms for (partial) operations and (natural) numbers was isolated by Beeson [1] under the name elementary theory of operations and numbers (EON). In order to examine the effect of various induction principles we shall have to work here over a still weaker fragment, BON, which we call the basic theory of operations and numbers.

The language L_{p} of the basic theory of partial operations and numbers is a first-order language with the individual variables $a, b, c, v, w, x, y, z, f, g$, h, \ldots (possibly with subscripts). In addition there are individual constants and relation symbols, to be specified. The individual constants include the symbols 0 , $\mathbf{k}, \mathbf{s}, \mathbf{p}, \mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{s}_{N}, \mathbf{p}_{N}, \mathbf{d}_{N}, \mathbf{r}_{N}$ and μ, the meaning of which will be explained later. The basic relation symbols are $\downarrow,=$ and N. The principal term formation operation is term application which we write as $(s \cdot t)$ or often just as (st) or $s t$. In this simplified form we adopt the convention of association to the left so that $s_{1} s_{2} \cdots s_{n}$ stands for $\left(\cdots\left(s_{1} \cdot s_{2}\right) \cdots s_{n}\right)$. We also use the notation $s\left[t_{1}, \ldots, t_{n}\right]$ for $s t_{1} \cdots t_{n}$.

The individual terms ($r, s, t, r_{1}, s_{1}, t_{1}, \ldots$) of L_{ρ} are generated as follows:

1. Each individual variable is an individual term.
2. Each individual constant is an individual term.
3. If s and t are individual terms, then so also is $(s \cdot t)$.

The atomic formulas of L_{p} are those of the form $t \downarrow,(s=t)$ and $N(t)$; if R is an additional n-ary relation symbol in an expansion of the language L_{p}, then $R\left(t_{1}, \ldots, t_{n}\right)$ is also considered as an atomic formula. In the following we will make use of the logic of partial terms. Then $t \downarrow$ is read ' t is defined' or 't has a value'.

The formulas ($\varphi, \chi, \psi, \varphi_{1}, \chi_{1}, \psi_{1}, \ldots$) of L_{p} are generated as follows ${ }^{1}$:

1. Each atomic formula is a formula.
2. If φ and ψ are formulas, then so also are $\neg \varphi$ and $(\varphi \vee \psi)$.
3. If φ is a formula, then so also is $(\exists x) \varphi$.

The underlying logic of $B O N$ is the classical first-order predicate calculus. Thus the remaining logical operations are defined by

$$
\begin{aligned}
& (\varphi \wedge \psi):=\neg(\neg \varphi \vee \neg \psi), \quad(\varphi \rightarrow \psi):=(\neg \varphi \vee \psi), \\
& (\varphi \leftrightarrow \psi):=(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi) \quad \text { and } \quad(\forall x) \varphi:=\neg(\exists x) \neg \varphi .
\end{aligned}
$$

The partial equality relation \simeq is introduced by

$$
(s \simeq t):=((s \downarrow \vee t \downarrow) \rightarrow(s=t))
$$

and $(s \neq t)$ is written for $(s \downarrow \wedge t \downarrow \wedge \neg(s=t))$. Further we put $t^{\prime}:=\mathbf{s}_{N} t$ and $1:=0^{\prime}$. As additional abbreviations in connection with the relation symbol N for the natural numbers we will use:

$$
\begin{aligned}
t \in N & :=N(t), \\
(\exists x \in N) \varphi & :=(\exists x)(x \in N \wedge \varphi), \\
(\forall x \in N) \varphi & :=(\forall x)(x \in N \rightarrow \varphi), \\
(t: N \rightarrow N) & :=(\forall x \in N)(t x \in N), \\
\left(t: N^{m+1} \rightarrow N\right) & :=(\forall x \in N)\left(t x: N^{m} \rightarrow N\right), \\
(t:(N \rightarrow N) \rightarrow N) & :=(\forall x)((x: N \rightarrow N) \rightarrow t x \in N) .
\end{aligned}
$$

The logic of $B O N$ is the (classical) logic of partial terms due to Beeson [1]. It corresponds to the E^{+}-logic with equality and strictness of Troelstra and van Dalen [20], where $E(t)$ is written instead of $t \downarrow$. The non-logical axioms of BON can be divided into the following five groups:

I. Partial combinatory algebra

(1) $\mathbf{k} x y=x$,
(2) $\mathbf{s} x y \downarrow \wedge \mathbf{s} x y z \approx x z(y z)$,
(3) $\mathbf{k} \neq \mathbf{s}$.

II. Pairing and projection

(4) $\mathbf{p} x y \downarrow \wedge \mathbf{p}_{0}(\mathbf{p} x y)=x \wedge \mathbf{p}_{1}(\mathbf{p} x y)=y$,
(5) $\mathbf{p} x y \neq 0$.

[^0]
III. Natural numbers

(6) $0 \in N \wedge(\forall x \in N)\left(x^{\prime} \in N\right)$,
(7) $(\forall x \in N)\left(x^{\prime} \neq 0 \wedge \mathbf{p}_{N}\left(x^{\prime}\right)=x\right)$,
(8) $(\forall x \in N)\left(x \neq 0 \rightarrow \mathbf{p}_{N} x \in N \wedge\left(\mathbf{p}_{N} x\right)^{\prime}=x\right)$.
IV. Definition by cases on N
(9) $v \in N \wedge w \in N \wedge v=w \rightarrow \mathbf{d}_{N} v w x y=x$,
(10) $v \in N \wedge w \in N \wedge v \neq w \rightarrow \mathbf{d}_{N} v w x y=y$.

V. Primitive recursion on N

(11) $(f: N \rightarrow N) \wedge\left(g: N^{3} \rightarrow N\right) \rightarrow\left(\mathbf{r}_{N} f g: N^{2} \rightarrow N\right)$,
(12) $(f: N \rightarrow N) \wedge\left(g: N^{3} \rightarrow N\right) \wedge x \in N \wedge y \in N \wedge h=\mathbf{r}_{N} f g$ $\rightarrow h x 0=f x \wedge h x\left(y^{\prime}\right)=\operatorname{gxy}(h x y)$.
\mathbf{k} and \mathbf{s} are the partial versions of the well-known combinators of Curry's combinatory logic. \mathbf{p} provides an injective pairing of the universe with the inverse functions \boldsymbol{p}_{0} and $\boldsymbol{p}_{1} \cdot \mathbf{s}_{N}$ represents the successor function on the natural numbers and \mathbf{p}_{N} the predecessor function. \mathbf{d}_{N} gives definition by integer cases; the original versions of T_{0} and T_{1} used \mathbf{d}_{V}, definition by cases on the universe. However, \mathbf{d}_{N} suffices for most applications. \mathbf{r}_{N} acts as a recursion operator which guarantees closure under primitive recursion. It is an immediate consequence of the work in $[4,1]$ that the following two theorems can be proved in $B O N$, using only the partial combinatory axioms (1)-(3).

Theorem 1 (λ abstraction). For each variable x and individual term tof L_{ρ} we can construct an individual term $\lambda x . t$ of L_{p} whose free variables are those of t, excluding x, so that

$$
B O N \vdash \lambda x . t \downarrow \wedge(\lambda x . t) x \simeq t .
$$

Theorem 2 (Recursion theorem). There exists an individual term $\mathbf{r}_{\mathrm{rcc}}$ of L_{p} so that

$$
B O N \vdash \mathbf{r}_{\mathrm{rcc}} x \downarrow \wedge\left(y=\mathbf{r}_{\mathrm{rec}} x \rightarrow(\forall z)(y z \simeq x y z)\right) .
$$

3. Set and formula induction

In the following we extend the basic theory $B O N$ by complete induction on the natural numbers. We introduce two principles of increasing strength: an axiom of set induction and a schema of formula induction (full induction).

With each individual a we associate as its extension the collection of x such that $a x=0 ; a x$ may be defined for other x, but not necessarily all x. In this way, a is regarded as a semi-decidable set, or simply a semiset. By a decidable set is meant
an a such that for all $x, a x=0 \vee a x=1$, and by a decidable subset of N is meant an a such that for all $x \in N, a x=0 \vee a x=1$. In accordance with these ideas we introduce the following definitions:

$$
\begin{aligned}
& b \in a:=(a b=0), \\
& a \in P(N):=(\forall x \in N)(a x=0 \vee a x=1) .
\end{aligned}
$$

Observe, however, that the symbols ' ϵ ' and ' $P(N)$ '- as well as the earlier introduced ϵ - do not belong to the language L_{p}; they are introduced as abbreviations only to increase readability. The main principles of complete induction on the natural numbers are the following.

Set induction on $N\left(\operatorname{Set-IND} D_{N}\right)$

$$
a \in P(N) \wedge 0 \epsilon a \wedge(\forall x \in N)\left(x \in a \rightarrow x^{\prime} \in a\right) \rightarrow(\forall x \in N)(x \in a)
$$

Formula induction on $N\left(F m l a-I N D_{N}\right)$

$$
\varphi(0) \wedge(\forall x \in N)\left(\varphi(x) \rightarrow \varphi\left(x^{\prime}\right)\right) \rightarrow(\forall x \in N) \varphi(x)
$$

for all formulas φ of L_{p}. Obviously (Set-IND D_{N}) can be regarded as special cases of (Fmla-IND D_{N}) where $\varphi(x)$ is the formula ($x \in a$). Adding these induction principles to the theory $B O N$ yields the following new theories

$$
B O N+\left(S e t-I N D_{N}\right) \text { and } B O N+\left(F m l a-I N D_{N}\right)
$$

If ($F m l a-I N D_{N}$) is assumed, we can derive axioms (11) and (12) by Theorem 2, using a suitable definition of \mathbf{r}_{N} in terms of $\mathbf{r}_{\mathrm{rcc}}$; however, (Set-IND$D_{N}$) is not sufficient for this. The theory $E O N$ is $B O N$ minus axioms (11) and (12) plus ($F m l a-I N D_{N}$) so that $E O N$ is equivalent to $B O N+\left(F m l a-I N D_{N}\right)$. It is known from Beeson [1] that $E O N$ is proof-theoretically equivalent to Peano arithmetic $P A$; it also follows with techniques known from other work in the literature (e.g. Feferman [11]) that $B O N+\left(\operatorname{Set}-I N D_{N}\right)$ is proof-theoretically equivalent to primitive recursive arithmetic $P R A$. For the sake of completeness, both those results will be given again below.
There are also interesting forms of so-called semiset induction on N, i.e., induction on the natural numbers for objects which are not assumed to be total on N. Semiset induction follows from formula induction and comprises set induction, hence is in strength between $\left(\operatorname{Set}-I N D_{N}\right)$ and (Fmla-IND D_{N}). However, in this paper we will not study this intermediate form of induction.

4. The non-constructive minimum operator

For the development of classical mathematics within the framework of operations and numbers one often needs stronger operation existence axioms.

This section presents one method of achieving this goal: the non-constructive unbounded minimum operator μ. This is a functional on ($N \rightarrow N$) which assigns to each f with $(f: N \rightarrow N)$ an $x \in N$ with $f x=0$, if there is any such x, and 0 otherwise. It thus satisfies the following axioms.

Axioms of the unbounded minimum operator

$(\mu .1) \quad(\mu:(N \rightarrow N) \rightarrow N)$,

$$
(f: N \rightarrow N) \wedge(\exists x \in N)(f x=0) \rightarrow f(\mu f)=0
$$

These are sufficient for our purposes. Note that we then have:

$$
f \in P(N) \rightarrow[(\exists x \in N)(x \in f) \leftrightarrow \mu f \in f] .
$$

We shall write $\operatorname{BON}(\mu)$ for $B O N+(\mu .1, \mu .2)$. The main results of this paper establish the proof-theoretic strength of this system with (Set-IND D_{N}), respectively (Fmla-IND ${ }_{N}$) respectively as:

$$
\begin{aligned}
B O N(\mu)+\left(\text { Set-IND } D_{N}\right) & \equiv P A, \\
B O N(\mu)+(\text { Fmla-INDD }) & \equiv\left(\Pi_{x}^{0}-C A\right)_{<\varepsilon_{0}},
\end{aligned}
$$

where \equiv means proof-theoretic equivalence as it is usually defined, for example in Feferman [10]. These results are established in Sections 6-8 below.

5. The proof-theoretic strength of BON with set and with formula induction

In this section we determine the proof-theoretic strength of $B O N$ with set and formula induction on N (but without μ) and show, in particular, that the theory $B O N+\left(S e t-I N D_{N}\right)$ is proof-theoretically equivalent to $P R A$, and that $B O N+$ (Fmla-IND D_{N}) is proof-theoretically equivalent to $P A$.

Let L_{2} be the usual second-order language of arithmetic with number variables $v, w, x, y, z, f, g, \ldots$, set variables X, Y, Z, \ldots (both possibly with subscripts), the constant 0 , as well as function and relation symbols for all primitive recursive functions and relations. The number terms ($r, s, t, r_{1}, s_{1}, t_{1}, \ldots$) of L_{2} are as usual. An L_{2} formula is called arithmetic if it contains no bound set variables, though it may contain free set variables; the class of all arithmetic L_{2} formulas is denoted by Π_{∞}^{0}. L_{2} sentences are L_{2} formulas without free variables.

The first-order sublanguage of L_{2} which is built up without referring to set variables will be denoted by L_{1} in the following. Hence every L_{1} formula is arithmetic. A Σ_{1}^{0} formula is an L_{1} formula of the form $(\exists x) \varphi$ with φ quantifier-free.

In the following we use standard notation of first- and second-order arithmetic: $\langle\cdots\rangle$ is a standard primitive recursive function for forming n-tuples $\left\langle t_{1}, \ldots, t_{n}\right\rangle$; Seq is the primitive recursive set of sequence numbers; $\operatorname{lh}(t)$ denotes the length of
(the sequence coded by) $t ;(t)_{i}$ is the i th component of (the sequence coded by) t if $i<\operatorname{lh}(t)$, i.e., $t=\left\langle(t)_{0}, \ldots,(t)_{\ln (t)-1}\right\rangle$ if t is a sequence number; $s \in(X)_{t}$ stands for $\langle s, t\rangle \in X$.

Peano arithmetic $P A$ is formulated in L_{1} and given by the axioms for 0 , successor and the defining axioms for all primitive recursive functions and relations together with all instances of complete induction on the natural numbers
$\left(L_{1}-I N D_{N}\right) \quad \varphi(0) \wedge(\forall x)\left(\varphi(x) \rightarrow \varphi\left(x^{\prime}\right)\right) \rightarrow(\forall x) \varphi(x)$
where $\varphi(x)$ is any L_{1} formula. Primitive recursive arithmetic $P R A$ is the subsystem of $P A$ which is obtained by restricting the scheme of complete induction $\left(L_{1}-I N D_{N}\right)$ to the quantifier-free formulas of L_{1}. In general, if \mathscr{C} is a class of L_{2} formulas, then we write $\left(\mathscr{C}-I N D_{N}\right)$ for the restriction of $\left(L_{1}-I N D_{N}\right)$ to \mathscr{C}. As known from the work of Parsons [17], PRA is equivalent to the subsystem of $P A$ based on ($\Sigma_{1}^{0}-I N D_{N}$), and also to the quantifier-free system with a rule of induction.

5.1 Lower bounds

The lower bounds for the proof-theoretic strength of BON plus (Set-IND D_{N}), resp. ($F m l a-I N D_{N}$) and the same with the non-constructive μ-operator will be established by translating suitable systems of first- and second-order arithmetic into these theories. The basic idea is that the number variables of L_{2} are interpreted as ranging over N and the set variables as ranging over $P(N)$. Accordingly, an atomic formula of the form ($x \in Y$) is translated into $y x=0$ where x and y are the variables of L_{p} which are associated to the variables x and Y of L_{2}, respectively.

Using the recursion operator \mathbf{r}_{N}, each primitive recursive function on the natural numbers can be represented in $B O N$ by an individual term of L_{p} and its recursion equation can be proved there. Then every L_{2} formula $\varphi(\boldsymbol{X}, \boldsymbol{y})$ is translated into a formula $\varphi^{N}(\boldsymbol{x}, \boldsymbol{y})$ of the language L_{p} in a natural way. This translation is such that

$$
\begin{aligned}
((\exists z) \varphi(\boldsymbol{X}, \boldsymbol{y}, z))^{N} & =(\exists z \in N) \varphi^{N}(\boldsymbol{x}, \boldsymbol{y}, z), \\
((\exists Z) \varphi(\boldsymbol{X}, Z, \boldsymbol{y}))^{N} & =(\exists z \in P(N)) \varphi^{N}(\boldsymbol{x}, z, \boldsymbol{y})
\end{aligned}
$$

and similarly for the universal quantifiers. To keep the notation as simple as possible we use the same expressions for the individual terms of L_{1} and their translation into L_{p}, and identify L_{2} formulas with their translations into L_{p}, when there is no confusion. Moreover, as is straightforward to check, every quantifierfree formula of L_{2} can be represented by an individual term of L_{p}, in the following sense:

Lemma 3. For every quantifier-free formula $\varphi(\boldsymbol{X}, \boldsymbol{y})$ of L_{2} with at most $\boldsymbol{X}, \boldsymbol{y}$ free there exists an individual term t of L_{p} so that

1. $B O N \vdash(\forall x \in P(N))(\forall y \in N)(t[x, y]=0 \vee t[x, y]=1)$,
2. BONト $+(\forall x \in P(N))(\forall y \in N)\left(\varphi^{N}(x, y) \leftrightarrow t[x, y]=0\right)$.

As a consequence of this lemma we obtain that (the translation of) complete induction for quantifier-free formulas in PRA follows from (Set-IND D_{N}) in the theory BON $+\left(\right.$ Set-IND $\left.D_{N}\right)$. Therefore PRA is contained in BON $+\left(\operatorname{Set}-I N D_{N}\right)$ and $P A$ in $B O N+\left(F m l a-I N D_{N}\right)$.

Theorem 4. We have for every L_{1} sentence φ :

1. $P R A+\varphi \Rightarrow B O N+\left(\operatorname{Set}-I N D_{N}\right)+\varphi^{N}$,
2. $P A \vdash \varphi \Rightarrow B O N+\left(F m l a-I N D_{N}\right)+\varphi^{N}$.

5.2. Upper bounds

Upper bounds for BON $+\left(\operatorname{Set}-I N D_{n}\right), B O N+\left(F m l a-I N D_{N}\right)$ and the corresponding versions with the unbounded μ-operator are obtained by interpreting them into appropriate systems of first-order arithmetic. The main step in each case is to find a suitable formula $\operatorname{App}(x, y, z)$ which translates the L_{p} formula $x y \simeq z$.

Any such formula leads to a translation of L_{p} as follows: Assume that L is a first-order language which contains L_{1}; in addition assume that $\operatorname{App}(x, y, z)$ is an L formula and I a mapping which assigns a numeral $I(t)$ to each constant t of L_{p}. Then let $*$ be the pair (App,I) and define an interpretation of L_{p} into L depending on $*$, by the following conditions 1-7.

The * translation of an individual term t of I_{p} is an L_{1} formula $\mathscr{T}_{t}^{*}(x)$ which is inductively defined as follows (where x does not occur in t).

1. If t is an individual variable, then $\mathscr{T}_{t}^{*}(x)$ is $(t=x)$.
2. If t is an individual constant, then $\mathscr{T}_{t}^{*}(x)$ is $(I(t)=x)$.
3. If t is the individual term ($r s$), then

$$
\mathscr{T}_{t}^{*}(x):=\left(\exists z_{1}\right)\left(\exists z_{2}\right)\left(\mathscr{T}_{r}^{*}\left(z_{1}\right) \wedge \mathscr{T}_{s}^{*}\left(z_{2}\right) \wedge \operatorname{App}\left(z_{1}, z_{2}, x\right)\right) .
$$

The $*$ translation φ^{*} of an L_{p} formula φ is then inductively defined as follows.
4. First, for atomic formulas of L_{p}, we put

$$
\begin{aligned}
(t \downarrow)^{*}: & =(\exists x) \mathscr{T}_{i}^{*}(x), \\
(s=t)^{*} & :=(\exists x)\left(\mathscr{T}_{s}^{*}(x) \wedge \mathscr{T}_{i}^{*}(x)\right), \\
N(t)^{*}: & =(\exists x) \mathscr{T}_{t}^{*}(x), \\
R\left(t_{1}, \ldots, t_{n}\right)^{*}: & =\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\bigwedge_{i=1}^{n} \mathscr{T}_{t i}^{*}\left(x_{i}\right) \wedge R\left(x_{1}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

if R is an n-ary relation symbol of L_{ρ}.
5. If φ is the formula $\neg \psi$, then φ^{*} is $\neg\left(\psi^{*}\right)$.
6. If φ is the formula $(\psi \vee \chi)$, then φ^{*} is $\left(\psi^{*} \vee \chi^{*}\right)$.
7. If φ is the formula ($\exists x) \psi$, then φ^{*} is $(\exists x)\left(\psi^{*}\right)$

The treatment of BON $+\left(\right.$ Set-IND $\left.D_{N}\right)$ and $B O N+\left(F m l a-I N D_{N}\right)$ is now straightforward: We interpret L_{p} into L_{1} and handle the application operation of L_{p} in the sense of ordinary recursion theory by taking

$$
\operatorname{App}(x, y, z):=\{x\}(y) \simeq z
$$

where $\{n\}$ for $n=0,1,2, \ldots$ is a standard enumeration of the partial recursive functions and \simeq is the recursion-theoretic partial equality. In this case $\mathscr{T}_{t}^{*}(x)$ is (equivalent to) a Σ_{1}^{0} formula for all L_{p} terms t. It is now an easy exercise in formalized recursion theory to show that there exist translations $I(t)$ of the L_{p} constants t so that

$$
P R A+\left(\Sigma_{1}^{0}-I N D_{N}\right) \vdash \varphi^{*}
$$

for each axiom φ of $B O N$. Since (Set-IND D_{N}) in the language L_{p} translates into ($\Sigma_{1}^{0}-I N D_{N}$) in the language L_{1}, we obtain the following theorem. Together with Parsons' result mentioned earlier and Theorem 4 it establishes the proof-theoretic equivalences stated in the corollary below.

Theorem 5. We have for every L_{p} formula φ :

1. $B O N+\left(\operatorname{Set}-I N D_{N}\right) \vdash \varphi \Rightarrow P R A+\left(\Sigma_{1}^{0}-I N D_{N}\right) \vdash \varphi^{*}$,
2. $B O N+\left(F m l a-I N D_{N}\right) \vdash \varphi \Rightarrow P A \vdash \varphi^{*}$.

Corollary 6. We have:

1. $B O N+\left(\right.$ Set-IND $\left.D_{N}\right) \equiv P R A$,
2. $B O N+\left(F m l a-I N D_{N}\right) \equiv P A$.

6. Lower bounds for the proof-theoretic strength of $\operatorname{BON}(\mu)$ with set and with formula induction

The rest of this paper is devoted to the proof-theoretic analysis of $\operatorname{BON}(\mu)$ with set and with formula induction on the natural numbers. We begin these investigations by determining the lower bounds for both theories in this section.

6.1. Lower bounds for $\operatorname{BON}(\mu)+\left(\right.$ Set-IND $\left.D_{N}\right)$

The lower bound for the theory $\operatorname{BON}(\mu)+\left(\operatorname{Set}-I N D_{N}\right)$ can be established directly by applying the unbounded minimum operator μ in order to eliminate the (number) quantifiers of arithmetic L_{2} formulas. Using Lemma 3 and induction on the length of arithmetic formulas one then easily verifies the following.

Lemma 7. For every arithmetic formula $\varphi(\boldsymbol{X}, \boldsymbol{y})$ of L_{2} with at most $\boldsymbol{X}, \boldsymbol{y}$ free there exists an individual term t of L_{p} so that

1. $\operatorname{BON}(\mu) \vdash(\forall \boldsymbol{x} \in P(N))(\forall \boldsymbol{y} \in N)(t[\boldsymbol{x}, \boldsymbol{y}]=0 \vee t[\boldsymbol{x}, \boldsymbol{y}]=1)$,
2. $\operatorname{BON}(\mu)+(\forall \boldsymbol{x} \in P(N))(\forall \boldsymbol{y} \in N)\left(\varphi^{N}(\boldsymbol{x}, \boldsymbol{y}) \leftrightarrow t[\boldsymbol{x}, \boldsymbol{y}]=0\right)$.

This lemma implies that (the translation of) complete induction for arbitrary L_{1} formulas can be derived from (Set-IND D_{N}) in the theory $B O N(\mu)+($ Set $\left.I N D_{N}\right)$. Hence PA may be regarded as a subtheory of $B O N(\mu)+\left(\operatorname{Set}-I N D_{N}\right)$.

Theorem 8. We have for every L_{1} sentence φ :

$$
P A \vdash \varphi \Rightarrow B O N(\mu)+\left(S e t-I N D_{N}\right) \vdash \varphi^{N} .
$$

6.2. Lower bounds for $\operatorname{BON}(\mu)+\left(F m l a-I N D_{N}\right)$

This part shows that the second-order theory $\left(\Pi_{\infty}^{0}-C A\right)_{<\varepsilon_{1}}$ can be embedded into $B O N(\mu)+\left(\right.$ Fmla-IND $\left.D_{N}\right)$; this takes a bit more work, though of a relatively familiar kind. Let $<$ be a standard primitive recursive well-ordering of order type ε_{0}. The idea is to define an operation h such that for each $\alpha<\varepsilon_{0}$ and for each n of order type α, provably in $B O N(\mu)+\left(\right.$ Fmla-IND $\left.D_{N}\right)$ we have that $h n$ represents H_{α} in the hyperarithmetic (iterated jump) hierarchy. Moreover, we can relativize this to any initial set.
Let us first recall the theory $\left(\Pi_{x}^{0}-C A\right)_{<\varepsilon_{0}}$ of the arithmetic comprehension axiom iterated through each ordinal less than ε_{0}; more on systems of this kind can be found, for example, in Feferman [3] and Friedman [12]. By arithmetic comprehension one means the axiom scheme
$\left(\Pi_{\infty}^{0}-C A\right) \quad(\exists X)(\forall x)(x \in X \leftrightarrow \varphi(x))$
for all arithmetic L_{2} formulas φ. This is well known to be equivalent to the scheme ($\Pi_{1}^{0}-C A$) which restricts comprehension to formulas φ in Π_{1}^{0} form. If $<$ is a primitive recursive well-ordering and $R_{<}$the corresponding relation symbol, then we write $(x<y)$ for $R_{<}(x, y),(\exists x<y) \varphi(x)$ for $(\exists x)(x<y \wedge \varphi(x))$ and $(\forall x<y) \varphi(x)$ for $(\forall x)(x<y \rightarrow \varphi(x))$. The principle of transfinite induction for an L_{2} formula $\varphi(x)$ along $<$ is expressed by the formula $T I(<, \varphi)$ defined by

$$
T I(<, \varphi):=(\forall x)((\forall y<x) \varphi(y) \rightarrow \varphi(x)) \rightarrow(\forall x) \varphi(x) .
$$

In the following we assume that $<$ is a primitive recursive standard well-ordering of order type ε_{0} with least element 0 and field \mathbb{N}. If n is a natural number, then $<_{n}$ denotes the restriction of $<$ to the numbers $m<n$. For details about such primitive recursive standard well-orderings we refer to Girard [13], Schütte [18] or Takeuti [19].
Given an arithmetic L_{2} formula $\chi(X, y)$ with at most X, y free, an arbitrary set X of natural numbers and a natural number n, we define the χ-jump hierarchy along $<_{n}$ starting with X, by the following transfinite recursion

$$
\begin{aligned}
& (Y)_{0}:=X, \\
& (Y)_{i}:=\left\{\langle m, j\rangle: j<i \wedge \chi\left((Y)_{j}, m\right)\right\}
\end{aligned}
$$

for all $0<i<n$ and denote the arithmetic formula which formalizes this definition up to any given n by $\mathscr{H}_{x}(X, Y, n)$. If α is an ordinal less than ε_{0}, then we write
$\left(\Pi_{\infty}^{0}-C A\right)_{\alpha}$ for the second-order theory which consists of the axioms of $P A$ plus the additional axioms $T I\left(<_{n}, \varphi\right)$ for all L_{2} formulas φ and $(\forall X)(\exists Y) \mathscr{H}_{x}(X, Y, n)$ for all arithmetic formulas $\chi(X, y)$ with at most X, y free where the order type of $<_{n}$ is α. The union of all theories $\left(\Pi_{\alpha}^{0}-C A\right)_{\beta}$ with $\beta<\alpha$ is called $\left(\Pi_{\alpha}^{0}-C A\right)_{<\alpha}$.

The following theorem shows that there exists an L_{p} term h which represents the χ-jump hierarchy uniformly in the initial set parameter. The detailed proof of this theorem is given in the Appendix.

Theorem 9. Let $\chi(X, y)$ be an arithmetic L_{2} formula with at most X, y free and assume that n is an arbitrary natural number. Then there exists an L_{p} term h so that $\operatorname{BON}(\mu)+\left(\right.$ Fmla-IND $\left.D_{N}\right)$ proves:

1. $x \in P(N) \rightarrow h x \in P(N)$,
2. $x \in P(N) \rightarrow \mathscr{H}_{x}^{N}(x, h x, n)$.

It is an obvious conscquence of this theorem that the translations of the L_{2} formulas $(\forall X)(\exists Y) \mathscr{H}_{x}(X, Y, n)$ are provable in $\operatorname{BON}(\mu)+\left(F m l a-I N D_{N}\right)$ for all arithmetic L_{2} formulas $\chi(X, y)$ with at most X, y free and all natural numbers n. From standard proof theory it is also known ${ }^{2}$ that $P A$ proves $T I\left(<_{n}, \varphi\right)$ for all L_{1} formulas φ. Hence it is also clear that the translations of the formulas $T I\left(<_{n}, \varphi\right)$ are provable in the latter theory for all L_{2} formulas φ. Therefore $\operatorname{BON}(\mu)+$ (Fmla-IND ${ }_{N}$) contains $\left(\Pi_{\alpha}^{0}-C A\right)_{<\varepsilon_{1}}$.

Theorem 10. We have for every L_{2} sentence φ :

$$
\left(\Pi_{\infty}^{0}-C A\right)_{<\varepsilon_{0}} \vdash \varphi \Rightarrow \operatorname{BON}(\mu)+\left(\text { Fmla-IND } D_{N}\right) \vdash \varphi^{N} .
$$

7. Theories of ordinals over PA

The upper bounds for BON with set and with formula induction on the natural numbers were determined in Section 5 by making use of the recursion-theoretic model of BON. In contrast to that approach, more delicate considerations are needed to establish the upper bounds for the proof-theoretic strength of the corresponding theories with the unbounded minimum operator. In order to achieve this aim we introduce the fixed point theories with ordinals $P A_{\Omega}^{r}$ and $P A_{\Omega}^{w}$ whose proof-theoretic analysis has been carried through in Jäger [15].

Let P be a new n-ary relation symbol, i.e., a relation symbol which does not belong to the language L_{1}. Then $L_{1}(P)$ is the extension of L_{1} by P. An $L_{1}(P)$ formula is called P-positive if each occurrence of P in this formula is positive. We call P-positive formulas which contain at most \boldsymbol{x} free inductive operator forms, and let $A(P, \boldsymbol{x})$ range over such forms.

[^1]Now we extend L_{1} to a new first-order language L_{Ω} by adding a new sort of ordinal variables $\alpha, \beta, \gamma, \ldots$ (possibly with subscripts), a new binary relation symbol < for the less relation on the ordinals ${ }^{3}$ and an $(n+1)$-ary relation symbol P_{A} for each inductive operator form $A(P, x)$ for which P is n-ary.

The number terms of $L_{\Omega_{2}}$ are the number terms of L_{1}; the ordinal terms of L_{Ω} are the ordinal variables. The formulas ($\varphi, \psi, \chi, \theta, \varphi_{1}, \psi_{1}, \chi_{1}, \theta_{1}, \ldots$) of L_{Ω} are inductively generated as follows:

1. If R is an n-ary relation symbol of L_{1}, then $R\left(s_{1}, \ldots, s_{n}\right)$ is an (atomic) formula of L_{Ω}.
2. $(\alpha<\beta),(\alpha=\beta)$ and $P_{A}(\alpha, s)$ are (atomic) formulas of L_{Ω}. We write $P_{A}^{\alpha}(s)$ for $P_{A}(\alpha, s)$.
3. If φ and ψ are formulas of L_{Ω}, then $\neg \varphi$ and $\varphi \vee \psi$ are formulas of L_{Ω}.
4. If φ is a formula of L_{Ω}, then $(\exists x) \varphi$ and $(\forall x) \varphi$ are formulas of L_{Ω}.
5. If φ is a formula of L_{Ω}, then $(\exists \alpha) \varphi$ and $(\forall \alpha) \varphi$ are formulas of L_{Ω}.
6. If φ is a formula of L_{Ω}, then $(\exists \alpha<\beta) \varphi$ and $(\forall \alpha<\beta) \varphi$ are formulas of L_{Ω}.

Parentheses can be omitted if there is no danger of confusion. If $\varphi(P)$ is an $L_{1}(P)$ formula and $\psi(\boldsymbol{x})$ an L_{Ω} formula (where P is n-ary and $\boldsymbol{x}=x_{1}, \ldots, x_{n}$), then $\varphi(\psi)$ denotes the result of substituting $\psi(\boldsymbol{s})$ for every occurrence of $P(s)$ in $\varphi(P)$. For every L_{Ω} formula φ we write φ^{α} to denote the L_{Ω} formula which is obtained by replacing all unbounded quantifiers ($Q \beta$) in φ by $(Q \beta<\alpha)$. Additional abbreviations are:

$$
\begin{aligned}
P_{A}^{<\alpha}(s) & :=(\exists \beta<\alpha) P_{A}^{\beta}(s), \\
P_{A}(s) & :=(\exists \alpha) P_{A}^{\alpha}(s) .
\end{aligned}
$$

An L_{Ω} formula is called a Δ_{0}^{Ω} formula if all its ordinal quantifiers are bounded. It is called a Σ^{Ω} formula if all positive universal ordinal quantifiers and all negative existential ordinal quantifiers are bounded; correspondingly it is called a Π^{Ω} formula if all negative universal ordinal quantifiers and all positive existential ordinal quantifiers are bounded. See Jäger [15] for the precise definitions.

Now we introduce three L_{Ω} theories which differ in the strength of their induction principles. The weakest of those, $P A_{\Omega}^{r}$, is given by the following axioms.

Number-theoretic axioms. These comprise the axioms of Peano arithmetic PA with the exception of complete induction on the natural numbers.

Inductive operator axioms. For all inductive operator forms $A(P, x)$:

$$
P_{A}^{\alpha}(\boldsymbol{s}) \leftrightarrow A\left(P_{A}^{<\alpha}, \boldsymbol{s}\right) .
$$

[^2]Σ^{52} reflection axioms. For every $\Sigma^{\Omega 2}$ formula φ :
$\left(\Sigma^{\Omega}-\right.$ Ref $) \quad \varphi \rightarrow(\exists \alpha) \varphi^{\alpha}$.
Linearity of the relation $<$ on the ordinals:
(LO) $\quad \alpha \nless \alpha \wedge(\alpha<\beta \wedge \beta<\gamma \rightarrow \alpha<\gamma) \wedge(\alpha<\beta \vee \alpha=\beta \vee \beta<\alpha)$.
Δ_{0}^{Ω} induction on the natural numbers. For all Δ_{0}^{Ω} formulas $\varphi(x)$:
$\left(\Delta_{0}^{\Omega}-I N D_{N}\right) \quad \varphi(0) \wedge(\forall x)\left(\varphi(x) \rightarrow \varphi\left(x^{\prime}\right)\right) \rightarrow(\forall x) \varphi(x)$.
Δ_{0}^{Ω} induction on the ordinals. For all $\Delta_{0}^{\Omega 2}$ formulas $\varphi(\alpha)$:
$\left(\Delta_{0}^{\Omega}-I N D_{\Omega}\right) \quad(\forall \alpha)((\forall \beta<\alpha) \varphi(\beta) \rightarrow \varphi(\alpha)) \rightarrow(\forall \alpha) \varphi(\alpha)$.
$P A_{\Omega}^{w}$ is the extension of $P A_{\Omega}^{r}$ by the following scheme of complete induction on the natural numbers:
$\left(L_{\Omega^{-}}-I N D_{N}\right) \quad \varphi(0) \wedge(\forall x)\left(\varphi(x) \rightarrow \varphi\left(x^{\prime}\right)\right) \rightarrow(\forall x) \varphi(x)$
for all L_{Ω} formulas $\varphi(x) . P A_{\Omega}$ is the extension of $P A_{\Omega}^{w}$ by the following scheme of induction on the ordinals
$\left(L_{\Omega}-I N D_{\Omega}\right) \quad(\forall \alpha)((\forall \beta<\alpha) \varphi(\beta) \rightarrow \varphi(\alpha)) \rightarrow(\forall \alpha) \varphi(\alpha)$
for all $L_{s 2}$ formulas $\varphi(\alpha)$.
It follows from the P-positivity of the inductive operator forms $A(P, x)$ and the inductive operator axioms that the formulas $P_{A}^{\alpha}(x)$ are monotonic in their ordinal arguments.

Lemma 11. We have for all ordinal variables α, β and all number terms s :

$$
P A_{\Omega}^{r} \vdash \alpha<\beta \rightarrow\left(P_{A}^{\alpha}(s) \rightarrow P_{A}^{\beta}(s)\right) .
$$

Corresponding to the well-known result that every total recursively enumerable function is recursive, we have that every total Σ^{Ω} function is Δ_{0}^{Ω}. More precisely, in $P A_{\Omega}^{r}$ every total functional relation on the numbers which is defined by a Σ^{Ω} formula can already be defined by a Δ_{0}^{Ω} formula, in the following sense.

Lemma 12. We have for all $\Sigma^{s /}$ formulas $\varphi(x, y)$:

$$
P A_{\Omega}^{r} \vdash(\forall \boldsymbol{x})(\exists!y) \varphi(\boldsymbol{x}, y) \rightarrow(\exists \alpha)(\forall \boldsymbol{x})(\forall y)\left(\varphi(\boldsymbol{x}, y) \leftrightarrow \varphi^{\alpha}(\boldsymbol{x}, y)\right) .
$$

Proof. We work in $P A_{\Omega}^{r}$ and assume that $(\forall x)(\exists!y) \varphi(x, y)$. Hence by Σ^{Ω} reflection there exists an ordinal α so that $(\forall \boldsymbol{x})(\exists y) \varphi^{\alpha}(\boldsymbol{x}, y)$. Σ^{Ω} persistency is easily provable in $P A_{s}^{r}$, and so we also have

$$
(\forall \boldsymbol{x})(\forall y)\left(\varphi^{\alpha}(\boldsymbol{x}, \boldsymbol{y}) \rightarrow \varphi(\boldsymbol{x}, \boldsymbol{y})\right) .
$$

Hence we have for all \boldsymbol{s}, t that $\varphi(\boldsymbol{s}, t)$ if and only if $\varphi^{\alpha}(\boldsymbol{s}, t)$.

From the inductive operator and Σ^{Ω} reflection axioms we can easily deduce that the Σ^{Ω} formula $P_{A}(x)$ describes a fixed point of the inductive operator form $A(P, \boldsymbol{x})$. If ($\left.L_{\Omega}-I N D_{\Omega}\right)$ is available as well, then this fixed point can be proved to be the least L_{Ω} definable fixed point of $A(P, \boldsymbol{x})$. These constitute the following statement.

Theorem 13. We have for all inductive operator forms $A(P, \boldsymbol{x})$ of $L_{1}(P)$ and all formulas $\varphi(\boldsymbol{x})$ of L_{Ω} :

1. $P A_{\Omega}^{r} \vdash(\forall \boldsymbol{x})\left(P_{A}(\boldsymbol{x}) \leftrightarrow A\left(P_{A}, \boldsymbol{x}\right)\right)$,
2. $P A_{\Omega} \vdash(\forall \boldsymbol{x})(A(\varphi, \boldsymbol{x}) \rightarrow \varphi(\boldsymbol{x})) \rightarrow(\forall \boldsymbol{x})\left(P_{A}(\boldsymbol{x}) \rightarrow \varphi(\boldsymbol{x})\right)$.

This theorem suggests that there is a close relationship between the theory $P A_{\Omega}$ and the well-known theory $I D_{1}$ (cf. e.g. $[2,3]$) as well as between $P A_{\Omega}^{w}$ and the fixed point theory $\widehat{I D_{1}}$ of Feferman [8]. Both theories, $I D_{1}$ and $\widehat{I D_{1}}$, are formulated in the language $L_{1}(F P)$ which extends L_{1} by adding fixed point constants \mathscr{P}_{A} for all inductive operator forms $A(P, \boldsymbol{x})$, and there is a natural translation of $L_{1}(F P)$ into L_{Ω} : One only has to interpret the atomic formulas $\mathscr{P}_{A}(x)$ of $L_{1}(F P)$ by the Σ^{Ω} formulas $P_{A}(x)$ of $L_{\Omega_{2}}$. Hence complete induction on the natural numbers for L_{1} formulas is a consequence of $\left(\Delta_{0}^{\Omega}-I N D_{N}\right)$, whereas ($L_{s}-I N D_{N}$) is needed to prove the translations of complete induction on the natural numbers for $L_{1}(F P)$ formulas.

Obviously $P A_{\Omega}^{\prime}$ contains $P A$. Although the (translations of the) fixed point axioms of $\widehat{I D_{1}}$ are provable in $P A_{\Omega}^{r}$ according to the previous theorem, we need ($L_{s^{\prime}}-I N D_{N}$) for dealing with the scheme of complete induction which is available in $\widehat{I D}_{1}$ for all $L_{1}(F P)$ formulas. Hence $\widehat{I D}_{1}$ can be directly interpreted in $P A_{\Omega}^{w}$ but not in $P A_{\Omega \Omega}^{r}$. Finally we also obtain from Theorem 13 that $P A_{\Omega}$ contains $I D_{1}$. In addition to these remarks, the following results of Jäger [15] describe the exact proof-theoretic strength of $P A_{\Omega}, P A_{\Omega}^{\mu}$ and $P A_{\Omega}^{r}$.

Theorem 14. We have:

1. $P A_{\Omega}$ is a conservative extension of $I D_{1}$ with respect to all L_{1} formulas.
2. $P A_{\Omega}^{w}$ is a conservative extension of $\overparen{I D_{1}}$ with respect to all L_{1} formulas.
3. $P A_{\Omega}^{r}$ is a conservative extension of $P A$ with respect to all L_{1} formulas.

8. Upper bounds for the proof-theoretic strength of $B O N(\mu)$ with set and with formula induction

For the embedding of $\operatorname{BON}(\mu)+\left(\operatorname{Set}-I N D_{N}\right)$ and $\operatorname{BON}(\mu)+\left(F m l a-I N D_{N}\right)$ into $P A_{\Omega}^{r}$ and $P A_{\Omega}^{w}$, respectively, we interpret the application relation $x y \simeq z$ by means of a fixed point of a suitable inductive operator form to be introduced below. Special difficulties are caused by the recursion operator \mathbf{r}_{N}, and we turn to this problem first.

Let $\varphi(f, x, y)$ be an L_{Ω} formula with at most f, x, y free, and n a natural number greater 0 . Then we define L_{Ω} formulas $A p_{\varphi}^{n}\left(f, x_{1}, \ldots, x_{n}, y\right)$ by recursion on n and, from those, L_{Ω} formulas $\operatorname{Fun}_{\varphi}^{n}(f)$ and $U n_{\varphi}^{n}(f)$:

$$
\begin{aligned}
A p_{\varphi}^{1}\left(f, x_{1}, y\right) & :=\varphi\left(f, x_{1}, y\right), \\
A p_{\varphi}^{n+1}\left(f, x_{1}, \ldots, x_{n+1}, y\right) & :=(\exists z)\left(A p_{\varphi}^{n}\left(f, x_{1}, \ldots, x_{n}, z\right) \wedge \varphi\left(z, x_{n+1}, y\right)\right), \\
F u n_{\varphi}^{n}(f) & :=\left(\forall x_{1}, \ldots, x_{n}\right)(\exists!y) A p_{\varphi}^{n}\left(f, x_{1}, \ldots, x_{n}, y\right), \\
U n_{\varphi}^{n}(f) & :=(\forall \boldsymbol{x})(\forall y, z)\left(A p_{\varphi}^{n}(f, \boldsymbol{x}, y) \wedge A p_{\varphi}^{n}(f, \boldsymbol{x}, z) \rightarrow y=z\right) .
\end{aligned}
$$

Hence, if $\varphi(f, x, y)$ is used as an interpretation of the application relation $f x \approx y$ in L_{p}, then $A p_{\varphi}^{n}\left(f, x_{1}, \ldots, x_{n}, y\right)$ represents the L_{p} formula $f x_{1}, \ldots, x_{n}=y$. In this context Fun $_{\varphi}^{n}(f)$ expresses that f is (a code of) an n-ary total function in the sense of $\varphi ; U n_{\varphi}^{n}(f)$ says that f is (a code of) an n-ary partial function in the sense of φ. When it is clear by the number of the variables shown, we shall drop the superscript ' n ' in the above notations.

Remark 15. If $\varphi(f, x, y)$ is a Σ^{Ω} formula, then $A p_{\varphi}\left(f, x_{1}, \ldots, x_{n}, y\right)$ is a Σ^{Ω} formula for each $n \geqslant 1$.

If f is (a code of) a 1-ary function in the sense of φ and g (a code of) a 3-ary function in the sense of φ, then the formula $\operatorname{Rec} c_{\varphi}(f, g, x, y, z)$ below can be used to describe the graph of the function which is defined from f and g by primitive recursion in the sense of φ :

$$
\operatorname{Rec}_{\varphi}(f, g, x, y, z):=\left\{\begin{array}{l}
(\exists v)\left(\operatorname{Seq}(v) \wedge \operatorname{lh}(v)=y+1 \wedge \varphi\left(f, x,(v)_{0}\right) \wedge\right. \\
\left.(\forall w<y) A p_{\varphi}\left(g, x, w,(v)_{w},(v)_{w+1}\right) \wedge z=(v)_{y}\right) .
\end{array}\right.
$$

Remark 16. Let P be a 3-ary relation symbol. Then $\operatorname{Rec}_{P}(f, g, x, y, z)$ is a P-positive formula of the language $L_{1}(P)$.
$\operatorname{Rec}_{\varphi}(f, g, x, y, z)$ is the standard formula for primitive recursion from f and g where we use φ to interpret application. It will be important to know later that it has the properties in the following lemma. The first part of this is concerned with the uniqueness of the formula $\operatorname{Rec} c_{\varphi}(f, g, x, y, z)$ in its fifth argument and the second with its functionality. Sufficient conditions for uniqueness and functionality are given.

Lemma 17. 1. If $\varphi(x, y, z)$ is an L_{Ω} formula with at most x, y, z free, then $P A_{\Omega}^{r}$ proves

$$
U n_{\varphi}^{1}(f) \wedge U n_{\varphi}^{3}(g) \wedge \operatorname{Rec}_{\varphi}\left(f, g, x, y, z_{1}\right) \wedge \operatorname{Rec}_{\varphi}\left(f, g, x, y, z_{2}\right) \rightarrow z_{1}=z_{2} .
$$

2. If $\varphi(x, y, z)$ is a Σ^{Ω} formula with at most x, y, z free, then $P A_{\Omega}^{r}$ proves

$$
\operatorname{Fun}_{\varphi}^{1}(f) \wedge \operatorname{Fun}_{\varphi}^{3}(g) \rightarrow(\forall x)(\forall y)(\exists!z) \operatorname{Rec}_{\varphi}(f, g, x, y, z) .
$$

Proof. The first assertion follows from the uniqueness of f and g and the definition of $R e c_{\varphi}$ by an easy inductive argument. For the proof of the second we work in $P A_{\Omega}^{r}$, assume that $F u n_{\varphi}^{1}(f)$ and $F u n_{\varphi}^{3}(g)$ and choose an arbitrary x_{0}. Since $\varphi(x, y, z)$ is a Σ^{Ω} formula, $A p_{\varphi}\left(x, y_{1}, y_{2}, y_{3}, z\right)$ is a Σ^{Ω} formulas as well. Hence by Lemma 12 there exist Δ_{0}^{Ω} formulas $\psi(x, y, z)$ and $\chi\left(x, y_{1}, y_{2}, y_{3}, z\right)$ so that

$$
\begin{align*}
& \varphi(f, v, w) \leftrightarrow \psi(f, v, w) \tag{1}\\
& A p_{\varphi}\left(g, v_{1}, v_{2}, v_{2}, w\right) \leftrightarrow \chi\left(g, v_{1}, v_{2}, v_{3}, w\right) \tag{2}
\end{align*}
$$

for all $v, v_{1}, v_{2}, v_{3}, w$. Observe that ψ and χ may have an additional ordinal parameter. It follows that $\operatorname{Rec}\left(f, g, x_{0}, y, z\right)$ is equivalent for all y, z to the Δ_{0}^{Ω} formula $\theta(y, z)$,

$$
\theta(y, z):=\left\{\begin{array}{l}
(\exists v)\left(\operatorname{Seq}(v) \wedge \operatorname{lh}(v)=y+1 \wedge \psi\left(f, x_{0},(v)_{0}\right) \wedge\right. \tag{3}\\
\left.(\forall w<y) \chi\left(g, x_{0}, w,(v)_{w},(v)_{w+1}\right) \wedge z=(v)_{y}\right) .
\end{array}\right.
$$

Using Δ_{0}^{Ω} induction on the natural numbers, which is available in $P A_{\Omega}^{r}$, we obtain

$$
\begin{align*}
& (\forall y)(\exists z) \theta(y, z) \tag{4}\\
& \left(\forall y, z_{1}, z_{2}\right)\left(\theta\left(y, z_{1}\right) \wedge \theta\left(y, z_{2}\right) \rightarrow z_{1}=z_{2}\right) \tag{5}
\end{align*}
$$

as usual. This completes the proof of our assertion.
Next we turn to the representation of the application operation of L_{p} in L_{Ω}. This will be achieved by means of a fixed point of an inductive operator form $A(P, x, y, z)$. Specific such constructions are carried through, for example in Feferman [7, p. 200] and Beeson [1, p. 144]. First we choose pairwise different numerals $\hat{\mathbf{k}}, \hat{\mathbf{s}}, \hat{\mathbf{p}}, \hat{\mathbf{p}}_{0}, \hat{\mathbf{p}}_{1}, \hat{\mathbf{s}}_{N}, \hat{\mathbf{p}}_{N}, \hat{\mathbf{d}}_{N}, \hat{\mathbf{r}}_{N}$ and $\hat{\mu}$ (the values of) which do not belong to the set $\{0\} \cup\{x \in \mathbb{N}: \operatorname{Seq}(x)\}$; they will later act as codes of the corresponding constants of L_{p}. Besides that we define for all natural numbers n :

$$
\operatorname{Seq}_{n}(t):=\operatorname{Seq}(t) \wedge \operatorname{lh}(t)=n
$$

and assume that our coding of sequences is such that $\neg\left(\operatorname{Seq}_{m}(t) \wedge \operatorname{Seq}_{n}(t)\right)$ if $m \neq n$. We are going to code the L_{p} terms $\mathbf{k} x, \mathbf{s} x, \mathbf{s} x y, \mathbf{p} x, \ldots$ by the sequence numbers $\langle\hat{\mathbf{k}}, x\rangle,\langle\hat{\mathbf{s}}, x\rangle,\langle\hat{\mathbf{s}}, x, y\rangle,\langle\hat{\mathbf{p}}, x\rangle, \ldots$ of the corresponding form; for example, to satisfy $\mathbf{k} x y=x$ we interpret $\mathbf{k x}$ as $\langle\hat{\mathbf{k}}, x\rangle$ and then $\langle\hat{\mathbf{k}}, x\rangle y$ is taken to be x.

In detail, let P be a 3-ary relation symbol which does not belong to the language L_{1} and define $A(P, x, y, z)$ to be the disjunction of the following formulas (1)-(22):
(1) $x=\hat{\mathbf{k}} \wedge z=\langle\hat{\mathbf{k}}, y\rangle$,
(2) $\operatorname{Seq}_{2}(x) \wedge(x)_{0}=\hat{\mathbf{k}} \wedge(x)_{1}=z$,
(3) $x=\hat{\mathbf{s}} \wedge z=\langle\hat{\mathbf{s}}, y\rangle$,
(4) $\operatorname{Seq}_{2}(x) \wedge(x)_{0}=\hat{\mathbf{s}} \wedge z=\left\langle\hat{\mathbf{s}},(x)_{1}, y\right\rangle$,
(5) $\operatorname{Seq}_{3}(x) \wedge(x)_{0}=\hat{\mathbf{s}} \wedge(\exists v, w)\left(P\left((x)_{1}, y, v\right) \wedge P\left((x)_{2}, y, w\right) \wedge P(v, w, z)\right)$,
(6) $x=\hat{\mathbf{p}} \wedge z=\langle\hat{\mathbf{p}}, y\rangle$,
(7) $\operatorname{Seq}_{2}(x) \wedge(x)_{0}=\hat{\mathbf{p}} \wedge z=\left\langle(x)_{1}, y\right\rangle$,
(8) $x=\hat{\mathbf{p}}_{0} \wedge(\exists v)(y=\langle z, v\rangle)$,
(9) $x=\hat{\mathbf{p}}_{1} \wedge(\exists v)(y=\langle v, z\rangle)$,
(10) $x=\hat{\mathbf{s}}_{N} \wedge z=y+1$,
(11) $x=\hat{\mathbf{p}}_{N} \wedge y=z+1$,
(12) $x=\hat{\mathbf{d}}_{N} \wedge z=\left\langle\hat{\mathbf{d}}_{N}, y\right\rangle$,
(13) $\operatorname{Seq}_{2}(x) \wedge(x)_{0}=\hat{\mathbf{d}}_{N} \wedge z=\left\langle\hat{\mathbf{d}}_{N},(x)_{1}, y\right\rangle$,
(14) $\operatorname{Seq}_{3}(x) \wedge(x)_{0}=\hat{\mathbf{d}}_{N} \wedge z=\left\langle\hat{\mathbf{d}}_{N},(x)_{1},(x)_{2}, y\right\rangle$,
(15) $\operatorname{Seq}_{4}(x) \wedge(x)_{0}=\hat{\mathbf{d}}_{N} \wedge(x)_{1}=(x)_{2} \wedge z=(x)_{3}$,
(16) $\operatorname{Seq}_{4}(x) \wedge(x)_{0}=\hat{\mathbf{d}}_{N} \wedge(x)_{1} \neq(x)_{2} \wedge z=y$,
(17) $x=\hat{\mathbf{r}}_{N} \wedge z=\left\langle\hat{\mathbf{r}}_{N}, y\right\rangle$,
(18) $\operatorname{Seq}_{2}(x) \wedge(x)_{0}=\hat{\mathbf{r}}_{N} \wedge z=\left\langle\hat{\mathbf{r}}_{N},(x)_{1}, y\right\rangle$,
(19) $\operatorname{Seq}_{3}(x) \wedge(x)_{0}=\hat{\mathbf{r}}_{N} \wedge z=\left\langle\hat{\mathbf{r}}_{N},(x)_{1},(x)_{2}, y\right\rangle$,
(20) $\left.\operatorname{Seq}_{4}(x) \wedge(x)_{0}=\hat{\mathbf{r}}_{N} \wedge \operatorname{Rec}_{P}\left((x)_{1},(x)_{2},(x)_{3}, y, z\right)\right)$,
(21) $x=\hat{\mu} \wedge(\forall v)(\exists w)(w \neq 0 \wedge P(y, v, w)) \wedge z=0$,
(22) $x=\hat{\mu} \wedge P(y, z, 0) \wedge(\forall v)(v<z \rightarrow(\exists w)(w \neq 0 \wedge P(y, v, w)))$.

In view of Remark 16 we see immediately that $A(P, x, y, z)$ is a P-positive formula of $L_{1}(P)$, hence an inductive operator form. If we write $A_{i}(P, x, y, z)$ for the clause (i) of the definition of $A(P, x, y, z)$, then this operator form is deterministic in the following sense:

Remark 18. We have for all L_{Ω} formulas $\varphi(x, y, z)$ with at most x, y, z free and all $1 \leqslant i<j \leqslant 22$:

$$
P A_{\Omega}^{r} \vdash(\forall v) U n_{\varphi}^{1}(v) \rightarrow \neg\left(A_{i}(\varphi, x, y, z) \wedge A_{j}(\varphi, x, y, z)\right)
$$

Hence $A(\varphi, x, y, z)$ implies that exactly onc of its definition clauses (1)-(22) is satisfied if we have $(\forall v) U n_{\varphi}^{1}(v)$, i.e., if each v is a partial function in the sense of φ. This assumption is necessary in order to distinguish between clause (21) and clause (22). In the following we will often make use of the previous remark without explicitly mentioning it. The next results are concerned with properties of the formulas $P_{A}^{\alpha}(x)$ and $P_{A}(x)$ which are induced by the operator form $A(P, x, y, z)$.

Lemma 19. $P A_{\Omega}^{r}$ proves for variable α and all number terms r, s, t_{1}, t_{2} :

1. $P_{A}^{\alpha}\left(r, s, t_{1}\right) \wedge P_{A}^{\alpha}\left(r, s, t_{2}\right) \rightarrow t_{1}=t_{2}$,
2. $P_{A}\left(r, s, t_{1}\right) \wedge P_{A}\left(r, s, t_{2}\right) \rightarrow t_{1}=t_{2}$.

Proof. Let $\psi(\alpha)$ be the Δ_{0}^{Ω} formula $(\forall x) U n_{P \alpha}(x)$. Then our first assertion follows from $P A_{s}^{r} \vdash \psi(\alpha)$. To establish this we work in $P A_{\Omega}^{r}$ and prove $\psi(\alpha)$ by Δ_{0}^{Ω} induction on the ordinals. For this purpose assume that

$$
\begin{equation*}
P_{A}^{\alpha}(x, y, v) \wedge P_{A}^{\alpha}(x, y, w) \tag{1}
\end{equation*}
$$

for arbitrary x, y, v, w. We have to show that $v=w$. From the induction hypothesis and Lemma 11 we obtain that

$$
\begin{equation*}
(\forall x) U n_{P_{A} \alpha}(x), \tag{2}
\end{equation*}
$$

and the operator axioms yield

$$
\begin{equation*}
A\left(P_{A}^{<\alpha}, x, y, v\right) \wedge A\left(P_{A}^{<\alpha}, x, y, w\right) \tag{3}
\end{equation*}
$$

If there exist z_{1}, z_{2}, z_{3} so that $x=\left\langle\hat{\mathbf{r}}_{N}, z_{1}, z_{2}, z_{3}\right\rangle$, then $v=w$ follows from (3), (2) and the first part of Lemma 17. In all other cases we obtain $v=w$ either directly from (3) or from (3) and (2). This establishes the first assertion of the present lemma; in view of Lemma 11 the second assertion is an immediate consequence of the first.

Now we come back to the interpretation of the theories $\operatorname{BON}(\mu)+\left(\operatorname{Set}-I N D_{N}\right)$ and $B O N(\mu)+\left(F m l a-I N D_{N}\right)$ into $P A_{\Omega}^{r}$ and $P A_{\Omega}^{\omega}$, respectively. In order to represent the application operation of L_{ρ} in L_{Ω} we define

$$
A p p(x, y, z):=P_{A}(x, y, z)
$$

and take a translation I of the constants of L_{p} to numerals so that $I(0)=0$ and $I(t)=\hat{t}$ for all L_{p} constants different from 0 . Using $*=(A p p, I)$ we then define the translations $\mathscr{T}_{t}^{*}(x)$ of the L_{p} terms t and φ^{*} of the L_{p} formulas φ as in Subsection 5.2. It follows that $\mathscr{T}_{t}^{*}(x)$ is a Σ^{Ω} formula for every L_{p} term t so that all atomic formulas of L_{p} are translated into Σ^{Ω} formulas of L_{Ω}.

It is an easy exercise to check that the $*$ translation of all axioms of the logic of partial terms are provable in $P A_{s 2}^{r}$. The following lemma gives the same for all the mathematical axioms of $B O N(\mu)$.

Lemma 20. We have for every axiom φ of $\operatorname{BON}(\mu)$:

$$
P A_{\Omega}^{r} \vdash \varphi^{*} .
$$

Proof. Obviously the definition of $A(P, x, y, z)$ has been tailored so that this lemma goes through. It can be checked by straightforward but tedious calculations that φ^{*} can be proved in $P A_{\Omega}^{r}$ for each axiom φ of $\operatorname{BON}(\mu)$. In the case of the axioms about primitive recursion on N Lemma 17 gives the desired results.

The discussion of the induction principles of our theories of operations and numbers is still missing. As before, we distinguish between (Set-IND D_{N}) and (Fmla-IND D_{N}) and takes care of the former version of induction in $P A_{\Omega_{2}}^{r}$ whereas $P A_{s}^{w}$ provides the framework to handle the latter.

Lemma 21. The * translation of each instance of $\left(S e t-I N D_{N}\right)$ is provable in $P A_{\Omega}^{r}$; i.e., $P A_{\Omega}^{r}$ proves

$$
\left[a \in P(N) \wedge 0 \in a \wedge(\forall x \in N)\left(x \in a \rightarrow x^{\prime} \in a\right) \rightarrow(\forall x \in N)(x \in a)\right]^{*} .
$$

Proof. We work in $P A_{\Omega}^{r}$ and assume that the $*$ translations of $a \in P(N), 0 \epsilon a$ and $(\forall x \in N)\left(x \in a \rightarrow x^{\prime} \in a\right)$ are true. Then we have

$$
\begin{align*}
& (\forall x)(\exists!y) P_{A}(a, x, y), \tag{1}\\
& P_{A}(a, 0,0) \wedge(\forall x)\left(P_{A}(a, x, 0) \rightarrow P_{A}\left(a, x^{\prime}, 0\right)\right) \tag{2}
\end{align*}
$$

By Lemma 12 we obtain from (1) that there exists an ordinal α so that we have

$$
\begin{equation*}
P_{A}^{<\alpha}(a, 0,0) \wedge(\forall x)\left(P_{A}^{<\alpha}(a, x, 0) \rightarrow P_{A}^{<\alpha}\left(a, x^{\prime}, 0\right)\right) . \tag{3}
\end{equation*}
$$

By $\quad \Delta_{0}^{\Omega 2}$ induction on the natural numbers this gives $(\forall x)\left(P_{A}^{\alpha}(a, x, 0)\right)$, and we obtain $(\forall x \in N)(x \in a)^{*}$.

The treatment of (Fmla-IND D_{N}) in $P A_{\Omega}^{w}$ is much simpler, since the $*$ translation of cach instance of (Fmla-IND D_{N}) is an instance of $\left(L_{\Omega_{\Omega}} I N D_{N}\right)$ and thus an axiom of $P A_{\Omega}^{w}$.

Lemma 22. The * translation of each instance of (Fmla-IND D_{N}) is provable in PA A_{Ω}^{ω}; i.e., PA A_{Ω}^{w} proves

$$
\left[\varphi(0) \wedge(\forall x \in N)\left(\varphi(x) \rightarrow \varphi\left(x^{\prime}\right)\right) \rightarrow(\forall x \in N) \varphi(x)\right]^{*}
$$

for all formulas φ of L_{p}.
The reductions of $\operatorname{BON}(\mu)+\left(\operatorname{Set}-I N D_{N}\right)$ to $P A_{\Omega}^{\prime}$ and $\operatorname{BON}(\mu)+\left(F m l a-I N D_{N}\right)$ to $P A_{\Omega}^{w}$ are thus now established by combining Lemmas 20, 21 and 22.

Theorem 23. We have for every L_{p} formula φ :

1. $B O N(\mu)+\left(S e t-I N D_{N}\right) \vdash \varphi \Rightarrow P A_{\Omega}^{r} \vdash \varphi^{*}$,
2. $B O N(\mu)+\left(F m l a-I N D_{N}\right)+\varphi \Rightarrow P A_{\Omega}^{*}+\varphi^{*}$.

Now all results are available in order to present the proof-theoretic characterization of $B O N(\mu)$ plus set and formula induction. Besides the previous theorem we only need Theorems 8, 10 and 14 and the result due to Aczel (cf. [8]) concerning the strength of $\widehat{I D_{1}}$.

Corollary 24. We have:

1. $\operatorname{BON}(\mu)+\left(\operatorname{Set}-I N D_{N}\right) \equiv P A_{\Omega}^{r} \equiv P A$.
2. $B O N(\mu)+\left(F m l a-I N D_{N}\right) \equiv P A_{\Omega}^{w} \equiv \widehat{I D_{1}} \equiv\left(\Pi_{\infty}^{0}-C A\right)_{<\varepsilon_{1}}$.

Appendix

In this appendix we give a proof of Theorem 9. For this we take up the notations of Subsection 6.2 again and assume that $<$ is a primitive recursive standard well-ordering of order type ε_{0} with least element 0 and field \mathbb{N}, that n is
an arbitrary natural number and that $\chi(X, y)$ is an arithmetic formula with at most X, y free.
Remember that the χ-jump hicrarchy along $<_{n}$ starting with a set X of natural numbers, is defined by the following transfinite recursion:

$$
\begin{aligned}
& (Y)_{0}:=X, \\
& (Y)_{i}:=\left\{\langle m, j\rangle: j<i \wedge \chi\left((Y)_{j}, m\right)\right\}
\end{aligned}
$$

for all $0<i<n$. It is our aim to show that, provably in the theory $\operatorname{BON}(\mu)+$ (Fmla-IND D_{N}), there exists an L_{p} term f with the following property: If $x \in P(N)$ codes the set of natural numbers X and if $y \in N$, then $f x y$ codes the set Y_{y}.
To achieve this, we first observe that by Lemma 7 there exist L_{p} terms s and t so that $\operatorname{BON}(\mu)$ proves

$$
\begin{align*}
& (\forall x, y \in N)[s x y=0 \vee s x y=1], \tag{1}\\
& (\forall x, y \in N)\left[\left(x=\left\langle(x)_{0},(x)_{1}\right\rangle \wedge(x)_{1}<y\right) \leftrightarrow s x y=0\right], \tag{2}\\
& (\forall x \in P(N))(\forall y \in N)[t x y=0 \vee t x y=1], \tag{3}\\
& (\forall x \in P(N))(\forall y \in N)\left[\chi^{N}(x, y) \leftrightarrow t x y=0\right] . \tag{4}
\end{align*}
$$

Making use of these terms s and t we thus look for a term f which satisfies the following equation for all $x \in P(N)$ and $y, z \in N$:

$$
f x y z \simeq \begin{cases}x z, & \text { if } y=0 \\ t\left(f x(z)_{1}\right)(z)_{0}, & \text { if } s z y=0 \\ 1, & \text { otherwise }\end{cases}
$$

This equation may be considered as a definition of the codes $f x y$ with parameter x which is recursive in y. Such an L_{p} term f can be defined in $B O N(\mu)$ by means of the recursion theorem:

$$
f:=\lambda x \cdot \mathbf{r}_{\text {rec }}\left(\lambda g \cdot \lambda y \cdot \mathbf{d}_{N} y 0 x\left(\lambda z \cdot \mathbf{d}_{N}(s z y) 0\left(\lambda v \cdot\left(t\left(g(v)_{1}\right)(v)_{\theta}\right)\right)(\lambda v \cdot 1) z\right)\right)
$$

Then it is a matter of routine to check that the following properties of f can be proved in $B O N(\mu)$:

$$
\begin{align*}
& x \in P(N) \rightarrow f x 0=x, \tag{5}\\
& x \in P(N) \wedge y \in N \wedge z \in N \wedge s z y=0 \rightarrow f x y z \simeq t\left(f x(z)_{1}\right)(x)_{0}, \tag{6}\\
& x \in P(N) \wedge y \in N \wedge z \in N \wedge 0<y \wedge s z y=1 \rightarrow f x y z \simeq 1 . \tag{7}
\end{align*}
$$

It remains to show that the objects $f x y$ code scts of natural numbers, i.e., belong to $P(N)$, for all $x \in P(N)$ and y in the field of $<_{n}$. To this end let m be a successor of n in the well-ordering $<$. As the order type of $<_{m}$ is less than ε_{0}, we know from standard proof theory that

$$
\begin{equation*}
B O N(\mu)+\left(F m l a-I N D_{N}\right)+T I\left(<_{m}, \varphi\right) \tag{8}
\end{equation*}
$$

for all L_{p} formulas φ. By the properties of f mentioned above, we obtain therefore by straightforward induction along $<_{m}$ that $\operatorname{BON}(\mu)+\left(\right.$ Fmla-IND $\left.D_{n}\right)$ proves:

$$
\begin{equation*}
x \in P(N) \wedge y \in N \wedge y<m \rightarrow f x y \in P(N) \tag{9}
\end{equation*}
$$

From (2), (3) and (6) we can also conclude that $B O N(\mu)+\left(F m l a-I N D_{N}\right)$ proves for all $x \in P(N)$ and $y, z \in N$ with $0<y<m$ that

$$
\begin{equation*}
z \in f x y \leftrightarrow\left(z=\left\langle(z)_{0},(z)_{1}\right\rangle \wedge(z)_{1}<y \wedge \chi^{N}\left(f x(z)_{1},(z)_{0}\right)\right) \tag{10}
\end{equation*}
$$

If we now set $h:=\lambda x . f x n$, then it follows immediately from what has been shown above that h is an L_{p} term which satisfies Theorem 9. This finishes our proof.

References

[1] M.J. Beeson, Foundations of Constructive Mathematics (Springer, Berlin, 1985).
[2] W. Buchholz, S. Feferman, W. Pohlers and W. Sieg, Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretical Studies, Lecture Notes in Math. 897 (Springer, Berlin, 1981).
[3] S. Feferman, Formal theories for transfinite iterations of generalized inductive definitions and some subsystems of analysis, in: A. Kino, J. Myhill and R.E. Vesley, eds., Intuitionism and Proof Theory, Proceedings of the Summer Conference at Buffalo, New York, 1968 (NorthHolland, Amsterdam, 1970) 303-326.
[4] S. Feferman, A language and axioms for explicit mathematics, in: Algebra and Logic, Lecture Notes in Math. 450 (Springer, Berlin, 1975) $87-139$.
[5] S. Feferman, A theory of variable types, Revista Colombiana de Matemáticas 19 (1981) 95-105.
[6] S. Feferman, Theories of finite type related to mathematical practice, in: J. Barwise, ed., Handbook of Mathematical Logic (North-Holland, Amsterdam, 1977) 913-971.
[7] S. Feferman, Constructive theories of functions and classes, in: M. Boffa, D. van dalen and K. McAloon, eds., Logic Colloquium '78 (North-Holland, Amsterdam, 1979) 159-224.
[8] S. Feferman, Iterated inductive fixed-point theories: application to Hancock's conjecture, in: G. Metakides, ed., The Patras Symposion (North-Holland, Amsterdam, 1982) 171-196.
[9] S. Feferman, Weyl vindicated: "Das Kontinuum" 70 years later, in: Temi e prospettive della logic e della filosofia della scienza contemporanee (CLUEB, Bologna, 1988) 59-93.
[10] S. Feferman, Hilbert's program relativized: proof-theoretical and foundational studies, J. Symbolic Logic 53 (1988) 364-384.
[11] S. Feferman, Logics for termination and correctness of functional programs, in: Logic from Computer Science, MSRI Publ. 21 (Springer, New York, 1992) 95-127.
[12] H. Friedman, Iterated inductive definitions and $\Sigma_{2}^{1}-A C$, in: A. Kino, J. Myhill and R.E. Vesley, eds., Intuitionism and Proof Theory, Proceedings of the Summer Conference at Buffalo, New York, 1968 (North-Holland, Amsterdam, 1970) 435-442.
[13] J.-Y. Girard, Proof Thcory and Logical Complexity, Vol. I (Bibliopolis, Napoli, 1987).
[14] G. Jäger, A well-ordering proof for Feferman's theory T_{0}, Archiv. Math. Logik Grundl. 23 (1982) 65-77.
[15] G. Jäger, Fixed points in Peano arithmetic with ordinals, Ann. Pure Appl. Logic 60 (1993) 119-132.
[16] G. Jäger and W. Pohlers, Eine beweistheoretische Untersuchung von $\left(\Delta_{2}^{1}-C A\right)+(B I)$ und verwandter Systeme, Sitzungsberichte der Bayerischen Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Klasse (Verlag der Bayerischen Akademie der Wissenschaften, München, 1982) 1-28.
[17] C. Parsons, On a number-theoretic choice schema and its relation to induction, in: A. Kino, J. Myhill and R.E. Vesley, eds., Intuitionism and Proof Theory, Proceedings of the Summer Conference at Buffalo, New York, 1968 (North-Holland, Amsterdam, 1970) 459-473.
[18] K. Schütte, Proof Theory (Springer, Berlin, 1977).
[19] G. Takeuti, Proof Theory (North-Holland, Amsterdam, 1987, second edition).
[20] A.S. Troelstra and D. van Dalen, Constructivism in Mathematics, Vol. I (North-Holland, Amsterdam, 1988).

[^0]: ${ }^{1}$ In Part II of this paper, these will be called first-order formulas.

[^1]: ${ }^{2}$ Since $<$ is a well-ordering of order type ε_{0}, the order type of each segment $<_{n}$ is less than ε_{0}.

[^2]: ${ }^{3}$ It will always be clear from the context whether $<$ denotes the less relation on the nonnegative integers or on the ordinals.

