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Abstract 

Feferman, S. and G. JLger, Systems of explicit mathematics with non-constructive p-operator. 

Part I, Annals of Pure and Applied Logic 65 (1993) 243-263. 

This paper is mainly concerned with the proof-theoretic analysis of systems of explicit 

mathematics with a non-constructive minimum operator. We start off from a basic theory BON 
of operators and numbers and add some principles of set and formula induction on the natural 

numbers as well as axioms for p. The principal results then state: (i) BON(p) plus set induction 

is proof-theoretically equivalent to Peano arithmetic PA; (ii) BON(p) plus formula induction is 

proof-theoretically equivalent to the system (I7!!-CA),,,, of second-order arithmetic. 

1. Introduction 

Systems of explicit mathematics were introduced in Feferman [4]; these provide 

axiomatic theories of operations and classes for the abstract development and 

proof-theoretic analysis of a variety of constructive and semi-constructive 

approaches to mathematics. In particular, two such systems IT;, and T, were 

introduced there, related roughly to constructive and predicative mathematics, 

respectively. T, is obtained from 7;) by adding a single axiom for the non- 

constructive but predicatively acceptable quantification operator eN over the 
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natural numbers. However, since 7’, (like T;,) contains an axiom IG for a general 
impredicative inductive generation operator, it actually goes far beyond the limits 
of predicativity as measured by the Feferman-Schiitte ordinal c,. 

Much precise proof-theoretic information was subsequently obtained about 7;) 
and various of its subsystems; cf. Feferman [7], the two chapters of Feferman and 
Sieg in [2], Jager and Pohlers [16] and Jager [14]. Corresponding work on 
subsystems of T, has been slower to be achieved. The first was for a theory VT(p) 
of variable types with non-constructive ,n-operator (interdefinable with e,,,) in 
Feferman [5], which may be considered to be a subtheory of T, without the J 
(join) and 1G axioms. A proof was sketched there of the proof-theoretic 
equivalence of VT(p) with (n’;-CA),,, (corresponding to ramified or predicative 
analysis up to level E”), and of the equivalence of a subsystem Res-VT(p) with 
Peano arithmetic PA, where in Res-VT(p), induction is restricted to (abstractly) 
decidable sets. Improved versions of these systems with corresponding results 
due to the present authors were stated in Feferman [9], but without proofs. 

The purpose of this paper is to present full proofs of these results, in two parts. 
In this first part we deal only with theories of operations and numbers which may 
contain the ,u-operator. Then, in Part II, we shall consider the effect of adding 
class axioms. Essential use will be made in this part of proof-theoretic results by 
Jsger [15] on certain formal theories of ordinals over PA. 

2. The basic theory BON of operations and numbers 

A useful fragment of 7;, with axioms for (partial) operations and (natural) 
numbers was isolated by Beeson [l] under the name elementary theory of 
operations and numbers (EON). In order to examine the effect of various 
induction principles we shall have to work here over a still weaker fragment, 
BON, which we call the basic theory of operations and numbers. 

The language L,, of the basic theory of partial operations and numbers is a 
first-order language with the individual variables a, 6, c, v, w, x, y, z, f, g, 

h . . (possibly with subscripts). In addition there are individual constants and 
relation symbols, to be specified. The individual constants include the symbols 0, 
k, s, p, p,), p,, sN, pN, dN, rN and y, the meaning of which will be explained later. 
The basic relation symbols are 1, = and N. The principal term formation 
operation is term application which we write as (s . t) or often just as (st) or st. In 
this simplified form we adopt the convention of association to the left so that 
s,sz. * . s, stands for (a * -(s, . s& . . s,). We also use the notation s[t,, . . . , t,] for 
st, . . . t,. 

The individual terms (r, s, t, r,, s,, tI, . . .) of L,, are generated as follows: 
1. Each individual variable is an individual term. 
2. Each individual constant is an individual term. 
3. If s and t are individual terms, then so also is (s . t). 
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The atomic formulas of L, are those of the form ti, (s = t) and N(t); if R is an 
additional n-ary relation symbol in an expansion of the language L,, then 

R(r,, . . . , t,) is also considered as an atomic formula. In the following we will 
make use of the logic of partial terms. Then tl is read ‘t is defined’ or ‘t has a 
value’. 

The formulas (q,, x, I@, ql, x1, I/J,, . . .) of L, are generated as follows’: 
1. Each atomic formula is a formula. 
2. If cp and I/ are formulas, then so also are lq~ and (q v I#). 
3. If q is a formula, then so also is (3x) q. 
The underlying logic of BON is the classical first-order predicate calculus. Thus 

the remaining logical operations are defined by 

(q A V) :=+Q) v lV)> (V,-, V) :=(7J v t/J)> 

(~++~~):=(~+I/J)A(I/J+Q)) and (Vx)q:=~(3x)~q. 

The partial equality relation = is introduced by 

(S = t) := ((SJ v tJ)* (s = t)) 

and (S # t) is written for (sj, A tj, A l(s = t)). Further we put t’ := s,t and 1 := 0’. 
As additional abbreviations in connection with the relation symbol N for the 
natural numbers we will use: 

t E N : = N(t), 

(3x E N) Q, := (3x)(x E N A q), 

(VX E N) cp : = (VX)(X E N--+ q), 

(t : N-+ N) := (VX E N)(tx E N), 

(t: N”‘+’ +N):=(VxEN)(tx:Nm+N), 

(t:(N+N)-,N):=(Vx)((x:N-+N)+txEN). 

The logic of BON is the (classical) logic of partial terms due to Beeson [l]. It 
corresponds to the Ef-logic with equality and strictness of Troelstra and van 
Dalen [20], where E(t) is written instead of ti. The non-logical axioms of BON 
can be divided into the following five groups: 

I. Partial combinatory algebra 

(1) kuY =x, 
(2) =Yi A =YZ = =(YZ), 
(3) kfs. 

II. Pairing and projection 

(4) PXYJ "PdPxY)=X *Pl(PxY) =Y, 
(5) PXY +a 

' In Part II of this paper, these will be called first-order formulas. 
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III. Natural numbers 
(6) 0 EN A (VX E N)(x’ E N), 

(7) (vxEN)(x’#OApN(X’)=X), 

(8) (Vx E N)(x # o-+ p&c E N A (pf+x)’ = n) 

IV. Definition by cases on N 
(9) vENr\wENr\v=w~dNZIwxy=X, 

(10) vENr\wENr\vfw-,dh,vwxy=y. 

V. Primitive recursion on N 
(11) (f:N-+N)A(g:N3*N)+(rNfg:N2-+N), 

(12) (f:N*N) A (g:N3 -+N)AxENAYENA~=~,~~ 

+ hXO =fX A hX(y’) = gXy(hXy). 

k and s are the partial versions of the well-known combinators of Curry’s 

combinatory logic. p provides an injective pairing of the universe with the inverse 

functions p. and p,. sN represents the successor function on the natural numbers 

and pN the predecessor function. dN gives definition by integer cases; the original 

versions of 7;, and T, used dv, definition by cases on the universe. However, dN 

suffices for most applications. rN acts as a recursion operator which guarantees 

closure under primitive recursion. It is an immediate consequence of the work in 

(4, l] that the following two theorems can be proved in BON, using only the 

partial combinatory axioms (l)-(3). 

Theorem 1 (A abstraction). For each variable x and individual term t of Lp we can 

construct an individual term Ax.t of L, whose free variables are those of t, 
excluding x, so that 

BON k Ax. tl A (Ax. t)x = t. 

Theorem 2 (Recursion theorem). There exists an individual term rrec of L, so that 

BON t rrecxJ A (y = rrecx + (Vz)(yz 

3. Set and formula induction 

In the following we extend the basic theory BON by complete induction on the 

natural numbers. We introduce two principles of increasing strength: an axiom of 

set induction and a schema of formula induction (full induction). 

With each individual a we associate as its extension the collection of x such that 

ax = 0; ax may be defined for other X, but not necessarily all x. In this way, a is 

regarded as a semi-decidable set, or simply a semiset. By a decidable set is meant 
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an a such that for all X, ax = 0 v ax = 1, and by a decidable subset of N is meant 

an a such that for all x E N, ax = 0 v ax = 1. In accordance with these ideas we 

introduce the following definitions: 

bEa:=(ab=O), 

a E P(N) := (Vx E N)(ax = 0 v ax = 1). 

Observe, however, that the symbols ‘6’ and ‘P(N)‘- as well as the earlier 

introduced E -do not belong to the language L,; they are introduced as 

abbreviations only to increase readability. The main principles of complete 

induction on the natural numbers are the following. 

Set induction on N (Set-IND,) 

aEP(N)r\Oea~(VxEN)(xEa+x’ea)+(VxEN)(xea), 

Formula induction on N (Fmla-IND,) 

~(0) A (vx E N)(~p(x)+ v(x’))+ (Vx E N) q(x) 

for all formulas v, of L,. Obviously (Set-ZND,) can be regarded as special cases 

of (Fmla-ZNDN) where q(x) is the formula (x ~a). Adding these induction 

principles to the theory BON yields the following new theories 

BON + (Set-ZND,) and BON + (Fmla-IND,). 

If (Fmla-IND,) is assumed, we can derive axioms (11) and (12) by Theorem 2, 

using a suitable definition of r,,, in terms of rrcc; however, (Set-ZND,) is not 

sufficient for this. The theory EON is BON minus axioms (11) and (12) plus 

(Fmla-IND,) so that EON is equivalent to BON + (Fmla-IND,). It is known 

from Beeson [l] that EON is proof-theoretically equivalent to Peano arithmetic 

PA; it also follows with techniques known from other work in the literature (e.g. 

Feferman [ll]) that BON + (Set-IND,) is proof-theoretically equivalent to 

primitive recursive arithmetic PRA. For the sake of completeness, both those 

results will be given again below. 

There are also interesting forms of so-called semiset induction on N, i.e., 

induction on the natural numbers for objects which are not assumed to be total on 

N. Semiset induction follows from formula induction and comprises set induction, 

hence is in strength between (Set-ZND,) and (Fmla-ZND,). However, in this 

paper we will not study this intermediate form of induction. 

4. The non-constructive minimum operator 

For the development of classical mathematics within the framework of 

operations and numbers one often needs stronger operation existence axioms. 
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This section presents one method of achieving this goal: the non-construcrk~e 

unbounded minimum operator ,u. This is a functional on (N* N) which assigns to 

each f with (f : N+ N) an x EN with fx = 0, if there is any such x, and 0 

otherwise. It thus satisfies the following axioms. 

Axioms of the unbounded minimum operator 

(~1) (p:(N+N)-+N), 

(p.2) (f : N-, N) A (3x E N)(fx = O)+f (pf) = 0. 

These are sufficient for our purposes. Note that we then have: 

f E P(N) + [(3x E N)(x Ef) tf iuf Ef I. 
We shall write BON(h) for BON + (p.1, ~1.2). The main results of this paper 

establish the proof-theoretic strength of this system with (Set-IN&), respectively 

(Fmla-IN&) respectively as: 

BON(p) + (Set-IN&) = PA, 

BON(y) + (Fmla-ZND,) = (IX?-CA),,,,, 

where = means proof-theoretic equivalence as it is usually defined, for example 

in Feferman [lo]. These results are established in Sections 6-8 below. 

5. The proof-theoretic strength of BON with set and with formula induction 

In this section we determine the proof-theoretic strength of BON with set and 

formula induction on N (but without 11) and show, in particular, that the theory 

BON + (Set-IN&) is proof-theoretically equivalent to PRA, and that BON + 

(Fmfa-IN&,) is proof-theoretically equivalent to PA. 
Let L2 be the usual second-order language of arithmetic with number variables 

V, w, x, y, z, f, g, . . . , set variables X, Y, 2, . . . (both possibly with subscripts), 

the constant 0, as well as function and relation symbols for all primitive recursive 

functions and relations. The number terms (r, s, t, r,, s,, t,, . . .) of L2 are as 

usual. An L2 formula is called arithmetic if it contains no bound set variables, 

though it may contain free set variables; the class of all arithmetic L2 formulas is 

denoted by II’:. L2 sentences are L2 formulas without free variables. 

The first-order sublanguage of L2 which is built up without referring to set 

variables will be denoted by L, in the following. Hence every L, formula is 

arithmetic. A Z’,’ formula is an L, formula of the form (3x) cp with cp 

quantifier-free. 

In the following we use standard notation of first- and second-order arithmetic: 

(. . -) is a standard primitive recursive function for forming n-tuples (t,, . . . , t,,); 

Seq is the primitive recursive set of sequence numbers; lb(t) denotes the length of 
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(the sequence coded by) t; (t)i is the ith component of (the sequence coded by) t 

if i < lb(t), i.e., t = ((t)(), . . . , (t),,,(,)-,) if t is a sequence number; s E (X), stands 

for (s, t ) E X. 

Peano arithmetic PA is formulated in Li and given by the axioms for 0, 

successor and the defining axioms for all primitive recursive functions and 

relations together with all instances of complete induction on the natural numbers 

(&-IN&) 47(O) A (Vx)(&)* &x’))* (Vx)QG) 

where q,(x) is any L, formula. Primitive recursive arithmetic PRA is the 

subsystem of PA which is obtained by restricting the scheme of complete 

induction (LI-ZNDN) to the quantifier-free formulas of L,. In general, if % is a 

class of L2 formulas, then we write (%Y-ZND,) for the restriction of (L,-ZND,) to 

%‘. As known from the work of Parsons [17], PRA is equivalent to the subsystem 

of PA based on (2’:‘-ZND,), and also to the quantifier-free system with a rule of 

induction. 

5.1 Lower bounds 

The lower bounds for the proof-theoretic strength of BON plus (Set-ZND,), 
resp. (Fmlu-ZND,) and the same with the non-constructive p-operator will be 

established by translating suitable systems of first- and second-order arithmetic 

into these theories. The basic idea is that the number variables of L2 are 

interpreted as ranging over N and the set variables as ranging over P(N). 
Accordingly, an atomic formula of the form (x E Y) is translated into yx = 0 

where x and y are the variables of L, which are associated to the variables x and 

Y of Lz, respectively. 

Using the recursion operator r N, each primitive recursive function on the 

natural numbers can be represented in BON by an individual term of L, and its 

recursion equation can be proved there. Then every L, formula cp(X, y) is 

translated into a formula &‘(x, y) of the language L, in a natural way. This 

translation is such that 

((32) q(X, Y, z))” = (3~ E N) @“(x, Y, 21, 

(W) VW, Z, y))“‘= (32 E P(N)) #“(x, 2, y) 

and similarly for the universal quantifiers. To keep the notation as simple as 

possible we use the same expressions for the individual terms of L, and their 

translation into L,, and identify L, formulas with their translations into L,, when 

there is no confusion. Moreover, as is straightforward to check, every quantifier- 

free formula of L2 can be represented by an individual term of L,, in the 

following sense: 

Lemma 3. For every quantifier-free formula c&X, y) of L2 with at most X, y free 
there exists an individual term t of L, so that 

1. BON t (Vx E P(N))(Vy E N)(t[x, y] = 0 v t[x, y] = I), 

2. BON 1 (V.x E P(N))(Vy E N)( q,“(x, y) ff t[~, y] = 0). 



250 S. Feferman, G. Jiiger 

As a consequence of this lemma we obtain that (the translation of) complete 
induction for quantifier-free formulas in PRA follows from (Set-ZND,) in the 
theory BON + (Set-ZND,). Therefore PRA is contained in BON + (Set-ZND,) 
and PA in BON + (Fmla-IND,). 

Theorem 4. We have for every L, sentence v: 
1. PRA k pl 3 BON + (Set-ZND,) t qN, 
2. PA 1 Q, 3 BON + (Fmla-ZND,) I- qN. 

5.2. Upper bounds 

Upper bounds for BON + (Set-[ND,,), BON + (Fmla-IND,) and the cor- 
responding versions with the unbounded p-operator are obtained by interpreting 
them into appropriate systems of first-order arithmetic. The main step in each 
case is to find a suitable formula App(x, y, z) which translates the L, formula 
xy =z. 

Any such formula leads to a translation of L, as follows: Assume that L is a 
first-order language which contains L 1 ; in addition assume that App(x, y, z) is an 
L formula and I a mapping which assigns a numeral Z(t) to each constant t of L,. 
Then let * be the pair (App, I) and define an interpretation of L, into L 
depending on *, by the following conditions l-7. 

The * translation of an individual term t of L, is an L, formula Y:(x) which is 
inductively defined as follows (where x does not occur in t). 

1. If t is an individual variable, then Sjj(x) is (t = x). 
2. If t is an individual constant, then Y:(x) is (Z(t) =x). 
3. If t is the individual term (rs), then 

C(x) := (W(W(%W A KC) h APP(ZI, -72, ~1). 

The * translation q* of an L, formula 47 is then inductively defined as follows. 

4. First, for atomic formulas of L,, we put 

(tJ)* := (3x) T(x), 

(s = t)* := (3x)(Z(x) A F(x)), 

N(t)* := (3x) 5:(x), 

R(t,, . . . , t,)* := (3x1). . . W(,& KW A WI, . . . ,xJ) 

if R is an n-ary relation symbol of L,. 
5. If Q, is the formula 11&, then cp* is l(q*). 
6. If ~1 is the formula (11, v x), then q* is (q* v x*). 
7. If cp is the formula (3x) q, then rp* is (ax)(q*) 
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The treatment of BON + (Set-ZND,) and BON + (Fmla-ZNDN) is now straight- 

forward: We interpret L, into L, and handle the application operation of L, in 

the sense of ordinary recursion theory by taking 

APP(x, Y, z) := G)(Y) = z, 

where {n} for II = 0, 1, 2, . . is a standard enumeration of the partial recursive 

functions and ^- is the recursion-theoretic partial equality. In this case Y:(x) is 

(equivalent to) a 2:’ formula for all L, terms t. It is now an easy exercise in 

formalized recursion theory to show that there exist translations Z(t) of the L, 
constants t so that 

PRA + (E:‘-ZND,) t q* 

for each axiom 47 of BON. Since (Set-ZND,) in the language L, translates into 

(Z:‘-ZND,) in the language L,, we obtain the following theorem. Together with 

Parsons’ result mentioned earlier and Theorem 4 it establishes the proof-theoretic 

equivalences stated in the corollary below. 

Theorem 5. We have for every L, formula cp: 
1. BON + (Set-ZND,) t 9, j PRA + (_Y$-ZND,) t cp*, 
2. BON + (Fmla-ZND,) t Q, j PA k (p*. 

Corollary 6. We have: 
1. BON + (Set-ZND,) = PRA, 
2. BON + (Fmla-ZND,) = PA. 

6. Lower bounds for the proof-theoretic strength of BON(p) with set and 
with formula induction 

The rest of this paper is devoted to the proof-theoretic analysis of BON(p) 
with set and with formula induction on the natural numbers. We begin these 

investigations by determining the lower bounds for both theories in this section. 

6.1. Lower bounds for BON(p) + (Set-ZND,) 

The lower bound for the theory BON(p) + (Set-ZND,) can be established 

directly by applying the unbounded minimum operator p in order to eliminate the 

(number) quantifiers of arithmetic L2 formulas. Using Lemma 3 and induction on 

the length of arithmetic formulas one then easily verifies the following. 

Lemma 7. For every arithmetic formula q(X, y) of L2 with at most X, y free there 
exists an individual term t of L, so that 

1. BON(p) t (Vr E P(N))(Vy E N)(t[x, y] = 0 v t[x, y] = l), 

2. BON(p) 1 (VX E P(N))(Vy E N)(#“(x, y) f, t[x, y] = 0). 
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This lemma implies that (the translation of) complete induction for arbitrary 

L, formulas can be derived from (Set-ZND,) in the theory BON(p) + (set- 

ND,). Hence PA may be regarded as a subtheory of BON(p) + (Set-ZND,). 

Theorem 8. We have for every L1 sentence 9: 

PA t q + BON(p) + (Set-ZND,) t q? 

6.2. Lower bounds for BON(p) + (Fmla-IND,) 

This part shows that the second-order theory (fl;-CA),,,, can be embedded 

into BON@) + (Fmla-ZND,); this takes a bit more work, though of a relatively 

familiar kind. Let < be a standard primitive recursive well-ordering of order type 

Q. The idea is to define an operation h such that for each CY < .sg and for each n of 

order type (Y, provably in BON(p) + (Fmfa-ZND,) we have that hn represents ZZ, 

in the hyperarithmetic (iterated jump) hierarchy. Moreover, we can relativize this 

to any initial set. 

Let us first recall the theory (fl;-CA),,,, of the arithmetic comprehension 

axiom iterated through each ordinal less than co; more on systems of this kind 

can be found, for example, in Feferman [3] and Friedman [12]. By arithmetic 
comprehension one means the axiom scheme 

(Z&CA) (=xV~)(X E x ff V(X)) 

for all arithmetic L, formulas q. This is well known to be equivalent to the 

scheme (n’i-CA) which restricts comprehension to formulas cp in Zl(; form. If < 

is a primitive recursive well-ordering and R, the corresponding relation symbol, 

then we write (x 4~) for R,(x, y), (3x 4 y) Q?(X) for (3x)(x <y A q(x)) and 

(Vx <y) q(x) for (V,x)(x < y+ q(x)). The principle of tramfinite induction for an 

L2 formula q(x) along < is expressed by the formula 7’Z(<, q) defined by 

TZ(<, q) := (VX)((VY <x) (P(Y)_ q(x))+ (Vx) Q7(x). 

In the following we assume that < is a primitive recursive standard 

well-ordering of order type .s(, with least element 0 and field N. If n is a natural 

number, then i,, denotes the restriction of =C to the numbers m < n. For details 

about such primitive recursive standard well-orderings we refer to Girard [13], 

Schiitte [18] or Takeuti [19]. 

Given an arithmetic L2 formula x(X, y) with at most X, y free, an arbitrary set 

X of natural numbers and a natural number n, we define the x-jump hierarchy 
along <,, starting with X, by the following transfinite recursion 

(%:=X7 

(Y),:= {(m,i):i<i Ax((Vj, ml> 
for all 0 < i < n and denote the arithmetic formula which formalizes this definition 

up to any given n by xX(X, Y, n). If a is an ordinal less than E(,, then we write 
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(fl! - CA), for the second-order theory which consists of the axioms of PA plus 

the additional axioms TI(<,, q) for all L, formulas Q? and (VX)(ElY) R?(X, Y, n) 

for all arithmetic formulas x(X, y) with at most X, y free where the order type 

of -c~ is a: The union of all theories (II’!-CA)Ij with /3 < (Y is called (n’:-CA),,. 
The following theorem shows that there exists an L, term h which represents 

the X-jump hierarchy uniformly in the initial set parameter. The detailed proof of 

this theorem is given in the Appendix. 

Theorem 9. Let x(X, y) be an arithmetic L2 formula with at most X, y free and 
assume that n is an arbitrary natural number. Then there exists an L, term h so 

that BON@) + (Fmla-IND,) proves: 
1. x E P(N)* hx E P(N), 
2. x E P(N)+ SYy(x, hx, n). 

It is an obvious consequence of this theorem that the translations of the L, 
formulas (VX)(ZlY) xX(X, Y, n) are provable in BON(p) + (Fmla-IND,) for all 

arithmetic Lz formulas x(X, y) with at most X, y free and all natural numbers n. 
From standard proof theory it is also known2 that PA proves TZ(<,, q) for all L, 
formulas q. Hence it is also clear that the translations of the formulas TZ(i,, q) 
are provable in the latter theory for all L2 formulas 97. Therefore BON(p) + 
(Fmla-IND,) contains (n’:-CA),,,,. 

Theorem 10. We have for every L2 sentence q: 

(fi:-CA),,,, t Q, + BON(p) + (Fmla-ZND,) I#. 

7. Theories of ordinals over PA 

The upper bounds for BON with set and with formula induction on the natural 

numbers were determined in Section 5 by making use of the recursion-theoretic 

model of BON. In contrast to that approach, more delicate considerations are 

needed to establish the upper bounds for the proof-theoretic strength of the 

corresponding theories with the unbounded minimum operator. In order to 

achieve this aim we introduce the fixed point theories with ordinals PA’, and PA; 
whose proof-theoretic analysis has been carried through in Jager [15]. 

Let P be a new n-ary relation symbol, i.e., a relation symbol which does not 

belong to the language L,. Then L,(P) is the extension of L, by P. An L,(P) 
formula is called P-positive if each occurrence of P in this formula is positive. We 

call P-positive formulas which contain at most x free inductive operator forms, 
and let A(P, x) range over such forms. 

‘Since -C is a well-ordering of order type q,, the order type of each segment xn is less than q,. 
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Now we extend L, to a new first-order language Ln by adding a new sort of 

ordinal variables ar, p, y, . . . (possibly with subscripts), a new binary relation 

symbol < for the less relation on the ordinals3 and an (n + 1)-ary relation symbol 

PA for each inductive operator form A(P, x) for which P is n-ary. 

The number terms of L, are the number terms of L1; the ordinal terms of Ln 
are the ordinal variables. The formulas (q,, 3, x, 8, vi, vi, xl, Or, . . .) of LQ are 

inductively generated as follows: 

1. If R is an n-ary relation symbol of L,, then R(s,, . . . , s,) is an (atomic) 

formula of Ln. 
2. (LX < p), (CX = p) and P,(cw, s) are (atomic) formulas of La. We write P:(s) 

for &(n, s). 

3. If q and + are formulas of La, then lcp and cp v $J are formulas of LG. 
4. If q is a formula of La, then (3x) Q, and (VX) 91 are formulas of La. 
5. If Q, is a formula of LQ, then (3cu) q and (Vcu) sp are formulas of LO. 
6. If q is a formula of Lo, then (3a < p) cp and (Vcu < p) sp are formulas of 

Parentheses can be omitted if there is no danger of confusion. If q(P) is an 

L,(P) formula and q(x) an L, formula (where P is n-ary and x =x1, . . . , x,), 

then cp(r&) denotes the result of substituting q(s) for every occurrence of P(s) in 

q(P). For every LQ formula v we write Q)~ to denote the Ln formula which is 

obtained by replacing all unbounded quantifiers (Qp) in ~1 by (Q/3 < a). 

Additional abbreviations are: 

P;@(S) := (3p < (u) P{(s), 

P,(s) := (3a) P:(s). 

An LQ formula is called a A? formula if all its ordinal quantifiers are bounded. 

It is called a .XQ formula if all positive universal ordinal quantifiers and all 

negative existential ordinal quantifiers are bounded; correspondingly it is called a 

nR formula if all negative universal ordinal quantifiers and all positive existential 

ordinal quantifiers are bounded. See Jtiger [15] for the precise definitions. 

Now we introduce three L, theories which differ in the strength of their 

induction principles. The weakest of those, PA’,, is given by the following 

axioms. 

Number-theoretic axioms. These comprise the axioms of Peano arithmetic PA 
with the exception of complete induction on the natural numbers. 

Inductive operator axioms. For all inductive operator forms A(P, x): 

P:(s) ++A(P;“, s). 

3 It will always be clear from the context whether < denotes the less relation on the nonnegative 

integers or on the ordinals. 
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_ZR reJEecrion axioms. For every ZD formula q~: 

(.TP-Ref) cp+=(~~) (Pg 

Linearity of the relation < on the ordinals: 

(LO) afaA(a<pAp<y +a<y)A(a<pvCY=j3vp<a). 

A: induction on the natural numbers. For all A: formulas q(x): 

(A%NQv) cp(O) A (Vx)(cp(x)+ cp(x’))+ (Vx) T(X). 

AR induction on the ordinals. For all A: formulas rp(cu): 

(A$IN&z) (Va)((VB < a) q(P)- q(a))+ @a) q(a). 

PAL is the extension of PA;, by the following scheme of complete induction on 
the natural numbers: 

(La-IN&) 0) A (Vx)(rp(x)+ q(x’))+ w> VP(X) 

for all LQ formulas q(x). PAa is the extension of PA: by the following scheme of 
induction on the ordinals 

(L&N&) (Va)((VP < a) w9+ Q)(a))-+ (Va) q,(a) 

for all Ln formulas q(a). 

It follows from the P-positivity of the inductive operator forms A(P, x) and 

the inductive operator axioms that the formulas P:(x) are monotonic in their 

ordinal arguments. 

Lemma 11. We have for all ordinal variables cy, ,6 and all number terms s: 

PA;,ka:<p+(P,“(s)+P:(s)). 

Corresponding to the well-known result that every total recursively enumer- 

able function is recursive, we have that every total _I? function is AR. More 

precisely, in PAL every total functional relation on the numbers which is defined 

by a .Z* formula can already be defined by a A$ formula, in the following sense. 

Lemma 12. We have for all ,Yn formulas q~(x, y): 

PA’,t (VX)(~! Y) q(-~ Y)-+ (~~)(~~)(~Y)(v(-T Y) ++ c-p% Y)). 

Proof. We work in PA’, and assume that (VX)(~! y) q(x, y). Hence by ,XR 

reflection there exists an ordinal cy so that (Vx)(Sy) q~~(x, y). 2? persistency is 

easily provable in PA’,, and so we also have 

(~~)(~Y)(V”(X, Y)‘&, Y)). 

Hence we have for all S, t that q(s, t) if and only if QI‘+, t). 0 
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From the inductive operator and _Z’* reflection axioms we can easily deduce 

that the _Z* formula PA(x) describes a fixed point of the inductive operator form 

A(P, x). If (L,-MD,) is available as well, then this fixed point can be proved to 

be the least Ln definable fixed point of A(P, x). These constitute the following 

statement. 

Theorem 13. We have for all inductive operator forms A(P, x) of L,(P) and all 

formulas q(x) of L,: 

1. PA;,t-(Vx)(P,,(x)++A(P,, x)), 

2. PAQ~- (Vx)(A(rp, x)+ q(x))+ (vx)(P~(x)+ p(x)). 

This theorem suggests that there is a close relationship between the theory PAn 
and the well-known theory ID, (cf. e.g. [2,3]) as well as between PAgzd the 

fixed point theory ID, of Feferman [S]. Both theories, ID, and ID,, are 

formulated in the language L,(FP) which extends L, by adding fixed point 

constants CPA for all inductive operator forms A(P, n), and there is a natural 

translation of L,(FP) into L,: One only has to interpret the atomic formulas 

C&(X) of L,(FP) by the EQ formulas P,(x) of Lg. Hence complete induction on 

the natural numbers for L, formulas is a consequence of (A:-ND,), whereas 

(L,ZND,) is needed to prove the translations of complete induction on the 

natural numbers for L,(FP) formulas. 

Obviously PA& contains PA. Although the (translations of the) fixed point 

axioms of z, are provable in PA’, according to the previous theorem, we need 

(LQ>NDN) for dealing with the schemyf complete induction which is available 

in ID, for all L,(FP) formulas. Hence ID, can be directly interpreted in PA; but 

not in PA’,. Finally we also obtain from Theorem 13 that PAP contains ID,. In 

addition to these remarks, the following results of Jager [15] describe the exact 

proof-theoretic strength of PAn, PAE and PAL. 

Theorem 14. We have: 
1. PAR is a conservative extension of g, with respect to all L , formulas. 
2, PAZ is a conservative extension of ID, with respect to all L, formulas. 
3. PAL is a conservative extension of PA with respect to all L, formulas. 

8. Upper bounds for the proof-theoretic strength of SON(~) with set and with 
formula induction 

For the embedding of BON(p) + (Set-ZND,) and BON(p) + (Fmla-ZND,) 
into PA& and PAZ, respectively, we interpret the application relation xy = z by 

means of a fixed point of a suitable inductive operator form to be introduced 

below. Special difficulties are caused by the recursion operator rN, and we turn to 

this problem first. 
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Let ~(f, X, y) be an La formula with at most f, X, y free, and n a natural 

number greater 0. Then we define LR formulas Ap”,(f, xl, . . . , x,, y) by 

recursion on n and, from those, La formulas Fun”,(f) and &z”,(f): 

Apb(f, XI, Y) := df, XI, Y), 

Ap”me’(f, xl, . . . , x,+I, Y) := (W(Ap;(f, XI, . . . , xn, 2) A dz, x,+I, Y)), 

Fun;(f) := @‘xl, . . . , ~)(3!y)Ap”,(f, ~1, . . . , x,, Y), 

ufi”,(f) := (tfx)(~y, z)(Ap;(f, x, Y) A Ap”,(f, x, 2)-y = 2). 

Hence, if cp(f, x, y) is used as an interpretation of the application relation fx =y 

in L,, then Ap”,(f, xl, . . . , x,, y) represents the L, formula fx,, . . . , X, =y. In 

this context Fun”,(f) expresses that f is (a code of) an n-ary total function in the 

sense of cp; l/n",(f) says that f is (a code of) an n-ary partial function in the sense 

of CJJ. When it is clear by the number of the variables shown, we shall drop the 

superscript ‘n’ in the above notations. 

Remark 15. Zf cp(f, x, y) is a X* forrnda, then Ap,(f, XI, . . . , A,, Y) is a zR 

formula for n 2 

If f (a code of) 1-ary in the of and g code of) 3-ary 

in the of then the Rec,(f, g, y, z) can used 

to the graph the function which defined from f and by primitive 

the sense cp: 

Rec,(f, x, Y, := 
(3v)(Seq(v) A Mu) + 1 df, x, A 

(VW <Y) Ap,(g, w, (v)w (v)w+,) z = 

Remark 16. Let P be a 3-ary relation symbol. Then Recp(f, g, x, y, z) is a 
P-positive formula of the language L,(P). 

Rec,(f, g, x, y, z) is the standard formula for primitive recursion from f and g 

where we use 91 to interpret application. It will be important to know later that it 

has the properties in the following lemma. The first part of this is concerned with 

the uniqueness of the formula Rec,(f, g, x, y, z) in its fifth argument and the 

second with its functionality. Sufficient conditions for uniqueness and functiona- 

lity are given. 

Lemma 17. 1. If q(x, y, z) is an Ln formula with at most x, y, z free, then PA’, 
proves 

c/n;(f) A un&?) A Rec,(f, g, x, Y, z,) A Rec,(f, g, x, y, z2)+ zI = z2. 

2. If q(x, y, z) is a ZR formula with at most x, y, z free, then PA’, proves 

Fun;(f) A Fun;(g)+ (VX)(~Y)(~! z)Rec,(f, g, -G Y, z). 
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Proof. The first assertion follows from the uniqueness of f and g and the 

definition of Ret, by an easy inductive argument. For the proof of the second we 

work in PA’,, assume that Fun&(f) and Fun&) and choose an arbitrary xg. Since 

Q~(x, y, z) is a ZR formula, Ap,(x, y,, y2, y3, z) is a En formulas as well. Hence 

by Lemma 12 there exist AR formulas q(x, y, z) and x(x, y,, y2, y,, z) so that 

(P(f, u, w) ++ V(f, u, w), (1) 

AR& ~1, ~2, ~29 w)*x(g, VI, ‘~29 ~3, w) (2) 

for all v, vl, v2, v3, w. Observe that I/ and x may have an additional ordinal 

parameter. It follows that Rec,(f, g, x0, y, z) is equivalent for all y, z to the AR 
formula 8(y, z), 

(3) 

Using A? induction on the natural numbers, which is available in PA’,, we 
obtain 

WYmz) @Y, 21, (4) 

(VY, 21, d(o(Y, Zd A o(Yr -Q)+’ ZI = Z2) (5) 

as usual. This completes the proof of our assertion. q 

application operation of L, in L,. 
This will be achieved by means of a fixed point of an inductive operator form 

A(P, x, y, z). Specific such constructions are carried through, for example in 

Feferman [7, p. 2001 and Beeson [l, p. 1441. First we choose pairwise different 

numerals k, g, 8, &, @,, 8,, BN, &, i, and fi (the values of) which do not belong 

to the set (0) U {x E N: Seq(x)}; they will later act as codes of the corresponding 

constants of L,. Besides that we define for all natural numbers n: 

Seq,(t) lb(t) = y1 

and assume that our coding of sequences is such that l(Seq,(r) A Seq,(t)) if 

m #II. We are going to code the L, terms k~, sx, sxy, px, . . . by the sequence 

numbers (%, x), (6, x), (8, x, y ), ($, x), . . . of the corresponding form; for 

example, to satisfy kxy = x we interpret kx as (&, x) and then (k, x)y is taken to 

be x. 

In detail, let P be a 3-ary relation symbol which does not belong to the 

language L, and define A(P, x, y, z) to be the disjunction of the following 

formulas (l)-(22): 

(I) X=kAZ=(k,y), 

(2) Seq,(x) A (x)o = c A (X), = Z, 

(3) x=Br\z=(G,y), 

(4) Seq,(x) A (x)o=$A z = (k(X),,Y), 
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(7) Se%(x) A @),I = @ A 2 = ((X), , Y > 9 
(8) X = PC, A (gv)(y = (2, v)), 
(9) X = fi, A (gv)(y = (v, Z)), 

(10) X = & A Z =y + 1, 

(11) x=~~Ay=z+l, 

(12) X = & A Z = (hN, J’), 

(13) Se&) A (X),, = &V A Z = @N, (X),t y>, 

(14) se&) A (X)o = & A Z = (&v, (X)1, (x)z, Y >> 
(15) Seq&) A (x)0 = &v A (x)1 = (x)2 A z = (x)3, 
(16) Seq&) A (x)o = k A (x), f (x)2 A 2 = y, 
(17) X = iN A Z = (iN, y), 

(18) S%(x) A (X)U = h A Z = (h, (X),, Y), 

(19) Se&) A (x)0 = 2,~ A 2 = (k @)I, (X)2> y>, 

(20) seq&) A (x)0 = fIv A Rec,((x),, (x)z, (X)3> Y, z)), 
(21) X = p A (b)(h’)(W # 0 A f$‘, U, W)) A 2 = 0, 

(22) X = fi A P(J’, Z, 0) A (vU)(V <Z + (sW)(W f 0 A p(J’, v, W))). 

In view of Remark 16 we see immediately that A(P, x, y, z) is a P-positive 

formula of L,(P), hence an inductive operator form. If we write A,(P, x, y, z) for 

the clause (i) of the definition of A(P, x, y, z), then this operator form is 

deterministic in the following sense: 

Remark 18. We have for all Ln formulas cp(x, y, z) with at most x, y, z free and 
all 1Gi<j<22: 

PA’,t (Vv) Unfp(v) -+l(A;(q, x, Y, z) A Ai(cp, x, y, 2)). 

Hence A(q7, n, y, z) implies that exactly one of its definition clauses (l)-(22) is 

satisfied if we have (Vu) Unb(v), i.e., if each v is a partial function in the sense of 

q. This assumption is necessary in order to distinguish between clause (21) and 

clause (22). In the following we will often make use of the previous remark 

without explicitly mentioning it. The next results are concerned with properties of 

the formulas P;(x) and PA(x) which are induced by the operator form 

A(P, x, Y, z). 

Lemma 19. PA’, proves for variable n and all number terms r, s, t,, t,: 

1. Pz(r, s, t,) A PZ(r, s, tJ-+ t, = tZ, 
2. P,(r, s, t1) A P,(r, S, t2)+ t, = t*. 

Proof. Let q(a) be the AR formula (Vx) &zPX(x). Then our first assertion 

follows from PA’,t- ~(a). To establish this we work in PA’, and prove q(a) by 

AR induction on the ordinals. For this purpose assume that 

p:(G y, u) A p:(& Y, W) (I) 
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for arbitrary X, y, u, w. We have to show that n = w. From the induction 
hypothesis and Lemma 11 we obtain that 

(Vx) Un,*(x), (2) 

and the operator axioms yield 

AV’,‘“, x, Y, v) A A(P;“, x, Y, w). (3) 

If there exist z,, z2, z, so that x = (iN, zl, z2, z3), then v = w follows from (3), (2) 
and the first part of Lemma 17. In all other cases we obtain u = w either directly 
from (3) or from (3) and (2). This establishes the first assertion of the present 
lemma; in view of Lemma 11 the second assertion is an immediate consequence 
of the first. 0 

Now we come back to the interpretation of the theories BON(p) + (set-ZND,) 
and BON(p) + (F&z-IN&) into PA b and PA;, respectively. In order to 
represent the application operation of Lp in L, we define 

App(x, Y, 2) := P,(x, Y, z) 

and take a translation I of the constants of L, to numerals so that Z(0) = 0 and 
Z(t) = 2 for all L, constants different from 0. Using * = (App, Z) we then define 
the translations 5:(x) of the L, terms t and ~7* of the L, formulas cp as in 
Subsection 5.2. It follows that 5:(x) is a JY* formula for every L, term t so that 
all atomic formulas of L, are translated into zR formulas of LQ. 

It is an easy exercise to check that the * translation of all axioms of the logic of 
partial terms are provable in PA’& The following lemma gives the same for all 
the mathematical axioms of BON(p). 

Lemma 20. We have for every axiom Q? of BON(p): 

PA’nk q*. 

Proof. Obviously the definition of A(P, x, y, z) has been tailored so that this 
lemma goes through. It can be checked by straightforward but tedious calcula- 
tions that q* can be proved in PA’, for each axiom p, of BON(p). In the case of 
the axioms about primitive recursion on N Lemma 17 gives the desired 
results. q 

The discussion of the induction principles of our theories of operations and 
numbers is still missing. As before, we distinguish between (Set-ZNDN) and 
(Fmla-ZNDN) and takes care of the former version of induction in PAL whereas 
PAZ provides the framework to handle the latter. 

Lemma 21. The * translation of each instance of (Set-ZND,) is provable in PA’,; 
i. e., PA ;2 proves 
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Proof. We work in PA’& and assume that the * translations of a E P(N), 0 mu and 
(VX ~N)(x~a-+x’~a) are true. Then we have 

(Vx)(3! Y) P,(a, x, Y), (I) 

&(a, 0,O) A (VX)(PA(Q, x, O)* P,4@, x’, 0)). (2) 

By Lemma 12 we obtain from (1) that there exists an ordinal Q so that we have 

P;a(u, 0, 0) A (Vx)(P,‘“(u, x, O)+ P,‘“(u, x’, 0)). (3) 

By AR induction on the natural numbers this gives (Vx)(P,“(u, X, 0)), and we 
obtain (VX E N)(x ~a)*. Cl 

The treatment of (F&z-ZND,) in PA; is much simpler, since the * translation 
of each instance of (F&a-[ND,) is an instance of (La--IND,,,) and thus an axiom 
of PA& 

Lemma 22. The * translation of each instance of (Fmla-INDN) is provable in 

PA:; i.e., PAzproves 

IdO) A (Vx E N)(&) * 9(x’))+ (Vx E N) &x)1* 
for all formulas cp of L,. 

The reductions of BON(p) + (Set-IND,) to PAL and BON(p) + (Fmla-ZND,) 
to PA; are thus now established by combining Lemmas 20, 21 and 22. 

Theorem 23. We have for every L, formula q: 
1. BON(p) + (Set-ZND,) k Q, 3 PA&t- q*, 
2. BON(p) + (Fmlu-IND,) t cp 3 PA”,k cp*. 

Now all results are available in order to present the proof-theoretic charac- 
terization of BON(p) plus set and formula induction. Besides the previous 
theorem we only need Theozms 8, 10 and 14 and the result due to Aczel (cf. [8]) 
concerning the strength of ID,. 

Corollary 24. We have: 
1. BON(p) + (Set-IND,) = PAb - PA3, 
2. BON(p) + (Fmlu-IND,,,) = PA”,= ID, = (n’:-CA),,,,. 

Appendii 

In this appendix we give a proof of Theorem 9. For this we take up the 
notations of Subsection 6.2 again and assume that -C is a primitive recursive 
standard well-ordering of order type &Cl with least element 0 and field N, that IZ is 
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an arbitrary natural number and that x(X, y) is an arithmetic formula with at 

most X, y free. 

Remember that the X-jump hierarchy along <,, starting with a set X of natural 

numbers, is defined by the following transfinite recursion: 

(0, : = x, 

(y);:={(m,i):i<iAX((Y),,m)} 

for all 0 < i < n. It is our aim to show that, provably in the theory BON(p) + 

(F&u-IN&), there exists an 

(&Y EN)]@ = ((x)0, WI) A (x)1 ‘Y)++.=Y =Ol, (2) 

(Vx E P(N))(Vy E N)[txy = 0 v txy = 11, (3) 

(V.x E P(N))(Vy E N)[XN(X, y) ++ txy = 01. (4) 

Making use of these terms s and t we thus look for a term f which satisfies the 

following equation for all x E P(N) and y, z E N: 

i 

ify=O, 

fxyz = zW)1)(r),~~ if szy = 0, 

1, otherwise. 

This equation may be considered as a definition of the codes fxy with parameter x 

which is recursive in y. Such an L, term f can be defined in BON(n) by means of 

the recursion theorem: 

f:=~.r,,(~g.~y.d~yOx(jlZ.dhi(sZy)O(A.v.(t(g(v),)(v),,))(ilv.l)Z)). 

Then it is a matter of routine to check that the following properties off can be 

proved in BON(p): 

x E P(N) + fxO=x, (5) 

X EP(N) Ay EN AZ EN ASZy = 0 --, fXyt -t(fX(Z),)(X),,, (6) 

XEP(N)AyENAZENAOiyAsZy=1 -+ fXyZ-1. (7) 

It remains to show that the objects fxy code sets of natural numbers, i.e., 

belong to P(N), for all x E P(N) and y in the field of i,. To this end let m be a 

successor of n in the well-ordering -c. As the order type of 4, is less than Q, we 

know from standard proof theory that 

BON(y) + (Fmla-ZND,) I- TI(<,, q) (8) 

for all Lp formulas 9. By the properties of f mentioned above, we obtain 

therefore by straightforward induction along 4, that BON(p) + (Fmfa-ZND,) 

proves: 

x~f’(N)~y~Nr\yKm --, fxyEP(N). (9) 
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From (2), (3) and (6) we can also conclude that BON(p) + (F&z-IN&,) proves 

forallxEP(N)andy,zENwithOiy<mthat 

(10) 

If we now set h := Ax.fxn, then it follows immediately from what has been shown 

above that h is an L, term which satisfies Theorem 9. This finishes our proof. 
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