AN OUTLINE OF RATHJEN'S PROOF THAT CH IS INDEFINITE, GIVEN MY CRITERIA FOR DEFINITENESS

Solomon Feferman

3d CSLI Workshop on Logic, Rationality and Intelligent Interaction. Stanford, 31 May 2014 In memory of my friend and colleague, Grigori Mints June 7, 1939-May 29, 2014

Two Informal Notions of Definiteness

- Notion of a definite totality
- Notion of a definite proposition or property
- Criteria for these can be given in logical terms

The Criteria

- A totality is definite iff quantification over that totality is a definite logical operation.
- A proposition or property is definite iff the Principle of Bivalence holds for it.

The Criteria Interact in Formal Systems

- Internally, quantified variables in definite formulas are restricted to range over definite totalities.
- Externally, classical logic applies only to definite formulas.

A Logical Framework

 A logical framework was introduced in (F 2010) in which different philosophical viewpoints as to which totalities are definite and which not can be represented and investigated by proof-theoretic methods.

Some Philosophical Viewpoints

- According to the finitists, the natural numbers form an "unfinished" or indefinite totality, and quantification over the natural numbers is indefinite, while bounded quantification is definite.
- According to the predicativists, the natural numbers form a definite totality, but not the supposed collection of arbitrary sets of natural numbers.

More Philosophical Viewpoints

- Set theory identifies definite totalities with sets. Then V is not a definite totality by Russell's Paradox. The question then is, which sets exist?
- If the set N of natural numbers is presumed to exist, but not the power set operation, this leads to predicative set theory.

One More Viewpoint

- According to the ("classical") Descriptive Set Theorists, the set R of real numbers is a definite totality but not the supposed totality of arbitrary subsets of R.
- This is equivalent to predicative set theory plus the power set of \mathbb{N} .

Toward Axiomatic Formulations

- Restrict quantifiers in the formulas that are supposed to represent definite properties, e.g. in Comprehension or Separation axioms.
- Quantification over indefinite domains may still be regarded as meaningful, in order to state closure conditions, e.g. under union.

Semi-Intuitionistic Systems

- The underlying logic is intuitionistic.
- This is augmented by classical logic for definite formulas.
- General pattern: start with a system S in classical logic with suitably restricted Comprehension, etc. schemes. Then form associated semi-intuitionistic system SIS.

Semi-Constructive Systems

- Next beef up SIS to a Semi-Constructive System SCS by adjunction of useful principles that can be verified by a constructive functional interpretation.
- Show S, SIS and SCS are equivalent in proof-theoretic strength.

The Basic Semi-Intuitionistic System for Predicative Set Theory

- Start with S = KP, the classical system of predicative (or "admissible") set theory (including the Axiom of Infinity)
- SIS has the same axioms as KP, but is based on intuitionistic logic plus the Law of Excluded Middle for bounded formulas,
- (Δ_0 -LEM) $\phi \lor \neg \phi$, for all Δ_0 formulas ϕ .
- SIS = IKP + (Δ_0 -LEM)

Axioms of KP

- I. Extensionality
- 2. Unordered pair
- 3. Union
- 4. Infinity
- 5. Δ_0 -Separation
- 6. Δ_0 -Collection
- 7.The ∈-Induction Axiom Scheme

A Semi-Constructive System of Predicative Set Theory

- Beef up SIS to a system SCS that includes the Full Axiom of Choice Scheme for sets ,
- $(AC_{Set}) \forall x \in a \exists y \ \varphi(x,y) \rightarrow \exists r[Fun(r) \land dom(r) = a \land \forall x \in a \ \varphi(x, r(x)]$

for ϕ an arbitrary formula,

Notes on SCS-I

• Then SCS proves the Full Collection Axiom Scheme,

 $\forall x \in a \exists y \ \varphi(x,y) \rightarrow \exists b \forall x \in a \exists y \in b \ \varphi(x,y),$

for ϕ arbitrary, while only for \sum_{i} formulas in SIS.

Even more, SCS proves the Strong Collection Axiom.

Notes on SCS-2

- IKP + AC_{Set} proves (Δ_0 -LEM) (by adaptation of the old Diaconescu argument).
- If we add the power set axiom (see next) SCS is a subtheory of Tharp's IZF (1971) based on a system proposed by L. Poszgay in 1967.
- Tharp gave a realizability interpretation of IZF in ZF + V=L.

Adding Power Set Axioms

- The Power Set axiom Pow is given via a new constant symbol \mathcal{P} , and written as $x \in \mathcal{P}(a) \leftrightarrow x \subseteq a$.
- Pow(ω) is the special case of Pow: $x \in \mathcal{P}(\omega) \leftrightarrow x \subseteq \omega$. We also write \mathbb{R} for $\mathcal{P}(\omega)$.
- The semi-constructive system for classical DST is the system SCS + Pow(ω).

What Properties are Definite?

- From the overall logical point of view taken here, φ(x) is formally definite relative to a given system if ∀x[φ(x)∨¬φ(x)] is provable there.
- <u>Conjecture</u>: If $\varphi(x)$ is formally definite relative to SCS (SCS + Pow(ω)) then it is equivalent to a formula that is provably Δ_{I} (Δ_{I} in $\mathcal{P}(\omega)$).
- That would tell us that definite formulas are model-theoretically absolute.

Doing Mathematics Semi-Constructively

- Let $T = SCS + Pow(\omega)$.
- <u>Conjecture</u>: All of "classical" DST can be carried out in T.
- <u>NB</u>. The Descriptive Set Theorists of the 20s and 30s were called "semiintuitionists".

What Statements are Definite?

- A sentence ϕ is formally definite in one of our systems if $\phi \lor \neg \phi$ is provable there.
- <u>Conjecture</u> (F 2011). The Continuum Hypothesis (CH) is not definite in T.
- Note that CH is meaningful in SCS + Pow(ω) and is formally definite in SCS + Pow(Pow(ω)).
- <u>Theorem</u> (Rathjen 2014). CH is not definite in T.

- Work informally in set theory, using definable classes as usual.
- If A is a set, distinguish two notions of the sets constructible from A: L(A) and L[A].
- The set A belongs to L(A) but is treated as a predicate in the inductive definition of L[A]; in general A does not belong to L[A].

- L[A] shares a number of properties with L, including that it has a Σ₁ well-ordering (relative to L[A]).
- Recursion theory can be generalized to L[A] using Σ₁ definable partial functions with parameters, relative to L[A].
- These are given by indices $e, [e]^{L[A]}(x,...) \approx y$.

- A notion of realizability over L[A] is defined using indices e of partial Σ_I^{L[A]} functions: e ⊩_A φ (by adaptation of Tharp's realizability notion for IZF).
- <u>Theorem</u>. Associate with each proof D of a $\varphi(\underline{x})$ in T an e_D in HF such that for any A and \underline{a} in A, $[e_D]^{L[A]}(\underline{a}, \mathbb{R}^{L[A]}) \Vdash_A \varphi(\underline{a})$.

- To show CH not definite in T, suppose to the contrary that D is a proof in T of CH v ¬CH.
- Then can produce a hered. finite e_D such that for any A and for [e_D]^{L[A]}(ℝ^{L[A]}) ≃ b we have b ⊩_A CH ∨ ¬CH; b is independent of A for suitable A, and (b)₀ = 0 or 1.

- Using forcing, first construct A such that in L[A], the cardinality of ℝ is ω₂; then CH is false in L[A] and there is *no* d in L[A] with d ⊩_A CH.
- Also need to make sure that A is chosen so that the value b of [e_D]^{L[A]}(R^{L[A]}) will be independent of A under suitable conditions.

- So $(b)_0 = I$.
- Now form a suitable forcing extension
 L[AUB] of L[A] in which there are no new real numbers but CH is true.
- $\mathbb{R}^{L[A]} = \mathbb{R}^{L[A \cup B]}$.
- Can actually realize CH in L[A∪B]. So
 (b)₀ = 0 and we have a contradiction!

- The following was communicated to me by Michael Rathjen following the lecture:
- His methods also show that if φ is any analytic sentence consistent with ZFC then CH is indefinite w.r.t.T + φ.
- In particular, this holds for φ expressing Borel Determinacy and any φ in the scheme for Projective Determinacy.

References

- S. Feferman, "On the strength of some semi-constructive theories", in Proof, Categories and Computation: Essays in Honor of Grigori Mints, (S. Feferman and W. Sieg, eds.), College Publications, London (2010), 109-129;
- reprinted in Logic, Construction, Computation (U. Berger, et al., eds.), Ontos Verlag, Frankfurt (2012), 201-225.

References (cont'd)

- M. Rathjen, "Indefiniteness in semiintuitionistic set theories: On a conjecture of Feferman", arXiv:1405.448.
- L.Tharp, "A quasi-intuitionistic set theory", J. Symbolic Logic 36 (1971) 456-460.

The End