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CONSTRUCTIVE THEORIES OF FUNCTIONS AND CLASSESl)

SOLOMON FEFERMAN

Dedicated to the memory of my friend and colleague, Karel de Leeuw

Introduction and contents. These lectures were designed to acquaint a general
logical audience with basic features of Bishop's approach to constructive math-
ematics (BCM) and with work on a certain formal system To in which that can be
represented. Several competing and rather different systems have been proposed
for the same purpose, Thus, in addition to the intrinsic interest of the subject
BCM provides an excellent case study for the process of formalization.

The contents are divided into five parts, only the last of which assumes

some prior background; in outline they are as follows.

I. Background and aims. Part I gives an informal introduction to BCM which con-

trasts it both with everyday non-constructive mathematics as well as with the
schools of constructivity previously established by Brouwer and Markov. Towards
the end of this part we discuss general criteria of formalization, involving ques—
tions of adequacy and accord with the informal body of mathematics being repre-
sented.

IL. The theory To . In part II we present the language and axioms of T, and

some natural subsystems and extensions. The adequacy of T, to BCM is sketched
and the question of its accord is discussed. Alternative formal systems proposed

by Martin-LUf and Myhill are briefly compared in this connection.

II1I. Models. A variety of models (in the classical sense of the word) are pre-
sented for 1T, and related theories. One main purpose which these serve is to

show how developments in BCM, when formalized in T generalize corresponding

O 3
parts of classical mathematics and certain recursion-theoretic analogues. They
are also used to obtain consistency and independence results for some statements

of mathematical interest.

IV. Realizability interpretations. In contrast to models, the method of realiz-

ability (originating with Kleene) is distinctively assoclated with interpretations

D Text of lectures presented at Logic Colloquium 78 (University of Mons, Belgium,
August 24-September 1, 1978). I am indebted to the organizers of this conference
for proposing the lectures and for their helpful assistance in many ways. Re~
search for and preparation of the text were supported in part by National Science
Foundation grant MC$576-07163-A01.
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of constructive theories. It is here adapted to the formalism of T, so as to
obtain more delicate consistency (and conservation) results, in particular as con-

cern axioms of choice and continuity principles.

V. Relations with subsvstems of analysis. In this part one combines both proof-

theoretical and model-theoretical methods to obtain equivalence (in strength) of

1
various subsystems of the classical system S = (Zz—AC) + (BI) with subsystems of
T . For the full system TO one has an interpretation in S , but it is an open

o
question whether S is equivalent to TO .

We concentrate throughout on explanation and statement of results. Proofs
are not given but some proof-ideas are indicated. The basic source is Feferman
1975; this has been enriched considerably by the work of Beeson 1977, The latter
gives both models and realizability interpretations which are used particularly
for continuity prineciples; his work is described within Parts IIL and IV. Im-
portant contributions to Part V have been made by Aczel, Buchholz, Friedman,
Pohlers, and Sieg; detailed references are given in the text. Otherwise we draw
principally on the unpublished notes Feferman 1976a, 1976b, and 1976c, which are
now largely incorporated in the following.

For the reader seeking a general introduction to the subject of construct-
ivity and its formalizations (especlally stemming from the schools of Brouwer and
Markov) I would suggest the excellent survey article Troelstra 1977a; this conbtalns

an extensive bibliography.

I. Background and aims

1. Ad hoc (local) vs. systematic (global) constructive mathematics, At the local

level one deals with particular questions of construction without regard to gen-

eral principles or methods. Frequently one knows an existential result guaran—
teeing the existence of a solution to a specific mathematical problem without
knowing how it may be calculated, represented, or constructed. One then seeks to
produce an explicit solution to the problem. TFor examples familiar to logiclans
we have: (i) decidability of p-adic fields (first existence by Ax and Kochen, fol~
lowed by a concrete decision procedure by Cohen) and (ii) representability of pos-
itive definite real polynomials as sums of squares of rational functions (exist-—
ence by Artin, followed by recursive representations by Robinson and primitive
recursive representations by Kreisel).

At the global, systematic level one reconstructs whole portions of mathe-

matics using entirely constructive notions and methods. One of the main reasons
advanced for doing this is philosophical; it is based on a conception of mathe-
matics which is opposed to the current underlying platonistic conception and has

its source in human thought and constructions. Such systematic redevelopment
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according to constructive principles was initiated by Brouwer and carried on by
Heyting and his students. Subsequently another school of constructivity was de-
veloped in Russia by Markov and Shanin (cf. Troelstra 1977a for references on
these two schools). Finally the approach (here labeled BCM) was initiated in
Bishop 1967 and continued by him and his students. The main features of the flrst
two schools will be described briefly below and those of BCM will be described at
Length.

2. Constructivity in principle and comstructivity in practice (feasibility). Ho

matter how a constructive result is obtained (locally or globally) there is &
question of its actual computation or executiom. In this respect, even coi-
structive existence results have a non-concrete character. A classical example
is provided by Gauss' characterization of the regular polygons which are con-
structible by ruler and compass; the general theory had to be refined in order to
give a feasible construction even of the l7-sided regular polygon. For a {(neg-
ative) example familiar to logicians, we may mention Tarski's primitive recursive
decision procedure for the theory of reals. It has been shown by Fischer and
Rabin that any decision procedure for the reals requires exponent ial time and so

45 unfeasible by present computational methods.

3. General features of the platonistic conception. We describe these fovr 4

point-by-point comparison with the constructivist conception in B4,

3.1, Mathematical entitles. These are conceilved to be ext 1l to us snd

independent of our thoughts and constructionms. In its modern form, the mosl get-

eral mathematical entities are sets and functions (which are interchangeable, cf.

3.3 below). Thus the platonist conception is also called the Cantorian set-

theoretical conception of mathematics.

3.2, Mathematical statements are true or false. Hence the logic wmployed
is the classical predicate calculus based on 2-valued semantics. The ‘
excluded middle ¢V = ¢ leads us to conclude Ix Y(x) vV Yx = lx)
prove T x Y(x) it is sufficilent to prove —Vx = Y(x) . This ls the basis uf vhe

use of the indirect method to obtain existential results: assume Vx -~ yin)
and draw a contradiction. Evidently there is no explicit solution provided by

such arguments.

3.3, Interchangeabilitv of sets and functions. Of course the form

reduced to the latter via characteristic functions. Conversely, funciions sre

regarded ag many-one relations, which in turn are certain sets of ordered paivs.

But the latter are ‘definable as sets, so functions are reduced to sets.
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3.4, Extensionality. The principle Vx (x € A® x €B) » A= B for gets

A,B is justified by the consideration that sets exist independently of us and of
any means of definition. Sets, then, may only be distinguished by their members.

3.5. Power set. Since arbitrary subsets of a set are supposed to exist
independently and permanently, we may speak of their totality  (A) . This op-
eration may be ilterated, leading to the finite-type hierarchy. For transfinite

iteration the operation A A U P(A) gives a more convenient theory (the cumi~

lative hierarchy).

3.6. Subset formation. Any property ¢(x) of elements of A determines

a subset B = {x € A|¢(x)} (separation or comprehension principle). ¢ may con-

tain quantified variables ranging over other sets, in particular over f£(A) .

Such comprehension principles are impredicative: B 1is defined in terms of the

totality £(A) , which contains B as an element.

3,7. The axiom of choice ig usually agreed to be correct on the Cantorian

view, gince there is no question as to how the choices are to be effected. Then
one has the well-ordering theorem and the theory of finlte and transfinite car-

dinals. In consequence, such statements as the continuum hypothesis are taken to

have a definite truth-value, though undecided by all set-theoretical principles

so far recognized to be correct (or even having some plausibility).

2)

L., General features of the constructivist conception,

4,1. Mathematical entities are only those which are understood directly

by humans or obtained from such by successive human constructions (e.g., by com—

bination into pairs or sequences). The natural numbers 0,1,2,... (denoted as a

whole by N ) form baslc entities which are generated by repeated adjunction of
a gingle unit. Both the processes of construction of mathematical entities and

of recognition of thelr properties are mental activities. Such recognition is

the result either of direct intuition or of proofs based on principles inherent

in the specific nature of the comstructions used, For example, the principle of
induction for N directly follows the manner of its generation.

4,2, Mathematical statements do not communicate questions of truth or

falsity; they can only be assertions which communicate results of completed
proofs. The use of the logical particles is explained in terms of constructions
and proofs, roughly as follows:

(1) a proof of (¢ A ¥) 1is given by a palr (p,q) of proofs of ¢ and ¢ ,
resp.; (ii1) a proof of (¢ v P) consists of a proof of ¢ or a proof of VY
(together with the information as to which of these is proved); (iii) a proof of

2)

v

For further information and references on 54~88, cf. Troelstra 1977s .
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of (0 — ¢) is a constructive operation for which we recognize that it will convert
any proof q of ¢ into a proof (pq) of ¢. (iv) & proof of ®Ex y(x) con-
sists of a pair (p,c¢) where p 1s a proof of ¢(c); (v) a proof p of ¥xy(x)
is a consbructive operation for which we recognize that it will convert any ob-

ject ¢ (in the intended range of the variable 'x') into a proof (pc) of {(c).’

Taking . to be an identically false statement (e.g. 0=1) = which haé no
proof, negation is defined by (=) = (9 - 1); thus proof of a negation of a
statement (or of its abgurditz) amounts to constructive recognition of the im-
poseibility of proof of that statement. A proof of @V-ﬂ ¢ is only given when

one has & proof of ¢ or a proof of its absurdity.

There is a system of intuitionlstic logic which is recognized to be

correct for this interpretation of the logical operations, but which doesg not
yield such (apparently) unacceptable principles as the law of excluded middle
(LEM) or its consequence = ¥x — 0(x) - %x §(x). Heyting has formulaeted this
logle in such & way that clessical logic is obtainable from it simply by ad-
Junction of LEM. No further general loglcal principles have been recognized
ui constructively evident. (However, there is no generally recognized complete-

ness result for intuitionistlc logle.)

4.5, Functions are supposed to be constructive operations, the idea of

which was already contalned in h.2 (411),(v). These are supposed to be given by
algorithmic rules of construction which can be effected by finite mechanical

steps of computation., TFor relatlons with the recursion-theoretic concept of
computable function of. b.8 below.

.. Bets are only glven by defining properties , for which we are

———h

supposed to know and understand their condition for membership. For example,

the condition for xel 4s that x 1s generated from O by a finite number

of spplications of the successor operation. If A,B are sets then A X B, which
conslats of all ordered pairs (x,y) with xe¢A A y eB, is a set. BSo also is

BA , where x @EA iff % :A - B, which means that x 1is a constructive operation
such that for each y e A, x(y) (is defined and) belongs to B. Finally, 1f A
is any sel and $(x)ie a well-understood property of members of A ‘then

Balx eAlG(x)) 15 a set, with xe B e xe AAP(X) .

. L.5. Non-extensionality. Two rules may have the same values at all

arguments {even provably so), but they are not identified unless the rules are
recogrized to be the same, sz rules. (This allows for minor syntactic variations
in the presentation of rules.) Two sets may have the same members, but they are

not ldentified unless they sre seen to be given by the same properties. (For

the notlon of intensional identity implicit here, cf'. b.11 below. )
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4.6. Non-interchangeability of sets and functions. If B is a subset of

A and f:A - {0,1) is such that Vxe A[xeB « f(x)=0] then we say that r

is & characteristic function of B (rel. to A). Not every (sub)set (of a given
set) has a characteristic function. Those which do are called decidable, other-
wise undecidable. R.g. the set of exponents n for which Fermat's last theorem

is true is (presently) undecidable. If every constructive function on W is
recursive then every subset of I which 1s recursively undecidable 1s unde-
cidable in the constructive sense. 1In any case, sebts are not reducible to

functions.

If f:A-B then the graph of f is a set, namely R={((X,y) eAXB|f(x)=y).

R has the property Vx eAI'y (x,y) e R. The question whether conversely, any

such R C AXB determines a function f£:A-B 1s a special case of the following.

The conclusion is that functions are not reducible to sets.

4.7. The axiom of choice is considered here in the schematic form

(AC) Vx e ATy O(x,y) — %f VxeA O(x,F(x)).

This locks like it ocught to be admitted using the interpretation of the connec-
tives in 4.2. However we have to be careful : a proof p of the hypothesis,
written out as Vx[x eA - Fy §(x,y)] gives for each x and each proof q that

x belongs to A (i.e. that x has the property which defines A) a proof p%
of Hy ¢(x,y) which is a pair P*f(Pi:yO where pj proves §(x,y). But p% de-
pends on both x and g, i.e. p =p(g,x), so that ¥y also 1s a function of x
and ¢, not of x only as would be required for (AC). Writing x qu for

'q 18 a proof that x has the property determining A', this informal argument
does Justify accepting the following modified principle:

(AC)' Vxe Ay O (x,y) — 3 ¥q ¥x qu Olx, £(x,q)).

We can derive (AC) only for those sets A for which we have a canonical
c(x)A]’ M is an
example of such a set; for mel, the bulld-up of W glves itself the verifi~

choice of ¢, i.e. a function c¢ such that VYx[xeldA - x ¢

cation that we have a natural number. It may be noted that the principle

(ACY) Vxe A Zly 0(x,y) - 3F ¥x e AD(x,P(x))

is,for the same reasons, no more assured in general than AC . (These principles
are dealt with formally in the framework of To in Part IV below.)

L.8. Church's thesis. Let e,n,m,... range over 1IN, and take the usual
notation {e}(n) for partial recursive function application. The thesis that

every (total) constructive function on M 1s recursive is referred to as
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Church's Thesls in the literature on intuitionism (though it is open to argument

whether Church himself had this in mind). Formally we can express it (in a 2nd
order language) by

(cT) ve e ge ¥l {e) (n)d A £(n) = (e} (n) ].

Note that the converse to Church's thesis 1s that

Vnmﬂ@”n)uIﬂﬂﬁfGNMWﬁf@)ﬁ{ﬁ(MJ.

This follows from (AC) -which is acceptable by 4.7. There are some schemes re-
iated to (CT) which are expressible in lst order form and follow from (cT) and
(AC)EJ’ in particular:

(CTQ) Vn @m O(n,m) —He Vo[ (e)(n)t A O(n,{e}(n))]

Tt is of logical interest that almost every known theory T which is ins
formally constructively acceptable is consistent with (CTO). However, the
geceptability of this or of (cT) itself is a matter of dispute. As an example
of the kind of argument which can be made against it, consider the following.

Let J be a mathematiclan who works on deep problems of get theory and whose
mental behavior is not duplicable by a maechine. Then the function £ defined by
1 if on the n _th day from now, J proves the n,th theoreﬁ of ZF
£{n, ,nL) - o . )
0 otherwise

18 constructive but not recursive. Perhaps é more convineing argument against
(c1) is that under the constructive interpretation of the logical operations if
1t held we would have to be able to pass constructively from any (proof of)

£ eﬁ?ﬁ
behavior is believed to be mechanical in principle, there is no constructive
method of duplicating 1t by Turing machines, An argument for (¢r) on the other
nend, goes back to what is meant by constructive operation; at least in the form
explained in 4.3, this would seem to be Justified by Church's thesls in the usual
gense that every finite g;gorithmic procedure can be carried out by a Turing

to a Turing mechine e which calculates . Thus even if humen mental

machine,

4.9, Function sets and power sets. IFf Church's thesis is accepted, the

meaning of ,qu is perfectly clear: it consists simply of the total recursive
functions. An argument can be made without €T that we understand BA for any
sets A,B (vwhose conditlon for membership was given in L.h) because our con-
ception of constructive opersation is supposed to be basic; this does not mean that

“we know the totelity of all constructive operations from A to B". The guestion
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PAE

of whether for each set A we have a set P(A) of all subsets of A seems to
be-different: -even if we accept CT it is not clear that we have an under-
standing of what constitutes an arbitrary property of elements of N, let alone
of any A . The constructive status of R(A) is not settled; it is of mathe-

matical and logical interest to investigate the effect of assuming its existence.

L.10. Comprehension principles. If a set A is given (understood and i

accepted) then quantification over A, i.e. the logical operations Vx eA(...)
and Ex eA(...), are understood. Hence any property built using such operations
determines a subset of any given set. If the existence of power sets is assumed

then this leads us to impredicative comprehension principles, l.e. existence of

{x ¢A]0(x)) where in ¢ we can quantify over ©(A). Again, the constructive
character of such principles 1is not settled, while their role and effect iz of

interest.

4.11. Literal, intensional and extensional identity. In 4.6 we spoke of

functions given by the same rule or sets given by the same property. If we con-

centrate on syntactic representation of rules, properties, etc., then the most

obvious notion of sameness to consider is that of literal identity, i.e. identity

of syntactic configurations, symbol by symbol. A less definite but common idea -
is that rules, properties, etc. are mental objects which mey have a variety of
syntactic representations. For example, and most trivially, this may be by a
repaming of bound vaeriables or other symbols. More generally, we masy have re-
presentations in different, but intertransletable languages (so that the struc-
ture of the formal configurations may actuelly change). When two syntactic ob- y
Jjects represent the same mental object they are sald to be in the relation of

intensional identity.

Most frequently in mathematics we are concerned with various kinds of de-
fined relations of "equality" =, on a set A, which are simply equivalence
relations. For example, when defining the integers 2 as W x I, we take

(nl,nﬁ} =Z(n2,m2) © By tm, = n,+m . When defining %;> we take

X=g ¥ @apl(x~y) for x,ye Z. The set F::BA hag defined on it the re-
P
lation f =p8 ©Vxe A VyeAlx =, - £(x) :Bf(y) l. All such equality relations

are sometimes lumped together(perhaps misleadingly) under the heading of ex-
tensional identity relations. In Cantorian mathemastics it is common to pass from
(A, =A) to (&/ =\ ) so as to replace all equality relations by literal identity

using the axiom of extensionality for sets. This practice is neither possible 2

(without extensionality) nor necessary constructively; one simply mekes clear for
each set A considered what equality relation is being used in a given context.
Note. It is common practice to drop the subscript 'A' from =, once that is
fixed in any given discussion.
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5. Constructive theory of real numbers. We sketch here how the preceding
principles are used to set up a theory of real numbers. First.of all; 'recursion
on IN is justified directly by its manner of generation, so we can defime = . :
successively +, -+ and all further primitive recursive operations. 2 and = Z
are defined as explained in 4,11, and +, ., < are extended in the standard ;
way to 4. Then § is taken to consist of all (x,y) with x,ye 2 é.nd y;éo

and +,.,< are extended to it. Next Q]N consists of all sequences <rn>n |

of rational numbers. Cauchy sequences of rationals are those for which the

Cauchy condition is constructively satisfied, i.e. for which we have a rate-of-

convergence function p: M -~ I such that

: 1
() Yk > O Vn,m_>_p,(k)[|rn—rmi<E].

By the set TR of real numbers is meant the set of all pairs x=((rn), ). with
(rn) € Q]N setisfying (C). Then we put x=py for y=((sn),\)) if

(rn- sn) 0. Real functions (of k arguments) are of course those operations
f: ]Rk — IR which preserve = " In particular + and * may be defined as

real functions. For example, we may take ({x ),p )+ ((s), pp) = (S 8.0, V)

with (k) :m&x(pl(iek), ug(;’zk)).

The first essential dlfference is met with inverse and order. Given
x=({r ), p) we seek X - ((rI;l>, v) but there is no obvious choice of v
unless we know & bound of x away from O. Define x> O(m, k) if
> om (x> Z), and x>0 if Enmk(x > O(m,k)). Then define x>y
(or y €x) if (x-y) > 0 and finally x#y if (x>y)V (x<y). We
cannot establish constructively that x # y V x=y. Inverse is defined for
all (x, (m, k)) such that |x] > 0 (m,k). This is not strictly speaking a
gubset of IR, but only a subset by imbedding; such sets are dealt with
systematically in BCM as will be described in § 14 below.

We could of course define x>0 by x>0V x=0, but it is more useful
to take x>0 tobe Vk> O Em ¥n > m( r, > - %) ; these are not constructively
equivalent definitions, nor is x> 0V x < 0 constructively justified.
Classically, the expression

1L if x>0

f(x) =
0 if x<0

defines a function on IR which is discontinuous, but this does not make

constructive sense as & definition. Indeed there is no evident way to obtain

a discontimious function; theoretical reasons for this will be produced later.
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3)

6. Brouwer's intuitionism.

(e.g. constructive operations, 'sets or "species" , ordinals, etc.) and carried
out particular mathematical developments, especially in analysis. He thought it

‘should be possible to prove constructively that every (total) real function is

contipuous and that every real function on a closed bounded interval Fi[a,b]TR
is uniformly continuous. For this purpose he introduced & new concept of free

choice sequence (f.c.s.) (rn> of which we know only a finite amount of in-

formation (ro,...,rk) at any given time, though we can proceed as far out as
needed to make a calculation. The sequence may be produced randomly, e.g. by
rolls of a die or observations of some random physical phenomensa, rather than by
some mechanical law. k) It makes sense to operate constructively on such
sequences to obtain values in I or Q or new f.c.s. themselves. For example,
the operations + and . are easily defined for f.c.s. Now if f((rn)) =(sn>

and & value S has been established, it can only have used a finite amount of
information about (rn>; from this principle follows the statement of continuity
of real functions where the reals are understood in the extended sense to in-
clude all those given by f.c.s. By some further (less immediately evident)

principles Brouwer also derived the statement concerning uniform contlruity.

Choice sequences need not be completely 'free'. They can be considered
with or without restrictions on thelir values. For example, we can consider
sequences (rn> restricted by lrn[ <M, where (Mn) is given in advance, or
is itselfl produced by some rule depending on easrlier velues of (rn). Lawlegs
sequences are those which are given without any restriction whatever. At the
opposite end, lawlike seguences are those which are completely determined in
advence by rules. The theory of reals sketched in § 5 may be interpreted ag
applying to the latter kinds of Cauchy sequences; for this reason it is some-
times called lawlike analygis.

Brouwer's analysis based on f.c.s. has been studied in various logical
formalisms by Kleene, Vesley, Kreisel, Troelstra, ven Dalen and others
(cf. Troelstra 1977a 1977b for references). Various parts of this have taken
settled and coherent form (and have, incidentally, been shown consistent).

But efforts to treat the most general concept of f.c.s. have not yet had a

convineing outcome. For mathematiclans, Brouwer's theory has remained a curiosity;

3) A perusal of Brouwer 1975 (collected works, vol.I) is rewarding here.

4) PFollowing a remark of Troelstra, H. Jervell has treced back the idea of
f.c.s. to papers of L. Borel in 1912 which grew out of earlier discussions
by the French mathematicians on the axliom of choice. At Ffirst Brouwer
rejected the idea but later (1917) accepted it and expanded it into a
theory .

" Brouwer both explored general constructive concepts

i

o i

B

!
|
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it nas largely been of interest to logiclans. Moreover, the concepte are rather
S_pecial to analysis and topology and seem to have little to do with othe;r parts -
of mathematics. Historically, the actual development of intuitionistiec mathe-
matice got hung up around analysis because of the need to clarify Brouwer's i‘dea;,s

there.

Tt should be remarked that the intuitionistic theory of f.c.s. is in-

consistent with classical mathematics, for we can prove - V(rn)[ﬂm(r =0)V¥m(r #0)],
m m ‘

as is intuitively evident from the 'finite-information' principle. Relatedly, one
can disprove Vx eR(x > 0V x <0), etc. This is in contrast to lawlike analysis,

which is a part of clessicel mathematics (if one does not assume (CT ))-.
o’

7. The (Russian) school of Markov and Shanin. Here one accepts the scheme (CT )

and the laws of intuitionistic logic, but also the following non-intuitionistic

law, called Markov's principle:

(MP) V[ @(n) vV = 0 (n)] A = ¥n = O(n) - Ind(n)

‘n' ranges over N ). The intuitive idea for (MP) is that under the

(where
hypothesis we can constructively find a solution n of the conclusion simply by
performing a search through IN. It may be shown that (CT))+ (MP) 1is con-

s4 stent over number theory though (CTO) is inconsistent with full clagsical
logic there. (The consistency proof can be given by Kleene's recursive

realizability, which will be described in IV.) Various parts of analysis can

be carried out under these assumptions, continuing the line sketched in §5.

For example, if f is contimuous on [a,b] then  inf £(x) and sup f(x)
a<x<b a<x<b

exist. However, it cannot be proved that f takes on its minimum (resp. maxi-
mum) in [a,b]. The reason is provided by a well-known example due to Specker of
8, recursively continucus functlon on [0,1] which has no recursive point at which
takes on 1ts minimum. Various other baslc results of classical analysis may
also be contradicted by suitaeble recursion-theoretic examples, e.g. that if f

is continuous on [a,b] and f(a) <0 then HEx(a <x<DbA f(x)=0). (In the
Russian school it is admitted that there are some "peculiarities' to their
approach. )

8. Recursive anslogues to classical mathematics. We have in mind here a series

of studies concerning enalogues to classical notions where one uses recursive
functions (or functionals or sets) in place of arbitrary objects of the same type.
To be mentioned in particular is the work of Dekker and Myhill for set theory,
Crossley for order theory, Malcev and Rabin for algebra, and Specker and Lacombe

for analysis and topology (cf., Feferman 1975 for references). These have been
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carried out informally, with no restriction on the logic or methods employed.

In effect, though, at least (CT) is assumed (though not (CT ), which is classi-
cally inconsistent), and indeed a corresponding stronger principle identifylng
partial functions on N to I with partial recursive functions. For example,

in the Dekker-Myhill theory of recursive egquivalence types one defines

(A~B) <» &f, g[f,g partial recursive A frA:A 5B A grB:B —A

A (g A=1, A (f2)B = 1B] ;

where A,B may be arbitrary subsets of IV. One positive result which 1s

proved for this is a form of the Cantor-Bernsteln Theorem:
A~ (B+C)A B~ (A+D) A ~ B.

In anslysis one considers recursive real numbers (i.e. x::((r ),u) with both

(r ),u recursive) and recursive functlons of reals(defined in an appropriate

way via recursive functionals on Iq ). As with the Russian school, a number of

'peculiarities' are met in this version of analysis.

structive approaches in the following ways. Where a recursion-theoretic anaslogue

gives a positive result, i.e. where a classical theorem carries over, one can

often prove the seme theorem constructively. On the other hand, when & negative

result is obtained by suitable counter example, it is usually possible to use

such to get underivability of the classical theorem in a constructive system.

However, neither of these is automatic. For example, the least number principle

n ¢(n) - I[O(n)AVm < n — §(m)]

which is frequently applied in recursion-theoretic arguments is not constructlvely
derivable except for decideble .

9. Bishop's approach. In 1967 Bishop published his Foundations of constructive

analysis in which he carried out an informal development of congtructive analysis
which looked much more like modern analysis then anything done previously by
constructiviste and which went substantially further mathematically. Blshop
works with general notions of function and set regarded in informal constructive
terms. He rejects the notion of f.c.s. as being obscure and unnecessary. In-
stead of trying to prove that all functions of reals are continuous, his view

ig: there is not much of interest we can say sbout arbitrary functiocna from

M to TR or from [a,b] to IR. Define C{([a,b], R) to be the uniformly
continuous functions on {[a,b] to TR and C(R, R) %o be the functions which

gt e
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are uniformly contiruous on each compact interval. (These definitions will be ex-
plained in more detail below.) These are classes of central mathematical interest.

In a sense, Bishop is working in lawlike analysis and the notions and principles

he useg are contained either directly or implicitly in Brouwer's intuitionism,

but simply without f.c.s.. What is novel about Bishop's work is its spirit and
execution, which is much more like everyday modern mathematics than anything
previously done in a systematic constructive way. Indeed, a (philosgphically
unprepared) mathematician could pick up Blshop 1967 and read it as a straight plece
of classical Cantorian mathematics. What would be puzzling to him is the more in-
volved choice of certain notions and proofs, unless he also saw in what sense these
were dictated by constructive requirements, It is this which is least success-
fully explained by Bishop. One of the main aims of the logical study of BCM is
to elicit its underlying principles and to show how they may be interpreted con-.

structively, as well as classically. One is led to consider constructive theories

of functions, sets and classes which relate to BCM as theories like Zermelo -

Fraenkel relate to Cantorian mathematics. Such systems could have been developed
years ago, before Bishop, but it must be acknowledged that the work itself pro-

vided both the stimulus and a test for the adequacy of proposed theories. 5)

10. Note on personal viéwpoints. Bishop is a confirmed constructivist, as was

Brouwer. Just as with Brouwer, he places the doing of constructive mathematics
ahead of its logical study, regarding the letter as inessential. I am not a
constructivist (nor a Platonist - it is harder to say what I am.) My main in-
terests are logical and as a logician I am particularly interested in various

forms of explicit methematics (constructive, recursive, predicative, hyper-

arithmetic, inductive, Borelian, etc.) Of course this kind of position lends
itself to greater objectivity, but there is also the possibility of insensitivity

to, or neglect of, what are considered by a given school to be essential points.

11. Criteria of formalization. How well does a formal theory T represent an

informal body of mathematics M? We judge this in terms of its adequacy and

accordance,

(1) T is an adequate formalization of M if every concept, argument and

result of M may be represented by a (basic or defined) concept, proof and

theorem, resp. of T.

(i1) T is in accordance with (or faithful to ) M if every basic concept of

T corresponds to a basic concept of M and every axicm end rule of T corre-
gponds to or is implicit in the assumptions and reasoning followed in M (i.e.

T does not go beyond M conceptually or in principle).

5) Actually an informal constructive theory of functions and sets was outlined
sbout the same time as Bishop's work in Tait 1968.
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Remark. Formelisms always go syntactically beyond what is of ordinary interest,
e.g. in practice we never assert O A OA O or Oy where §, ¢y are unre-
lated. |
We may refine (i),(ii) by considering whether the representation is direct
or ipdirect. The idea of being (1)'directly adequate, resp. (ii)'directly in

accordance with M seemg clear, We would say that

(1)" T is indirectly adequate to M if there is a theory ™ directly

adequate to M which can be translated into T (or otherwise reduced to T in

an elementary way).

(ii)" T 4is indirectly in amccordance with M if T can be translated or

reduced to a theory " which is directly in accordance with M.

A good formalization of M is one which is both directly adequate to and in

accordance with M.

12. Illustrations of these criteria.

12.1. M = elementary number theory (non-analytic and non-algebraic).

= Zl = Peano's arithmetic with all primitive recursive function symbols.

l( +,-) = Peano's srithmetic with just +,-.

2 = 2nd order arithmetic with full comprehension.

Zl is directly adequate to and directly in accordance with M.

Zl( +,+) is directly in accordance with M bub only indirectly adequate
to it (by translation of Zl).

75 1s directly adequate to M but not in accordence with M since the

concept of @(IV) as a completed totality is implicitly assumed in the

comprehension scheme of ZQ.

12.2. M = classical analysls.

= arithmetic in all finite types.

ig directly adequate to M.

7° is indirectly adequate to M by reduction of the concepts that actually
occur in practice to second order terms.

is not in accordsnce with M; for in classical analysis we assume the
totality B, but not JRJR as & totality. [C(R, IR) is assumed as a
totality in the caleulus of variations. Functionals in ¢(R, R) — IR
are treated in modern analysis, but not higher type objects in any
essential way.]

12.3. M = Cantorlan set theory.
7ZF = Zermelo - Fraenkel set theory.

7F is directly adequate to M; is it in accordance with M? The guestion is
ggimﬁ& since the idea of the cumletive hierarchy does not seem essentlal
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Tt is evident from these examples that the application of the criteria of

formalization are reasonably objective, though there are cases of uncertainby,

13, Formal systems which have been proposed for BCM.

15.1. Blshop 1970, Goodman~-Myhill 1972, both considered formalization in

) ) Cpd s s
HAS + AC where HA® 1s intuitionistic arithmetic extended to finite types

(HA = Heyting's intuitionistic arithmetic). A is directly in accordance with
BCM. The question of Bishop's views on, and use of, AC is more delicate and

will be taken up below. HAw'%AC is inadequate to Bishop's theory of sets.

13.2. Martin-IRBf 1975 (trensfinite type theory). This is directly in

accordance with BCM and adequate to everything but Bishop's theory of inductively
defined classes (ordinals, Borel sets, etc.); it may also be naturally supple-
mented for the latter. It thus constitutes a good formalization of BCM. HoweVér,‘
it is syntactically complicated, and not as flexible to work with as other theories
to be digcussed. This will be explained in more detail later. It should be adde& :
that Scobt 1970 antlcipated Martin-Ibf 1975 in various ways.

13.3. Myhill 1975 CST (Constructive set theory), Friedman 1977. CST is a sub-
theory of IZFC/ZFC, intuitionistic ZFC,which like ZFC assumes extensionality and

identifies functions with many one relations. Thus it is not directly in accord

with constructive views, let alone BCM. It is indirectly adequate to BCM, as
will be explained later. Friedman 1977 hes considered a number of such theories
and characterized their strength; he has also sketched interpretation into con-
structively justified theories, thus indirectly in accord with BCM.

13.4. TPeferman 1975(To). This will be described in detail in Part II below.

Tt is directly adequate to all of BCM. Accordance however is a matter of dispute;
T shaell argue that it is in accord, at least indirectly. TO is a type-free

theory which is very amenable to metamathematical study and applications.

1. Some general features of BCM. As already seid these incorporate the general

features of constructivist mathematics outlined in §4%,85: +the logic is in-
tuitionistic, functions are given by rules, sets by defining properties; these
are not interchangeable, and extensionality is not assumed. We detail in the
following slight variants from §4-§5 ebove; novel points come with the treatment
of subsets in 1k.6.

1.1, Mathematicel entities. The only objects which appear to be considered

by Bishop are natural numbers, operations and sets, and such as are generated

from these by pairing. Fach such is considered to be presented by a finite

symbolic expression.

14.2. Tdentity and equality. Two symbolic expressions are identical 1f they
are presented in the same way - as in b.11. We may take this to be literal identity
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‘Qrkjintensional identity. Each set considered has attached to 1t one or more re-’
'ila’cions of 'equality'. Notation: Bishop writes = for literal or intensional
identity, = for an equality relation on a set. We shall write instead = for the
first and =y for the second (but when there is no ambliguity we drop the sub-
soript).

14.3. Operations and functions: Given sets (A, = ), (B, = ), ¥ is an opera-

tion from A to B if it is a rule which assigns to cac,h a in A an element

f(a) in B. f is a function from A to B if a = 8, —f(a)) =;f(a,).

14.%. Function sets. Bishop says that for each A,B there is the set of all

functions F(A,B). Of course, if we consider A,B as sets endowed with the
literal identity relation this implies that there is the set 0(A,B) of all
operations from A to B. 8ince we can form these sets we can consider operations
applied to operations, etc. Tterating F (or 0) starting with N allows us to
obtain the finite type hierarchy over N. We write B for O(A,B).

14.5. Integers, Rationals, Reals. This follows §5 for N, Z and @. However,

Bishop defines IR to consist of the following special class of Cauchy sequences:

. . . _l_ . _':‘,L_ D o mn - Frea i mi o i o
those {(x )n>l such that Ixn-xm| <=+ 2 forall nom, (s0 the limit x satis-
fies !x -x| < i‘l) R coneists of pairs (x,k) where x = (xn) is a real and

X, > '12 ; for em (xk i) this meens x > ¢ > 0. (x,k) = ]R.,y(y,ll) is defined to
mean X =¥

14.6. Subsets. IR"’" is not a subset of R in the usual sense, bul is one in
the following sense of Bishop. By a subset (A,1) of B i1s meant a set A and
operation i:A —B such thet a5 = 8, i(al) =5
jection of A dinto B). For x in B we say xeA If x=1(y) with yeA.
Thus if we teke i(x,k) =x we have (JR+ ,1) & subset of . Similarly, inter-

i(a,, (i.e. 1 ds an in-
[

vals (a,b), [a,b] etc. in R are given as subsets in this generalized sense.
But we can also consider subsets in the usual sense where 1 =l1dentity operation
on A.

4.7, Separation. Bishop recognizes thet each property P applicable to
elements of & set 5 determines the subset A =(x|xe SAP(x)}. (Implicitly, this
18 & subselt in the usual sense; equality is defined to be =5 restricted to A.)

14.8. Operations on subsets of a set. Using the more general concept of

subset from 14.6, the operations of unlon and intersection take on more general
of B:

(categorical) forms. Suppose given subsets (AO, io) and (Al,:i.l)

0}3
Ay
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1)

‘ is defined by Bishop to consist of all pairs (k,a) where k=0 and
| aeh  oOF k=1 and acA,; Turther, i(k,a) = ik(a) for k=0,1. Note this is = =

essentially a form of disjoint union. (Aoﬂ Al , J) is further defined to consist

of all (a al) with 8¢ AO and aleAl and io(ao) =il(al); then one takes

; (j(ao,al) = io(ao). Note that AoﬂAl in this sense is contained in AOX Al‘.

1h.9, Families of subsets cf a sef. By a family of subsets of a set B, in-

dexed by T, is meant ar} operation f which associates with each t e T a sub-
set f(t) = (At’ it) of B, in such a way that equal sets are associated with

J equal indices. The family is indi . .
f q n v is indicated by ((At, lt))teT or <At>teT or just <At>'

For simplicity, we shall only consider in the following the cases that the index

set T 1s simply supplied with literal identity as its equality relationm.

14.10. Operations on families. As an extension of the operations in 14.8
| one defines (t t,l) and ( N At,g) as subsets of B Dby: ‘
i eT teT

U A = {(%,t lxeA} and  i(x,t)=1,(x);
§ t el

. :T ay =l(g|vt eT(a(t)eA ) A Vo ,t, eT(itl(g(tl)) =it2(g(t2)))) and

J(g) =iy (g(t))) for t eT.
o]

The union is again a form of disjoint sum. that we call the join of (A ) s it will

be denoted below by > Ay In effect, ‘the intersection is formed by separat:.on E
t e'I' ,
from the cartesian product 0 A = {g|vt eT(g(t) eAt)}, on which equality
teflT

gy =8, is defined by Vb eT(g(t) =, ,(8)), foew 7o eT(i, (e L(8)) =3 54 (8, (8)))-

} 14.11. Pre-joined families. An alternative definition of family which
Bishop says could be considered is a subset A of Bx T. Certainly, given

any such A we can define f(t) =At={x|(x,t) cAl. Then A= U A
teT
(extensiona.lly). Thus we call such a family pre-joined, i.e. its prescription

already guarantees existence of its join. In general though we need a join
axiom which tells us that if f is a family <At)t€T then the join J(T,f)
exista. '
14.12. Borel sets. These are inductively generated in a topological space
from certain basic sets by the operations of union and ilntersection applied to
countable families.
Abstractly this has the form:
(1) B, B
(11) (f£:N - B) implies (J(m, £)e BAI(W,T) ¢ B).

(i11) if a property holds of all elements of B and holds of J(W, £) and
I(I,f) whenever it holds of f(n) for each n, then it holds of all
elemants of B.
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14.13 Principles in the general theory of integration. The Borel sets in

e measure space are used in the development of integration theory in Bishop 1967,
Ch.7. The theory of messure and integration was redeve.loped by Bishop-Cheng }
0‘1972 without the use of Borel sets. This ie an abstract theory, i.e. one starts
with an arbitrary 'integration space' X and assoclates with it a certain
completion L(X). It was pointed out by Friedman that the basic definitions in

the latter approach make prima-facie use of the power-set operation which, as we

have seen, is constructively problematic. However, this is only necessary if
one wants L(X) again to be a set. The notion of being a member of L(X) does
not require the power-set axiom and in that sense one can carry out abstract inte-

gration theory without this principle or the geneyralized inductive principles be-

hind Borel sets. For more detailled examination of the issue here cf. Feferman
1978 §4. In any case, the potential (albeit merginal) mathematical utility of
both generalized inductive and power-set principles in BCM makes them of interest
for loglcal study. The former are incorporated directly in T, since they have

constructive character.

15, General features of BCM, contd: Bxistential definltions and witnessing in-

formation. Notions which are defined classically using existentlial information
are frequently replaced in BCM (as well as in other schools of constructive
mathematics) by corresponding notions in which witnessing information ls ex-
plicitly shown. This is required to carry out constructive operations on the
objects sabisfying the glven notion.

15.1. Exeamples.
.I,
(1) IR . We have already explained its definition in §5 (as needed to
make the operation of inverse constructive).

(i1) Limits of sequences of reals. By a convergent sequence of reals is

meant a triple ((xn>, xc,nl) where %, and each xn(n > 1) belongs to IR

and m is & function of positive integers such that (for all k > l)lxn—xolg %

for all n > m(k); m is called a modulus-of-convergence function for the

sequence.

(11i) Contimuous functions. By a (uniformly) continuous function f on a
compact interval I =[a,b] is meant a pair (f,w) with feF(I,R)(i.e. £:I —» IR
preserving ‘ﬁm) and w:lR - IR such that |£(x)-£(y)] < ¢ whenever |x-y| <w(e);
w 15 called a modulus-of-uniform-contimuity function for f. The set of all
contimuous functions from I to R is denoted by C(I, IR); it is a subset of
F(I,IR)by i (f,w)=£. (This function w is needed for example when performing
the operation of integration of f over 1.)

15.2. The lp@ical pattern. In each cese we are spelling out a property
P(x) involving existential quantifiers. In the above examples (1)-(iii) P(x) is,

=~

. T

i
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respectively:

(1) k21 (x >3

i1) @x ¥k >1 - i
(11) & Ve >18a¥n > m(|x-x |<{)
(111) Ve > 0 6 > 0 ¥xvy(|x-y| < 6 - [£(x)-£(y)| < e).

With each such property is associated another P*(x,w) where W is some wit-
nessing information that realizes or verifies P(x). These properties are re-
lated by
*
(1) P (x,w) - P(x) and
. ; . *
(2) if (AC) is assumed, P(x) — 3P (x,w).

*
We shall also call P  a spelled-out form of P. For example, in case (ii), w

consists of X together with m as a function of k.

15.3. Having your cake and eating it too. Often Bishop defines a set A
in what appears to be the form {x|P(x)} (the unofficial definition) but then
*
says that he is really defining the set A ={(x,w)|P(x,w)) (the official defi-

nition). ' He speaks of x being a member of A* when it is really only x
coupled with some side information w which can be considered to be a member.
Then one treats operations on A* as if they were operations on A. For example,
the set A of (uniformly) continuous functions on I to IR is officially de-
fined as the set A of all (f,w) satisfying the condition of 15.1(iii). But w
is not explicitly revealed in the operation [:C(I,R) -»R when written in the
form f;f(x)dx.

There is a certein casualness in Bishop 1967 about mentioning the wit-
nessing information as one goes along. Constructivity in theory requires that
it be mentioned, but one is looser in practice in order to keep that from getting
too heavy. Practice then looks very much like everyday analysis and it is hard
to see what the difference is unless one takes the official definitions seriously.

15.4. A concrete illustration. The preceding is illustrated by a rela- -

tively simple example of a proof from Bishop 1967, but in which several spelling-
out steps are already implicitly involved. This is for the theorem that every
continuous function on a compact interval has a l.u.b. The reader should compare
the following with the original as indicated by the page references.

Definition (p.34). c is called a l.u.b. of A (for AC R and celR) if
(1) x<c forall xinA eand (ii) for each ¢ > O there exists x in A

with c¢-x< ¢g.

Spelled out, (il) requires that we provide a function g such that Ve>O

(g(¢) in A and c-gle) < e).
6) With reference to 15.1(i)-(4i1) the reader should compare Bishop 1967
pp. 18, 19, pp.26, 27 and p.34, resp.
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rem (th) ‘Buppose A is a subset of IR such that for each ¢ > O there

e;Klstyl, e ,‘yn' in A such that for each x in A at least one of the

bers klxﬁ-yll,‘..., fx-yn| is < e. (Such a set is called totally bounded). Then

b.’QA exists,

" gpelled out, the definition of being totally bounded (contained in the statement
of this theorem) requires that we have two functions h and J such that for
each e> 0, h(e) is a finite sequence (n,(yl, ...,yn>) with each y, in A

(so n= 4h(h(e))) end for each x in A and e> 0,

j(x,¢) < 4h(h(e)) eand Ix-yj(x,e)] < e,

With this understanding, the proof of the above theorem proceeds as follows.
Given any k > 1, choose NERRRREN in A such that for each x in A, some
Ix—yjl < ¢. The choice of (yl,...,yn) is given by h(1/k) and of J by
j(x, 1/k ). Next it is shown that

(1) for some m with 1< m <n we have Yy 2 max{yl,...,yn} -kt

For, each y; is given as a Cauchy sequence of rationals ¥y= <yp>pzl , 1.e.
gach y; is in Q and Iy; - yé] < %!—% (from p.15). Teke p=Utk and find m

such thet ¥y 2 y; for i=l,...,n. Then for g > p

m i 1 m .m m i i i 1 m i i 1
- = = - B - e - = > - + - = >0
(Yq yq) E (Yq Yp) (YP ;Yp) (yp yq) K (Yq yp) (Yp yq) k =
1 2 1 m i 1
- &L o > - — > A 2
since Iyq ypl ST %k It follows that yq (yq1 k) for g > p and then

that y > yi--}% as required for (1). Note that m in(l) is found as a funetion
of k, say m=m(k). Let xk-:.ym(k) . It is easily shown that (xk) is a Cauchy
sequence of reals. Using e result from p.27, it is shown that (xk) converges
and we can f£ind its limit X, We claim that

(2) X ig a l.u.b. for A.

For, given any x in A, choose y,, ...,yn as above; then x-xk-:_-(x-yj) +(yj-ym(k>)

< 2 when j=ji(x, 1/k). Hence (x—xo) = 1lim (x-xk)s lim (2/k) = 0; thus xfxo for

k k »m K
all x in A . The function g required by the definition of l.u.b. is provided

< ¢, such k belng calculable

={rno

by g(e) =X where k is chogen so that

from the information which presents ¢ as a member of I]R.

Corollary (p.35). If f:[a,b]-R is continuous then ({f(x)|xec(a,b]} has
a l.u.b. '
Proof. £ ds implicitly provided with a modulus~of-continuity function w. Given

any e¢> O choose a=a_ < a,l< e < an.:b such that (a -s.i)<w(e) for each

1+1
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1=0,...,0n-1. Let a<x<Db. It is claimed that we can find J such that
Ix—aj| < w(e). To do this we consider x::(xp) and ai:=<a;) each presented as

a Cauchy sequence of rationals. Every %p can be compared with each of

o} i al
ap,...,ap,...,ap.
j is found from this comparison. This shows that A={f(x)] xela,b]} is totally

For p sufficiently large (determined by w(e)), the required

pounded (as required by the official definition), and we can apply the preceding

theorem.

The reader may wish to Teconstitute one or two other proofs from Bishop
1967 in the same manner. ( Another instructive example is provided by the proof of
the Balre category theorem, p.87).

*
15.5 A theoretical setting for 15.5. In Part IV we shall present a theory To

extending TO in which the basic membership relation is refined to a 3-placed
relation x e A and in which xe A is definid as Aw(x evrAj. With reference
to the logical pattern of 15.2, 15.3 one has A ={(x,w)|x ewzﬂ , 8o that the
‘unofficially' defined A actually determines the 'officially' defined A% .

Tz can be reduced to TO so that in this theory we can have our (constructive)

cake and eat it too.

15.6 Remark on witnessing data in classical mathematics. The practice of

suppressing official parts of the defining data is also frequent in classical
methematics, e.g. algebraic or topological structures are simply referred to by
their underlying sets. However the practice ls more wholesale in BCM.

II. The theor TO.
As presented here this theory is a minor modification of that introduced

in Feferman 1979; the differences are explained below. For the reader's con-
venience a good deal of the material from secs. 2-3 loc. cit. is incorporated

in the following. There are also some novel points.

1. The language of To ; syntactical notions.
1.1 vVariables and consetants. The language SL(TO) 18 two-sorted.

Individual (or general) variables 2,b,C, 0. ,X,Y¥,2

Class variables A,B,C, ... ,%,Y,Z

Individual constants k’S’p’Plﬁpg’d’O’s]y’an’cn#i’j
Class constants W

We use +,%t.,t

k4 lJ u‘r:'z!"
1.2 Atomic formulas are all those of the form t,=%t,, App(tl,tg,tﬁ) and
tlet2 . Irt addition there is an atomic formula . with no free variebles,

to range over variables or constants of elther sort.

interpreted as falsity.

1.5 Logical operations: A sV, =, ¥,4
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1.4 Formulas are generated from atomic formulas by applying A, v, -,
x, Vx , &, VX.
Notation: ¢,¢,6 range over arbitrary formules. (”\¢):§d&f (0 »1) (0« ),
B x0, (fxea)d, (Ixe A)d are defined as usual. x,X, t represent sequences
of variables or terms, ¢(x,X) is written for a formula all of whose free
veriables are among X, X. In such expressions as ﬂyw( X, ¥, X ) 1t i assumed
thet y is not in the list x and simlilarly for TY y(x,X,Y).

2. Informal interpretation of the language. The Individual variables range over

the full universe of discourse of Tm’ hence are also called genersl variables.

These are to be thought of as mental objects (including rules and sropertles) or

ag symbolic representations of such objects. Then = is interpreted as intensional
identity or, in the latter view as literal identity of syntactic objects. The

relation App(t tg,tj) is understood to hold when t, isa (rule or) operation
which has value t3 at the argument th. Bince it is not aas%m@d Lhat every
operation isg total we shall write fltd ~ t for App(tl,tu,ts). We write

i for Hz App(tl,tg,z). (This notafiun 18 expanded below,)

The class variables range over one-placed

£

properties. te X 1s interpreted

as: t has the property (glven by) X. (We may also think of 'clwss' as short for
'claseification' ; classes are not conceived extenslionally.) Class varisbles
only range over a part of the universe of discourse. To express that an indi-
vidual t happens to be a class we simply use the formuila

CL(t) =, . EX(L=X).

“def

The constants k,s are certaln baslc combinatory operations which permit

one to form the constant operations and carry out the process of substitution,

resp. P,Py.p, are operations of pairing and projection. 4 1s an operation

which gives definition-by-cases on W, where I denotes the class of natural

numbers, with least element O and operators of successor and predecessor

1
Py The constants . i,J wrepresent certain class-Tormation operations,
corresponding respectively to comprehension, inductive generstion and Join.

5. Application terms. The language £(T$) le formally extended by s binary
operator a(-, -) which is interpreted as the operation of application. We use

T,Tl,¢2,". to renge over the terms of this extended language, which are called
application terms (a.t.'s). We write TyTp for alr 7 ). Thus the =a.t.

Z 2
are generated from the variables and constents of &(Tm) by elogure under .

Since a.t.'s may not have defined values, relations between these are gxplained
as formulas in £(TQ) in the following way:
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(t=x) when T is a term t of &)
o
(T = %) =gp

'ELV‘A-LZH;YQ(TL Y AT, ¥y A Yy, = x) when T is L

(Tl = 'rg) “def Vx[Tl SR & T,z x]
(”r l ) mdf%’f b4 (T - X) .

We write (Tl =7,.) for (Tl o T;»') when ("rll) A ('rgl) is known or assumed.

Cb(’r) = def ax(r = x A $l{x)).

In particular, (TeX) is Hx(Tz=x A xe X).

Parentheses in TyTy eoe T, @re supposed to be associated to the left as

("'(TlT&;’)"')Tn . We write () for r, (Tl’Té) for pr T, e&nd (’I‘l,Tg,...,Tn)

for <T,§L’ (T;‘y vy ’Tn) }« This expleins the notation Z(TJ_’ .- .,Tn) or z(1) for

o my P 4 L o s
any n 2z l. Finally, 7 af WT

Y. purther syntactical notions .

L.l Stratified formulas are those (in .Sl('l’O)) which contain class variables

or constants only on the right-hand side of ¢ atomic formulas, i.e. only in
contexts of the form + e¢X or Le W , where t 1g an Individusel varieble or
constant., Thus all the other stomle formulas of a stretified formulae are re-
lations of equallty and applications between Individual terms. Formaelly, strati-
fied formulas may be thought of as 2nd order formules with the sort of individuals

speciiying the lst order level.

.2 Elemeptary formulas are those stratified formulas which contain neo

bound class variables. These are also sometimes called predicative formulas,

the others being lmpredicetive. In an elementary formule (b(g{_, 2{_) classes are

not referred to ln any general ways we only require understanding membership in
e gilven xi . Blemsntary formilss may also be consldered as the lst order
{stratified) formulas.

L.% Comprebension notation, Let n be the Gbdel number rd)(x, Y, _/:)W of
$  with a specified inclusive list of variables x,y, Z. We put

{:"N)(M;i » :ﬁﬁ)} ® def Cn(l f :"i)‘
This shows the process of class formation by comprehension as a uniform function
of the parameters y,7 of the defining formule $ . The instances of compre-
hension are not all egually evident; the me t evident are those corresponding to

elementary §, and only those are lmmedistely accepted in T 0"
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. Axioms and logic of T, -
. 5.1 The logic of T, is that of the intuitionistic two-sorted predicate

'\a,l'cu_'Lus with equelity. There is in addition a basic ontological axiom relating
 the sorts, namely VX @x(X=x). Note that this justifies the formalism in L.3

above where one applies operations to classes.

5.2 Non-logical axioms. These fall into several groups.

A PP(Applicative axioms)

((‘J) (unicity) Xy = ZAX Yy = w2 = W
(1) (constants) kxy A kxy = x

(ii) (subsbitution) sxy ¢ A sxyz= xz(yz)
(iii) (Pairing, projectiomns) pxyi A pqzt /\pgzi/\pl(pxy) =X A _pg(pxy) =y
(iv) (definition by cases on WM ) X,ye N —(x=y—dxyab=a)A (x 4y »dxyab =b).

(v) (zero, successor, predecessor) X,y eN — x'IAp yAp (x')=XxA x'40 A
= N (x" =y" -x=y).

“The remsining axioms are class existence axioms. Note from I(iii) that
cn(yl,...,ym, Zl,...,Zp) | for all y, 2% .

ECA (Elementary comprehension). For each elementary §(x,y,z) we take:

89X { {.qu)<x;_y_; _Z_) } =X A VX[X ¢ X Q""D(X)ly _’_Z'_)]]

N (Natural numbers)
(1) (closure) O eNAVx(xe¢XN —x'eN)
(i1) (induction) §(0) A Vx(P(x) — O(x')) - Vx e NO(x)

where §(x)=0(x,...) is an arbitrery formula of &(T ).
J (Join)
Vx eAEY(fx = ¥) - {J(A,£) =XAVz[2 eX © IxTy(z=(x,y) Ax eAAy efx)]]

IG¢ (Inductive generation)
(i) (closure) TI{i(A,R) =IAVY((y,%x)eR —yel) »xel ]}
(ii) (induction) Vx ¢ AlVy(y,x) eR - ¢(y)) - 0(x)) - (Vx ¢ 1(A,R))P(x)

where O(x)=0(x,...) is an arbitrary formula of T, - This completes the list
of axioms: T, =APP + ECA + I + J + IG.

6. Relation of To as given here with that of Feferman 1975.

(&) Previously we took a one-sorted language with an additional predicate CE(x);

the veriables A,B,C,...,X,Y,Z2 were introduced by convention to range over C#.

() We defined x' =(x,0) and Py = P; @nd took the axiom (x,y) # 0 then the

axiom AFP(Vv ) as given here was derived.
(¢) The constant I was defined as i(A,R) for

A

i

(X|x=0V x = (pmx)'] and

R

i

(z]|®x,y (z=(y,x) A x=y')) (predecessor relation).
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The reason for listing W as a speclal axiom here is so as to consider the

gtrength of TOmIG while still including N.

(d) Previously we used definition by cases on the universe instead of jussckon‘

N, as will be explained next.

7. Some variants of the axioms which will be considered.
DV (Definition by cases on the universe). This is the following in place of
APP(v):
(x =y VX AYA dxyabl A (x=y»dxyab=a)A (x £y — dxyab =D).

Then '_‘L‘O + DV is equivalent to the system To of Feferman 1975.

Note. The clause (x,y eN —x=yV x#y) was not needed in APP(v) since it is

derivable from the other axioms.

CA, (First order comprehension). This is another denotation of ECA.

CA, (

may now be any stratified formula in {x|{(x,y,2)).

Second order comprehension). The same scheme as for CAl except that (b

SEPl (First order separation). This is CAZL regtricted to formulas of the form
x ¢ AN §(x,y,2) (with parameters y,Z,A). [xe Al Y (x,y,2)) 1is written for
(x]x e AA §(x,3,2))

SEP, (Second order separation). The same as SEP, with any stratified ¢ .

Nr  (Restricted induction on N). Here one replaces the induction scheme W(ii)

by the specific instance
Oe XA Vk(xeX »x' ¢eX) »INCSX
(where (X € Y) =4 af Vx(x eX —»Xe Y)). Note that NP can be used to derive
any instance
0(0) A Tx(P(x) - d(x')) — Vx e W H(x)
for which {x|0(x,...)) is known to exist as a class.
16 (Restricted induction for IG). Analogously replaces IG(ii) by

Vx e A{Vy((y,x) €eR —»yeX) —xeX]) - 1i(A,R) EX.

Remark. We could formulate a generalized inductive definition axiom GID ex-

pressing for any elementary W<X:X)<= y (x,X,...)) in which X occurs only
positively, the existence of a class I which is the least predicate satisfying
¥x[§(x,X) ~»x eX]. This stronger exiom is not evidently constructive (GIDM can
be derived if one accepts the impredicative comprehension principle CA2>'

Note. IG itself becomes gtill more evident if one writes y<R x for (y,x)eR.

Then i(A,R) is the class of <R— accessible elements of A, which may be
pictured as the elements of A sitting atop well-founded trees branching by

the <R relation.

MIGP (Restricted monotone inductive definition)
~ —y | C: 3
VXIY[£X ~ Y]A VXl,Xg[Xl < X2 >le < I'Xd] -
AL{fIC I A WX[£X € X > 1 S X])
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By adjunction of & suitable constant, we could also express I uniformly as a

function of f£. Here f represents a monotone operation on classes to classes.

- This is stronger than GIDF (in the presence of ECA), since positivity is
 weaker than monotonicity.

8. Product and power clags axioms.
P (Product axiom) Vx e ABY(fx =¥) -» HXV2[zeX © Vxe A(zxefx) ] .

We shall prove (11.2) that P follows from T ; however, it does not if 'CA, is
o 1
replaced by SEPj .

POV (Strong power class axiom). VAEB Vx[x ¢B & EX(X € AAx = X)].
POW (Weak power class axiom).

VAEBYVx[xeB —» (XS AA x=X) A VX(X S A >TY(XEYAY eB)) ]
where X =Y is the relation of extensional equality between classes,

(X =Y) 55,0 (XEY) A (Y EX).

A8 remarked previously, the constructive status of POW+ (or even POW) is unclear.
Note. Rach of these can be expressed wniformly by adjunction of suitable con-
stants.

9. Theories related to To which are to be considered here.

9.1 EMO = APP + ECA + TN
EMor = APP + ECA + INI
Remark. The notetion 'EM' comes from 'Explicit methematics' . M P is a minimal

constructive theory in the present framework. We shall consider the effect of

adding, variously, DV’ J, IGr and IG to these theories.

9.2 A theory of sets So
SO=APP+ SEPl+1N+ J+ P+ IG.

The class variables here can be interpreted as sets ("small" classes). (The

product axiom P is added here according to the remark made in §8.)

9.3 A theory of sets and classes TO(S). This may be obtained from T,
by adjoining a constant & for the class of all sets, for which sultable closure
conditions are expressed by additional axioms. A theory of this character was
presented in Feferman 1978, but of greater generality, since sets there are
taken to be pairs (A,E) where E is an equality relation on A.

10. Consequences of EMO[‘ - Throughout the following all statements are to be
considered semi-formally. They are all provable in IM O'{‘ .

Notation. We shall often use letters like 'f', 'g', 'h' for individual varisbles
being treated in operator situations. The letters 'k','mn','m','p' are now re-
served to range over W .

10.1 Abstraction. UFor each application term T and varisble x we can
x
find a term T with variables € wvar (7)- (x} such that
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'r%l A VX[’I'*X =T,
7" is denoted ax(t) or Ax(r[x]). (Intuitively, T'L  because it always denotes
e rule, whether or not 7[x]! at any x.) The proof is carried out by induction
on T (Just as in total combinatory theories): |

(1) If v is x, we teke skk for Ax(x) since skkx = kx(kx) = x.

(i) If T is an individual term t #x, we take kt for Ax(t) since ktx =t.
. . _ % v %

(lii)* If T=TT, We want T x_'rl[*x]w‘g[x]. But Tl[x]TE[X] = ('rlx)('rex) ™~

*
X , 80 we can take T = ST, T in this case. (Only APP(i),(ii) are

871 7o 1o

applied here).

10.2 The recursion theorem. We can find a fixed r such that for all f:

rf i and for g=rf, Vx(gx = fgx).
For the proof teke h=2\y Axf(yy)x, so hy! for all y. In particular hh! and
hh = Ax(f(hh)x). Thus g=hh serves as rf. We can take

r= M (Ot (yy)x) (Wt (yy)x) ) -

10.3 Recursion on IN. For any a,f we can find g ~ satisfying:

-

a 1if x =0
\—f(x,g(pmx)) if xelN and x #£0

Namely, g i1is found by the recursion theorem so as to make

gx = dx Oa(f(x,g(pgx))).
It follows that
(1) g0=a
(i1) en' = f(n,gn) for any n.
Then for any a,A,f we have:
(111) aeA A VnVy[yeA - £f(n,y) e A] - ¥n(gn cA),

with the conclusion being proved from the hypothesis by restricted induction,
since {x|gxe A} is a cless.

10.4  Arithmetic in EMOF « It follows from the preceding that all primitive
recursive functions can be defined in EMOP . Purthermore, every arithmetical

formila is equivalent in this theory to an elementary formuls, hence defines

a class. Thus the scheme of induction for arithmetical formules holds in EMbI‘ .
Hence the intuionistic system HA of (Heyting's) arithhetic is contained in
M, -

10.5 Bounded and unbounded minima. Using recursion on IN we can define

T fm sothet Vm<n(fmeN) & 1 fmeN and 11 fm=0 & Im < n(fm < 0),
m<n , m<n m<n

Then further we can obtain (pm < n) (fm =~ 0) which is defined under the same
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conditions. By the recursion theorem one finds g such that

[ (pm < n) (fm= 0) if Hm < n(fm = 0)

g(f,n) = < .
| g(f,n") otherwise.

i
e

Let uf =g(f,0). It is seen that uf is defined and equel to pn(fn = 0) Just
in case M(fn=0A Vm < n(fme N)) .

10.6 Partial recursive functions; forms of Church's Thesis. The erumeration

of partial recursive functions {k} for keI can now be defined as usual in
EM M with {k)(n) = U(pn Tl(k,n,m)). We now introduce the function-mapping no-
tation: .

(f:A - B) =4of Vx e A(fxe B).

The three forms of Church's thesis described in I.4.8 can be formulated in EM, I

as follows.

cT  ~ is the scheme ¥n @md(n,m) — Tk Yn[ {k}(n) $ A O(n, (k) (n))]
cT, s V[ (£: - ) — Tk Vn(fn={k)(n))]
cr, is Vf[Vn(fpt ~»fnelN) - TkVn (fn = (k)(n))].

(¢ T2 wag suggested by Béeson; it expresses that every partial function on W
coincides with a partial recursive function there.) Obviously C’.I.‘2 @CTl , and
as we remarked in 4.8, CTy + ACy,
be taken up in Parts ITI and IV.

—->C‘I'o . The consistency of these with TO will

10.7 Elementary operations on classes. We now turn to uses of KECA. The

following give operations having class values ag functions of the indlvidual
and class parameters shown.

Vv o= [x|x=x)

A= {x]4)

(a,b} = {x|x=aVx=b)
-A = {x|x ¢ A)

AUB = [x|xeAVxeB}, ANB=(x|xe AAxeB)
AXxB=(z|TxeATyeB z=(xy)]

Bt {(£f|f:A - B) (also denoted A — B)

Df = {x|fx )

f[A] = (y|®x e A(fx ~ ¥)]).

]

Evidently all these have the form (x]{(x,...)) with ¢ elementary.

'10.8 The finite type hierarchy and HAY . The finite type symbols (f.t.s.)
are generated by the following elementary inductive definition: O is a f.t.8.
and if p,o0 are f.t.s. then so also are pko and p -~ g, where O = (0,0),
ukv = (L,u,v) and (u »v) = (2,u,v). The f£.t.s8. are enumerated by a function on



CONSTRUCTIVE THEORIES OF FUNCTIONS AND CLASSES 187

W whose range thus forms a class that we denote by FIS. Using recursion on W

we can define a function g satisfying:
gd6 =W, glukv)=guxgv and glu 5v) = (gu — gv)

where x, — are the operations defined in 10.7. For each o¢e FIS we denote by

Nc the value go. Thus

N
. B » == == = p
N, = I, pra N, XN_  and Npm%c (Np -aNc) =N,

For each particular ¢ in FTS we can prove in EMOF‘ that
y/ .
c4(_)
However, the statement
Yo e FTS[Cﬂ(NG)]

requires a proof by induction using the impredicative property ®X(go ~ X). This

can be carried out in EMO but not EMOr».

Gbdel's notion of primitive recursive functional of finite type (Gbdel 1958)

can be interpreted in EMOF simply by using recursion on 1IN . The basic scheme is
to pass from fo € Np o and fl eN(piOkg 5 a) to a g satisfying

g(x,0) = £_(x) and g(o,n') = £, (x,n,8(x1)),

which is obtained using 10.3 uniformly in x. Now we can prove by regtricted in-

duction on W that x el - g(x,n) ¢N, , hence geN as required.

pk0 & o
The theory HAY of intuitionistic arithmetic in all finite types has
variables of each type oe FTS and constants for the primitive recursive
functionals.7 ) The axioms are those of HA together with the defining schemata
for all these functionals and, finally, the induction scheme for all formulae of
the language. Interpreting the variables of type o to range over Nc , each
formula of HAw is equivalent to an elementary formula with finitely many con-

stants Nc Nc . Hence it defines a class under ECA. It follows that
1

HAY < EM_p
- "o
Remark. An intensional form of Ha® , denoted I~HAw is obtained by adjoining a

functional at each type level which decides equality between objects of that type.
It is easily seen that

w
- - g =

10.9 The extensional finite type hierarchy. The system E-1A"  obtained
from HAP by adjoining extensionality axioms in all finite types can also be

interpreted in LM ~ ., However, here we interpret the variables of type o to

T) Cf. Troelstra 1975 Part I §6 for a precise description of HAY and the systems
I-HAW | E-HAW below.
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range over Mo , defined together with an equality relation =5 by induction as

follows:

M. = IN and n=m & n=n
Mp:’co = Mp X Mo' and x =p5€gy © PX =0 ply/\ Po% = BV
M) oo = [f]feMp S M A VY e M (x=,y ~fx=_fy)) end

Equality between objects of type o is interpreted as = so as to obtain
E-HA" C EM_P

10.10 (Classes with equality relations. These are simply pairs (A,E) where

ESAXA and E is an equivalence relation on A. Then we write X=,y for
(x,y) ¢ E (though this notation is ambiguous, since E is not uniquely associated
with A). While we can operate on classes-with-equality in T, (or its subtheories) ,

we proceed more generally than in Bishop 1967 and work with classes per se.

10.11 Integers, rationals and reals in EMOI‘ . Our definitions here
follow I, 14.5 (i.e. essentially Bishop 1967 Ch.2)

Z=NxN; (nm) =(p,q) « n+q=m+p.

+ is defined on 2 by (n,m) ty (p,q) = (n+p,m+q), and so on for .,<
on Z. I is embedded in Z, and subscripts are dropped.

Q={(x,y)xeZAy eZry £0); (x,¥) aQ(u,v) © X V=y-eu

(x,¥) -f-Q(u,v) = (xy+yu,uv), and so on for . , < on @.

Z 1is embedded in @ , and subscripts are dropped.

7 = {n|ne 2A n>0). We write x, for xn when x ¢Z' A

+ + 1 1
R=(x|xeZ -»QA Vnme?3 ([xn—xm{ SEr=

< %)

'
——r

+ +
x=py ©VkelZ EmeZ Vn zm([xn-yn

X by = Ay, YY)
X gy = M”(xEku ; yaku) where ksmax(kx,ky) and for each x,

k. is the least integer greater then |[x | + 2.

|
R = {(x,n)lxe]R/\xn> -i—] and B = (x|x e RAVn ez+(xn > - %1) ).
@ is embedded in IR, and the subscripts are dropped.

The elementary properties of these number systems can be developed in EMO("

directly following Bishop 1967. Then the complex numbers ¢ can be introduced
es usnal and their properties derived in the same way.
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10.12 Continuous functions and classical analysis. Given any two classes
A, B with equality relations respectively, the function class F(A,B)

is defined by

A’ TB

F(A,B) ={f|f:A - B A Vx,y eA(x =Ay_.>f(x) =Bf(y))].

This is a subclass of (A—B). TIn particular in analysis one is interested in
F(R, B) and F([a,b], R) where a,be¢ R and [a,b]={xeR|a <x <b). Next

for the (uniformly) continuous functions on {[a,b], following I.15.l1, one takes

c([e,b],R) = ((£,w)|f eF([a,b], R) A weF(R ", B ) A
Ve ¢ R Vx,y ela,b](]x~y] <wle) - [£(x)-£(y)]| <e)},

and one takes

C(R, R) = ((£,u)|f ¢F(R,R) A Va, b e R(a<b — (f,u(a,b)) ec({a,b], R))

i.e. the functions contimuous on each compact interval [a,b]. Sterting with this
as basls, classical real analysis is pursued in EMOP just as in Bishop 1967,

Ch. 2. The only point which requires careful checking is that only restricted
induction on W is applied throughout. We shall return to this observation in
§1k below.

11l. Consequences of the join axiom. Here, unless otherwise specified, we work
within EM >+ J.

11.1 Femilies and joins. By a family of classes (}sax)x A 18 meant an
operation £ such that ¥x e A Y (fx =Y) and where we write Bx for fx. The
Join exiom guarantees the existence of a class E Bx with the defining pro-

Xe A
perty

Ze ZABX G Ixe Ady[z=(x,¥) A yeBx].
X€

Trom this we can define the union operation on classes-with-equality as explained
by Bishop (I.14%.10) above. By a pre-joined family on A is meant a class
BC AXV. Associated with such is a family in the preceding sense by £x(= Bx) =

{y|(x,y)e B); extensionally this makes B = _> B, -
¥eA

11.2 Products. Suppose given a family f=(B ) . Let J = _> B_.
e ) X' XeA Xeh x

Then we can define

I B, =(g|¥xcA((x,gx)ed) ]
Xe A

since (X,gx) e Jd <« gX ¢ Bx for xe A. ¥From this we can treat intersection
of & family of classes-with-equality (I.1k.10).

Remark. There is no evident way to derive the product axiom P from the remaining
axlioms in the theory SO of sets in 9.2.

11.3 The passage to transfinite types. Using the operations of 10.7 we know
that
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: Ch(a) A Ch(b) —»Cl(axb)ACLl(a—b).
Then by enumerability of FTS in 10.8 we can carry out an induction to prove

g | o & FIS[CA(N )] -

‘I-‘towever this requires unrestricted induction on W in the theory EMO . Using J
we can then form > N_and I N_, which is the first move to transfinite

ceFls ©° o elTs ©
types, at type level w. Then by successively applying the operations x and -

again we can move up to level w-2, then w-3,.. .,we 5 ete. A general pursuit of

this would be based on a theory of ordinals, which are treated in terms of well-
founded trees ("tree ordinals") in constructive mathematics and baged on ¢ in
the framework of To . This is taken up next. In any case we see that the

passage to lower transfinite types can be effected in EMO +J. Precise limits

for this are provided by the proof theory of EMo + J (Part V).

12. Consequences of the inductive generation axiom. Here we move to full TD .

+
12.1 Tree ordinals. Define 0 = (0,0), x =(1,x), sup f = (2,a,f). These

are distinct. Note sup, f = (e, W,T). 6,

is inductively generated as the least
class such that
Oe (91, xeG, —>x+e 6 » and (f:]N-aGl) ~951.1;;;)]1\11“3 6, -
Then @l =i(A,R) for suitable A, R. Classically the members of (S\l represent
countable ordinals with
[o| =0, ]x+| = x| + 1, [sup]Nf] = sup |[f(n)| + 1.
nelN
(Note that % can be dropped in favor of sUp An(x).) We can picture members
of @l as well-founded trees:

yx+ }’;Sllpmf
Lx ' UREE
SAMN

Definition by recursion on @l is a consequence of the recursion theorem. G2 is

inductively genei'&teci as the least class such that

+
Qeb,, xeb, »xeb,, (£: N —9(92) - supp fe 6,

and (f: 6, ->®2) - supglf e6,
The last is pictured by

sup, T
P@l

Then we can obtain analogously the existence of a class @n for each ne N.

branching .~
over 6, S

Using join we can carry this on to define transfinite tree classes: @a for
a € @l , &@nd more generally for a e Gy, with any given b. (For more details
on this material cf. Feferman 1975 pp.99-100, also Feferman 1978 §5.)
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12.2 IG and Borel sets. For gimplicity we indicate the treatment in Baire
i)

space I . Let sn(n el ) be an enumeration of all finite sequences in W and

Gn ={g eﬂqmylé(Zh(sn)) =sn}; these are the basic clopen sets. We take B to be

the smallest clags such that each GoeB@ and if £:IN —B then r}N fn ¢ B and
ne ‘

L&qfn e @. 1Inmore general spaces we can follow Bishop's treatment via comple-
ne ‘

mented sets. In any case IG suffices for this.

It would be appropriate at this point to take up the questions of adequacy
and accord of TO and its subtheories with BCM. However we first complete our
discussion of the consequences of various axioms with a look at DV and POW

(which are only marginally related to actual BCM).

15. Non-extensionality as a consequence of DV .
13.1 Non-extensionality of operations. The following is proved in Peferman
1975 §3.4 as a consequence of APP+D

VZ
- VE,g[Vx(fx = gx) » f=gl.

. %

The idesa of the proof is first (using DV) to assoclate with each f an ¢ such
* *

that Df=Df and f x = O whenever x ¢ Df. Then, if extensionallty ie sssumed

.x. e
we have £ total (l.e. Vx[fx {]) iff £ =2Ax(0) =0 . Again using full definition
*«
by cases DV we obtadin a total operation e such that Tot (f) wef =0 .

Diagonallzation produces a contradiction.

15.2 Consistency of extenslonality of operations in TO . Denote by EX'I‘OP
the statement VF£,g(Vx(fx = gx) —» f=g)]. Using extensional term models for APP

(due to Barendregt) it will be shown in Part III that T04~EXTOP is consistent.

Hence the use of D, in 13.1 ie essential. (It will also be shown that

v
To*KDV is consistent.)

15.3 DNon-extensionality of classes. Denote by EXTcﬂ the statement VA,B
[Vx (xeA —»%e B) - A=B]. It is also proved in Feferman 1975 §5.4 that
"’EXTcz holds under the assumptions APP4~ECA4~DV . The idea is to associate
with each f the class cf =(x|fx})}; ¢ itself is total. Then if EXTcz held

we would have Tot(f) < cf = V, from which one can proceed as in 13.1. With

reference to 13.2 we have the following.

o 6 . g T . at Q
Question: Is Po PEXfcz consistent?
We can of course ask similar questions for the addition of EXTQ£ to sub-theories

like EMO , SO ete., Tor all of which the answer is not known.

13.4 Discussion. mv is a perfectly reasonable axiom if we regard the
entities of our universe as belng syntactic objects and » as literal 1dentity.
It is less evident if the entities are viewed as mental objects and = is inter-
preted as intensional identity; however, it sppears from writings of Kreisel and

of Troelstra (c¢f. Troelstra 1975) that here also Ev is to be mccepted. Then,
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far from being disturbing, the results of 13.1 and 13.2 add support to the basic

non-extensional viewpoint of constructive mathematics as presented in I.Lk.5, 4.11.

1. Status of the power-class axioms.

4.1 Tnconsistency of POW with Join. To be more precise it is shown that

APP+ECA+J proves— POW, the weak power-class axiom of §B8 above. Indeed, suppose

that there is a weak power-class C of V, so Vx[xe C - Cf(x)]AVXIY(YeC AXEY).

let B= > x and A=(x|xe CA(x,x)§¢ B}. Then A
X €

il

a for some a in- C,

and aca &ach @acChA(a,a)fdBeacC A(afda) e agda, which gives a

contradiction.

1h.2 Consistency of POW with EMO . This will be proved in Part TIT.
It may also be shown that SO~FPOW is consistent where SO is the theory of
gets described in 9.2. Even though SO contains J we cannot derive a
contradiction as in lh!l, gince we don't have a universal class V in S

o '

The consistency of further axioms introduced in §7 above (such as 2nd order
comprehension ) will also be taken up in Part III.

15. Adequacy of (subtheories of) T  to BCM.

15.1 Adeguacy of To . The development outlined in §§10-12 provides a basls
for the formalization of BCM in To . Moreover, this is accomplished by
- following the informal methematics as explained in I.1h and I.15. The official
intended definitions come to the forefront in the process of formalization and
must always be kept in mind. When informal concepts and proofs are spelled out
accordingly, one is in a position from which formalization in TO can proceed
directly. (This was illustrated in I.15.4). One may thus conclude that T  is
directly adequate to BCM (as exemplified in Bishop 1967). It is of logical in-
terest to see next how much of BCM can be carried out in theories weaker than To'

15.2 The role of IG. Obviously IG is used only for the theory of Borel
sets in Bishop 1967, which in turn figured in the theory of measure and inte-

gration. As was explained in I.14.13, this was superseded by a treatment with-
out Borel sets in Bishop~Cheng 1972. The latter maekes prima facie use of the
axiom POW, but just to form (a complete integration space) L(X) as a class
from any integration space X; however integration theory only requires the
notion of f being a member of L(X), which is definable without the assumption
of POW. The conclusion is that IG  is unnecesgary for the development of
abstract integration theory in this sense.

8% The role of axioms like POW in abstract constructive inte%ration theory is
studied in Feferman 1978 §4.3. A modified form of POW for this purpose can be

derived _in the the £ 2 f.9. ; 3
ST I PP LT SR 2 gieees Tol5) (o893 above); Shis yields he
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15.3 Dispensability of the join axiom. We have seen in 11.3 that the axiom

J is needed to effect the passage to transfinite types(e.g.to EE Nc and I Nc>'
ce FTS ceFI8
However in actual analysis one never considers families of varying type but only

families of subsets of a given set. In these cases one can try to eliminate J by
replacing the notion of family by that of pre-joined family (11.1). It may be
verified that, except for the theory of Borel sets, this replacement does indeed
leave the treatment of analysis in BCM unaffected.

15.4  Adequacy of restricted induction on N. An example where unrestricted

induction on N was used in an essential way was given in 11.3, namely to prove
that for all o eFTS, NG 1s a class. Similarly, the principle of unrestricted
induction in IG is used only to show that the objects in the Borel hierarchy
actually are classes. But for BCM without trensfinite types and without Borel
theory it appears that only restricted induction on N is needed. This has been
verified in detail by Friedman (unpublished, but ef. 18.2 below).

15.5 Adequacy of EMOr . Putting 15.1 - 15.4 together we conclude thet EMOP
is adequate to all of Bishop 1967 except for that part involving the theory of
Borel sets, and to all of Bishop-Cheng 1972 except for treating L(-) as an

operation from classes to classes. This is of logical (and epistemological) in-
terest because, as will be shown in Part V, EM I 1s conservative over HA.

16. The question of accordance of TO (or its subtheories) with BCM.

16.1 Sets vs., classes. Bishop does not speak of classes and it is questionable

whether he would countensnce a universal class V. In this respect, To is not
explicitly in accordance with BCM. The theory of sets So (9.2) is here in
greater direct accord. Incidentally, S is adequate to the same part of practice

o
a8 .
TO

16.2 The question of operations with unbounded domains. There is no explicit

discussion by Bishop of operations with unbounded domains like k,s and the re-
sulting d=2Ax(x), e=Ax\y(xy), etc. However, the idea of such does seem to be
implicit in his view of operations simply as rules; it is further implicit in his
use of operations such as Cartesian product and power on sets, since no class of
all sets is assumed as an object. It is my conclusion from these arguments that
the use of operations with unbounded domains is implicitly in accordance with BCM.
However, this is clearly subject to debate, especially since it leads us to talk
about combinations like (xx) which appear foreign to practice.

Remark. There is a simple formal device which permits us to replace unbounded
combinatory operations by corresponding bounded ones and still achieve much the
same mathematical effects. Namely, one introduces formal "external' operation

id e ete. (writing

symbols on (variable) classes (A,B,...) e.g. k A’ ©A B
et

A,B ’
the arguments as subscripts) with axioms like:
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SEla (B,

€1Ae (A %A),y Vx ¢ A( i:lA(x) =X),

Vxe ATy e B (kA,Bxy = X ),

,‘?A;‘Fﬁ e (& - ((A 5B) »B)), ete.

Wh&t is lost here is the possibility of reducing recursion (on N, or any i(A,R))
to the combinators, since those reductions meke essentlal use of the possibility
of self-application (xx). Thus in such a step one must supplement the N, resp.

TG axioms, by suitable axioms for recursion operators.

16.3 The other principles. These are comprehension, natural numbefs, join and

inductive generation. If we are to judge the axioms for these separately from the

issues in 16.1, 16.2, we must naturally consider them in weaker forms that apply as
well to sets and are given by extermal rather than internal operations. 1In
particular CA:L is to bhe replaced by SEPl . With such modifications in mind, it
should be clear from T.14, 15 and 10-12 above that these principles are called

for in BCM.

Remark. Beeson has also raised a question (in conversation) about the construc—
tivity of the join axoim, as formulated uniformly using Jj. His point is that the re-—

sult should depend not only on A and £ but also on a proof of Vxe Alce(fx)].

16.4 conclusion. The issues in dispute are those in 16.1 and 16.2. I be-
lieve a case can be made - based on Bishop's views of operatlons given by rules

and sets by properties - that '_“_c_)g_g use of both operations with unbounded domains

and of classes (_ag@_ well as sets) makes TO implicitly in accordance with BCM.

However, there is little support for explicit, direct accordance. 7

Remark. Since EMOP is conservative over HA and the latber is certainly in
direct accordance with BCM, the former is consequently in indirect accordance
with it.

17. Comparison with Martin-ILYE 1975.
17.1 Character of Martin-LBf's gystem. This is a kind of logic-free trans-
finite type theory which is denoted TT. 9) There are terms for objects a,b,c,...,

and terms for types A,B,C,... . The informal idea is that each object is of

a unique type. The basic propositions are of the form
aeldA and as=">b,

where a ¢ A is read: a 1is of type A. 1IT is based on & natural deduction

system (cf. Prawitz 1971) for deriving such propositions from hypotheses of the

form xieAi . For example, suppose one has inferred b{x] e B[x] from x eA.lm)

9) As stated by Martin-IBf, a significant earlier attempt to formulate such a
theory was made in Scott 1970.

10) We simplify here the form of assumptions actually given by Martin-Ibf for TT.
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Then we have terms for epplication, abstraction and Cartesian product related by
the rules '

A
A blx] e (Ixe A) B[x], ()be[‘zf)(a) —5raT » end a eé,(ac) ee(g)[cae]A)B[;;] .

Similarly there are rules for pairing, projection and join (TLx c¢A)B[x]. speciaj_
cases of product and join are (A —» B) and A XB. There are rules for the natural

numbers N using 0, s (successor) and recursion on N. (Finite initial segments

Nk of N are provided for too.) Further, with each A is associated the identity

relation I on A as a function of (x,y)e AXA. Finally, there is a V_ which
— o

is supposed to be the type of all small types, and is closed under the introduction
rules for types; moreover, there is for each Vn a corresponding Vn+l . To prove
+that A is a type in the system one proves A ¢ Vn for some n. The syntax of
the predicate calculus 1s represented in TT via the (Curry-Howard) correspondence
between formulas and types. When a type A is thought of as a proposition then kk

(a e¢A) 1s thought of as 'a is a proof of the proposition A'. From this, the

intuitionistic predicate calculus is derived using the (BrouWer-Hey‘ting) ex-

planation of the logical operators in terms of proofs (I.4.2 above)

Remark. Loglc is agsumed informally in the explanation of the rules.

17.2 Comparison of the system with To . TIT does not provide for inductively

generated types in general, but rules for them can be adjoined along the same lines,

following Martin-LBf 1971. With or without such rules, the system can be inter-
preted in T (each v, is inductively generated by certain closure conditions
involving V

ll
J?M r . )

ol

17.35 Adequacy of TT to BCM. By the preceding, TT (as given by Martin-

LBf) is adequate to the same portion of BCM as EM p ; when supplemented by in-
ductively generated types as suggested in 17.2 it is also adequate to the same

portion of BCM as all of TO actually serves to formalize.

17.4 Accordance with BCM. The types of TT can be interpreted as sets in

Bishop's sense., Following I.14 -I1.15 above it should be granted that IT is in

Airect accordance with BCM, at least insofar as concerns basic concepts and

principles. The one reservation has to do with its heavily syntactic formulation
for the conditions to introduce and use the various kinds of terms. This is in
turn necessitated by the requirement that each object is assigned a type. Thus

we cannot have an 'internal' function f of which it is proved VxeA[fx is a type]
(as done in To by VxeAlCl (£x)]) but must use 'external' objects B[x] of
which B[x] e v, is proved (for some n) under the hypothesis x eA. There are
no indications in Bishop's writings that would lead one necessarily to take such

a Tormal approach. In this respect, the looseness which TO enjoys owing to its

type-free character zeems more in accord with BCM.

11) The exact relationships are not known to me.
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Remark. The syntex of TT is evidently somewhat more complicated than that of
T, - Some simplification could presumably be made by assuming all of intuitionistic
logic at the outset. In any case, it is much easier to form a variety of models

and interpretations of To , as we shall see in Parts III, IV.

18. Comparison with Myhill's and Friedman's extensional systems.
18.1 The character of these systems. The system CST introduced in Myhill

1975 is a subsystem of IZF(N)+DC by which is meant Zermelo-Fraenkel set theory
over the natural numbers (as urelements) with the logic restricted to be intuitio-

nistic and with the axiom scheme of dependent cholces added. The notions of pair

and of function are both defined here just as usuval in ZF : in other words
functions are identified with graphs of many-one relations. One takes (over the
usual axioms of N) the axioms of exbensionality, unordered paiy, union, Ao-sepa_
ration, domain and ranges of functions, the set (A —B) of all functions f:A-B
for given sets A,B (which is taken in place of the power set axiom) and the re-

placement scheme
(Vx e A)T'y ¢ (%,¥) - Hz[Fun(z)ADom (z) =A A Vx e AD(x, z(x)) ].

Finally, the principle DC

(Vx e ABy e AQ(x,y) — VxeAZz[2:N - AAz(0) =x A VneN@(z(n), z(n'))]
is taken, but not AC, since that is shown to contradict Church's thesis in the
system. 12)

Friedman 1977 considers a number of subsystems and extensions of CST (all

contained in IZF/N). The weakest of these is denoted B . In B, induction on
N is restricted, replacement is taken only to form ({x e Al {(x,y))|y e A} for
Ac formulas d), and DC is also teken only for such ¢. The other system_s?
considered are denoted 'I.’l,T‘?,‘I‘5 and Th . We shall not describe them here; 13)

however CST is equivalent to T, .

Remarks. (i) Axioms of inductive generation are not taken in C8T. They are de-
rivable in T)+ ]

(ii) TFriedman 1977 shows that B itself is reducible to HA and is con-
servative for Hg sentences. (Beeson 1979 shows that it is conservative for all
sentences.) By contrast, §+ clagsical loglc is equivalent to Zermelo set theory.

18.2 Adequacy of these systems to BCM. The system B 1s adequate to the
same portion of BCM as the system EMOI* '(cf. the discussion in Friedman 1977 p. 7).
Though formally stronger, the system CST does not seem to have any further power

for the actual methematics involved. The adequacy in both cases 1s indirect.
The definitions of concepts do not follow Bishop's officilal spelled-out definitions,
but rather the corresponding classical ones which use extensionality. For example,

12) The reason why AC but not DC is bl t t : £ will be
) ﬁclpla.ingd 0 e.;g gVi};eiOsz : problematic in the framework o TO
e reader may fin useful to read review of Friedman 1977 which appeared

in Math. Reviews 55(1978) No.7748. i

R

SR
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t he real numbers IR are taken to be equivalence classes of Cauchy sequences.
fs +
The positive real numbers IR  are those xe¢R such that (&n e ) (x> 1 ).
. . n
Thus all the distinctions and use of witnessing data required by Bishop in order

to carry out constructive operations are essentially ignored.

18.3 The question of accordance. These systems differ in two essenﬂial re-

spects from the constructive point of view which is basic to BCM, at least as
described in I.h. Namely, extensionality is accepted, in violation of I.4.5, and
functions are defined in terms of sets (of ordered pairs), in violation of
T.4.6. It is plain then that any set theory which contains the extensionality
axiom and defines the notion of function in this way - and in particular CST and

B - is pot in direct accordance with BCM.

o~

By the reduction of B to HA due to Friedmen (and Beeson) referred to
N 1)

above, B is certalinly indirectly in accordance with BCM. As to C8T,
Myhill 19”(5 gives a constructive reduction via a realizability interpretation.
More sharply, Friedman 1977 obtains reduction of the equivalent 'I‘2 to intuitio-
nistic ramified analysis in levels < €, (which in turn is interpretable in our
To minus IG, cf.Part V below). The system T3 is also reduced loc. cit.

to an intuitionistic theory of one inductively defined set, which is certainly
Justified by BCM and is contained in our '1‘O . Finally, the theory Tl; is re-
Aucible to the full 2nd order theory of species which is contained in EMO+ CA. 3

2
ut the accordance of the latter with BCM is open to dispute.

It should be mentioned that in Beeson's contribution to this volume he
shows for a number of intuitionistic extensional theories of sets how to inter-
pret them in their subtheories without extensionality. This is followed in
Beeson 1979 by certain realizability interpretations to reduce the latter theories

to sub-theories of To , in particular of B to HA (conservatively).

ITT. M}E
Throughout this part models will be understood in the usual set-theoretical
sense and thus will satisfy classical logic. This does not hold for the inter-
pretations to be dealt with in Part IV.

1. A model of To over any model of APP (presented in Feferman 1975 sec. b.1.)
Let

U = <V: App, k) a)d—:P:Pl:Pe) 0, SN’PN>

L]

be any model of the axioms APP of To (in II.5). Here xe N is interpreted as
’
% ew where o 1s the least subset of V containing 0 and closed under
X o x' = By X - (The identification of I as a member of V will be explained

in a moment.) Abbreviations for application terms, pairing, comprehensicn are

1k) Friedmen also gives an informael argument for the constructive justification
of B {(and stronger theories) by interpretation in a theory of species of finite

type.




£ ji‘l‘stv ag in II.5,1L. Now we take codes in V for the class constants and

D kék;'t:'LOns, e.g. as follows:
]N =CO;O)> CnZ = (lJnJZ>J j(a‘)f) = (Q:a:f) and i(a:r) = (B;a:r)-

‘Néxt Cﬂa and €, are defined by transfinite recursion on «; at stage o one

has & structure (¥, Clyy s ea) in which the formulas of S(TO) are interpreted

by taking ey for 'e' and letting the class variables range over Cﬂa . In this

definition we shall also use 'e' in its ordinary set-theoretic extensional sense:
. - 15)

the context serves to avoid ambiguity.

(1) Cﬂoz[IN} and xe N © Xew.

(2) (1) Cly CCly,p 8nd xey .8 wxe 2, for aeCl ;

r oo
(ii) for each elementary O(x,yq,.. ¥ 21 ...,ZP) and n= 0(x,y,2) ,

and for any Yooee ¥y € V and a,l,...,ap 3 Cﬂa we have
¢ = cn(yl,...,ym , al,...,ap) e Cly,, and

X eOH-lc 'f'?(m: C’Zaﬂ E:Oé) |= (D(X:yl;"':ym: al,...,&

p)

(iii) for each aeCf, and feV such that Vx(xeya - fxe ce,, ), we have

c=jla,f) e Clogy, 80d Z ey i & @,y (x 6y & N Y e, Ix);

(iv) for each aeCf, and reCl, we have c=i(a,r)e Cl,,, ond
Xeg emVIS v{Vu[u g8 A Vw((w,u)er »wel)suelloxell ;
(v) cza+l has only those elements obtained by (i)-(iv).
(3) For limit X, Cf, = U CL_ and e = U ¢_ .
A a<n o A Q< 0]
For the final model of To we take
(4) C£ =UcE, and e= Ue, , 80 that for ace C4 and any X,
o o il a
Xed &@Xe. 8 . .

o
The axioms for T, are verified to hold in ®B= (YU, CL, ¢) in a straightforward
way. In particular, by (1) we have full induction on W (with respect to any
properties) and by (2)(iv) we have full induction on i(A,R) for any A,R. 1%
is further to be noted that in checking elementary comprehension for
c= {x](b(x,yl, ¥y s By .,ap)] we need only know the meaning of x e a,;(1<igp).
This is where the predicative character of d) is used in an essential way. A new
idea is needed if one wishes to satisfy stronger comprehension schemes; that is
explained in the next section.
Remerks. (1) V, defined by (x|x=x}, is interpreted as a certain code c, in the
domain V of 9; then xeV has the same meaning in the model as extensionally.

15) In Fefermen 1975 we used the symbol 'n' in place of 'e' in £(T ) in order to
distinguish the two uses. °
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(ii) If the constant d of U satisfles Vx,y,a,b[dxyab ! ]
and (x=y - dxyab=a) A(x £y —» dxyab =b) then the full definition - by - cases

axiom DV is of course satisfied s0 we have a model of To + DV in this ca.se.‘

(iii) There is an obvious modification of the construction above to get a model
of TO starting with any C.EO and €, such that WNe Cﬂo and xeo_TN X ew ,
as long as card (C4 ) < card (V) (so that there is room for all the codes).

2. Modification to obtain a model of T+ CA, - (Feferman 1975, Addendum).

The argument here will be much less constructive. Starting with any model 9

of APP as in §1, let M= (¥, P(V), ¢) where P(V) is the set of all subsets
of V and ¢ 1s the standard membership relation. To each stratified formula
¥y, 2, X) is assigned a Skolem function Fw(x,z,g) = X which has the property:

m ‘—‘ {HX\]J(X,X,_Z_}_, X) — W(XJZJ:Z'-’F,h(X’Z’—%))]

‘Given any stratified O(x,y,2) take §(x,y,%,X) =Vx[xeX & §(x,y,2 )], and

Gd):Fth , 80 G(b(z,'{i) = (xev| M | (b(x,z,?:)]. We choose codes fn_for the F‘l‘

for each stratified { and in place of (2)(ii) in §1 take, for n= P(x,y,2,X)

(2)(ii)" for each x, Yysees¥y eV and a.l,...,apecla we have
c”"fﬂ(x’yl""’ym’&l""’a‘p)ecgowl and

XEgyp© & X eF‘h(x?yl,...,ym, Al,...,Ap), where Aim[x]xeaai]ifir eacg
=L, .0,

With the resulting (9,CZ,¢) then defined as in §1(4), let 2" be the extension
(x|xea}S V for each a in C4 , and let Cfl%m{a*laecﬂ}. Then C£* is closed
under the F‘V and so SJIX @ (QI,CEM,G;) is an elementary substructure of M. It
follows that for each stratified ¢ and any sets A,
[x]‘m% = (I)(x,yl, ceea ¥ Ay .,AP] (= G(b(y_ ,A)) in ce¥. Finally it is proved by
induction on stratified ¢ that

(U, CLye) l“ (D(x:z: 8) o ‘m* = q)(xnz:ﬁ*)-

v, A We have
2 )P

From this it follows that (%, C£,e) is a model of T0 +CA, -

o since thelr 2nd

,x,,
order definitions in M are absolute.

%. The recursion-theoretic model. Take V=w and App(x,y,2) & {x) (¥y) = z

in the sense of ordinary recursion theory. Taking O and x y»x' to be standard,
we can easily choose constants k’s’d’ﬁ’pl’Pa”SN’PN so as to obtaln U satisfying
the axioms APP. Note that DV is automatically satisfied. In addition then to
TO (or TO +CA2 if we follow §2) we also have Church's gklesis for partial
functions

(CTE) vf Te Vn(fn ~ (e)(n))

true in (Y, C4, ¢) simply by teking e=f. NN is Just the class of recursive
functions. Hence CTl is also true. On the other hand CTO , being classically
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false, is not satisfied.

With reference to IT 10.8-10.9, it may be seen that <No>ceFTS is inter-

~ preted in this model as the hierarchy HRO of hereditarily recursive operations

as the hierarchy HEQO of hereditarily effective operations (cf.

: ol T3
Troelstra 1973, 1l2k-127). Going on to 10.11-10.12 one sees that the reals IR

are interpreted as in recursive analysis, and so on for C([a,b], R), etc.

Finally, with reference to 12.1, it is seen that Gl, @2,...,®a, ... are inter-

preted as forms of the Church-Kleene constructive ordinal notation classes.

Remark. Any "enumerative'" generalization of recursion theory gives rise to a
model of APP which, when extended to a model of TO as in §1 yields other
interesting interpretations of its concepts. For further examples of such and
§§5-6 below cf. Feferman 1978, 3.2 -3.k4. '

4. Independence results from BCM. Since all of BCM can be safely formalized

in T, any model B =(U,CL, e) of TO automatically provides independence
results for § which are classically true but for which mJﬁi©. For example, if
we take the recursion-theoretic model ¥ of §3 to begin with then the example
due to Specker of a recursively (uniformly) continuous function on [0,1] which
does not take on a recursive minimum shows that the theorem of the minimum is
underivable in BCM. Indeed, to be more precise and even stronger, by §2 it is
not derivable in To-fDV-I"CA2 with classical logic. Similarly for the other
examples giving 'peculiarities' of recursive analysls and of the Russlan achool

of constructive analysis (ef. I.7-8).

Remark. The obverse of the point here is that if ¢ is & mathematical statement
for which (classical) T, * Dy *CA, ¢ then ¢ has & recursion-theoretic inter-
pretation or 'analogue'

5. Generating models of APP+~DV.
model 91 of APP from the following information: (i) a pairing operation

p:v* -1, v and projections Pt V=V for which P, (P(xy,x,)) = x
[

Given any infinite set V, we can generate a

)
(ii) an embedding of (w,0,') in V, and (iii) any collection & ofiparti&l
F:V >V for which card (F) < card (V). Then we can define constants for 9

so that APP + Dy is satisfied and pxy = P(x,y), pix = Pi(x), serwrf ,(erf)z n
and such that for each Fe § there exists fe¢ V which represents F, i.e.

fx = F(x) for all x. (By non-extensionality, each F will have many represen-
tations.) To obtain o we simply use pairing to build codes for the constants
k,8,... of ¥ as well as for each F ¢ . Then we regard the axioms of APP as
inductive closure conditions on the relation App(x,y,z). In particular (seeing

tq it that sx and sxy are always defined In a simple way) one wants

X2 2UAyZ2WAUW= vV — (sxy)z ~ v.

j
i
|
!
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6. Full set-theoretic models of APP*—DV . In particular, let V==Rx (the set of

gets in the cumulative hierarchy of rank < A ) for some limit A > w. Define

0,'" and predecessor on w and pailring and projections as usual. Let & be the
class of all functions which (as sets) are members of Rh‘ By § 5 we obtain a
model ¥ of APP-PDV in which every set-theoretic function is represented.
Proceed to build a model B = (A, CL, e) of T, *D,+CA, over ¥U. In B, W
has the same elements as ® and (N - IN) consists of representatives of all
functions from w to w. For the type symbols 1=(0 5% 0), 2=(1 50), etc.
wmhwa(%/ﬁ) z (w—-w) and “%/%)g“www)am,@& Further

(m/ =E9 is isomorphic to the reals in the set-theoretical sense, and the class

of all functions from R +to IR which preserve = is isomorphic (modulo the:

R
defined equality between such functions) with the set of all real functions in
the set-theoretic sense. Now C([a,b], IR) consists of representatives of all

uniformly continuous functions.

Suppose A is inaccessible. Each element a of @l has a naturally
associated ordinal |a| < o, and W = (lal : a e@l}. More generally for any
®, , We have w‘a, = {]of:b GGa] . The Borel hierarchy in :N:N as explained
in II.12.2 consists of representatives of the full Borel hierarchy in Balre space

in the set-theoretic sense.

7. Generalizing classical, recursive and constructive methematics.

7.1 Tt follows from §3 and §6 that any mathematical theorem ¢ of
TO4-DV + CA2
cursive methematics and of classical set-theoretic mathematics.

with classical logic automatically generalizes a theorem of re-

7.2 It also follows that for any sub-theory T of ToaoDV + CA2 which is
recognized as being constructively valid (8o, the logic may be restricted) any
mathematical theorem ¢ of T generaliZzes one from classical, recursive and
constructive mathematics. In particular, this applies to T =To(if I1.15.4 is

accepted).

Remarks. (1) In a certain sense Martin-Ibf's TT can also be considered to have
both set-theoretic and recursion-theoretic models, so 7.2 would also apply to it.
(i1) Myhill's CST (and related theories) has immediate set-theoretic models,

put no direct recursion-theoretic model and, as we have seen in II.1l7, its

constructive interpretation is in dispute.

8. Term models. In the framework of TO these have been given by Beeson 1977
(1.3) which is followed here; however, the ideas are familiar from combinatory
calculi (ef. Barendregt 1971, 1977). As will be explained in 8.2, the method
works to give & model U of APP but not of APP'FDV .

8.1 Reduction of terms. Let AEEACTEER range over application terms ag ex-
L=
is defined inductively by the

plained in II.1.3. A reduction relation T, 2 T,
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1 1

11lowing clauses, where we write n for o\—'.}’l:‘/:

T2
T > . > T
Tl,z!TEATE—-»TB—')Tl——Tﬁ
‘\ ">*/\ > T > T
T2 T NT 2Ty 2T T
KT Tp 2T

(v) STlTeTBZTlTi(TgTi)

(vi) py(pm7,) 21 5 py(RTyTL) 2Ty
(vii) _pN(SN'r) > T

(viii) dnnT T, > T nf{m > domTT, > 7T

l'a2='17 12 2
(ix) T2 T, only as required by (i) - (viii).
We shall use Ty > 'r2 for literal identity of terms. Ty is sald to be in normal
form (9_33 irreducible) if whenever T > 5 we have Ty o= Ty o The set of terms

in normal form is denoted by NF. Note every term reduces to a term in NF. The

Church-Rosser theorem (or ¢ property) for > is proved by standard methods:

T
"(‘ - *
> &deaz'r . ’r/\rr,.
N

CR. If 7> 1, and T> T, then for some T

1 2 1 n, 72
\./*‘
As a corollary one hes unicity of normal form in the sense that U
>‘ [ w v
Tl,TgeNFATZTlAT_T2 » Ty o= T,

8.2 The model of normal terms. The domain V of the model 9 taken by

Beegon 1977 is NF (which is also used here to denote U ). The application re-
lation is:

And Tl,'rg,'r3) o Ty T, Ty € NF A (Tsz;? > T, ).
The constants, all of which are in IF, denote themselves in this model. NF is
a model of APP because all n arein NF and n #m for n # m. The following
easy lemmas are proved by Beeson, Where APPm denotes AFP plus the N -closure

axiom Oe NA Vx(xelN —»x'e ).

(a) If T e NP then APPml—('N).

b) If T,,7

12

)
(b) are closed terms and Ty > T then Appm I'(Tll W}Té?l ATleZ’ .
(e) If T is closed and APPJI\I (r4) -then Fr*e¢ NF(r > ™).
(4)

4) If T is any sub-theory of T + CA, with APPp € T and if T F(Tem)

then for some new, Tk (7= n).

When coupled with realizability methods in Part IV the lemma (d) allows one to
obtain the numerical instantiation property and the disjunction property for such T.
Remark. An essential difference of I)V from the other applicative axioms appears
here. In the proof of Lemma (2) we use that if n#m then APR b fn AR. To
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try to obtain a corresponding result for DV we would want that if Tl’ T2 ¢ NF
and 'rl%’rg then APPIN""DV }-(Tlié T2)- But that isn't so- for example, k,0eXNF
and k £ 0 but (k#0) is not provable (since we can construct an applicative
model G in which k=0). For the same reason we can't prove the disjunction -

property for TO + DV . l6v)

8.3 An extensional term model (Barendregt 1971). Instead of taking V as in
8.2, one takes V to be the set of all equivalence classes [T] of terms for the

least equivalence relation = such that Ty > Ty =Ty = 7, . Then we take

AP.P([TJ_],[TE],[T5]) < TlTE E’r5 . By the CR property if ar21 equivalence class
contains some T ¢NF, that 1 is unique. Then one sees that [n] # [i] whenever
n %m so that we obtain a model of APP. Since every application term 7 denotes
[7] in the model, it satisfies (7i), i.e. every operation here is total. In
addition the model may be shown to satisfy the axiom of extensionality for terms.
This shows DV to be essentially required for the non-extensionality result of

I1.13.1.

9. Continuous function models. There are again models due to Beeson 1977 (1.2),

once more without DV .

9.1 Continuous partial functicon applicatlon. The idea here is to form a model

of APP which ig a kind of untyped version of the class of countable functionals

of finite type (which are herediterily continuous in a certain sense) due to Kleene
1959 (and Kreisel, same volume). One takes V to be the class of all partial
functions £ from w to w. A relation App(f,g,h)(or fg= h) is defined for

members of V as follows. For each n, the value of h at n dis supposed to
depend on only & finite amount of information about g. Let (f)n=>\x.f(x,n)
with (x,y) & primitive recursive pairing function. More precisely, h(n) is ob-
tained, when defined, by (;f‘)n acting continuously on (g)n so that if

(f‘)n((_g'g,; Y(m))=0 no information is given by the initial segment (Eyn(m), and if
(f‘)n((é;)(m)) = k+1 then k is unique and we put h(n)=k. It is shown by
Beeson that the natural numbers can be embedded in V and the constants inter-
preted in such a way as to form a model G of APP. (We can't do the same for
APP+DV because definition by cases on V is not contimious.) Now form a model
8 of (classical) T, +CA, from APP by §2.

9.2 Consistency of continuity properties. It can be shown that the model @

satisfies the following statements of interest:
(1) Any operation f:N - N 1s continuous (in the product topology).
(ii) Any function from a complete separable metric space X to a separable

hetric space Y is continuous.
16) Another explanation of the difficulty is due to Klop 1977, who has shown that
there is no Church-Rosser theorem for the calculus with the > relation augmented
as follows to correspond to the Dy axiom: d.*r'r'r5'r)1L > T3 and Ty,T, el\lF/\'rl;é'rE—a

d Tl'l'g 1'3 Tzl) = Th' .
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Tt follows that these continuity properties are consistent with TO+ CA,, even
allowing classical logic. Moreover, by modifying the model so as to take V to
be the class of all partial recursive functions we can also satisfy Church's

{ thesis OT2 for partial functions. Hence, to the extent that constructive mathe-
matics is contained in TO'FCA,2 + CTQ , we canndt prove constructively the

existence of discontinuous functions on the spaces of interest to us in ordinary

analysis. The main results of Beeson 1977 are in certain respects stronger

positive results for a variety of intuitionistic theories T, to the effect that

— " —— ——— —

it can proved to be continuous. This will be explained more precisely in PartIV

(ef. also Beeson's corresponding results for intuitionistic theories of sets in

this volume).

10. Topological models. (The material of this section and its application in 11.h4
was developed in collaboration with my student Jan Stone.) Let S be a topological

space and & & family of partial continuous functions from S5 to S with

card (&) < card (S). w is assumed disjoint from S and is considered with its
discrete topology. We use +, L for the operations of disjoint sum of topo-
logical spaces. Let J::[O)* be the closure of {0} under pairing. Then de-
fine 8 for ae¢d by

=
So==w4'S and S(a,b) = Sa X Sb .

Finally, take V = 2l Sa‘ Thus pairing and projection make sense on V and we
agd

have ® S V. A model 9 = (V, =, k,ﬂ,p,pl,pg,d,o,s of APP 1s generated as

N).pN)
indicated in §5, only now defining dxyuv Just for x,y e w. The choice of

codes can be arranged in such a way that

for each f, the partial function Ax(fx) is continuous on V.

We illustrate the argument for k,s where we take k=1, kx=(1,x), kxy=x, 8=2,
sx = (2,x), sxy=(2,x,y) and sxyz = xz(yz). It is proved by induction on the
generation of the relstion App that if £ —f and X —x then £'Xx - fx.
For example, if f is (2,x,y) = (2,(x,y)) and £*¥ & f eand 2z* w2 then in a
suitable neighborhood of £, we have ¥ = (2, x*, v ) where x¥ - X, y* T
Hence by induction it follows that x*z*(y*z*) - xz(yz). Again the model does

not work to give the axiom V Dbecause full definition by cases is not continuous.

11. Applications to independence of Cantor-Bernstein statements.

11.1 Cardinality relations. These relations between classes are defined in

the languege of TO as follows:
(1) (X~Y) - E,g[f:X - YA Y »XAVx eX(g(fx) =x) Ay eY(f(gy) =y)]

(i (X%lY)n—-) (X - Y A Vx,,x. ¢ X (fxl=fx2 -9x1=x2)]

)
2
(ii1) (X<2Y)”?-938[22Y -»X AVxeX Ty eY(gy =x)]
(17) (X =<5Y) o B2(¥~ X+2),
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(The operation XO+Xl is E Xi . ) The statement of Cantor-Bernstein
iel0,1)

can be given in one of three forms corresponding to (ii)-(iv):

(cB), X £,

The converse in each case is trivial. It will be shown that each of these state-

Y/\Y:s.ixy—)X~Y.

ments is constructively unproveble, by suitable independence argumentg. The first
such results were obtained by van Dalen 1968 in the informel framework of Brouwer's
theory of free choice sequences where maps between sultable topological spaces are

necessarily continuous. We give different arguments here for the framework of ‘I‘o .

11.2 Independence of CBl from 'I’O + LDV+ CAE . This is by failure of the re-

cursion-theoretic analogue of CBj . Let # = (U, CL, e) Dbe a model of

To +LDV + CA2 built from the Structure U of ordinary recursion theory in §3.
Let X=WN and Y S IN any member of Cf with W “l Y but Y not recursively
enumerable (e.g. such Y can be chosen co-r.e.). There is no map in the model

from IN onto Y, otherwise Y would be r.e.; thus ]N7[4 Y.

11.7 Independence of CB, from TO + CAE . Here we use an example from van
[
Dalen 1968 but apply §10 instead to get the independence result. Let X bhe QJN
considered as a topological space, and Y =X+ E where E consists of a single

point, thus isolated in Y. There are continuous maps F:X — Y and G: Y —» X.
onto onto
Let S=X+Y and & = (F,¢}. By §ll we form a model 8= (¥, C4, e) of T *CA, with
F,G represented in 91, and every Ax(fx) in o being partial continuous on
V=L,8,. Thus if X~Y in this model we would have X homeomorphic to X+E,

which is false.

Question: 1s CB, independent from 'I‘O~I~DV + CA 2? That would of course follow if
4

the recursion-theoretic analogue of Cl?)2 is false.

11.4  Independence of C‘B5 from T _* CAa . Here we use an example due to
Hanf (cf. Halmos 1963) of a pair of topological spaces X, 2 with X~X+Z+7
but Xny +%, vhere ~ is the relation of being homeomorphic. It follows for
¥Y=X+7Z that X~Y+Z 80 CB5 fails for this topological interpretation. Now
we form a model § of TO+CA2 over 8=X+Z+Z Dby §L0, in which the maps

giving the homeomorphism X~X+Z+Z are included and every map is continuous

on V. By Hanf's result, X 74' Y in the sense of cardinal equivalence in this
model. (Another example of ven Dalen 1968 cen also be adapted to this purpose. )

Remark. The recursion-theoretic analogue of CB5 is true by Dekker~Myhill 1960.
In their argument the fact that the universe V is N is used in an essential
way. This is an example of & positive recursive analogue of & classical set-

theoretic result which is not subsumed <under & theorem of To or even ‘I‘of CAE'

Question. 1Is CB3 independent from TO+DV + CA2 7
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S12. Avmodel, of the weak power-class axiom. In the preceding we mostly chose

diffei'ent models of APP to get various consistency and independence results; the
. ~i,t§1;ly,exception was in §2. Here we modify the construction of CZ and ¢ so as to
get a model of POW. This will also satisfy EM_+D,+IG but not the join axiom
J. (Recall inconsistency of POW with J from TI.1k.1).

Let 9 be the recursion-theoretic model of APP+ DV . We introduce a new
code (¢ for the “"class of all classes" . DNow instead of defining cza, €y
similtaneocusly we first define C£ and then e. (This procedure would not be

possible 1f closure under join were required.) Take CEO ={IN,¢} and

r U
CLiq = cﬂnu[ck(l,g)]k = "0(x,y,2) with { elementary and SERERFL IR

U {i(a,r)|e,reCl ]
Put CL = U Cﬂn . For ace CZn we define x € & as follows:

n<w

xeoJN « XeWw , Xe, f «»xeCé .

For ceczn » X€ 1 C eXE C. For o= Ck(l)?:)’ K = r(b(x, laé)-l , with the

T+l

a; e CJ&n , and c ¢ C.@n we put
X eI’H‘lc <« (QI, ce, en)lz (b(X,_}_’_ » f.'_) ;

and for a,reC4 and c=i(a,r) with cd Ce, we put

X e c wVICow{[WueaAVw((w,u) e ¥ »Wel) wUel] wxell.
= n n

n+l
It may be seen that the resulting model satlefles I.Mo + 1D
§3 ). PFurthermore it satisfies

Vx[x e € e T(x =X)].

v 16 (plus CT,, as in

Given any A we can form a weak power class P(A) of A by taking
P(A) = {fAb|be ¢ ) where fAB = ANB.
Remark. One can also arrange to sabisfy CAQ by using the method of § 2.

CAQ can't be derived from CAl + POW  without join,

IV Realizability interpretations

1. Background. The distinctive effect of restriction of the loglc to be in-
tuitionistic is of course not shown by standard models of the kind considered in
the previous part III. The following are some special properties which are
typically enjoyed to some extent or other by various intultionistic theories T:

(i) The disjunction property (DP), i.e. if T (V) then TR § or T ¢;

(i1) the existential definability property (ED), i.e. if T |} Bx §(x) then for
some term T, we have T | O(7); and for T containing arithmetic: (iii) the
property (ED)JN holds, i.e. if T}l #nd(n) then for some (specific) n, T 0(n);
(iv) T is consistent with the schematic form of Church's thesis cry s (v) T is
closed under Church's Rule CR_,d.e. if T F Vn3md(n,m) then for some (specific )}

i
{
i
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e, TFVnd(n,{e}(n)); and finally for T containing function variables: (vi) T

is consistent with various forms of the axiom of choice AC, and is closed under

corresponding choice rules. While, as remarked by Kreisel and Troelstra, these
Properties are neither necessary nor sufficient for T to be constructive,; much

of the metamathematics of constructive theories revolves around their verification.

The basic methods to obtain such results are by realizability interpre-
1 .
7) These were introduced by Kleene in 1945 with his notion of recursive

realizability. Many extensions and variants have since been applied, due to

tations.

Kreigel, Troelstra, de Jongh, J.R. Moschovakis , Friedmen, Beeson and others. A
rather complete survey can be found in Troelstra 1973 Ch.III or Troelstra 1977a
§4; it may be helpful for the reader to look at these references in connection
with this part.

It is useful to distinguish formal or internal realizability froﬁ informal

or external realizability interpretations, though very often these are coupled.
In the former one associates with each formula ¢ of &£(T) a new formula (br with
one additional free variable f, written fr{. In the latter one defines a -
relation between mathematical objects f of some sort and formulas (b (Kleene's
recursive realizebility was of this type: he defined a relation between numbers
£ ew and formulas of arithmetic.) External realizability interpretations can
often be regarded as the reading of a formal fr{ in a specific model M; that
is the approach we shall take here. In any case the idea of f‘rd) is that f
packeges the constructive informetion (witnesses, proofs) which verifies 4), the
definitions are thus closely related to the informal interpreﬁation of the logical

connectives in I.4.2.

By a realizability interpretation of £(T) in £(T') is meant an association
(b o frd with each fornula ¢ (of the language of T) of a formula frd (of |
the language of T') having at most one additional free variasble f. (Thus every
sort of variable of &£(T) must also be included among those of £(T').) This

interpretation is said to be sound for T in T' if for each theorem 0 of T we
have a term T such that T'F(tr0).

o. Tormal realizability of &(T ) in itself. This was introduced in Feferman
1975; 18) variants from Fefennanol976b kand Beeson 1977 will be explained below.
Wwhen § is written 0(x,X) we write fr{(x,X) for f£r{; when concentrating on
a distinguished variable as in Hx ( we may write fr(&x ¢(x)). The interpre-
tation is defined inductively as follows:

17) Another *method to obtain some of these properties is due to Kripke; cf.
Smorynski's chepter on Kripke models in Troelstra 1973. These models will
be applied at one point in Part V below.

18) It was pointed out by Beeson that the clause there for disjunction needed
correction, as given in (iii) below.
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(1) [£r0] = ¢ for ¢ atomic
(13) [fx(dpAay) 1= [(p)rdA(p,f)ry]
C(dd) [£x(dve) ] = [P f eWA(p £ =0 (,2)r 0) A (P A0 5 (p L) §)]
av) [£r(d - )] = Vzlzr( > (f2)r ]
(v) [£r(vx0)] = Vx[(£x)r{]
(vi) [£r(Exd(x))] = [(pE)r O(pyf) ]
(vii) [£r(Vvx) 1 = X[ (£X)r )
(viii) [Fr&O(X)1= [CL(pE) A (P E)r (P 1) ] 19)

i)

i

n

u

When it is necessary to distinguish this from other realizability interpretations
to be defined later, we shall subscript this r as r,. Note that fr(— §) is

equivalent to Vz — (zr ).

3. Essentially (V,H)-free formulas. This class of formulas are such as can be

realized in a canonical way (if at all) and for that reason play a distinguished
role. We call { essentially (V,¥)-free if it is built up from formulas of the
form (7¢), CL(T), (TeX) and (Tl:TE) by A, — and V applied to either sort of
variable. Note that the existential information in the first three formulas,
written as Ex(T=x), T(T12X) and HEx (rxxA xeX) can be represented by the

application term T iteelf. The following lemmas are easily established for r =Ty

(1) For each §, the formula (frd) is essentially (V,H)-free.
(2) With each essentially (V,H)-free ¢ is associated a term 0 with free variables
contained in those of { such that APPL FId - (myrd)].

(3) If O is essentially (V,H)-free then APP [-[(frp) - 6.
Here (2) and (3) are proved by a simultaneous induction in order to take care of

the case of implication, where we put T(‘b-»‘l‘) = k(’rq’). Because of (2) we call
Td) the canonical realizer of ¢ for ess. (Vv,d)-free 0.

Remark. TFormulas of the kind that we call essentially (V,3)-free are often called
almost negative in the intuitionistic literature.

h. The scheme 'To assert is to realize' . This scheme consists of all formulas of
the following form:
(A-r) b < (80)(fr )

which expresses equivalence of the assertion of { with its realizability. By (2),

(3) of §3 each instance of (A-r) in which ¢ is ess.(V,d)-free is derivable in

APP]N . The scheme as a whole 1s itself realizable:
(1) for any formula { we can find a T such that

APP Frr[¢ <« &£ (frd) 1.

19) The clause for (§ -¢) does not completely mirror the requirements for & con-
structive proof as expressed in IT.4.2, which calls for constructive re-
cognition of Vz[zrd —(fz)r ] when zrd is read 'z is a proof of §'; similar
remarks apply to the universal generalization cases.
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For the proof one defines Ty Ty which realize each implication. Thus Ty is to be
chosen so that Vz[zr{ — (ty2z)r (& (fr§))]. This makes use of the fact from §3
that (zrd) is ess. (V,T)-free and so has a canonical realizer. The converse

construction 7, is equally easy, and uses the fact (3) from § 3.

Remark. (A-r) is suggested by the basic tenet of constructive reasoning I.4.2,

that a statement is to be asserted only if it is proved.

Note. It may be necessary to distinguish (A-r) for different realizability inter-
pretations. For example we write (A-rl) for that of §2.

5. Axioms of choice. The most general scheme considered here for the axiom of

choice takes the form:
(AC) ¥x eX Ty O(x,y) — BFf ¥x e X O (x, fx)

for variable X. Speclal ceses of this can be formulated for each term A which
denotes a class, e.g. N, N — IN, etc. We write (AC)/A

the scheme to X = A . There is a close connection between the schemes (AC) and

for the restriction of

(A-r); we have:

(1) (A-rl) implies (AC).

For suppose Vx[x eX — Ty O(x,y)]. By (A-r) for r=r; Wecan find g such that
¥x,z{ z2r(x eX) — (gxz)r Ayd(x,y)]. But by clause (i) of the definition of Ty,
(xeX) - or (xeX), so p,(gx0)r(x, p,(gx0)). But then O(x, p, (gx0)) holds,
so f= )\x(pe (gx 0)) is a choice function. (Note that the proof just uses the

APP axioms.) It may be of interest to the reader to see which instances of (A-r,)
are implied by (AC); they form a wide class.

While full (AC) will thus be reelized in the rl-interpretation, this will
not hold for other x; to be considered. A special consequence of (AC) which
will be realized even when (AC) is not, is the axiom scheme of dependent choices:

(DC) Vx X By ¢ XO(x,¥) - Vx_ eX GF eX [£0 =x A Vnd (fn,£n')].

Using the axioms APP+IN we can derive (DC) from (AC) in essentially the
standard way. Namely, given g such that Vxe X[gx eX A O(x,gx)] we define f
by primitive recursion to satisfy f£0 =z X, fn' = g(fn). Then it is proved by‘
full induction on IN that Vn[fnlA O (fn, fn')].

6. The theory TC()"> . We do not have a soundness theorem for ry - realizability
of 'I.‘O in itself. The problem arises with the elementary comprehension scheme
CAj(i.e. ECA). To realize e (y,2) =X AVx[xeX & O(x,y,2))} for

n= 9(x, y, z) we have to show how to convert any u with ur{(x,y,2z) into a
w such that wr(xe X) where x=cn(y,g_) and conversely. But for rsr, we
have wr(x eX) « X ¢ X. Thus we would have to obtain ¢ < Gu(ur ¢ ), which is
only generally true for essentially (V,¥)-free formulas. However, this difficulty
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suggests an obvicus modification of CAl to a scheme CA:E_") , Where CAl is taken
: conly for essentially (V,3)-free ¢ . By EM((;) we mean the axiom system
P+CA( ) o+ I, and by EM( )l\ , the same theory with induction on W restricted.
k‘We clalm that EM( )r serves to obtain the same mathematical consequences in BCM

'"a,‘s M, p (TI. 10), gn_d similarly for EM( )r + J, EIM((D') +J in place of EM + J,

BM, + J, resp. (1I.11). The reason is very simple: in the formalization of BCM
by following Bishop's official definitions, we never make essential use of VvV or
% in defining properties of sets - since the witnessing information is always
required to accompany the presentation of the elements of those sets (recall I.15).

Hence CAl-

when we enter the theory of ordinals and Borel sets (II.12). Here one must make

always suffices in place of CAl . The only difference appears

a slight modification in the IG axiom to achieve the same results. For example,
previously we ‘book 6, =i(A,R) where A = (%|x=0Vx= (p x) VX= SuP]N<P2 x)7,
R=({y,x)] (x..(pex) /\y p2x) Vx= zsup]N(_'p2 x)AIn(y = p2 xn)}. Thus R is defined
using ® in an essential way. We now modify IG to IG(') by teking i(A,8)=1I
to satisfy instead

Vxe AlVy,z[ (2,y,%x) e S -»yel] »xe I}

as the closure axiom and then taking a corresponding induction principle. This
has the same effect as the previous IG with (y,x) ¢ R « #z[(2,y,x) e §]. Let
T<_)= EM(—) +J+IG<') . It is thue seen that T( ) serves to obtain the same
0 o o i 7
mathematical consequences in BCM as T, (IT.10~-1I.12). (The theory T, was
introduced in Feferman 1975, where the soundness result of the next section was
outlined.)

7. Soundness theorem for rl - realizability of Té') in itself. Tt is usually

a routine matter to verify soundness of the axioms and rules of intuitionistic
logic for any reasonable realizability interpretation (ef. Troelstra 1973 Ch.III).
For the present ry interpretation, soundness of the logical part of Tc(;> is
easily verified using the APP axioms to provide the requisite constructions.
Going on to the non-logical axioms, it is straightforward in each case to verify
soundness of each axiom or scheme on the basis of the corresponding principles
themselves. The reagon in the case of CA§_-) has already been explained in §6 3
by use of the properties of essentially (V,%)-free formulas from §5. In the
case of the induction scheme on I we are required to give a T which realizes
0(0) AVR(D(x) - O(x')) - Vx(xe W - §(x)). ‘This must show how to convert any 2z
2, with zr 0(0) and Vx,wlwr{(x) - (zy20)x O(x') ] into some u=r 2,2, Wwith
C¥x(x el - (ux)rd(x)]; u is defined by recursion (uniformly from Z s zl) to
satisfy uw0=z_  and ux' = 2 x(ux) and the required conclusion is proved by
induction on I . One proceeds similarly for the realization of IG(“) . In
this way we conclude that the following holds for v = Ty
(1) with each theorem { of T(()_) can be associated a term T such that Tg”)HTr(D).
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Corresponding results can be obtained for the various subtheories ( )P
EMé ), EMé )-FJ which have been considered. In addition, if we take CA( ) to
be the restriction of CAE to essentially (V,&)-free stratified formulas, we

get:

1

Now as we have seen in § 4, the scheme (A-r) is itself r -realized in a

(2) r, - realizability is also sound for T(_)-PCA(-) in itself.
———— [e) 2‘__-..__....._..—..

trivial way; moreover (A-r) implies (AC) by §5. Finally, it is impossible

to realize 1 in a consistent theory, since (frl;) & L. We may thus conclude

that:

(3)  ry-realizability is sound for Té-)-f(A~r) in T(_) and the same holds for
T(()')+CAé")+(A-r) _iETC()')JrCAé'); hence T( )+CA( )y + (A-r) and (there-

fore also) Tg_>-FCAé—)-+AC are consistent.

Coupled with the following we see now the metamathematical power of realizability

interpretations applied to theories dealt with in this paper emerging.

8. Consistency of Church's Thesis (CT_ ). Let T ng')-+CAé—)+-(A-r) for r=r

Then T is consistent with CTO , by the following argument. We read rl-reali-l
zability in a model of T whose applicative part is the ordinary recursion-theo-
retic model of IIT.3. It is to be shown for any ¢ that VniEmd(n,m)-ZeVnd(n,lel(n)’
18 realized in this model by suitable £. This is to convert any @ realizing
VYn3mO(n,m) into (fg) realizing HeVn O(n,(e}(n)). Now from the hypothesis
we have Vn[(pl(gn))r ¢(n,pg(gn)) ]. We take {e)(n) = pe(gn) for all n, from

which description f 1s obtailned very simply.

9. Closure properties of Té') and related theories.

- realizebility. In order to obtain the disjunction and existence

2.1 r

2

properties for Té-) we modify ry in a manner due to Kleene, (called g-reali-

zability, cf. Troelstra 1973 p. 189) ; this is here denoted by r Only the
following clauses are varied:

o

(131)" [Er(OV )] =[Py fe NA (02 =0 pA(RE)r§)] A [pyf # 0= ¥ A (pyE)7 4]
(i)' [£x(d - ¥)] = V2[0 A (zrd) - (£z)ry]

(vi)'  [£2 Bxp(x)] =[0(m,0) A (py)r (ppT)]

(viid)' [£r@XQ(X)] = CA(p,T) A O(p ) A (pyf)r 0(p F) -

Tt is easily checked that the soundness theorem for ra-realizability holds for
each of the sub-theories of T( )-+CA (=) considered. 1In addition, (A-r) is r, -

—— o——— po—————— {——————————r———ey ot

realized Jjust as before.
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9.2 . The ED property. Suppose T 1s any theory for which we have soundness

,of r, - realizability e.g. any of the theories just indicated. Then if T | @x{(x)
there is a term T such that T F tr(@x {(x)). Hence by clause (vi)' for r, we
‘have T | @(PQT). Thus T enjoys the existential definability property.

9.3 The DP ELEI?) ED]N ) &
due to Beeson 1977. Let T be a subtheory of To JrCA2 for which we have
soundness of re-realizability of T in T. Assume also that APPJN 7T It was
stated in ITT.8.2 that if T} (T e N) then for some n, T (T =n). (The proof
made use of the model NP of normal terms.) Now if T} #n{(n) it follows that for
some T, T p (pg'r) e:lN/\d)(,pET). Hence T has the ED), property; it is a corol-

lary that T has the DP property.)

propexrties. For these we need a special argument

Remark. It is a little more work to’obtain closure under Church's rule. One way
is to formalize the properties of r
T within T.

5" realizability of any finite subtheory of

10. Inconsistency of TO with AC. We next turn to the question of obtaining

corresponding properties for TO. This section shows that r -(or r realiza-—~

-)
bility is not sound for TO , Bince ’I‘o is inconsistent with lAC. Tiis will lead
us to consider a new realizability interpretation (which does not verify full AC).
The proof of contradiction of TO+AC is by an argument due to Friedman (originall.y
given for T +D +AC). Let X= {x| En(xx e N —»xx #n))}. Recall here that we are
using the conventions M {(n) o Ex(xe WA O(x)) and (xxelN) eFy(xx ~ YAy e IN) ,
i.e.dn(xx ~ n). Trivially by definition VxeXIn[xxeIN - xx # n). Hence if AC
is assumed we can find an f such thet VxeX[fxelN A(xxelN -xx £ fx)]. In
particular, f e X —»ff e N APf J ff so — (feX). Note that Vx[xx el —xe X]
holds since we can always find n ,l.xx using definitlon-vy-cases on W. Hence
—(xeX)—o- (xxe¢ N). It follows that - (ffeN). But then by logic £f el —»ff L O
so feX which is a contradiction to ocur original assumption, namely that AC
holds. It is of course essential for this argument that X 18 existentially
defined, which is not possible in Tc()') .

X

*
11l. Realizability for Et‘o vie & refinement TO .

. E
11.1 The theory T, - The language £ o ‘I‘; is obtained by refining the
lengusge £ of T = as follows: instead of the two-placed relation (xeA) of &£

we now have & 3-placed relation (x €, A). In this language we take
XehA © 0 82 (xezA) ,

which gives a translation of £ into £* . I 4) is any formula of & we denote
0 7 by T%
we mean the theory whose axioms are exactly the Cb* for all axioms (b of T.

20)~ It should be noted for comparison with Beeson 1977 that Tg—> is there de-
noted EM and EM(()') + J is denoted EMN.

its translation by tb* . If T 1s any theory in the language £ of T
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*
11.2 Translation of & intc &. This is accomplished in the following

* ~
simple way. With each formula § of & is associated a formula ¢ of £,

which is obtained by replacing each atomic formula (x €, A) by [(x,2) e A]  and

which, except for some changes of constants, is otherwise unaffected. Tach of the .

combinatory constants k,s,d,p,pl,pg,o,s le unchanged, but the class for-

) P
mation constants ck,j,i are replaced bi\r nev:ur\T constants Ek s 3, i as will be ex--
plained in the next section,

11.3 ;l - realizability. This is an interpretation of S,* (and thence of £)
which will meke all of CA realizable. The idea to realize @E[xe X <« O(x)] as

*
expressed in £ and then translated back into £ i.e. as X[ Tz((x,z)eX) o O(x)]

is to produce an X such that from any =z with (x,2)e X we can find a w with
wr(I) (x) and conversely. The simplest way to achieve this is to take z=w and
thus to take X=((x,w)|wr $(x)}. It is here where the change of constants enters;

. y n b
if e = O(x,y,2)" we'll have cn = (o x)r O(pyx, y,2 )!

For this purpose fl - realizability 1s defined as follows; the translations
of cn,j,i are given by a simultaneous inductive definition. TFirst we write down
the clauses defining fr¢ for ¢ in g exactly like those for r; in §2.
The only difference appears in the fact that we now have atomic formulas (x ezA)
in place of the old (xe A), so we read [fr(x eZA)] = (% eZA). Then we take

El to be Tr where
"~ N
(£T9) = (£r ),

*
l.e. we translate the realizebllity interpretation of &£ Just described. Now
gn ,J,1 are chosen to satisfy the following:

(4) 42 n= B(xy, 2], T, 2) = (x2)2F0(x,y, 2)]

(11) 4f Vx eA[ce(fx)] then J(A,£) =(((x,¥),(z,w))|(x,2)eAA(y,w) efx), and

(111) I(A,R) =1(A,R;) where Ay = ((x,(2,%))](x,2) e AATY, W[ ((y,%),W)eRoE(y,W)4] )
end Ry = (((y,£yw), (%, (2,£))) [ ((y,x),%) e R] .

The choice of the constants is made in such a way that for each of the axioms 0

from CAl

'rf'(b is provable from the corresponding axiom (or axiom schema) as expressed in £.

*
(or CAE)’ J and IG as expressed in &£ we can find a T such that

It follows that for any theory T over APP which is based on some combination

of these axioms and schemata plus the axioms I or It , we have a soundness

~ *®
theorem for r, -realizability of T in T . Once more the scheme (A-r), as

written out in & , 15 trivially J?l- realized. It is a corollary that

(1) TZ + (CAE)* + (A-r) is consistent.

Hence any consequence of (A-r) in £ is congistent with T, + (CA2) regarded as
translated into .C* . It is simpler to study such conseguences in the latter
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language then to pass through ¥ . Note: To get further consistency with Church's
Mmsia T o ~we simply couple this with the recursion-theoretic model ag described

2. Consequences of "to assert is to realize" in £ . We assume at least

# : ¥
EM (A~r) where r is r, for £ throughout this section.

12,1 Dependent choices. DC is derived from these assumptions in the follow-
ing way. Suppose Vxe A By eA §(x,y) holds, i.e. Vx,z[x e, h - Ey,u(ye, ANY(x,y))],
Then there exists g which realizes this statement, so for each x,z with x ¢, A,

g(x,2) provides us with a triple (y,w,u) such that Ye, AAur ¥(x,y). Given
xQ ¢e A [ix some zO with X, € A. Then using g we define a sequence (x

by recursion such that g(xn, zn) =~ (xrwl s Ty s un) and  x eZnA and

wr §(x,,%,,) for esch n. Let f=M.x, . Then passing from the right to the
left side of (A-r) we have fO=x, A Vn[fne ANy (fn,fn')].

n’ 22 un)

Ag a corollary of this and 11.% we have that

(1) T, " CA, + DC 1is consistent.

Remark. The argument here brings out the reason why DC can be dealt with con-
structively even where AC can't in the presence of full comprehension. From

Vx e Ay O(x,y) written in £ a8 Va,alxe A - Ay §(x,¥)] we can merely con-
clude Hf Vx,z[xe, A - b(x,£(x,2))] from (A-r). This is the result which was
referred to in I.L.7.

lz.2 Cenonically realizable elasses (cholce bases). We write C(A) for the
following formula:

ﬁ@[m(xﬁzﬁ) - X a@xA].

A 1s called canonicelly (or self-) realizeble if C(A) holds. C(A) is equiva-
lent to AC, , i.e. the scheme of choice with base A. For suppose C(A) holds
using g and that Vx eA ¥y §(x,y). Then as just remerked we find £ such that
V%, z[x €, 8 O(x,£(x,z))]. It follows that Vx eA{(x, £(x,gx)). Conversely if
AC, holds then from Vx eAHa(xe,A) (which is trivial by definition in £') ve
conclude g Vx e A(x “@;xm , 1.e. C(A).

How C({M ) holds because Aty is & consequence of DC. Also C(V) holds
because VYx Gy O(x,y) - BF Vxd(x,x) by -(A-r). Furthermore, the property C is
closed under class constructions which can be defined by essentislly (v, d)-free

formulas, for which we have found canonical realizers by §3 . In particular, if
C(A) and C(B) then C(AxB) and C(A - B) hold and if {¢(x) is ess. (v,d)-free |
then also C({x ¢Al§(x)]). This gives conslstency of T, +CA, with an extensive
collection of instances of AC. (The consistency of '1‘@ with (A(?:)F,r y L.e,

Af:ﬂ for all o ¢FIS was noted by Beeson 1977.)
o
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12.3 The presentation axiom (Aczel). Call (A—fh)

. a presentation of A if
. > . . *

AT 2o A this is called & full presentation of A if C(A ) holds.

tuitively, in a presentatlon each element X of A

nor e than one way) by % € A" such that h( ) =X

formation” that "verifies" xe A.

h

In-

is represented - (in poss:Lbly,
x contains "additional :Ln-
When we have a full presentation, no further
inf ormation need be added. The presentation-axiom PA is the statenment that For

every A there exists a full presentation (A*,h) of A.

This was introduced
(in a slightly different form) by Aczel in unpublished notes; he observed that it

exrves to derive the various mathematical consequences of (A-1).

In the present
freamework, PA is a trivial consequence of (A-r); we simply take A ((x,z)lxa A)
and  h(x,z) =X.

12.4 Having your cake and eating it too with (A-r) as an implement. In the

inFformal discussion of I.15.3 the attempt to have one's constructive cake and eat

it too was taken to be a matter of being casual about showing the witnessing in-

foxrmation required by the official definitions. Here we can provide a theoretical L
Preamework to justify such practices simply by assuming (A-r) for r=ry in 52*
In effect, the informal definition of a class A in the form A={x|0(x)) gives

)(.-
rise to A =((x,2)|zr{(x)), which corresponds to the official definition. By
D) & Az 4’«1‘ P(x)) we have xe A & Tz[(x,2) ¢ A" ]. A realizable refinement
of CA in £ allows us to take Vi[x e A zr O(x)], so that this A" is
exactly the seme as the full presentation of A described in 12.3. TFor example,
if we define

e 1 -+ K 1

R = [(x|xe RAHIn> O(xn> )} we than have (R) = {(x,n)|xeRAn >0A (x> 2 Y1,

Just as required by the official definition. Using AC in its weakened form
* .

¥x ATy O(x,y) — IF ¥x,z[ (x,2) eA - O(x,f(x,2))] we can conclude that an in-
o .

verse function is defined on (IR ) knowing that Vxe R 3y eR(x-y=1).

Remerk. T: + (A-r) provides an alternative way of reading Bishop which is in some
respects simpler than by T, since one can formelize the informal mathematical
argumnents more directly. (Note The same ends can be achieved by the presentation
axiom instead of (A-r).) It is not meant by this that T + (A-r) 1is in direct

ac cordance with Bishop's views; (that is open to dlscussmn).

13 . Closure properties of T . In order to obtain the ED and ED]N (and hence DP)
properties for 'I,‘ , Beeson 1977 introduced a kind of combination of T -and g-
realizability. Hiu definition (loc cit.pp.281-282) is complicated by the re-
gquiirement to have a doubling (X,X ) of class variables, where the new variable

}{* is to correspond to the class of all (x,z) such that zr(xeX). In addition,

Be eson also doubled individual variables. This does not seem to be necessary, and
the following simpler definition is proposed for the same purpose. With each

formla O(x;,...,x; ;¥ Yy ) of £= ;(TO) is associated a formula
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* * 3 T P
fr Qb(xl, Y, Yy s ¥y 00, Yy ) of & as follows:

(1) [fr(xe¥)] = [(xe¥) A (5,f) e ¥ ] and [fr (x = ¥)] = [x = (Y, y¥)]
[fr¢] =0 for the other atomic formulas

(11)  [2x(0Ag)] = [(pyf)r OA (p,E)ry]

(1i1) [fr(¢vw)]w[(plfe:ﬂ\7) (pf=0 > O A (p,L)r ) A(p £/0 oy (p.£)r )]

(iv)  [fr(d - 4)]) = Va[OA(zr d) — (fz)r ]

(v)  [er @ 0(x)] = [0(p,1) A (py ) blp,0)]

(26, 1 (€)= (4,X7) A OK) Ap £)r 00x,x") ]

Vx[ (£x)r ¢(x)]

(vi)  [fr @ O(x)]

&

(vii) [frvxd(x)]

L]

(viii) [£r¥XOX)] = VXX L0, b(x, X)),

[

Remark (added in proof): Beeson has pointed out real difficulties with the Pro-
posed realizability of T, which are met when looking for suitable reinterpretations
of the constants. It is thus not known whether his definition can be simplified

in any essential way to serve the same purposes,

. Applications to continuity properties. Beeson LY7T has used the consequences

of realizabllity such as Acm and  ED, ¢ for the theories T considered in the
preceding sections 21) e.g. for 1= '.‘I'( ? and Ta o to prove local continuity
rules of the following form, where A, 18 are any closed terms for clusses:

LCR(A, B). If T proves A 1s a complete separable metric space nnd IR
1s & separable metric space and 9 1z an externsioral property
and Vxe ATy e BP(x,y) then T proves thut
VkeAlye B (x,y)r "y is stable for ).

Here "y it’ stable for x" stands for Ve > O 46 > O Yu @Mﬂ(:ﬁ} '”mm {y}{@)(u,'v},g,
where N, (x = [ueh ldﬁgx,u)‘i e) and dﬁ% is the metric mi‘ a . liﬁ,;uﬁl‘ity im

a mmric space le defined by Ry = mx@ &s A A {xl,xl = 03 extenslonal propertlies
are understood to be those ¢(x,y) for which

@(xl)yl) A xl “A}‘éﬁ’hyl “’wy&f o iﬁ{%ﬁéa, :{&fgn

As & corollary of ICR(A, B) one has: if T proves that ¥ is a function
from A to IB under the same hypotheses on A, then T proves Lhet ¥ is
contimous. {(Hote that the hypothesis means F: 4 -8  and Ry ow % o -m,??“(xl} w%ﬁ%m@}y

Beeson's method of proof of LCR(A, IB) uses the representation of complete metrls
spaces with countable dense subset I in the form of the Cavchy segquences from D

21) The matter is actually more complicated: one must formalize wmhin the 7
consldered the corresponding results for sll finite mabtheorles
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This allows one to push the problem back to verification of LCR(IN — W N)

g . s ’ -
Roughly, the idea is that if Vx ¢ (W IN) &m O(x,m) is proved, where 0 is
extensional, then for each specific ge (I W) we can prove ®m0 (g,m) from
it E % 5 J ‘

T UDiag(g). This requires only a finite part (g(0),...,g(n-1)) of g. Further

by Dy wecan find an m s.t. 0(g,m) is proved from the same. By formalizing

Lhis argument one gets the desired result. Beeson also has results on local

uniform continuity rules for compact spaces and a mumber of consistency and inde-
pendence resulls concerning continuity statements. He hag further extended these

to other formalisms such as those of Myhill and Friedman, as presented in his
contribution to this volume.

Discussion. In a sense, Beeson's results confirm Brouwer's ideas that we should
be able to prove that every real function on TR (resp. [0,1]) is continuous
(uniformly contimuous). But the present results have the advantage that the

sy stems to which they apply also have a set-theoretic interpretation. So ohe can
be sure that if an existence proof Vx e A Gy eB{(x,y) can be formalized in BCM
then it ylelds stability or continuity of solutions which are true in the classical .
sense. Often such results can be obtained directly by ad hoc arguments. But the
continuity results described considered as a part of global (or systematic) con-
structivity may first point the way to what can be obtained for special problems.
In other words, the global results can serve as the stimulus and point of departure
for mathematically interesting local results. (Indeed this has been the case with
Beeson's studles of stabllity phenomena in the Plateau problem.)

Wuestion, The property EDIIN depends essentially on not having DV' But one

doesn't see why the contimuity results should be disturbed by its presence. Do

Bereson's results on LCR extend to TO+D by some other arguments?

v

V. Relations with subsystems of analysis.

1. Introduction and swmmary of results. In this part (except for the special §2)

we desceribe results which establish the equivalence of certain subsystems of T
with subsystems of classical 2nd order analysis. It is assumed here that the
reader 1s familisr with the designations of various of the latter such as

P - I 1 1 1 . L
{11, -~ CA), (Al - CA), (Zi - AC), (A2 - CA), (22 - AC), as well as with the principle
(31} of bar induction. e2) When '™ is used following designation of a theory

we mean that the principle of full induction on I is replaced by the axiom of

irduction. We write ‘I’l < '1‘2 to mean that T;L is proof-theoretically reducible

teo T, {i.e. if Con(’l‘a) implies Con(Tl) by a finitary argument) and T, =T,
&

zz:) For descriptions of these and some information about their interrelationshi_ps.
ef. Feferman 1977.
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if T, S T, eand T, =Ty - In connection with the following results one also has
‘mueh information about which sentences are conserved in one direction or the other)
_however, for°simplicity we do not mention such for the most part. PA denotes

lglassical Pegno's arithmetic, HA =Heyting's arithmetic.

W m

E HA, 1n fact EMOF is a conservative extension of HA.
(2) EM_M + J = (Zi—AC)I“ = PA |
(3) EM, +J= (Ei»AC)
(4)  mMpxJ o+ IGH = (Z;'—AC)I‘ = (nji-CA)r 'ﬁ
(5) EM, + J+ IG = (Z;'—AC)
(6) T, = EM +JT+ IGS(ZJE“-Ac) + (BI).

In all of these except the conservation result of (1), we can also include classical

logic and the axiom Dy on the 1.h.s. The exact relationship in (6) is unsettled.

- AC) + (BL).

4 m - ‘L
Conjecture. T = (Za

Credits. The conservation result in (1) is due to Beeson 1979, by a Kripke-model
argument outlined in the next section. The = in (1) comes simply from (2) and

the fact that PA = HA. C(Conservation of (2%-—ACN‘ over PA has been establishied
by Barwise-Schlipf 1975 using recursively saturated mod@;ﬁ; It 1s also stated by
Friedman 1975 where conservation of (Zi-—AC)P over (Hi-CA)P (for a certain
class of sentences) is announced as well. (The method of recursively saturated
models has also been extended to prove the latter in unpublished notes by myselfl. )
The proof-theoretical equivalences (Zi— AC)M 2 PA and (Zi-—AC)F & (Hi - CAY hawve
been established by Sieg. The result (3) is due to Aczel (ﬁnpublished); & new
method of proof was found by myself (Feferman 1976 c¢). This method was also used
there to establish < in (2) and (k)-(6). The relations > in () and (5) are
due to Sieg 1977. Only outlines of the various ideas involved are given in the
following. Detalled presentations of the proofs of these and related results will
be found in the chapter by Feferman and Sieg in the projected volume "Tterated
inductive definitions and subsystems of analysis: recent proof-theoretical studies!
(for the Lecture Notes in Mathematics Series) which is to consist of contributioris

by Buchholz, Feferman, Pohlers and Sieg.

2. EMOp 1s conservative over HA., We first describe the proof of an easier re-

sult from Feferman 1976 a ¢ M, in classical logic is conservative over PA.

To begin with, the axioms APP (even with HV) are formally modelled in PA by
taking App(x,¥,2) < (x)(y) = 2. Any model M of PA thus determines an

applicative structure «%. This is used to build a model (Y, CL,¢) of EMOP
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by the method of III.l, but leaving off the clauses for i and J; now the
process closes off at o . Namely, Cf = U Cly, e = U ¢  where Cﬂ ={1N]

n<w n<w
and xe N © x=x, Cl ., =Cl Ule,(y,2)lk r(D(X,u z ) end ¢ is ele—

mentary and 8g,.--,8; € cL, ), w:Lth Xep k(l a) « (¥, CL, 6, I“ 4)(
Note that M may be non-standard and I is coextensive with the do:ﬁain of\'
It may be seen that for each A eCl there exists a formula ¢(x,u) of arithméflcf
such that for some cholce of _pai'a.meters Yy oin M, Vx[xeA M| ¥ (x,y) 1

Hence the induction axiom (WD) is verified, and we do indeed have (U, CL, ¢)
a model of EMOr . To conclude, conservation holds by the completeness theorem
for the classical predicate calculus: 1if 8 1s a sentence of arithmetic such

that (EMOI‘ Y6 but PA}‘@ we can choose M|= — 6 and get a contradiction.

Now Beeson 1979 has shown EM oF conservative over HA by an adaptation

of this argument to Kripke models, using the completeness theorem for 1ntu1tlo—""

Moy eps S )
of HA one modifies the construction of (m,cﬂn, en) as just described to a '

nistic logic in terms of the latter. Given any Kripke model M= {((m

construction of {((Y
model ((QIP,CE

p? Czn,p’ en,p)p’ < ) for each n and thence of a Kripke

p’ %Qpep’ S) of M, T

Discussion. The significance of this result is given by I.15.5, according to
which EMOf‘ is adequate to essentially all of BCM except for the theory of
ordinals and Borel sets. A corresponding result had previously been obtalned by
Friedman 1977 (conservation of B over HA for IIO8 gsentences, strengthened

to full conservation by Beeson 1979). Thus this portion of BCM does not really
take advantage of the strong constructive principles implicitly accepted by Bishop;
on the other hand it is of foundational interest that it is Jjustified by the most

elementary of these.

3. EM P+ J < (Zi~AC)T‘ » EMj +J < Zi-AC. The proofs of these results from

Feferman 1976c are given by formal models which verify classical logic and ‘DV .
We start again with the recursion-theoretic interpretation App(%,¥,2) « (x}(y)= 2.

Now, instead of defining C4# in transfinite stages, one defines it gimply to be

the set of Al incilces That is, let Pi(e,x) (e=0,1,2,... ) be a standard II -

enumeration of all 1’1 sets (predicates of one argument x); then

Sl(e x) s P (e %) lnduces Y Zi—enumeration of all Z:JL. sets. Ve put e

1 -
in €4 if the pair of indices (e)o s (e)l determines a A, set, i.e.

Co(e) o WXL PL((e)y s %) w 5T ((e), )],

1

Put  Xea <oy 0 By ((a)o ,x) for Ci(a). To prove closure under CA, in this
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model reduces to showing that if @(x,l, Z) is elementary and we substitute Ai
definable sets D, for the 2,

formly recursive in given indices di for the Di )3 this is by the Ai_ sub -~
'kstitution theorem of Addison-Kleene-Schoenfield . TFormalization of the latter

the result is also Ai (with index e uni~

makes use of (2 - AC). 8o far, the argument serve& to give a model of EM in
(Ei-wAC) ; next it is seen that only restricted (Z - AC)[" suffices if one starts
with EMOP- .To complete the proof, J is verified as follows. Suppose C&(a)
and Vx eaCL({f) (x)), i.e. that

, 1 1
WPy ((a) 5 %) = VyIB (((£1()),w) < s7(((£)(x)),¥) 1)
Then we eagily obtain a Ai index for Jj(A ,f) where a is the index of A.
Remark. By (Zi-ACn* < HA , this shows that J is really of no use without
unrestricted induction. That was already noted informally in II. 11.3, where

transfinite types were shown to exist in EMO + J - but not in EMO(\ +J.

L. EM P+ J + IGP < (Z;'—Ac)r* , EM_ + I+ IGH < (Z;—Ac:) and T_ < (Eé-AC) + (BI).

The proofs (again from Feferman l976¢) all uue the same lidea, which simply follows
that of §3 one level up. Let P (x,e), 8 (x,e) enumerate the Hé , resp. Z:é
sets, Take C4(a) < Wx[?g(x,(@)o) Qq.sg (x, (@)l)J and xe¢ a <%a'P;(X,(a)O).

Now one applies the A-K~5 substitution theorem for Aé predicates, which is

proved using T, -AC, This serves to show EMO”VJ modelled in (Zi-AC) and

B P+ J in  (SL-AC)M . To verify IGP in this model ve simply apply A-K-S
again: 1f A,R are Az then the set 1(A,R) which is ni in A,R is also

Aé (with index e wuniformly recursive in the indices a,r of A, R resp.).

The induction axiom of IGPM follows immedlately by definition of 1(A,R) as

n =

the least set satisfying the given closure conditions., To obtain the full prin-
ciple of induction for IG one must apply full (BI), which gives the final
result: T = EM_ + J + IG < (Z%-—AC) + (BI).

5, (Zi-jAC)r < PA, (Z%-ACN‘ < (Hi-CA)P ; consequent reductions into T .

As was remarked in the survey of credits in §1, one has proof-theoretical argu-
ments due to Sieg for these first two reductions, corresponding to earlier con-
servation results of Barwise-Schlipf and Priedmen. Now PA < HA by the negative
(m=) trenslation as is well known, and HA C EM [ eo this completes the re-
lations in §1(2). Next Hl CA)" can be interpreted in the corresponding in-
tuitiohistic system (I i CA) (i) by the negative translation, and the latter
is directly contained in EMOF + IGN . This completes the chain in § 1 (k).
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1 . . 1
S . (zl—AC) < BM, + J. To begin with, (Zl-AC) < (HE-CA)<

1970. (That used a model-theoretic argument; a proof-theoretical one is out-
Lined in Feferman 1977.) As is familiar, (1’10 - CA) = RA
1 <e <e

by Friedman

(ramified analysis
- i g
in levels < e ), and RA_ e, < RA(< Z’o by the negative translation. Finally;
RA(< 2:0 is contained in EM_ + J, using Join to transfinitely iterate the ramified .
hierarchy up to each ordinal @ < e (full induction up to o follows from full
induction on N ). This completes the = in §1(3).

1 .
. (22 -AC) < BM, fJ o+ IGN. By Friedman 1970, (Zé—AC) < (Hji—CA) < and
- €
T o
by Feferman 1970, (Hl - CA) <e < ID <e where the latter is a classical theory
o o]

of iterated first-order inductive definitions up to any o< ¢
o]

The. main next

, i . s
step is to show ID. < ID(<2: (6), i.e. to the intuitionistic theory of the
o o

classes @a for o < e, - This has been established by Sieg 1977. Finally,
ID(<12: (6) is contained directly in EM, + J+ IGM . In this way thé = in §1(5)
is coﬁpleted.

Remark. Results closely related to those of Sieg 1977 have been obtained inde-
pendent;y by Pohlers and Buchholz, by more complicated methods, but which also
give more detailed information. Presentation and comparison of all this work will
e found in the forthcoming joint volume referred to in §1.

8. Questions and conjectures.
(i) The conjecture (E;'-AC) + (BI) < T, has already been stated in § 1.

What is missing up to now is the proof-theory analogous to that indicated in §7 -

(ii) We have shown EMO + IG + POW consistent in IIT.12. Vhat is the
strength of this system and various of its subsystems ¢ It appears that POW
camot be used very effectively with these axioms. T conjecture that EMOr +
POW = HA.

(iii) The set-theoretical model of T = in III.6 can be modified to give a
model of SO+ POW Dby esgen’bially using [O,l}A as a representative of a power
set of A for any set A. Now presence of J makes the axiom POW much more
effective. What is the strength of SO+POW? Further, is SO+POW+ CT,
consistent (i =0,1)7

(iv) What are the strengths of the various theories considered when CA2
is added?

Stanford University
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