
 1

Theses for Computation and Recursion on Concrete and Abstract Structures

Solomon Feferman

Abstract: The main aim of this article is to examine proposed theses for computation and
recursion on concrete and abstract structures. What is generally referred to as Church’s
Thesis or the Church-Turing Thesis (abbreviated CT here) must be restricted to concrete
structures whose objects are finite symbolic configurations of one sort or another.
Informal and principled arguments for CT on concrete structures are reviewed. Next, it
is argued that proposed generalizations of notions of computation to abstract structures
must be considered instead under the general notion of algorithm. However, there is no
clear general thesis in sight for that comparable to CT, though there are certain wide
classes of algorithms for which plausible theses can be stated. The article concludes with
a proposed thesis RT for recursion on abstract structures.

1. Introduction. The concepts of recursion and computation were closely intertwined

from the beginning of the efforts early in the 1930s to obtain a conceptual analysis of the

informal notion of effective calculability. I provide a review of those efforts in sec. 2 as

background to the remainder of this article, but I have nothing new to add here to the

extensive historical and analytical literature.1 It is generally agreed that the conceptual

analysis of effective calculability was first provided most convincingly by Turing (1936-

7). Not long before that Church (1936) had proposed identifying effective calculability

with the Herbrand-Gödel notion of general recursiveness, soon enough proved equivalent

to Turing computability among other suggested explications. Curiously, the subject of

effective computation came mostly to be called Recursion Theory, even though that is

only one of the possible forms of its development.2

In his influential book, Introduction to Metamathematics, Kleene (1952) baptized

the statement that every effectively calculable function is general recursive as Church’s

1 Gandy (1988) is an excellent introductory source to those developments; cf. also Soare
(1999).
2 Soare in his articles (1996, 1999) has justifiably made considerable efforts to
reconfigure the terminology of the subject so as to emphasize its roots in the notion of
computation rather than recursion, for example to write ‘c.e.’ for ‘computably
enumerable’ in place of ‘r.e.’ for ‘recursively enumerable’, but they do not seem to have
overcome the weight of tradition.

 2

Thesis. He went on to baptize as Turing’s Thesis the statement that “every function

which would naturally be regarded as computable is computable …by one of his

machines”3 and to say that this is equivalent to Church’s Thesis, since the general

recursive functions are exactly the same as the (total) functions computable by Turing

machines. This led Kleene to speak further on in his book in ambiguous terms of the

Church-Turing Thesis. Among workers in recursion theory it is common to take Church’s

Thesis and Turing’s Thesis to be equivalent for the same reason as given by Kleene, and

to follow him in referring to them without distinction as Church’s Thesis or as the

Church-Turing Thesis; I shall also use ‘CT’ ambiguously as an abbreviation for either of

these.4

My main concern in this article is to examine proposed theses for computation

and recursion on both concrete and abstract structures. By concrete structures I mean

those given by sets of finite symbolic configurations (e.g., finite strings, trees, graphs,

hereditarily finite sets, etc.) together with the appropriate tests and operations for their

transformation. In sec. 3 I review some efforts to “prove” CT for computation on

concrete structures that began with Gandy (1980) and were later pursued by Sieg and by

Dershowitz and Gurevich among others (references below). The approaches in question

proceed by isolating basic properties of the informal notion of effective calculability or

computation in axiomatic form and proving that any function computed according to

those axioms is Turing computable. It is not my aim here to argue for one or another of

these approaches but rather to emphasize what they hold in common (and what is usually

taken for granted), namely that in whatever way one understands CT, there is no

calculation without representation, i.e. it is a necessary ingredient of whatever constitutes

effective calculability that one operates only on finite symbolic configurations by means

that directly transform such configurations into new ones using appropriate tests along

the way.

3 Kleene’s wording derives from Turing (1936-7), p. 249: “No attempt has yet been made
to show that the ‘computable’ numbers include all numbers which would naturally be
regarded as computable.” [Italics mine]
4 Cf. Copeland (2002) for an introductory article on the Church-Turing thesis.

 3

Beginning in the late 1950s a number of generalizations of the notions of

computation and recursion were made to a great variety of abstract structures, including

general first-order (or algebraic) structures, finite-type structures over the natural

numbers, and structures of sets. These developments witnessed impressive success in

obtaining various analogues of leading results from classical recursion theory.

Nevertheless, the point of my emphasis on concrete structures as a sine qua non for CT is

to raise questions about proposed generalizations of it to abstract structures that have

been suggested. In particular, I shall concentrate in sec. 4 on general theories of

“computation” on first-order structures that descend from Friedman (1971) via his

adaptation of the Shepherdson-Sturgis register machine approach (equivalently, the

Turing machine approach) on the one hand, and that of Tucker and Zucker (1988, 2000)

via “While” schemata on the other. I shall argue (as Friedman already did) that the

proposed generalizations are more properly examined under the concept of algorithmic

procedures, which are meaningful for abstract structures (or “data types”) since

algorithms are independent of the means by which individual data items and the

operations on them may be represented. As will be explained at the end of sec. 4,

substantial efforts have been made to answer the question, “What is an algorithm?,”

leading to quite different conclusions, among them by Moschovakis (1984, 2001) and

Gurevich (2012). In view of the controversy, it is perhaps premature to propose a general

associated version of CT for algorithms, though wide classes of algorithms may be

candidates for such. In particular, Tucker and Zucker (op. cit.) have formulated a thesis

for algebraic algorithmic procedures on abstract structures that deserves special attention

under that heading.

Finally, by comparison with these, sec. 5 reviews a general notion of recursive

definition applied to suitable second-order structures, and a general thesis RT related to

such is proposed for consideration.

Before turning to this material, one may well ask: What purpose is served by the

questions of formulation and justification of these theses? We should not expect a single

answer in each case, let alone a single overall answer; here are a few. In the case of CT

itself, we had the historical pressure on the negative side to demonstrate the effective

 4

unsolvability of the Entscheidungsproblem in logic and, subsequently, many more

examples of that in mathematics. On the positive side, it was and continues to be used to

provide a solid foundation to informal proofs of computability, i.e. to justify “proofs by

Church’s Thesis.” (And for Gödel, it was used to bolster his conviction that mind is not

mechanical, via the incompleteness theorems and the identification of formal systems in

their most general form with Turing machines.) Moving on to the proposed extension of

notions of computability to abstract structures, a prime structure of interest is that of the

real numbers (and relatedly the complex numbers), the arena of numerical analysis (aka

scientific computation). Among the concerns here are to understand its limits and to

provide a unified foundation. Moreover, as we shall see, a crucial issue is to separate

conceptually algebraic methods from analytical ones. In addition, the latter are relevant

to questions as to whether and in what sense the laws of physics are mechanical.

More generally, it is important to separate and refine concepts that are often

confused, namely those of computation procedure, algorithmic procedure and recursive

definition that are the primary concern of this article. Those who are philosophically

inclined should find interest in these case studies in conceptual analysis (aka explication

of informal concepts) both settled and unsettled. Finally, it may be hoped that

satisfactory progress on these questions would help lead to the same on concepts of

feasibility in these various areas, concepts that are wholly untouched here.

2. Recursion and computation on the natural numbers, and the Church-Turing

Thesis. The question as to which forms of definitions of functions on the natural numbers

are finitistically acceptable was an important issue in the development of Hilbert’s

program in the 1920s. In the views of the Hilbert school this certainly included the

primitive recursive functions (going back to Dedekind), but was not limited to such once

Ackermann produced his example of a non-primitive recursive function. Formally, that

was given by a nested double recursion, but it could also be analyzed as a recursion on

the ordinals up to ω2. Hilbert’s unsupported claim (1926) to have demonstrated the

Continuum Hypothesis by means of his proof theory involved the use of functions given

by higher transfinite recursions; it would thus seem that Hilbert counted them among the

 5

finitistically acceptable functions, though no clear conditions were given as to what

would make them so.

A more specific analysis of which functions of the natural numbers are definable

by recursive means came about as a result of a single exchange of correspondence

between Herbrand and Gödel in 1931. Herbrand wrote first after receiving a copy of

Gödel’s paper on the incompleteness of arithmetic that happened to make essential

technical use of the schemata for primitive recursive functions. Concerning the contents

of that letter, in 1963 Jean van Heijenoort asked Gödel about the exchange in connection

with his (1934) formulation of the notion of general recursive function, the idea for which

he had credited in part to Herbrand. In his response to van Heijenoort, Gödel said that he

could not locate the correspondence in his papers but that the formulation in the 1934

notes was exactly as had been proposed to him three years prior to that by Herbrand. The

two letters in the exchange continued to be missing in the following years until they were

found finally by John W. Dawson, Jr. in 1986 in the course of his cataloguing of the

Gödel Nachlass at the Institute for Advanced Study in Princeton. As explained in detail

in Dawson (1993) and Sieg (2003, 2005) it turned out that Gödel misremembered some

essential points.5

Herbrand’s letter to Gödel informally proposed a characterization of the extent of

the finitistically acceptable functions in terms of recursive definitions via a single formal

system of arithmetic with quantifier-free induction and axioms for a sequence of

functions fn satisfying three conditions on successive quantifier free axioms for the fn, of

which the main one is:

We must be able to show, by means of intuitionistic [finitary] proofs, that with
these axioms it is possible to compute the value of the functions univocally for
each specified system of values of their arguments. (cf. Sieg 2003, p. 6)

Among examples, Herbrand lists the recursion equations for addition and multiplication,

Gödel’s schemata for primitive recursion, Ackermann’s non-primitive recursive function,

and functions obtained by diagonalization. Gödel’s reply, though friendly, was critical

5 For convenience I shall only refer to Sieg (2003) in the following, though there is
considerable overlap with Dawson (1993).

 6

on a number of points, among which Herbrand’s proposal that finitism could be

encompassed in a single formal system.6

In the notes for his 1934 lectures on the incompleteness theorems at the IAS,

Gödel returned to Herbrand’s proposal in the last section under the heading “general

recursive functions.” He there recast Herbrand’s suggestion to define a new function ϕ in

terms of “known” functions ψ1,…,ψk and possibly ϕ itself. The main requirement is now

taken to be that for each set of natural numbers k1,…,kl there is one and only one m such

that ϕ(k1,…,kl) = m is a derived equation, where the rules of inference for the notion of

derivation involved are simply taken to be those of the equation calculus, i.e. substitution

of numerals for variables and substitution of equals for equals (cf. Gödel 1934, p. 26).

Before turning to this bridge to the conceptual analysis of effective calculability,

note that there are two features of Gödel’s definition of general recursive function that

make it ineffective in itself, namely (given “known” effectively calculable functions

ψ1,…,ψk) one can’t decide whether or not a given system of equations E has (i) the

uniqueness property, namely that for each sequence of arguments k1,…,kl there is at most

one m such that ϕ(k1,…,kl) = m is derivable from E, nor that E has (ii) the existence

property, namely that there is at least one such m for each such sequence of arguments.

In Kleene’s treatments of general recursion elaborating the Herbrand-Gödel idea,

beginning in 1936 and ending in Kleene (1952) Ch. XI, one may use any system of

equations E to determine a partial recursive function, simply by taking ϕ(k1,…,kl)⎯when

defined⎯to be the value m given by the least derivation (in a suitable primitive recursive

coding) ending in some value for the given arguments. It is of course still undecidable

whether the resulting function is total. It finally remained for Kleene to give the most

satisfactory general formulation of effective recursion on the natural numbers via his

Recursion Theorem (op. cit., p. 348). But this requires the notion of partial recursive

functional to which we shall return in sec. 5 below.

6 Gödel was not long after to change his mind about that; cf. Gödel (1933).

 7

Now, not only did Gödel in 1934 misremember the details of Herbrand’s 1931

formulation, he made a crucial conceptual shift there from the question of characterizing

the totality of finitistically acceptable functions to that of characterizing the totality of

functions given by a “finite computation” procedure, despite his clear reservations both

about the possibility of such and of general recursion in particular as a prime candidate.

Church was bolder:

We now define [sic!] the notion … of an effectively calculable function of
positive integers by identifying it with the notion of recursive function of positive
integers (or of a λ-definable function of positive integers). (Church 1936, p. 356)

Church had previously proposed to identify the effectively calculable functions with the

λ-definable ones, but by 1936 he could depend on their co-extensiveness with the general

recursive functions established in Kleene (1936, 1936a). It was Kleene (1943) who

baptized Church’s “definition” of effectively calculable function as ‘Thesis I’ and then as

Church’s Thesis in Kleene (1952), p. 300. See Gandy (1988) pp. 76 ff for Church’s full

statement of the Thesis (qua definition) and the initial arguments that he made in its favor,

among which the equivalence of “two such widely different and … equally natural

definitions of effective calculability”; Gandy calls that the argument by confluence of

ideas.7

This argument was soon to be extended by the most significant step in the

analysis of the concept of effectively calculable function on the natural numbers, namely

that made by Turing (1936-37). To be noted is that Turing conceives of the calculations

as being carried out by an (abstract) human being following a fixed finite set of

instructions or routine using a finite set of symbols specified in advance, via entering or

deleting the contents of the workspace given by a potentially infinite set of symbol

locations or cells. The confluence argument was bolstered by Turing’s (1937) proof of

the equivalence of his notion of computability with that of λ-definability. Church quickly

accepted Turing’s analysis of effectively calculable as the preferred notion of the three

then available. As he wrote in his review of Turing’s paper:

7 Church (1936) pp. 100-102 had another “step-by-step” argument for the Thesis, but
there is a semi-circularity involved; cf. Shagrir (2002) p. 224.

 8

[Turing’s notion] has the advantage of making the identification with
effectiveness in the ordinary (not explicitly defined) sense evident
immediately⎯i.e., without the necessity of proving preliminary theorems.
(Church 1937)

Gödel, too, accepted Turing’s explication of effective calculability, but by when is not

clear. In the unpublished lecture designated *193? in Gödel (1995)⎯probably prepared

in 1938⎯he describes the notion of general recursive function, and then writes, “[t]hat

this really is the correct definition of mechanical computability was established beyond

any doubt by Turing” (Gödel 1995, p. 168); however, he does not refer to proofs of their

equivalence as justification for this. The first evidence of his view in print appears briefly

at the beginning of his remarks before the 1946 Princeton Bicentennial, where he speaks

of “the great importance of the concept of general recursiveness (or Turing’s

computability)” because of the independence of the concept of calculability in a formal

system from the formalism chosen (cf. Gödel 1990, p.150). But again he does not take

Turing’s explanation of effective computability to be the primary one. Only later, in his

June 1964 Postscript to Gödel (1934), does he address the concept on its own terms as

follows:

Turing’s work gives an analysis of the concept of “mechanical procedure” (alias
“algorithm” or “computation procedure” or “finite combinatorial procedure”).
This concept is shown to be equivalent with that of a “Turing machine”. (cf.
Gödel 1986, p. 370)

As described in sec. 1 above, it was Kleene (1952) p. 300 et seq, who led one to

talk of Church’s Thesis, Turing’s Thesis, and then, ambiguously, of the Church-Turing

Thesis for the characterization through these equivalences of the effectively calculable

functions. In another influential text, Rogers (1967) pp. 18ff, took the argument by

confluence as one of the basic pins for CT and used that to justify informal proofs “by

Church’s Thesis”.

3. Computation on concrete structures and “proofs” of CT. Beginning with work of

Kolmogorov in 1953 (cf. Kolmogorov and Uspensky 1953), efforts were made to move

beyond the argument by confluence, among others, to more principled arguments for CT.

The first significant step in that direction was made by Gandy (1980) which, together

 9

with its successors to be described below, may be construed as following a more

axiomatic approach, in the sense that one (cl)aims to isolate basic properties of the

informal notion of effective calculability or computation and proves that any function

computed according to those conditions is computable by a Turing machine. As one sees

by closer inspection, all the axioms used by the work in question take the notion of

finiteness for granted, hence may be construed formally as carried out within weak

second-order logic, but otherwise there is considerable difference as to how they are

formulated.

To begin with, Gandy asserts (as he did again in Gandy (1988)) that Turing

outlined a proof of the following in his famous paper (1936-7):

Thesis T. What can be calculated by an abstract human being working in a routine way is

computable [by a Turing machine].

Actually, such a statement, being non-mathematical, can’t be proved, nor did Turing

claim to have done so. Rather, what he did do in sec. 9 of the paper was to present three

informal arguments as to why his analysis catches everything that “would naturally be

regarded as computable;” it is the first of these arguments that leads most directly to the

concept of a Turing machine. The argument in question sets out five informal restrictive

conditions on the idealized work space and possible actions within it of a human

computer. As recast by Sieg (2002, 2002a), in order to proceed to a theorem there are

two steps involved: first, Turing’s conditions are reformulated more generally in terms of

boundedness, locality and determinacy conditions (still at the informal level), and,

secondly, those conditions are given a precise mathematical expression for which it can

be shown that any function satisfying them is computable by a Turing machine. (Sieg

calls the second part a representation theorem.)

By contrast to Thesis T, the aim of Gandy’s 1980 article was to argue for the

following:

Thesis M. What can be calculated by a machine is computable [by a Turing machine].

 10

Again, there is no proof of Thesis M, but rather a two part procedure that eventuates in a

definite theorem. The first part consists of Gandy’s informal restrictions on what

constitute “mechanical devices” (1980, pp. 125-126), namely, that he excludes from

consideration devices that are “essentially analogue machines” and that “[t]he only

physical presuppositions made about mechanical devices … are that there is a lower

bound on the linear dimensions of every atomic part of the device and that there is an

upper bound (the velocity of light) on the speed of propagation of changes.” Furthermore,

Gandy assumes that the calculations by a mechanical device are describable in discrete

terms and that the behavior of the device is deterministic, though calculations may be

carried out in parallel. These restrictions then lead to the formulation of four

mathematically precise principles I-IV that express the informal conditions on what

constitutes a machine in his sense. The main result of Gandy (1980) is a theorem to the

effect that any function calculated by a mechanical device satisfying principles I-IV is

computable on a Turing machine.

By the way, in the informal part of his argument for Thesis M, Gandy enlarges on

the discreteness aspect in a way that is particularly useful for our purposes below.

Our use of the term “discrete” presupposes that each state of the machine can be
adequately described in finite terms. … [W]e want this description to reflect the
actual, concrete, structure of the device in a given state. On the other hand, we
want the form of the description to be sufficiently abstract to apply uniformly to
mechanical, electrical or merely notional devices. We have chosen to use
hereditarily finite sets; other forms of description might be equally acceptable.
We suppose that the labels are chosen for the various parts of the machine⎯e.g.,
for the teeth of cog wheels, for a transistor and its electrodes, for the beads and
wires of an abacus. Labels may also be used for positions in space (e.g., for
squares of the tape of a Turing machine) and for physical attributes (e.g., the color
of a bead, the state of a transistor, the symbol on a square). (Gandy 1980 p. 127,
italics mine)

In other words, just as with Thesis T, one is working throughout with finite symbolic

configurations.

Gandy’s case for Thesis M was substantially recast by Sieg (2002, 2002a) much

as he had done for Thesis T. The first part of that work is again that in carrying out

effective calculations, the machine is limited by general boundedness, locality and

 11

determinacy conditions, but those are now widened to allow acting on given finite

configurations in parallel and then reassembling the results into the next configuration.

That led Sieg to a statement of new simpler precise principles on mechanisms as certain

kinds of discrete dynamical systems for which a representation theorem is proved, i.e. for

which it is shown that whatever satisfies those principles “computes” only Turing

computable functions.

Yet another approach toward establishing a version of CT for certain kinds of

mechanisms is that due to Dershowitz and Gurevich (2008), entititled “A natural

axiomatization of computability and proof of Church's Thesis.”8 The mechanisms in

question are called Abstract State Machines (ASMs); fundamental to this work is that of

Gurevich (2000) in which it is argued that sequential algorithms are captured by

Sequential ASMs. Regrettably, the statement by Dershowitz and Gurevich of Church’s

Thesis is not the one usually understood but rather their Theorem 4.8, according to which

“[e]very numeric partial function computed by an arithmetical algorithm is (partial)

recursive.” And for this, arithmetical algorithms are defined as state transition systems

satisfying certain Sequential and Arithmetical Postulates. Unfortunately, the postulates

are not fully precise as presented, and so it may be questioned whether one even has a

proof there of a definite mathematical theorem.9 One point to be noted for the following

is that the ASM approach takes states to be (abstract) structures having a common fixed

finite vocabulary, and a crucial assumption thereto is Postulate III (p. 319) according to

which state transitions are “determined by a fixed finite ‘glossary’ of ‘critical terms’.”

Thus, though the terminology makes it seem otherwise, Abstract State Machines work

concretely with suitable finite symbolic configurations in their computational processes;

cf. also op. cit., Definition 3.1, p. 321.

The work by Gandy, Sieg, Dershowitz and Gurevich described in the preceding

must be valued for taking seriously the task of providing a two part argument for CT

mediated by axioms of one form or another. However, it may be questioned whether the

8 Dershowitz and Gurevich (2008) p. 305 state that the aim of their work is “to provide a
small number of convincing postulates in favor of Church’s Thesis”; in that same article,
pp. 339-342, they provide a comprehensive survey of the literature sharing that aim,
going back to work of Kolmogorov in 1953.
9 Cf. the Postscriptum to Sieg (2013) for a detailed critique of this work.

 12

axioms provided for any of these yet reaches the desired degree of evidence, in other

words of being close to compelling on inspection. But what is common to these

axiomatic approaches and cannot be denied is that the sine qua non of CT is that there is

no calculation without representation. That is, the data with which one works consists of

finite symbolic configurations where the symbols (or labels) are drawn from some finite

set S given in advance. These represent finite concrete configurations such as finite

linear inscriptions by human beings, or mathematical configurations such as finite trees

or graphs, or states of various kinds of mechanisms such as described in the quote above

from Gandy (1980) p. 127. More abstractly, Gandy considered finite symbolic

configurations to be themselves represented in the hereditarily finite non-empty sets over

the basic set S of symbols, though I think representation in the hereditarily finite non-

empty sequences over S would be more appropriate since that gives an order in which

things must be read; of course, each can be coded in the other. The operations on finite

symbolic configurations must be limited to purely formal transformations following

inspections and appropriate tests. Thus the claim here is that a general discussion of CT

as it applies to computation over arbitrary structures only makes sense when applied to

computation over concrete structures whose elements are finite symbolic configurations

of one sort or another and that posit appropriate tests and operations on such.10

4. Proposed generalizations of theories of computation and CT to abstract

structures; theses for algorithms. Beginning in the late 1950s, various generalizations

were made of theories of computation and recursion theory to abstract structures in

general and of certain specific kinds of structures.11 My concern here is entirely with the

foundations of such approaches, not with the results obtained on their basis. The article

Feferman (2013) contains a more extensive exposition of these matters; the reader is

referred to that for more details. What is discussed here⎯but not there⎯are proposed

generalizations of CT to structures that need not be concrete. I shall consider two such

10 For a systematic treatment of computability on concrete structures see Tucker and
Zucker (2006).
11 The literature on generalized recursion theory is very extensive and could use an up-to-
date survey. Lacking that, some initial sources can be found in the bibliographies in the
works of Barwise (1975), Fenstad (1980), Sacks (1990), and Tucker and Zucker (2000).

 13

below, one (implicitly) due to Blum, Cucker, Shub and Smale (1997) and the other

(explicitly) due to Tucker and Zucker (1988, 2000). I shall argue that these are more

appropriately to be viewed as theses for algorithms.

An important starting point is the notion of computability on an arbitrary

algebraic structure made by Friedman (1971) via a generalization of the Shepherdson and

Sturgis (1963) register machine approach to ordinary recursion theory. By a (first-order)

structure or algebra A is meant one of the form A = (A, c1,…,cj, f1,…,fk, R1,…,Rm),

where A is a non-empty set, each ci is a member of A, each fi is a partial function of one

or more arguments from A to A, and each Ri is a (possibly partial) relation of one or

more arguments in A. For non-triviality, both k and m are not zero. Of special note is that

the test for equality of elements of A is not assumed as one of the basic operations; rather,

if equality is to be a basic test, that is to be included as one of the relations Ri. A finite

algorithmic procedure (fap) π on A is given by a finite list of instructions among which

one is designated as initial and one as terminal. The “machine” has registers r0, r1, r2, …,

though only a finite number of these are needed for any given “computation”, namely

those mentioned in π; the register r0 is reserved for the output. (The ri may also be

thought of as variables.) The fap π may be used to calculate a partial n-ary function f on

An to A for any n. Given an input (x1, …, xn), one enters xi into register ri, and proceeds

to the initial instruction. The active instructions are: (i) replace the content of one register

by that of another; (ii) enter one of the ci in a specified register; (iii) enter a value of one

of the fi applied to the contents of specified registers into another such; and, finally, (iv)

test one of the Ri on specified registers and go to designated other instructions depending

on the value of the test (“if …then… else”). The computation terminates only if the

instructions of the form (iii) and (iv) are defined at each stage where they are called and

one eventually lands in the terminal instruction. In that case the content of register r0 is

the value of f(x1, …, xn). An n-ary relation R is decidable by a fap π if its characteristic

function is computable by π. The class of fap computable partial functions on A is

denoted by FAP(A). Friedman (1971) also gives an extensionally equivalent formulation

of computability on A in terms of generalized Turing machines, as well as one in terms of

 14

what he calls effective definitional schemata given by an effective infinite enumeration of

definition by cases.

For the structure N = (N, 0, Sc, Pd, =), where N is the set of natural numbers and

Sc and Pd are respectively the successor and predecessor operations (taking Pd(0) = 0),

FAP(N) is equal to the class of partial recursive functions. For general structures A,

Friedman (1971) also introduced the notion of finite algorithmic procedure with counting,

in which certain registers are reserved for natural numbers and one can perform the

operations and tests on the contents of those registers that go with the structure N. Then

FAPC(A) is used to denote the partial functions on A determined in this way.

The notion of finite algorithmic procedure is directly generalized to many-sorted

structures A = (A1,…,An, c1,…,cj, f1,…,fk, R1,…,Rm); each register comes with a sort

index limiting which elements can be admitted as its contents. In particular, FAPC(A)

can be identified with FAP(A, N) where (A, N) denotes the structure A augmented by

that for N. A further extension of Friedman’s notions was made by Moldestad,

Stolenberg-Hansen and Tucker (1980, 1980a), using stack registers that may contain

finite sequences of elements of any one of the basic domains Ai, including the empty

sequence. The basic operations for such a register are to remove the top element of a

stack (pop) and to add to the contents of one of the registers of type Ai (push). This leads

to the notion of what is computable by a finite algorithmic procedures with stacks,

FAPS(A), where we take the structure A to contain with each domain Ai the domain Ai*

of all finite sequences of elements of Ai, and with operations corresponding to pop and

push. If we want to be able to calculate the length n of a stack and the jth element of a

stack, we need also to have the structure N included. This leads to the notion of finite

algorithmic procedure with stacks and counting, whose computable partial functions are

denoted by FAPCS(A). In the case of the structure N, by any one of the usual primitive

recursive codings of finite sequences of natural numbers, we have

 FAP(N) = FAPC(N) = FAPS(N) = FAPCS(N).

Trivially, in general for any structure A we have the inclusions,

 15

 FAP(A) ⊆ FAPC(A) ⊆ FAPCS(A), and

FAP(A) ⊆ FAPS(A) ⊆ FAPCS(A).

It is proved in Moldestad et al. (1980a) that for each of these inclusions there is a

structure A which makes that inclusion strict.

An alternative approach to computability over arbitrary algebraic structures is

provided in a usefully detailed expository piece, Tucker and Zucker (2000) that goes back

to their joint work (1988); this uses definition by schemata rather than (so-called)

machines. By a standard structure A is one that includes the structure B with domain

{t, f} and basic Boolean functions as its operations. The Tucker-Zucker notion of

computability for standard algebras is given by procedure statements S: these include

explicit definition, and are closed under composition, and under statements of the form, if

b then S1 else S2, and while b do S, where ‘b’ is a Boolean term. The set of partial

functions computable on A by means of these schemata is denoted by While(A). Then to

deal with computability with counting, Tucker and Zucker simply expand the algebra A

to the algebra (A, N). To incorporate finite sequences for each domain Ai, they make a

further expansion of that to suitable A*. The notions of computability WhileN(A) and

While*(A) over A are given simply by While(A, N) and While(A*), respectively. The

following result is stated in Tucker and Zucker (2000) p. 487 for any standard algebra A:

 While(A) = FAP(A), WhileN(A) = FAPC(A), and

 While*(A) = FAPCS(A).

Thus we have a certain robustness (confluence of ideas) for notions of computation on

abstract algebraic structures, depending on the choice as to whether or not to include the

natural numbers or finite sequences.

The first interesting special non-concrete case to which these notions may be

applied is the structure of real numbers; this is of particular significance because it is the

principal domain for numerical analysis (aka scientific computation). One approach to the

foundations of that subject is given by a model of computation over the reals due to Blum,

 16

Shub and Smale (1989)⎯the BSS model⎯subsequently worked out at length in the book,

Blum et al. (1997). Actually, the model is divided into two cases, the finite dimensional

one and the infinite dimensional one. In the first of these, the reals are treated as a purely

algebraic structure, namely the ordered field R = (R, 0, 1, +, -, ×, −1, <), while in the

second case, one also computes with arbitrary finite sequences of reals. According to

Friedman and Mansfield (1992) p. 298, in the finite dimensional case the BSS

computable functions are exactly the same as the FAP(R) functions, and in the infinite

dimensional case the BSS computable functions are exactly the same as the FAPS(R)

functions. Moreover, one also has FAPS(R) = FAPCS(R), because N can be embedded

in R (op. cit., p.300). Note that the relations of equality and order on the reals are an

essential part of the BSS model, as is equality in general for all algebraic structures in

that model.

The case made in Blum et al. (1997) for the extension of the “classical” notion of

computation to computation on the reals via the BSS model is not one argued on its own

merits but rather mainly by its claimed requisite applicability. This follows a brief

review of theories of computation for concrete structures (the subject of “computer

science”) as well as Church’s Thesis, whose support is bolstered by the confluence of

notions. Then the authors say that “[c]ompelling motivation clearly would be required to

justify yet a new model of computation” (op. cit., p. 22). And that is claimed to come

from a need to give foundations to the subject of numerical analysis:

A major obstacle to reconciling scientific computation and computer science is
the present view of the machine, that is, the digital computer. As long as the
computer is seen as a finite or discrete object, it will be difficult to systematize
numerical analysis. We believe that the Turing machine as a foundation for real
number algorithms can only obscure concepts. Toward resolving the problem we
have posed, we are led to expanding the theoretical model of the machine to allow
real numbers as inputs. (Op. cit., p. 23)

An analogy (pp. 23-24) is made with Newton’s problem of reconciling the discrete

corpuscular view of matter that he accepted with the mathematics of the calculus that he

found necessary to describe bodies in prima facie continuous motion; the resolution came

via idealized infinitesimal masses.

 17

Now our suggestion is that the modern digital computer could be idealized in the
same way that Newton idealized his discrete universe. … Moreover, if one
regards computer-graphical output such as our picture of the Mandelbrot or Julia
sets with their apparently fractal boundaries and asks to describe the machine that
made these pictures, one is driven to the idealization of machines that work on
real or complex numbers in order to give a coherent explanation of these pictures.
For a wide variety of scientific computations the continuous mathematics that the
machine is simulating is the correct vehicle for analyzing the operation of the
machine itself.

These reasonings give some justification for taking as a model for scientific
computation a machine model that accepts real numbers as inputs. (Op. cit., p. 24)

What is puzzling in this analogy is that on the BSS model of computation, the relation of

order and hence that of equality between real numbers is taken as total and decidable by

the idealized machine, and so one is immediately led to discontinuous functions, such as

point and step functions. Moreover, the BSS model makes use only of the algebraic

structure of the real numbers and nothing that directly reflects its analytic/topological

character. So it fails to provide a genuine notion of computation on the real numbers as

such for which a version of CT would be claimed to hold. Nevertheless, as illustrated by

a number of leading examples, Blum et al. (1997) makes a substantial case that the BSS

model provides a proper foundation for the subject of numerical analysis where the basic

data is taken to be given by real (or complex) numbers. Why this turns out to be so is a

matter to which I shall return at the beginning of the next section.

The question whether there is a sensible generalization of the Church-Turing

Thesis to abstract structures is addressed directly by Tucker and Zucker (1988), pp. 196ff

and again in Tucker and Zucker (2000), pp. 493ff. In the latter it is said that the answer

to the question is difficult to explain fully and briefly so that only a sketch is given, and

the reader is referred back to the former for more details. Though the later publication is

a bit more succinct than the earlier one on this issue, I didn’t find that it leaves out any

essential points, so I shall use that as the reference in the following.12 The authors begin

with the statement of a “naïve” generalized CT for abstract algebras, namely that “[t]he

12 In addition, the reference Tucker and Zucker (1988) is not as widely available as their
year 2000 survey.

 18

functions that are ‘effectively computable’ on a many-sorted algebra A are precisely the

functions that are While* computable on A.” This is immediately qualified as follows:

[T]he idea of effective calculability is complicated, as it is made up from many
philosophical and mathematical ideas about the nature of finite computation with
finite or concrete elements. For example, its analysis raises questions about the
mechanical representation and manipulation of finite symbols; about the
equivalence of data representations; and about the formalization of constituent
concepts such as algorithm; deterministic procedure; mechanical procedure;
computer program; programming language; formal system; machine; and the
functions definable by these entities. … However, only some of these constituent
concepts can be reinterpreted or generalized to work in an abstract setting; and
hence the general concept, and term, of ‘effective computability’ does not belong
in a generalization of the Church-Turing thesis. In addition, since finite
computation on finite data is truly a fundamental phenomenon, it is appropriate to
preserve the term with its established special meaning. (Tucker and Zucker (2000),
p. 494, italics in the original.)

In other words, these authors and I are in complete agreement with the view asserted at

the end of the preceding section. Nevertheless, they go on to formulate three versions of

a generalized CT not using the notion of effective calculability, corresponding to the

three perspectives of algebra, programming languages, and specification on data types;

only the first of these is relevant to the discussion here. Namely:

Tucker-Zucker thesis for algebraic computability. The functions computable

by finite deterministic algebraic algorithms on a many-sorted [first-order] algebra

A are precisely the functions While* computable on A. (op. cit., p. 495)

This goes back to the work of Tucker (1980) on computing in algebraic structures; cf.

also Stoltenberg-Hansen and Tucker (1999). Hermann’s algorithm for the ideal

membership problem in K[x1,…,xn] for arbitrary fields K is given as a paradigmatic

example, but there is no principled argument for this thesis analogous to the work of

Gandy, Sieg, Dershowitz and Gurevich described in the preceding section. One may ask,

for example, why the natural number structure and arrays are assumed in the Tucker-

Zucker Thesis, and why these suffice beyond the structure A itself. Moreover, nothing is

said about assuming that the equality relation for A is to be included in it, even though

that is common in algebraic algorithms. Finally, one would like to see a justification of

 19

this thesis or possible variants comparable to the ones described for classical CT, both

informal and of a more formal axiomatic kind.

In any case, the Tucker-Zucker Thesis and supporting examples suggest that all

the notions of computability on abstract first order structures considered in this section

should be regarded as falling under a general notion of algorithm. What distinguishes

algorithms from computations is that they are independent of the representation of the

data to which they apply but only require how data is packaged structurally, i.e. they only

need consider the data up to structural isomorphism. Friedman was already sensitive to

this issue and that is the reason he gave for baptizing his notion using generalized register

machines, finite algorithmic procedures:

The difference between [symbolic] configuration computations and algorithmic
procedures is twofold. Firstly, in configuration computations the objects are
symbols, whereas in algorithmic procedures the objects operated on are
unrestricted (or unspecified). Secondly, in configurational computations at each
stage one has a finite configuration whose size is not restricted before
computation. On the other hand in algorithmic procedures one fixes beforehand a
finite number of registers to hold the objects. Thus for some n, at each stage one
has at most n objects. (Friedman 1978, p. 362).

The general question, “What is an algorithm?” has been addressed by

Moschovakis (2001) and Gurevich (2012) (both under that title), among others, but with

very different conclusions.13 In his sec. 6, Gurevich criticizes Moschovakis’ answer on

several grounds among which that distributed algorithms do not fall under the latter’s

central notion of recursor. Moreover, even those algorithms that fall under the notion of

recursor may do so by losing certain essential aspects of the procedure in question.

Whether or not one agrees with all of Gurevich’s critiques of Moschovakis’ analysis, in

my view that is more appropriately to be considered under general theses for recursion

that are taken up in the next section. In contrast to Moschovakis, Gurevich asks whether

the notion of algorithm can be defined at all; his answer is “yes and no”. On the negative

side, he writes:

In our opinion, the notion of algorithm cannot be rigorously defined in full
generality, at least for the time being. The reason is that the notion is expanding.

13 See also Blass and Gurevich (2003).

 20

Concerning the analogy of algorithms to real numbers, mentioned in sec.1,
Andreas Blass suggested a better analogy: algorithms to numbers. Many kinds of
numbers have been introduced throughout history: positive integers, natural
numbers, rationals, reals, complex numbers, quaternions, infinite cardinals,
infinite ordinals, etc. Similarly many kinds of algorithms have been introduced. In
addition to classical sequential algorithms, in use from antiquity, we have now
parallel, interactive, distributed, real-time, analog, hybrid, quantum, etc.
algorithms. New kinds of numbers and algorithms may be introduced. The
notions of numbers and algorithms have not crystallized (and maybe never will)
to support rigorous definitions. (Gurevich 2012, sec. 2)

On the positive side he says that even though it is premature to try to propose a

general answer to the question, “What is an algorithm?,” convincing answers have been

given to large classes of such, among which sequential algorithms, synchronous parallel

algorithms and interactive sequential algorithms (cf. ibid for references). In particular,

the Tucker-Zucker Thesis or something close to it is a plausible candidate for what one

might call the Algebraic Algorithmic Procedures Thesis. And more generally, it may be

possible to distinguish algorithms used in pure mathematics from those arising in applied

mathematics and computer science, where such algorithms as “interactive, distributed,

real-time, analog, hybrid, quantum, etc.” would fall. If there is a sensible separation

between the two, Moschovakis’ explanation of what is an algorithm could be justified as

being confined to those of pure mathematics. Moreover, his theory leads to the

remarkable result that there is a decidable criterion for identity of algorithms in his sense

(Moschovakis 1989).

Clearly, all this requires deeper consideration, and I must leave it at that.

5. Recursion on abstract structures. Let us return to the claim of Blum et al. (1997)

that the BSS model of computation on the reals (and complex numbers) is requisite for

the foundations of the subject of scientific computation. That was strongly disputed by

Braverman and Cook (2006), where the authors argued that the requisite foundation is

provided by a quite different “bit computation” model that is prima facie incompatible

with the BSS model. It goes back to ideas due to Banach and Mazur in the latter part of

the 1930s, but the first publication was not made until Mazur (1963). In the meantime,

the bit computation model was refined and improved by Grzegorczyk (1955) and

 21

independently by Daniel Lacombe (1955) in terms of a theory of recursively computable

functionals. Terminologically, something like “effective approximation computability” is

preferable to “bit computability” as a name for this approach in its applications to

analysis.

This competing approach was explained in Feferman (2013) in rough terms as

follows. To show that a real valued function f on a real interval into the reals is

computable by effective approximation, given any x in the interval as argument to f, one

works not with x but rather with an arbitrary sequential representation of x, i.e. with a

Cauchy sequence of rationals ⟨qn⟩n∈N which approaches x as its limit, in order to

effectively determine another such sequence ⟨rm⟩m∈N which approaches f(x) as limit. The

sequences in question are functions from N to Q, and so what is required is that the

passage from ⟨qn⟩n∈N to ⟨rm⟩m∈N is given by an effective type-2 functional on such

functions. Write T for the class of all total functions from N to N, and P for the class of

all partial functions from N to N. By the effective enumeration of the rational numbers,

this reduces the notion of effective approximation computability of functions f on the

reals to that of effective functionals F from T to T, and those in turn are restrictions to T

of the partial recursive functionals F′ (from P to P) whose values on total functions are

always total.14 It may be shown that by the continuity in the recursion theoretic sense of

partial recursive functionals we may infer continuity in the topological sense of the

functions f on the reals that are effective approximation computable. Thus step functions

that are computable in the BSS model are not computable in this sense. On the other

hand, the exponential function is an example of one that is computable in the effective

approximation model that is not computable in the BSS model.15

14 Note that a partial recursive functional F need not have total values when restricted to
total arguments.
15 There is a considerable literature on computation on the real numbers under various
approaches related to the effective approximation one via Cauchy representations. A
more comprehensive one is that given by Kreitz and Weihrauch (1984, 1985) and

 22

The reader must be referred to Blum et al. (1997) and Braverman and Cook

(2006) for arguments as to which, if either of these, is the appropriate foundation for

scientific computation.16 I take no position on that here, but simply point out that we

have been led in a natural way from computation on the reals in the effective

approximation sense back to the partial recursive functionals F on partial functions of

natural numbers. Now Kleene’s principal theorem for such functionals is the “first”

Recursion Theorem, according to which each such F has a least fixed point (LFP) f, i.e.

one that is least among all partial functions g such that g = F(g) (Kleene 1952 p. 348).

This is fundamental in the following sense: the partial recursive functions and functionals

are just those generated by closing under explicit definition and LFP recursion over the

structure N. For, first of all, one immediately obtains closure under the primitive

recursive schemata. Then, given primitive recursive g(x, y), one obtains the function

f(x) ≃ (µy)[g(x, y) = 0] by taking f(x) ≃ h(x, 0) where h(x, z) ≃ z if (∀y < z) [g(x, y) > 0

Weihrauch (2000); that features surjective representations from a subset of NN to R.
Bauer (2000) introduced a still more general theory of representations via a notion of
realizability, that allows one to consider classical structures and effective structures of
various kinds (including those provided by domain theory) under a single framework; cf.
also Bauer and Blanck (2010). The work of Pour-El surveyed in her article (1999)
contains interesting applications of the effective approximation approach to questions of
computability in physical theory.
16 Cf. also Blum (2004), to which Braverman and Cook (2006) responds more directly.
Actually, the treatment of a number of examples from numerical analysis in terms of the
BSS model that takes up Part II of Blum et al. (1997) via the concept of the “condition
number” of a procedure in a way brings it in closer contact with the effective
approximation model. As succinctly explained to me in a personal communication from
Lenore Blum, “[r]oughly, ‘condition’ connects the BSS/BCSS theory with the discrete
theory of computation/complexity in the following way: The ‘condition’ of a problem
instance measures how outputs will vary under perturbations of the input (think of the
condition as a normed derivative).” The informative article, Blum (2013), traces the idea
of the condition number back to a paper by Turing (1948) on rounding-off errors in
matrix computations from where it became a basic common concept in various guises in
numerical analysis. (An expanded version of Blum (2013) is forthcoming.) It may be that
the puzzle of how the algebraic BSS model serves to provide a foundation for the
mathematics of the continuous, at least as it appears in numerical analysis, is resolved by
noting that the verification of the algorithms it employs requires in each case specific use
of properties of the reals and complex numbers telling which such are “well-conditioned.”

 23

∧ g(x, z) = 0], else h(x, z′). It follows that all partial recursive functions (and thence all

partial recursive functionals) are obtained by Kleene’s Normal Form Theorem.

This now leads one to consider generation of partial functions and functionals by

explicit definition and LFP recursion over arbitrary abstract many-sorted structures A.

The development of that idea originates with Platek (1966), a PhD thesis at Stanford that,

though never published, came to be widely known by workers in the field. The only

requirement on a type-2 functional F on partial functions over A for it to have a least

fixed point is that F be monotonic increasing. In addition, for a thorough-going theory of

partial recursive functions and functionals over A, one must use only those F that have

themselves been obtained by LFP recursion in terms of previously defined functions and

functionals. For that purpose Platek made use of a hierarchy of hereditarily monotonic

partial functionals of arbitrary finite type over the domains of A. That allows one to start

not only with given functions over A but also given functionals at any level in that

hierarchy. On the other hand, Platek showed that in the special case that the initial

functionals are of type level ≤ 2, everything of type level ≤ 2 that can be generated via

explicit definition and LFP recursion in higher types from that data can already be

generated via explicit definition and LFP recursion at type level equal to 2. Platek’s

approach using the full hierarchy of hereditarily monotonic functionals allowed him to

subsume and simplify Kleene’s theory of recursion in finite types using hereditarily total

functionals as the arguments of partial functionals defined by certain schemata (Kleene

1959).17 Later, Kechris and Moschovakis (1977) showed how to subsume Kleene’s

theory under LFP recursion at type level ≤ 2 by treating the finite type structure as a

many-sorted first-order structure (with infinitely many sorts).

Moschovakis (1984, 1989) took the LFP approach restricted to functionals of type

level ≤ 2 in his explanation of the notion of algorithm over arbitrary structures featuring

simultaneous LFP definitions, though those can be eliminated in favor of successive LFP

definitions of the above form. Both the Platek and Moschovakis approaches are

extensional. In order to tie that up both with computation over abstract data types and

17 Platek (1966) also used the LFP approach to subsume recursion theory on the ordinals
under the theory of recursion in the Sup functional.

 24

with Bishop’s approach to constructive mathematics, in a pair of papers Feferman (1992,

1992a), I extended the use of LFP schemata to cover intensional situations, by requiring

each basic domain Ai of A is to be equipped with an equivalence relation =i that the initial

functions and functionals preserve. The resulting partial functions and functionals are

called there Abstract Computation Procedures (ACPs). They are successively generated

over any structure A = (A0, A1, …, Ak, F0,…,Fm) by explicit definition and LFP recursion,

where each Ai is non-empty and the Fjs are constants, partial functions or monotonic

increasing partial functionals of type level 2 over the Ai. Also, one of the domains, say

A0, is fixed to be the booleans {t, f} and the operations of negation and conjunction are

taken among the basic operations; this allows conditional definition. The details of the

schemata may be found in Feferman (2013).

Let us note two comparisons of ACPs with other approaches. First is the

following result due to Xu and Zucker (2005): if A is an N-standard structure with arrays,

then While*(A) = ACP(A). Secondly, we have a matchup with the Moschovakis (1984)

theory of recursors by the result of Feferman (1992a) sec. 9 that the ACPs are closed

under simultaneous LFP recursion. In the particular case of the structure N of natural

numbers, the arguments above in connection with Kleene’s First Recursion Theorem

show that the partial functions and functionals generated by the abstract computation

procedures are just those that are partial recursive. This shows that the effective

approximation approach to computation on the reals is accounted for at the second-order

level under ACP(N), while the Xu-Zucker result shows that the BSS model is subsumed

at the first-order level under ACP(R).

Clearly it is apt to use the word ‘abstract’ in referring to the procedures in

question since they are preserved under isomorphism. But given the arguments I have

made in the preceding sections, it was a real mistake on my part to use ‘computation’ as

part of their designation, and I very much regret doing so. A better choice would have

been simply to call them Abstract Recursion Procedures, and I have decided to take this

occasion to use ‘ARP’ as an abbreviation for these, in place of ‘ACP’, thus ARP(A) in

place of ACP(A). The main point now is to bring matters to a conclusion by using these

 25

to propose the following thesis on definition by recursion that in no way invokes the

concepts of computation or algorithm.

Recursion Thesis (RT). Any function defined by recursion over a first-order structure A

(with Booleans) belongs to ARP(A).

This presumes an informal notion of being a function f defined by recursion over a first-

order structure A that is assumed to include the Boolean constants and basic operations.

Roughly speaking, the idea for such a definition is that f is determined by an equation

f(x) ≃ E(f, x).where E is an expression that may contain a symbol for f and symbols for

the initial functions and constants of A as well as for functions previously defined by

recursion over A. Now here is the way such a justification for RT might be argued. At

any given x = x0, f(x) may not be defined by E, for example if E(f, x) = [if x = x0 and f(x)

= 0 then 1, else 0]. But if f(x) is defined at all by E, it is by use made of values f(y) that

are previously defined. Write y  x if f(y) is previously defined and its value is used in

the evaluation of x; then let fx be f restricted to {y : y  x}. Thus the evaluation of f(x) is

determined by fx when it is defined, i.e. f(x) = E(fx, x) for each such x. It may be that {y :

y  x} is empty if f(x) is defined outright in terms of previous functions; in that case x is

minimal in the  relation. In the case it is not empty, we may make a similar argument

for f(y) for each y  x, and so on. In order for this to terminate, the  relation must be

well-founded. Next, take F to be the functional given by F(f, x) = E(fx, x); F is

monotonic increasing, because if f ⊆ g then fx = gx. So F has a LFP g. But F defines our

function f by transfinite recursion on  , so f is a fixed point of F and hence g ⊆ f. To

conclude that f ⊆ g, we argue by transfinite recursion on  : for a given x, if f(y) = g(y)

for all y  x then f(x) = F(f, x) = E(fx, x) = E(gx, x) =F(g, x) = g(x). Thus f is given by

LFP recursion in terms of previously obtained functions in ARP(A) and hence itself

belongs to ARP(A).

The reason for restricting to first-order structures A in the formulation of RT is so

as not to presume the property of monotonicity as an essential part of the idea of

definition by recursion. I should think that all this can be elaborated, perhaps in an

 26

axiomatic form, but if there is to be any thesis at all for definition by recursion over an

arbitrary first-order structure (with Booleans), I cannot see that it would differ in any

essential way from RT. If there is a principled argument for assuming monotonicity of

the functionals in a given second-order structure then we would also have a reasonable

extension of RT to such.

Acknowledgements. I wish to thank Lenore Blum, Andrej Bauer, John W. Dawson, Jr.,

Nachum Dershowitz, Yuri Gurevich, Grigori Mints, Dana Scott, Wilfried Sieg, Robert

Soare, John V. Tucker, and Jeffery Zucker for their helpful comments on an early draft of

this article. Also helpful were their pointers to relevant literature, though not all of that

extensive material could be accounted for here.

References

Barwise, J. (1975), Admissible Sets and Structures, Springer-Verlag, Berlin.

Bauer, A. (2000), The Realizability Approach to Computable Analysis and Topology,
PhD Thesis, Carnegie Mellon University; Technical Report CMU-CS-00-164.

Bauer, A. and J. Blanck, Canonical effective subalgebras of classical algebras as
constructive metric completions, J. of Universal Computer Science 16, no. 18, 2496-2522.

Blass, A. and Y. Gurevich (2003), Algorithms: A quest for absolute definitions, in Bull.
EATCS 81, 195-225.

Blum, L. (2004), Computability over the reals: Where Turing meets Newton, Notices
Amer. Math Soc. 51, 1024-1034.

_______ (2013), Alan Turing and the other theory of computation, in Cooper and van
Leeuwen (2013), 377-384.

Blum, L., M. Shub and S. Smale (1989), On a theory of computation and complexity over
the real numbers: NP-completeness, recursive functions and universal machines, Bull.
Amer. Math. Soc. 21, 1-46.

Blum, L., F. Cucker, M. Shub and S. Smale (1997), Complexity and Real Computation,
Springer-Verlag, New York.

Braverman, M. and S. Cook (2006), Computing over the reals: Foundations for scientific
computing, Notices Amer. Math. Soc. 51, 318-329.

Church, A. (1936), An unsolvable problem of elementary number theory, American J. of
Mathematics 58, 345-363.

 27

_________ (1937), Review of Turing (1936-37), J. Symbolic Logic 2, 42-43.

Copeland, B. J. (2002), The Church-Turing Thesis,
http://plato.stanford.edu/entries/church-turing/, Stanford Encyclopedia of Philosophy.

Cooper, S. B. and J. van Leeuwen, eds. (2013), Alan Turing: His work and impact,
Elsevier Pub. Co., Amsterdam.

Davis, M. (1982), Why Gödel didn’t have Church’s thesis, Information and Control 54,
3-24.

Dawson, J. W., Jr. (1993), Prelude to recursion theory: the Gödel-Herbrand
correspondence, in First International Symposium on Gödel’s Theorems (Z. W.
Wolkowski, ed.), World Scientific, Singapore, 1-13.

Dershowitz, N. and Y. Gurevich (2008), A natural axiomatization of computability and
proof of Church’s Thesis, Bull. Symbolic Logic 14, 299-350.

Feferman, S. (1992), A new approach to abstract data types, I: Informal development,
Mathematical Structures in Computer Science 2, 193-229.

__________ (1992a), A new approach to abstract data types, II: Computability on ADTs
as ordinary computation, in Computer Science Logic (E. Börger, et al., eds.), Lecture
Notes in Computer Science 626, 79-95.

__________ (2013) About and around computing over the reals, in Computability.
Turing, Gödel, Church, and beyond (B. J. Copeland, C. J. Posy, and O. Shagrir, eds.),
MIT Press, Cambridge, 55-76.

Fenstad, J. (1980), General Recursion Theory. An axiomatic approach, Springer-Verlag,
Berlin.

Friedman, H. (1971), Algorithmic procedures, generalized Turing algorithms, and
elementary recursion theory, in Logic Colloquium ’69 (R. O. Gandy and C. M. E. Yates,
eds.), North-Holland, Amsterdam, 361-389.

Friedman, H. and R. Mansfield (1992), Algorithmic procedures, Transactions of the
American Mathematical Society 332, 297-312.

Gandy, R. O. (1980), Church’s thesis and principles for mechanisms, in The Kleene
Symposium (J. Barwise, H. J. Keisler, and K. Kunen, eds.), North-Holland, Amsterdam,
123-145.

___________ (1988), The confluence of ideas in 1936, in The Universal Turing Machine.
A half-century survey (R. Herken, ed.), Oxford Univ. Press, Oxford, 55-111.

Gödel, K. (1933), The present situation in the foundations of mathematics, (unpublished
lecture), in Gödel (1995), 45-53.

________(1934), On undecidable propositions of formal mathematical systems,
(mimeographed lecture notes by S. C. Kleene and J. B. Rosser), reprinted with revisions

 28

in Davis, M. (1965) (ed.), The Undecidable. Basic papers on Undecidable propositions,
unsolvable problems, and computable functions, Raven Press, Hewlett, NY, 39-74, and in
Gödel (1986), 346-371.

________(1986), Collected Works. Vol. I, Publications 1929-1936 (S. Feferman et al.,
eds.), Oxford Univ. Press, New York.

________ (1990), Collected Works. Vol. II, Publications 1938-1974 (S. Feferman et al.,
eds.), Oxford Univ. Press, New York.

________(1995), Collected Works. Vol. III, Unpublished Essays and Lectures (S.
Feferman et al., eds.), Oxford Univ. Press, New York.

________(2003), Collected Works. Vol. V, Correspondence H-Z (S. Feferman et al., eds.),
Oxford Univ. Press, Oxford.

Griffor, E. (ed.) (1999), Handbook of Computability Theory, Elsevier, Amsterdam.

Grzegorczyk, A. (1955), Computable functionals, Fundamenta Mathematicae 42, 168-
202.

Gurevich, Y. (2000), Sequential abstract state machines capture sequential algorithms,
ACM Transactions on Computational Logic 1, 77-111.

__________ (2012), What is an algorithm?, SOFSEM 2012: Theory and Practice of
Computer Science (M. Bielikova et al., eds.), LNCS 7147 (2012), 31-42.

Hilbert, D. (1926), Über das Unendliche, Mathematische Annalen 95, 161-190; English
translation in van Heijenoort (1967) (ed.), From Frege to Gödel. A source book in
mathematical logic, 1879-1931, Harvard Univ. Press, Cambridge MA, 367-392.

Hinman, P. G. (1999), Recursion on abstract structures, in Griffor (1999), 315-359.

Kechris, A. and Y. Moschovakis (1977), Recursion in higher types, in Handbook of
Mathematical Logic (J. Barwise, ed.), North-Holland Pub. Co., Amsterdam, 681-737.

Kleene, S. C. (1936), General recursive functions of natural numbers, Mathematische
Annalen 112, 727-742.

___________(1936a), λ-definability and recursiveness, Duke Mathematical Journal 2,
340-353.

___________ (1943), Recursive predicates and quantifiers, Transactions American Math.
Soc. 53, 41-73.

___________ (1952), Introduction to Metamathematics, North-Holland, Amsterdam.

___________ (1959), Recursive functionals and quantifiers of finite type I, Transactions
American Math. Soc. 91, 1-52.

 29

Kolomogorov, A. N. and V. A. Uspenski (1953), On the definition of an algorithm,
Uspehi Math. Nauk. 8, 125-176; American Math. Soc. Translations 29 (1963), 217-245.

Kreitz, C. and K. Weihrauch (1984), A unified approach to constructive and recursive
analysis, in Computation and Proof Theory (M. Richter, et al., eds.), Lecture Notes in
Mathematics 1104, 259-278.

_______________________ (1985), Theory of representations, Theoretical Computer
Science 38, 35-53.

Lacombe, D. (1955), Extension de la notion de fonction récursive aux fonctions d’une ou
plusieurs variables réelles, I, II, III, Comptes Rendus de l’Académie des Science Paris,
240: 2470-2480, 241: 13-14, 241: 151-155.

Mazur, S. (1963), Computable analysis, Rozprawy Matematyczne 33.

Moldestad, J., V. Stoltenberg-Hansen and J. V. Tucker (1980), Finite algorithmic
procedures and inductive definability, Mathematica Scandinavica 46, 62-76.

__ (1980a), Finite algorithmic
procedures and inductive definability, Mathematica Scandinavica 46, 77-94.

Moschovakis, Y. N. (1984), Abstract recursion as a foundation for the theory of recursive
algorithms, in Computation and Proof Theory (M. M. Richter, et al., eds.), Lecture Notes
in Computer Science 1104, 289-364.

________________ (1989), The formal language of recursion, J. Symbolic Logic 54,
1216-1252.

________________ (2001), What is an algorithm?, in Mathematics Unlimited⎯|
2001 and beyond (B. Engquist and W. Schmid, eds.), Springer, Berlin, 919-936.

Platek, R. A. (1966), Foundations of Recursion Theory, PhD Dissertation, Stanford
University.

Pour-El, M. B. (1999), The structure of computability in analysis and physical theory, in
Griffor (1999), 449-471.

Rogers, H. (1967), Theory of Recursive Functions and Effective Computability, McGraw-
Hill Publ. Co., New York, NY.

Sacks, G. E. (1990), Higher Recursion Theory, Springer-Verlag, Berlin.

Shagrir, O. (2002), Effective computation by humans and machines, Minds and Machines
12, 221–240.

Shepherdson, J. C. and H. E. Sturgis (1963), Computability of recursive functions, J.
Assoc. Computing Machinery 10, 217-255.

Sieg, W. (2002), Calculations by man and machine: Conceptual analysis, in Reflections
on the Foundations of Mathematics. Essays in honor of Solomon Feferman, (W. Sieg, R.

 30

Sommer, C. Talcott, eds.), Lecture Notes in Logic 115, Assoc. for Symbolic Logic, A. K.
Peters, Ltd., Natick, MA, 390-409.

_______ (2002a) Calculations by man and machine: Mathematical presentation, in
Proceedings of the Cracow International Congress of Logic, Methodology and
Philosophy of Science, Synthese Series, Kluwer Academic Publishers, Dordrecht, 245-
260.

_______ (2003), Introductory note to the Gödel-Herbrand correspondence, in Gödel
(2003), 3-13.

_______ (2005), Only two letters: The correspondence between Herbrand and Gödel,
Bull. Symbolic Logic 11, 172-184.

_______ (2008), Church without dogma: Axioms for computability, in New
Computational Paradigms (B. Löwe, A. Sorbi, B. Cooper, eds.), Springer-Verlag, Berlin,
139-152.

_______ (2013) Axioms for Computability: Do they allow a proof of Church's Thesis?,	
 in
A Computable Universe – Understanding and exploring nature as computation (H. Zenil,
ed.), World Scientific Publishing, Singapore, 99-123.	

Soare, R. I. (1996), Computability and recursion, Bull. Symbolic Logic 2, 284-321.

_________ (1999), The history and concept of computability, in Griffor (1999), 3-36.

Stoltenberg-Hansen, V. and J. V. Tucker, Computable rings and fields, in Griffor (1999),
363-447.

Tucker, J. V. (1980), Computing in algebraic systems, in Recursion Theory, its
Generalizations and Applications (F. R. Drake and S. S. Wainer, eds.), Cambridge, Univ.
Press, Cambridge.

Tucker, J. V. and J. I. Zucker (1988), Program Correctness over Abstract Data Types,
CWI Monograph, North-Holland, Amsterdam.

_______________________ (2000), Computable functions and semicomputable sets on
many-sorted algebras, in Handbook of Logic in Computer Science Vol. 5 (S. Abramsky,
et al., eds.), Oxford Univ. Press, Oxford, 317-523.

_______________________ (2006), Abstract versus concrete computability: The case of
countable algebras, in Logic Colloquium ’03 (V. Stoltenberg-Hansen and J. Väänänen,
eds.), Lecture Notes in Logic 24, Assoc. for Symbolic Logic, A. K. Peters, Ltd.,
Wellesley, MA, 377-408.

Turing, A. (1936-37), On computable numbers, with an application to the
Entscheidungsproblem, Proc. London Math. Soc. Ser. 2, 42, 230-265; a correction, ibid.
43, 544-546.

 _________ (1937), Computability and λ-definability, J. Symbolic Logic 2, 153-163.

 31

__________ (1948), Rounding-off errors in matrix processes, Quart. J. Mech. Appl.
Math.1, 287-308; reprinted in Cooper and van Leeuwen 2013, 385-402.

Weihrauch, K. (2000), Computable Analysis, Springer, New York.

Xu, J. and J. Zucker (2005), First and second order recursion on abstract data types,
Fundamenta Informaticae 67, 377-419.

Dept. of Mathematics

Stanford University

Email: feferman@stanford.edu

 32

