
 1 

Theses for Computation and Recursion on Concrete and Abstract Structures 
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Abstract: The main aim of this article is to examine proposed theses for computation and 
recursion on concrete and abstract structures. What is generally referred to as Church’s 
Thesis or the Church-Turing Thesis (abbreviated CT here) must be restricted to concrete 
structures whose objects are finite symbolic configurations of one sort or another. 
Informal and principled arguments for CT on concrete structures are reviewed.  Next, it 
is argued that proposed generalizations of notions of computation to abstract structures 
must be considered instead under the general notion of algorithm. However, there is no 
clear general thesis in sight for that comparable to CT, though there are certain wide 
classes of algorithms for which plausible theses can be stated.  The article concludes with 
a proposed thesis RT for recursion on abstract structures.   

 

1. Introduction. The concepts of recursion and computation were closely intertwined 

from the beginning of the efforts early in the 1930s to obtain a conceptual analysis of the 

informal notion of effective calculability. I provide a review of those efforts in sec. 2 as 

background to the remainder of this article, but I have nothing new to add here to the 

extensive historical and analytical literature.1  It is generally agreed that the conceptual 

analysis of effective calculability was first provided most convincingly by Turing (1936-

7).  Not long before that Church (1936) had proposed identifying effective calculability 

with the Herbrand-Gödel notion of general recursiveness, soon enough proved equivalent 

to Turing computability among other suggested explications.  Curiously, the subject of 

effective computation came mostly to be called Recursion Theory, even though that is 

only one of the possible forms of its development.2   

In his influential book, Introduction to Metamathematics, Kleene (1952) baptized 

the statement that every effectively calculable function is general recursive as Church’s 

                                                
1 Gandy (1988) is an excellent introductory source to those developments; cf. also Soare 
(1999).    
2 Soare in his articles (1996, 1999) has justifiably made considerable efforts to 
reconfigure the terminology of the subject so as to emphasize its roots in the notion of 
computation rather than recursion, for example to write ‘c.e.’ for ‘computably 
enumerable’ in place of ‘r.e.’ for ‘recursively enumerable’, but they do not seem to have 
overcome the weight of tradition.   
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Thesis.  He went on to baptize as Turing’s Thesis the statement that “every function 

which would naturally be regarded as computable is computable …by one of his 

machines”3 and to say that this is equivalent to Church’s Thesis, since the general 

recursive functions are exactly the same as the (total) functions computable by Turing 

machines. This led Kleene to speak further on in his book in ambiguous terms of the 

Church-Turing Thesis. Among workers in recursion theory it is common to take Church’s 

Thesis and Turing’s Thesis to be equivalent for the same reason as given by Kleene, and 

to follow him in referring to them without distinction as Church’s Thesis or as the 

Church-Turing Thesis; I shall also use ‘CT’ ambiguously as an abbreviation for either of 

these.4   

My main concern in this article is to examine proposed theses for computation 

and recursion on both concrete and abstract structures.  By concrete structures I mean 

those given by sets of finite symbolic configurations (e.g., finite strings, trees, graphs, 

hereditarily finite sets, etc.) together with the appropriate tests and operations for their 

transformation.  In sec. 3 I review some efforts to “prove” CT for computation on 

concrete structures that began with Gandy (1980) and were later pursued by Sieg and by 

Dershowitz and Gurevich among others (references below).  The approaches in question 

proceed by isolating basic properties of the informal notion of effective calculability or 

computation in axiomatic form and proving that any function computed according to 

those axioms is Turing computable.  It is not my aim here to argue for one or another of 

these approaches but rather to emphasize what they hold in common (and what is usually 

taken for granted), namely that in whatever way one understands CT, there is no 

calculation without representation, i.e. it is a necessary ingredient of whatever constitutes 

effective calculability that one operates only on finite symbolic configurations by means 

that directly transform such configurations into new ones using appropriate tests along 

the way.  

                                                
3 Kleene’s wording derives from Turing (1936-7), p. 249: “No attempt has yet been made 
to show that the ‘computable’ numbers include all numbers which would naturally be 
regarded as computable.” [Italics mine] 
4 Cf. Copeland (2002) for an introductory article on the Church-Turing thesis.   
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Beginning in the late 1950s a number of generalizations of the notions of 

computation and recursion were made to a great variety of abstract structures, including 

general first-order (or algebraic) structures, finite-type structures over the natural 

numbers, and structures of sets.  These developments witnessed impressive success in 

obtaining various analogues of leading results from classical recursion theory.  

Nevertheless, the point of my emphasis on concrete structures as a sine qua non for CT is 

to raise questions about proposed generalizations of it to abstract structures that have 

been suggested.  In particular, I shall concentrate in sec. 4 on general theories of 

“computation” on first-order structures that descend from Friedman (1971) via his 

adaptation of the Shepherdson-Sturgis register machine approach (equivalently, the 

Turing machine approach) on the one hand, and that of Tucker and Zucker (1988, 2000) 

via “While” schemata on the other.  I shall argue (as Friedman already did) that the 

proposed generalizations are more properly examined under the concept of algorithmic 

procedures, which are meaningful for abstract structures (or “data types”) since 

algorithms are independent of the means by which individual data items and the 

operations on them may be represented.  As will be explained at the end of sec. 4, 

substantial efforts have been made to answer the question, “What is an algorithm?,” 

leading to quite different conclusions, among them by Moschovakis (1984, 2001) and 

Gurevich (2012).  In view of the controversy, it is perhaps premature to propose a general 

associated version of CT for algorithms, though wide classes of algorithms may be 

candidates for such.  In particular, Tucker and Zucker (op. cit.) have formulated a thesis 

for algebraic algorithmic procedures on abstract structures that deserves special attention 

under that heading.  

Finally, by comparison with these, sec. 5 reviews a general notion of recursive 

definition applied to suitable second-order structures, and a general thesis RT related to 

such is proposed for consideration.     

Before turning to this material, one may well ask: What purpose is served by the 

questions of formulation and justification of these theses?  We should not expect a single 

answer in each case, let alone a single overall answer; here are a few. In the case of CT 

itself, we had the historical pressure on the negative side to demonstrate the effective 
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unsolvability of the Entscheidungsproblem in logic and, subsequently, many more 

examples of that in mathematics.  On the positive side, it was and continues to be used to 

provide a solid foundation to informal proofs of computability, i.e. to justify “proofs by 

Church’s Thesis.”  (And for Gödel, it was used to bolster his conviction that mind is not 

mechanical, via the incompleteness theorems and the identification of formal systems in 

their most general form with Turing machines.) Moving on to the proposed extension of 

notions of computability to abstract structures, a prime structure of interest is that of the 

real numbers (and relatedly the complex numbers), the arena of numerical analysis (aka 

scientific computation).  Among the concerns here are to understand its limits and to 

provide a unified foundation.  Moreover, as we shall see, a crucial issue is to separate 

conceptually algebraic methods from analytical ones.  In addition, the latter are relevant 

to questions as to whether and in what sense the laws of physics are mechanical.   

More generally, it is important to separate and refine concepts that are often 

confused, namely those of computation procedure, algorithmic procedure and recursive 

definition that are the primary concern of this article.  Those who are philosophically 

inclined should find interest in these case studies in conceptual analysis (aka explication 

of informal concepts) both settled and unsettled.  Finally, it may be hoped that 

satisfactory progress on these questions would help lead to the same on concepts of 

feasibility in these various areas, concepts that are wholly untouched here.   

2. Recursion and computation on the natural numbers, and the Church-Turing 

Thesis. The question as to which forms of definitions of functions on the natural numbers 

are finitistically acceptable was an important issue in the development of Hilbert’s 

program in the 1920s.  In the views of the Hilbert school this certainly included the 

primitive recursive functions (going back to Dedekind), but was not limited to such once 

Ackermann produced his example of a non-primitive recursive function.  Formally, that 

was given by a nested double recursion, but it could also be analyzed as a recursion on 

the ordinals up to ω2.  Hilbert’s unsupported claim (1926) to have demonstrated the 

Continuum Hypothesis by means of his proof theory involved the use of functions given 

by higher transfinite recursions; it would thus seem that Hilbert counted them among the 
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finitistically acceptable functions, though no clear conditions were given as to what 

would make them so.   

A more specific analysis of which functions of the natural numbers are definable 

by recursive means came about as a result of a single exchange of correspondence 

between Herbrand and Gödel in 1931.  Herbrand wrote first after receiving a copy of 

Gödel’s paper on the incompleteness of arithmetic that happened to make essential 

technical use of the schemata for primitive recursive functions.  Concerning the contents 

of that letter, in 1963 Jean van Heijenoort asked Gödel about the exchange in connection 

with his (1934) formulation of the notion of general recursive function, the idea for which 

he had credited in part to Herbrand.  In his response to van Heijenoort, Gödel said that he 

could not locate the correspondence in his papers but that the formulation in the 1934 

notes was exactly as had been proposed to him three years prior to that by Herbrand.  The 

two letters in the exchange continued to be missing in the following years until they were 

found finally by John W. Dawson, Jr. in 1986 in the course of his cataloguing of the 

Gödel Nachlass at the Institute for Advanced Study in Princeton.  As explained in detail 

in Dawson (1993) and Sieg (2003, 2005) it turned out that Gödel misremembered some 

essential points.5  

Herbrand’s letter to Gödel informally proposed a characterization of the extent of 

the finitistically acceptable functions in terms of recursive definitions via a single formal 

system of arithmetic with quantifier-free induction and axioms for a sequence of 

functions fn satisfying three conditions on successive quantifier free axioms for the fn, of 

which the main one is: 

We must be able to show, by means of intuitionistic [finitary] proofs, that with 
these axioms it is possible to compute the value of the functions univocally for 
each specified system of values of their arguments. (cf. Sieg 2003, p. 6)  

Among examples, Herbrand lists the recursion equations for addition and multiplication, 

Gödel’s schemata for primitive recursion, Ackermann’s non-primitive recursive function, 

and functions obtained by diagonalization.  Gödel’s reply, though friendly, was critical 

                                                
5 For convenience I shall only refer to Sieg (2003) in the following, though there is 
considerable overlap with Dawson (1993).   
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on a number of points, among which Herbrand’s proposal that finitism could be 

encompassed in a single formal system.6  

In the notes for his 1934 lectures on the incompleteness theorems at the IAS, 

Gödel returned to Herbrand’s proposal in the last section under the heading “general 

recursive functions.”  He there recast Herbrand’s suggestion to define a new function ϕ in 

terms of “known” functions ψ1,…,ψk and possibly ϕ itself.  The main requirement is now 

taken to be that for each set of natural numbers k1,…,kl there is one and only one m such 

that ϕ(k1,…,kl) = m is a derived equation, where the rules of inference for the notion of 

derivation involved are simply taken to be those of the equation calculus, i.e. substitution 

of numerals for variables and substitution of equals for equals (cf. Gödel 1934, p. 26). 

Before turning to this bridge to the conceptual analysis of effective calculability, 

note that there are two features of Gödel’s definition of general recursive function that 

make it ineffective in itself, namely (given “known” effectively calculable functions 

ψ1,…,ψk) one can’t decide whether or not a given system of equations E has (i) the 

uniqueness property, namely that for each sequence of arguments k1,…,kl there is at most 

one m such that ϕ(k1,…,kl) = m is derivable from E, nor that E has (ii) the existence 

property, namely that there is at least one such m for each such sequence of arguments.  

In Kleene’s treatments of general recursion elaborating the Herbrand-Gödel idea, 

beginning in 1936 and ending in Kleene (1952) Ch. XI, one may use any system of 

equations E to determine a partial recursive function, simply by taking ϕ(k1,…,kl)⎯when 

defined⎯to be the value m given by the least derivation (in a suitable primitive recursive 

coding) ending in some value for the given arguments.  It is of course still undecidable 

whether the resulting function is total.  It finally remained for Kleene to give the most 

satisfactory general formulation of effective recursion on the natural numbers via his 

Recursion Theorem (op. cit., p. 348). But this requires the notion of partial recursive 

functional to which we shall return in sec. 5 below.   

                                                
6 Gödel was not long after to change his mind about that; cf. Gödel (1933).   
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Now, not only did Gödel in 1934 misremember the details of Herbrand’s 1931 

formulation, he made a crucial conceptual shift there from the question of characterizing 

the totality of finitistically acceptable functions to that of characterizing the totality of 

functions given by a “finite computation” procedure, despite his clear reservations both 

about the possibility of such and of general recursion in particular as a prime candidate. 

Church was bolder: 

We now define [sic!] the notion … of an effectively calculable function of 
positive integers by identifying it with the notion of recursive function of positive 
integers (or of a λ-definable function of positive integers). (Church 1936, p. 356) 

Church had previously proposed to identify the effectively calculable functions with the 

λ-definable ones, but by 1936 he could depend on their co-extensiveness with the general 

recursive functions established in Kleene (1936, 1936a).  It was Kleene (1943) who 

baptized Church’s “definition” of effectively calculable function as ‘Thesis I’ and then as 

Church’s Thesis in Kleene (1952), p. 300.  See Gandy (1988) pp. 76 ff for Church’s full 

statement of the Thesis (qua definition) and the initial arguments that he made in its favor, 

among which the equivalence of “two such widely different and … equally natural 

definitions of effective calculability”; Gandy calls that the argument by confluence of 

ideas.7  

This argument was soon to be extended by the most significant step in the 

analysis of the concept of effectively calculable function on the natural numbers, namely 

that made by Turing (1936-37). To be noted is that Turing conceives of the calculations 

as being carried out by an (abstract) human being following a fixed finite set of 

instructions or routine using a finite set of symbols specified in advance, via entering or 

deleting the contents of the workspace given by a potentially infinite set of symbol 

locations or cells. The confluence argument was bolstered by Turing’s (1937) proof of 

the equivalence of his notion of computability with that of λ-definability. Church quickly 

accepted Turing’s analysis of effectively calculable as the preferred notion of the three 

then available.  As he wrote in his review of Turing’s paper: 

                                                
7 Church (1936) pp. 100-102 had another “step-by-step” argument for the Thesis, but 
there is a semi-circularity involved; cf. Shagrir (2002) p. 224.   
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[Turing’s notion] has the advantage of making the identification with 
effectiveness in the ordinary (not explicitly defined) sense evident 
immediately⎯i.e., without the necessity of proving preliminary theorems. 
(Church 1937) 

Gödel, too, accepted Turing’s explication of effective calculability, but by when is not 

clear.  In the unpublished lecture designated *193? in Gödel (1995)⎯probably prepared 

in 1938⎯he describes the notion of general recursive function, and then writes, “[t]hat 

this really is the correct definition of mechanical computability was established beyond 

any doubt by Turing” (Gödel 1995, p. 168); however, he does not refer to proofs of their 

equivalence as justification for this. The first evidence of his view in print appears briefly 

at the beginning of his remarks before the 1946 Princeton Bicentennial, where he speaks 

of “the great importance of the concept of general recursiveness (or Turing’s 

computability)” because of the independence of the concept of calculability in a formal 

system from the formalism chosen (cf. Gödel 1990, p.150).  But again he does not take 

Turing’s explanation of effective computability to be the primary one.  Only later, in his 

June 1964 Postscript to Gödel (1934), does he address the concept on its own terms as 

follows: 

Turing’s work gives an analysis of the concept of “mechanical procedure” (alias 
“algorithm” or “computation procedure” or “finite combinatorial procedure”).  
This concept is shown to be equivalent with that of a “Turing machine”. (cf. 
Gödel 1986, p. 370) 

As described in sec. 1 above, it was Kleene (1952) p. 300 et seq, who led one to 

talk of Church’s Thesis, Turing’s Thesis, and then, ambiguously, of the Church-Turing 

Thesis for the characterization through these equivalences of the effectively calculable 

functions.  In another influential text, Rogers (1967) pp. 18ff, took the argument by 

confluence as one of the basic pins for CT and used that to justify informal proofs “by 

Church’s Thesis”.   

 

3. Computation on concrete structures and “proofs” of CT.  Beginning with work of 

Kolmogorov in 1953 (cf. Kolmogorov and Uspensky 1953), efforts were made to move 

beyond the argument by confluence, among others, to more principled arguments for CT. 

The first significant step in that direction was made by Gandy (1980) which, together 
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with its successors to be described below, may be construed as following a more 

axiomatic approach, in the sense that one (cl)aims to isolate basic properties of the 

informal notion of effective calculability or computation and proves that any function 

computed according to those conditions is computable by a Turing machine. As one sees 

by closer inspection, all the axioms used by the work in question take the notion of 

finiteness for granted, hence may be construed formally as carried out within weak 

second-order logic, but otherwise there is considerable difference as to how they are 

formulated.    

To begin with, Gandy asserts (as he did again in Gandy (1988)) that Turing 

outlined a proof of the following in his famous paper (1936-7):  

Thesis T. What can be calculated by an abstract human being working in a routine way is 

computable [by a Turing machine].   

Actually, such a statement, being non-mathematical, can’t be proved, nor did Turing 

claim to have done so.  Rather, what he did do in sec. 9 of the paper was to present three 

informal arguments as to why his analysis catches everything that “would naturally be 

regarded as computable;” it is the first of these arguments that leads most directly to the 

concept of a Turing machine.  The argument in question sets out five informal restrictive 

conditions on the idealized work space and possible actions within it of a human 

computer.  As recast by Sieg (2002, 2002a), in order to proceed to a theorem there are 

two steps involved: first, Turing’s conditions are reformulated more generally in terms of 

boundedness, locality and determinacy conditions (still at the informal level), and, 

secondly, those conditions are given a precise mathematical expression for which it can 

be shown that any function satisfying them is computable by a Turing machine.  (Sieg 

calls the second part a representation theorem.)    

By contrast to Thesis T, the aim of Gandy’s 1980 article was to argue for the 

following: 

Thesis M. What can be calculated by a machine is computable [by a Turing machine].  
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Again, there is no proof of Thesis M, but rather a two part procedure that eventuates in a 

definite theorem.  The first part consists of Gandy’s informal restrictions on what 

constitute “mechanical devices” (1980, pp. 125-126), namely, that he excludes from 

consideration devices that are “essentially analogue machines” and that “[t]he only 

physical presuppositions made about mechanical devices … are that there is a lower 

bound on the linear dimensions of every atomic part of the device and that there is an 

upper bound (the velocity of light) on the speed of propagation of changes.” Furthermore, 

Gandy assumes that the calculations by a mechanical device are describable in discrete 

terms and that the behavior of the device is deterministic, though calculations may be 

carried out in parallel.  These restrictions then lead to the formulation of four 

mathematically precise principles I-IV that express the informal conditions on what 

constitutes a machine in his sense.  The main result of Gandy (1980) is a theorem to the 

effect that any function calculated by a mechanical device satisfying principles I-IV is 

computable on a Turing machine.  

By the way, in the informal part of his argument for Thesis M, Gandy enlarges on 

the discreteness aspect in a way that is particularly useful for our purposes below.   

Our use of the term “discrete” presupposes that each state of the machine can be 
adequately described in finite terms.  … [W]e want this description to reflect the 
actual, concrete, structure of the device in a given state.  On the other hand, we 
want the form of the description to be sufficiently abstract to apply uniformly to 
mechanical, electrical or merely notional devices.  We have chosen to use 
hereditarily finite sets; other forms of description might be equally acceptable.  
We suppose that the labels are chosen for the various parts of the machine⎯e.g., 
for the teeth of cog wheels, for a transistor and its electrodes, for the beads and 
wires of an abacus.  Labels may also be used for positions in space (e.g., for 
squares of the tape of a Turing machine) and for physical attributes (e.g., the color 
of a bead, the state of a transistor, the symbol on a square). (Gandy 1980 p. 127, 
italics mine) 

In other words, just as with Thesis T, one is working throughout with finite symbolic 

configurations. 

Gandy’s case for Thesis M was substantially recast by Sieg (2002, 2002a) much 

as he had done for Thesis T.  The first part of that work is again that in carrying out 

effective calculations, the machine is limited by general boundedness, locality and 
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determinacy conditions, but those are now widened to allow acting on given finite 

configurations in parallel and then reassembling the results into the next configuration. 

That led Sieg to a statement of new simpler precise principles on mechanisms as certain 

kinds of discrete dynamical systems for which a representation theorem is proved, i.e. for 

which it is shown that whatever satisfies those principles “computes” only Turing 

computable functions. 

Yet another approach toward establishing a version of CT for certain kinds of 

mechanisms is that due to Dershowitz and Gurevich (2008), entititled “A natural 

axiomatization of computability and proof of Church's Thesis.”8  The mechanisms in 

question are called Abstract State Machines (ASMs); fundamental to this work is that of 

Gurevich (2000) in which it is argued that sequential algorithms are captured by 

Sequential ASMs.  Regrettably, the statement by Dershowitz and Gurevich of Church’s 

Thesis is not the one usually understood but rather their Theorem 4.8, according to which 

“[e]very numeric partial function computed by an arithmetical algorithm is (partial) 

recursive.” And for this, arithmetical algorithms are defined as state transition systems 

satisfying certain Sequential and Arithmetical Postulates. Unfortunately, the postulates 

are not fully precise as presented, and so it may be questioned whether one even has a 

proof there of a definite mathematical theorem.9  One point to be noted for the following 

is that the ASM approach takes states to be (abstract) structures having a common fixed 

finite vocabulary, and a crucial assumption thereto is Postulate III (p. 319) according to 

which state transitions are “determined by a fixed finite ‘glossary’ of ‘critical terms’.”  

Thus, though the terminology makes it seem otherwise, Abstract State Machines work 

concretely with suitable finite symbolic configurations in their computational processes; 

cf. also op. cit., Definition 3.1, p. 321.    

The work by Gandy, Sieg, Dershowitz and Gurevich described in the preceding 

must be valued for taking seriously the task of providing a two part argument for CT 

mediated by axioms of one form or another.  However, it may be questioned whether the 
                                                
8 Dershowitz and Gurevich (2008) p. 305 state that the aim of their work is “to provide a 
small number of convincing postulates in favor of Church’s Thesis”; in that same article, 
pp. 339-342, they provide a comprehensive survey of the literature sharing that aim, 
going back to work of Kolmogorov in 1953.   
9 Cf. the Postscriptum to Sieg (2013 ) for a detailed critique of this work.   
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axioms provided for any of these yet reaches the desired degree of evidence, in other 

words of being close to compelling on inspection.  But what is common to these 

axiomatic approaches and cannot be denied is that the sine qua non of CT is that there is 

no calculation without representation.  That is, the data with which one works consists of 

finite symbolic configurations where the symbols (or labels) are drawn from some finite 

set S given in advance.  These represent finite concrete configurations such as finite 

linear inscriptions by human beings, or mathematical configurations such as finite trees 

or graphs, or states of various kinds of mechanisms such as described in the quote above 

from Gandy (1980) p. 127. More abstractly, Gandy considered finite symbolic 

configurations to be themselves represented in the hereditarily finite non-empty sets over 

the basic set S of symbols, though I think representation in the hereditarily finite non-

empty sequences over S would be more appropriate since that gives an order in which 

things must be read; of course, each can be coded in the other.  The operations on finite 

symbolic configurations must be limited to purely formal transformations following 

inspections and appropriate tests. Thus the claim here is that a general discussion of CT 

as it applies to computation over arbitrary structures only makes sense when applied to 

computation over concrete structures whose elements are finite symbolic configurations 

of one sort or another and that posit appropriate tests and operations on such.10   

4. Proposed generalizations of theories of computation and CT to abstract 

structures; theses for algorithms.  Beginning in the late 1950s, various generalizations 

were made of theories of computation and recursion theory to abstract structures in 

general and of certain specific kinds of structures.11  My concern here is entirely with the 

foundations of such approaches, not with the results obtained on their basis.  The article 

Feferman (2013) contains a more extensive exposition of these matters; the reader is 

referred to that for more details.  What is discussed here⎯but not there⎯are proposed 

generalizations of CT to structures that need not be concrete. I shall consider two such 

                                                
10 For a systematic treatment of computability on concrete structures see Tucker and 
Zucker (2006).   
11 The literature on generalized recursion theory is very extensive and could use an up-to-
date survey.  Lacking that, some initial sources can be found in the bibliographies in the 
works of Barwise (1975), Fenstad (1980), Sacks (1990), and Tucker and Zucker (2000).     
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below, one (implicitly) due to Blum, Cucker, Shub and Smale (1997) and the other 

(explicitly) due to Tucker and Zucker (1988, 2000).  I shall argue that these are more 

appropriately to be viewed as theses for algorithms.   

An important starting point is the notion of computability on an arbitrary 

algebraic structure made by Friedman (1971) via a generalization of the Shepherdson and 

Sturgis (1963) register machine approach to ordinary recursion theory. By a (first-order) 

structure or algebra A is meant one of the form A = (A, c1,…,cj, f1,…,fk, R1,…,Rm), 

where A is a non-empty set, each ci is a member of A, each fi is a partial function of one 

or more arguments from A to A, and each Ri is a (possibly partial) relation of one or 

more arguments in A. For non-triviality, both k and m are not zero. Of special note is that 

the test for equality of elements of A is not assumed as one of the basic operations; rather, 

if equality is to be a basic test, that is to be included as one of the relations Ri.  A finite 

algorithmic procedure (fap) π on A is given by a finite list of instructions among which 

one is designated as initial and one as terminal.  The “machine” has registers r0, r1, r2, …, 

though only a finite number of these are needed for any given “computation”, namely 

those mentioned in π; the register r0 is reserved for the output.  (The ri may also be 

thought of as variables.)  The fap π may be used to calculate a partial n-ary function f on 

An to A for any n.  Given an input (x1, …, xn), one enters xi into register ri, and proceeds 

to the initial instruction.  The active instructions are: (i) replace the content of one register 

by that of another; (ii) enter one of the ci in a specified register; (iii) enter a value of one 

of the fi applied to the contents of specified registers into another such; and, finally, (iv) 

test one of the Ri on specified registers and go to designated other instructions depending 

on the value of the test (“if …then… else”).  The computation terminates only if the 

instructions of the form (iii) and (iv) are defined at each stage where they are called and 

one eventually lands in the terminal instruction.  In that case the content of register r0 is 

the value of f(x1, …, xn).  An n-ary relation R is decidable by a fap π if its characteristic 

function is computable by π. The class of fap computable partial functions on A is 

denoted by FAP(A).  Friedman (1971) also gives an extensionally equivalent formulation 

of computability on A in terms of generalized Turing machines, as well as one in terms of 
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what he calls effective definitional schemata given by an effective infinite enumeration of 

definition by cases.  

For the structure N = (N, 0, Sc, Pd, =), where N is the set of natural numbers and 

Sc and Pd are respectively the successor and predecessor operations (taking Pd(0) = 0), 

FAP(N) is equal to the class of partial recursive functions.  For general structures A, 

Friedman (1971) also introduced the notion of finite algorithmic procedure with counting, 

in which certain registers are reserved for natural numbers and one can perform the 

operations and tests on the contents of those registers that go with the structure N. Then 

FAPC(A) is used to denote the partial functions on A determined in this way. 

The notion of finite algorithmic procedure is directly generalized to many-sorted 

structures A = (A1,…,An, c1,…,cj, f1,…,fk, R1,…,Rm); each register comes with a sort 

index limiting which elements can be admitted as its contents.  In particular, FAPC(A) 

can be identified with FAP(A, N) where (A, N) denotes the structure A augmented by 

that for N.  A further extension of Friedman’s notions was made by Moldestad, 

Stolenberg-Hansen and Tucker (1980, 1980a), using stack registers that may contain 

finite sequences of elements of any one of the basic domains Ai, including the empty 

sequence.  The basic operations for such a register are to remove the top element of a 

stack (pop) and to add to the contents of one of the registers of type Ai (push).  This leads 

to the notion of what is computable by a finite algorithmic procedures with stacks, 

FAPS(A), where we take the structure A to contain with each domain Ai the domain Ai* 

of all finite sequences of elements of Ai, and with operations corresponding to pop and 

push.  If we want to be able to calculate the length n of a stack and the jth element of a 

stack, we need also to have the structure N included.  This leads to the notion of finite 

algorithmic procedure with stacks and counting, whose computable partial functions are 

denoted by FAPCS(A).  In the case of the structure N, by any one of the usual primitive 

recursive codings of finite sequences of natural numbers, we have 

  FAP(N) = FAPC(N) = FAPS(N) = FAPCS(N).  

Trivially, in general for any structure A we have the inclusions, 
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   FAP(A) ⊆ FAPC(A) ⊆ FAPCS(A), and  

FAP(A) ⊆ FAPS(A) ⊆ FAPCS(A). 

It is proved in Moldestad et al. (1980a) that for each of these inclusions there is a 

structure A which makes that inclusion strict.  

An alternative approach to computability over arbitrary algebraic structures is 

provided in a usefully detailed expository piece, Tucker and Zucker (2000) that goes back 

to their joint work (1988); this uses definition by schemata rather than (so-called) 

machines.  By a standard structure A is one that includes the structure B with domain   

{t, f} and basic Boolean functions as its operations. The Tucker-Zucker notion of 

computability for standard algebras is given by procedure statements S: these include 

explicit definition, and are closed under composition, and under statements of the form, if 

b then S1 else S2, and while b do S, where ‘b’ is a Boolean term. The set of partial 

functions computable on A by means of these schemata is denoted by While(A).  Then to 

deal with computability with counting, Tucker and Zucker simply expand the algebra A 

to the algebra (A, N).  To incorporate finite sequences for each domain Ai, they make a 

further expansion of that to suitable A*.  The notions of computability WhileN(A) and 

While*(A) over A are given simply by While(A, N) and While(A*), respectively.  The 

following result is stated in Tucker and Zucker (2000) p. 487 for any standard algebra A: 

  While(A) = FAP(A), WhileN(A) = FAPC(A), and  

   While*(A) = FAPCS(A). 

Thus we have a certain robustness (confluence of ideas) for notions of computation on 

abstract algebraic structures, depending on the choice as to whether or not to include the 

natural numbers or finite sequences.   

The first interesting special non-concrete case to which these notions may be 

applied is the structure of real numbers; this is of particular significance because it is the 

principal domain for numerical analysis (aka scientific computation). One approach to the 

foundations of that subject is given by a model of computation over the reals due to Blum, 
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Shub and Smale (1989)⎯the BSS model⎯subsequently worked out at length in the book, 

Blum et al. (1997). Actually, the model is divided into two cases, the finite dimensional 

one and the infinite dimensional one.  In the first of these, the reals are treated as a purely 

algebraic structure, namely the ordered field R = (R, 0, 1, +, -, ×, −1, <), while in the 

second case, one also computes with arbitrary finite sequences of reals.  According to 

Friedman and Mansfield (1992) p. 298, in the finite dimensional case the BSS 

computable functions are exactly the same as the FAP(R) functions, and in the infinite 

dimensional case the BSS computable functions are exactly the same as the FAPS(R) 

functions. Moreover, one also has FAPS(R) = FAPCS(R), because N can be embedded 

in R (op. cit., p.300).  Note that the relations of equality and order on the reals are an 

essential part of the BSS model, as is equality in general for all algebraic structures in 

that model. 

The case made in Blum et al. (1997) for the extension of the “classical” notion of 

computation to computation on the reals via the BSS model is not one argued on its own 

merits but rather mainly by its claimed requisite applicability.  This follows a brief 

review of theories of computation for concrete structures (the subject of “computer 

science”) as well as Church’s Thesis, whose support is bolstered by the confluence of 

notions.  Then the authors say that “[c]ompelling motivation clearly would be required to 

justify yet a new model of computation” (op. cit., p. 22).   And that is claimed to come 

from a need to give foundations to the subject of numerical analysis: 

A major obstacle to reconciling scientific computation and computer science is 
the present view of the machine, that is, the digital computer.  As long as the 
computer is seen as a finite or discrete object, it will be difficult to systematize 
numerical analysis.  We believe that the Turing machine as a foundation for real 
number algorithms can only obscure concepts.  Toward resolving the problem we 
have posed, we are led to expanding the theoretical model of the machine to allow 
real numbers as inputs.  (Op. cit., p. 23)  

An analogy (pp. 23-24) is made with Newton’s problem of reconciling the discrete 

corpuscular view of matter that he accepted with the mathematics of the calculus that he 

found necessary to describe bodies in prima facie continuous motion; the resolution came 

via idealized infinitesimal masses.   
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Now our suggestion is that the modern digital computer could be idealized in the 
same way that Newton idealized his discrete universe. … Moreover, if one 
regards computer-graphical output such as our picture of the Mandelbrot or Julia 
sets with their apparently fractal boundaries and asks to describe the machine that 
made these pictures, one is driven to the idealization of machines that work on 
real or complex numbers in order to give a coherent explanation of these pictures.  
For a wide variety of scientific computations the continuous mathematics that the 
machine is simulating is the correct vehicle for analyzing the operation of the 
machine itself.   

These reasonings give some justification for taking as a model for scientific 
computation a machine model that accepts real numbers as inputs. (Op. cit., p. 24) 

What is puzzling in this analogy is that on the BSS model of computation, the relation of 

order and hence that of equality between real numbers is taken as total and decidable by 

the idealized machine, and so one is immediately led to discontinuous functions, such as 

point and step functions.  Moreover, the BSS model makes use only of the algebraic 

structure of the real numbers and nothing that directly reflects its analytic/topological 

character. So it fails to provide a genuine notion of computation on the real numbers as 

such for which a version of CT would be claimed to hold.  Nevertheless, as illustrated by 

a number of leading examples, Blum et al. (1997) makes a substantial case that the BSS 

model provides a proper foundation for the subject of numerical analysis where the basic 

data is taken to be given by real (or complex) numbers.  Why this turns out to be so is a 

matter to which I shall return at the beginning of the next section.   

The question whether there is a sensible generalization of the Church-Turing 

Thesis to abstract structures is addressed directly by Tucker and Zucker (1988), pp. 196ff 

and again in Tucker and Zucker (2000), pp. 493ff.  In the latter it is said that the answer 

to the question is difficult to explain fully and briefly so that only a sketch is given, and 

the reader is referred back to the former for more details.  Though the later publication is 

a bit more succinct than the earlier one on this issue, I didn’t find that it leaves out any 

essential points, so I shall use that as the reference in the following.12 The authors begin 

with the statement of a “naïve” generalized CT for abstract algebras, namely that “[t]he 

                                                
12 In addition, the reference Tucker and Zucker (1988) is not as widely available as their 
year 2000 survey. 
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functions that are ‘effectively computable’ on a many-sorted algebra A are precisely the 

functions that are While* computable on A.” This is immediately qualified as follows: 

[T]he idea of effective calculability is complicated, as it is made up from many 
philosophical and mathematical ideas about the nature of finite computation with 
finite or concrete elements.  For example, its analysis raises questions about the 
mechanical representation and manipulation of finite symbols; about the 
equivalence of data representations; and about the formalization of constituent 
concepts such as algorithm; deterministic procedure; mechanical procedure; 
computer program; programming language; formal system; machine; and the 
functions definable by these entities. … However, only some of these constituent 
concepts can be reinterpreted or generalized to work in an abstract setting; and 
hence the general concept, and term, of ‘effective computability’ does not belong 
in a generalization of the Church-Turing thesis.  In addition, since finite 
computation on finite data is truly a fundamental phenomenon, it is appropriate to 
preserve the term with its established special meaning. (Tucker and Zucker (2000), 
p. 494, italics in the original.) 

In other words, these authors and I are in complete agreement with the view asserted at 

the end of the preceding section.  Nevertheless, they go on to formulate three versions of 

a generalized CT not using the notion of effective calculability, corresponding to the 

three perspectives of algebra, programming languages, and specification on data types; 

only the first of these is relevant to the discussion here.  Namely: 

Tucker-Zucker thesis for algebraic computability. The functions computable 

by finite deterministic algebraic algorithms on a many-sorted [first-order] algebra 

A are precisely the functions While* computable on A. (op. cit., p. 495) 

This goes back to the work of Tucker (1980) on computing in algebraic structures; cf. 

also Stoltenberg-Hansen and Tucker (1999).  Hermann’s algorithm for the ideal 

membership problem in K[x1,…,xn] for arbitrary fields K is given as a paradigmatic 

example, but there is no principled argument for this thesis analogous to the work of 

Gandy, Sieg, Dershowitz and Gurevich described in the preceding section.  One may ask, 

for example, why the natural number structure and arrays are assumed in the Tucker-

Zucker Thesis, and why these suffice beyond the structure A itself.  Moreover, nothing is 

said about assuming that the equality relation for A is to be included in it, even though 

that is common in algebraic algorithms. Finally, one would like to see a justification of 
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this thesis or possible variants comparable to the ones described for classical CT, both 

informal and of a more formal axiomatic kind.       

In any case, the Tucker-Zucker Thesis and supporting examples suggest that all 

the notions of computability on abstract first order structures considered in this section 

should be regarded as falling under a general notion of algorithm.  What distinguishes 

algorithms from computations is that they are independent of the representation of the 

data to which they apply but only require how data is packaged structurally, i.e. they only 

need consider the data up to structural isomorphism. Friedman was already sensitive to 

this issue and that is the reason he gave for baptizing his notion using generalized register 

machines, finite algorithmic procedures: 

The difference between [symbolic] configuration computations and algorithmic 
procedures is twofold.  Firstly, in configuration computations the objects are 
symbols, whereas in algorithmic procedures the objects operated on are 
unrestricted (or unspecified).  Secondly, in configurational computations at each 
stage one has a finite configuration whose size is not restricted before 
computation.  On the other hand in algorithmic procedures one fixes beforehand a 
finite number of registers to hold the objects.  Thus for some n, at each stage one 
has at most n objects. (Friedman 1978, p. 362). 

The general question, “What is an algorithm?” has been addressed by 

Moschovakis (2001) and Gurevich (2012) (both under that title), among others, but with 

very different conclusions.13  In his sec. 6, Gurevich criticizes Moschovakis’ answer on 

several grounds among which that distributed algorithms do not fall under the latter’s 

central notion of recursor.  Moreover, even those algorithms that fall under the notion of 

recursor may do so by losing certain essential aspects of the procedure in question.  

Whether or not one agrees with all of Gurevich’s critiques of Moschovakis’ analysis, in 

my view that is more appropriately to be considered under general theses for recursion 

that are taken up in the next section.   In contrast to Moschovakis, Gurevich asks whether 

the notion of algorithm can be defined at all; his answer is “yes and no”.  On the negative 

side, he writes: 

In our opinion, the notion of algorithm cannot be rigorously defined in full 
generality, at least for the time being. The reason is that the notion is expanding. 

                                                
13 See also Blass and Gurevich (2003). 
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Concerning the analogy of algorithms to real numbers, mentioned in sec.1, 
Andreas Blass suggested a better analogy: algorithms to numbers. Many kinds of 
numbers have been introduced throughout history: positive integers, natural 
numbers, rationals, reals, complex numbers, quaternions, infinite cardinals, 
infinite ordinals, etc. Similarly many kinds of algorithms have been introduced. In 
addition to classical sequential algorithms, in use from antiquity, we have now 
parallel, interactive, distributed, real-time, analog, hybrid, quantum, etc. 
algorithms. New kinds of numbers and algorithms may be introduced. The 
notions of numbers and algorithms have not crystallized (and maybe never will) 
to support rigorous definitions. (Gurevich 2012, sec. 2) 
 
On the positive side he says that even though it is premature to try to propose a 

general answer to the question, “What is an algorithm?,” convincing answers have been 

given to large classes of such, among which sequential algorithms, synchronous parallel 

algorithms and interactive sequential algorithms (cf. ibid for references).  In particular, 

the Tucker-Zucker Thesis or something close to it is a plausible candidate for what one 

might call the Algebraic Algorithmic Procedures Thesis.  And more generally, it may be 

possible to distinguish algorithms used in pure mathematics from those arising in applied 

mathematics and computer science, where such algorithms as “interactive, distributed, 

real-time, analog, hybrid, quantum, etc.” would fall.  If there is a sensible separation 

between the two, Moschovakis’ explanation of what is an algorithm could be justified as 

being confined to those of pure mathematics.  Moreover, his theory leads to the 

remarkable result that there is a decidable criterion for identity of algorithms in his sense 

(Moschovakis 1989).   

Clearly, all this requires deeper consideration, and I must leave it at that.   

 

5. Recursion on abstract structures.  Let us return to the claim of Blum et al. (1997) 

that the BSS model of computation on the reals (and complex numbers) is requisite for 

the foundations of the subject of scientific computation.  That was strongly disputed by 

Braverman and Cook (2006), where the authors argued that the requisite foundation is 

provided by a quite different “bit computation” model that is prima facie incompatible 

with the BSS model. It goes back to ideas due to Banach and Mazur in the latter part of 

the 1930s, but the first publication was not made until Mazur (1963).  In the meantime, 

the bit computation model was refined and improved by Grzegorczyk (1955) and 
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independently by Daniel Lacombe (1955) in terms of a theory of recursively computable 

functionals.  Terminologically, something like “effective approximation computability” is 

preferable to “bit computability” as a name for this approach in its applications to 

analysis. 

This competing approach was explained in Feferman (2013) in rough terms as 

follows. To show that a real valued function f on a real interval into the reals is 

computable by effective approximation, given any x in the interval as argument to f, one 

works not with x but rather with an arbitrary sequential representation of x, i.e. with a 

Cauchy sequence of rationals ⟨qn⟩n∈N which approaches x as its limit, in order to 

effectively determine another such sequence ⟨rm⟩m∈N which approaches f(x) as limit. The 

sequences in question are functions from N to Q, and so what is required is that the 

passage from ⟨qn⟩n∈N to ⟨rm⟩m∈N is given by an effective type-2 functional on such 

functions. Write T  for the class of all total functions from N to N, and P for the class of 

all partial functions from N to N.  By the effective enumeration of the rational numbers, 

this reduces the notion of effective approximation computability of functions f on the 

reals to that of effective functionals F from T to T, and those in turn are restrictions to T 

of the partial recursive functionals F′ (from P to P ) whose values on total functions are 

always total.14 It may be shown that by the continuity in the recursion theoretic sense of 

partial recursive functionals we may infer continuity in the topological sense of the 

functions f on the reals that are effective approximation computable.  Thus step functions 

that are computable in the BSS model are not computable in this sense.  On the other 

hand, the exponential function is an example of one that is computable in the effective 

approximation model that is not computable in the BSS model.15 

                                                
14 Note that a partial recursive functional F need not have total values when restricted to 
total arguments.   
15 There is a considerable literature on computation on the real numbers under various 
approaches related to the effective approximation one via Cauchy representations.  A 
more comprehensive one is that given by Kreitz and Weihrauch (1984, 1985) and 
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The reader must be referred to Blum et al. (1997) and Braverman and Cook 

(2006) for arguments as to which, if either of these, is the appropriate foundation for 

scientific computation.16  I take no position on that here, but simply point out that we 

have been led in a natural way from computation on the reals in the effective 

approximation sense back to the partial recursive functionals F on partial functions of 

natural numbers.  Now Kleene’s principal theorem for such functionals is the “first” 

Recursion Theorem, according to which each such F has a least fixed point (LFP) f, i.e. 

one that is least among all partial functions g such that g = F(g) (Kleene 1952 p. 348).  

This is fundamental in the following sense: the partial recursive functions and functionals 

are just those generated by closing under explicit definition and LFP recursion over the 

structure N.  For, first of all, one immediately obtains closure under the primitive 

recursive schemata.  Then, given primitive recursive g(x, y), one obtains the function    

f(x) ≃ (µy)[g(x, y) = 0] by taking f(x) ≃ h(x, 0) where h(x, z) ≃ z if (∀y < z) [g(x, y) > 0  

                                                                                                                                            
Weihrauch (2000); that features surjective representations from a subset of NN to R. 
Bauer (2000) introduced a still more general theory of representations via a notion of 
realizability, that allows one to consider classical structures and effective structures of 
various kinds (including those provided by domain theory) under a single framework; cf. 
also Bauer and Blanck (2010).  The work of Pour-El surveyed in her article (1999) 
contains interesting applications of the effective approximation approach to questions of 
computability in physical theory.   
16 Cf. also Blum (2004), to which Braverman and Cook (2006) responds more directly.  
Actually, the treatment of a number of examples from numerical analysis in terms of the 
BSS model that takes up Part II of Blum et al. (1997) via the concept of the “condition 
number” of a procedure in a way brings it in closer contact with the effective 
approximation model. As succinctly explained to me in a personal communication from 
Lenore Blum, “[r]oughly, ‘condition’ connects the BSS/BCSS theory with the discrete 
theory of computation/complexity in the following way: The ‘condition’ of a problem 
instance measures how outputs will vary under perturbations of the input (think of the 
condition as a normed derivative).”  The informative article, Blum (2013), traces the idea 
of the condition number back to a paper by Turing (1948) on rounding-off errors in 
matrix computations from where it became a basic common concept in various guises in 
numerical analysis. (An expanded version of Blum (2013) is forthcoming.)  It may be that 
the puzzle of how the algebraic BSS model serves to provide a foundation for the 
mathematics of the continuous, at least as it appears in numerical analysis, is resolved by 
noting that the verification of the algorithms it employs requires in each case specific use 
of properties of the reals and complex numbers telling which such are “well-conditioned.” 
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∧ g(x, z) = 0], else h(x, z′).  It follows that all partial recursive functions (and thence all 

partial recursive functionals) are obtained by Kleene’s Normal Form Theorem.   

This now leads one to consider generation of partial functions and functionals by 

explicit definition and LFP recursion over arbitrary abstract many-sorted structures A.  

The development of that idea originates with Platek (1966), a PhD thesis at Stanford that, 

though never published, came to be widely known by workers in the field. The only 

requirement on a type-2 functional F on partial functions over A for it to have a least 

fixed point is that F be monotonic increasing.  In addition, for a thorough-going theory of 

partial recursive functions and functionals over A, one must use only those F that have 

themselves been obtained by LFP recursion in terms of previously defined functions and 

functionals.  For that purpose Platek made use of a hierarchy of hereditarily monotonic 

partial functionals of arbitrary finite type over the domains of A.  That allows one to start 

not only with given functions over A but also given functionals at any level in that 

hierarchy. On the other hand, Platek showed that in the special case that the initial 

functionals are of type level ≤ 2, everything of type level ≤ 2 that can be generated via 

explicit definition and LFP recursion in higher types from that data can already be 

generated via explicit definition and LFP recursion at type level equal to 2. Platek’s 

approach using the full hierarchy of hereditarily monotonic functionals allowed him to 

subsume and simplify Kleene’s theory of recursion in finite types using hereditarily total 

functionals as the arguments of partial functionals defined by certain schemata (Kleene 

1959).17  Later, Kechris and Moschovakis (1977) showed how to subsume Kleene’s 

theory under LFP recursion at type level ≤ 2 by treating the finite type structure as a 

many-sorted first-order structure (with infinitely many sorts).      

Moschovakis (1984, 1989) took the LFP approach restricted to functionals of type 

level ≤ 2 in his explanation of the notion of algorithm over arbitrary structures featuring 

simultaneous LFP definitions, though those can be eliminated in favor of successive LFP 

definitions of the above form.  Both the Platek and Moschovakis approaches are 

extensional.  In order to tie that up both with computation over abstract data types and 
                                                
17 Platek (1966) also used the LFP approach to subsume recursion theory on the ordinals 
under the theory of recursion in the Sup functional.   
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with Bishop’s approach to constructive mathematics, in a pair of papers Feferman (1992, 

1992a), I extended the use of LFP schemata to cover intensional situations, by requiring 

each basic domain Ai of A is to be equipped with an equivalence relation =i that the initial 

functions and functionals preserve.  The resulting partial functions and functionals are 

called there Abstract Computation Procedures (ACPs). They are successively generated 

over any structure A = (A0, A1, …, Ak, F0,…,Fm) by explicit definition and LFP recursion, 

where each Ai is non-empty and the Fjs are constants, partial functions or monotonic 

increasing partial functionals of type level 2 over the Ai.  Also, one of the domains, say 

A0, is fixed to be the booleans {t, f} and the operations of negation and conjunction are 

taken among the basic operations; this allows conditional definition. The details of the 

schemata may be found in Feferman (2013). 

Let us note two comparisons of ACPs with other approaches. First is the 

following result due to Xu and Zucker (2005): if A is an N-standard structure with arrays, 

then While*(A) = ACP(A).  Secondly, we have a matchup with the Moschovakis (1984) 

theory of recursors by the result of Feferman (1992a) sec. 9 that the ACPs are closed 

under simultaneous LFP recursion. In the particular case of the structure N of natural 

numbers, the arguments above in connection with Kleene’s First Recursion Theorem 

show that the partial functions and functionals generated by the abstract computation 

procedures are just those that are partial recursive.  This shows that the effective 

approximation approach to computation on the reals is accounted for at the second-order 

level under ACP(N), while the Xu-Zucker result shows that the BSS model is subsumed 

at the first-order level under ACP(R). 

Clearly it is apt to use the word ‘abstract’ in referring to the procedures in 

question since they are preserved under isomorphism.  But given the arguments I have 

made in the preceding sections, it was a real mistake on my part to use ‘computation’ as 

part of their designation, and I very much regret doing so. A better choice would have 

been simply to call them Abstract Recursion Procedures, and I have decided to take this 

occasion to use ‘ARP’ as an abbreviation for these, in place of ‘ACP’, thus ARP(A) in 

place of ACP(A).  The main point now is to bring matters to a conclusion by using these 
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to propose the following thesis on definition by recursion that in no way invokes the 

concepts of computation or algorithm.   

Recursion Thesis (RT). Any function defined by recursion over a first-order structure A 

(with Booleans) belongs to ARP(A).  

This presumes an informal notion of being a function f defined by recursion over a first- 

order structure A that is assumed to include the Boolean constants and basic operations.   

Roughly speaking, the idea for such a definition is that f is determined by an equation 

f(x) ≃ E(f, x).where E is an expression that may contain a symbol for f and symbols for 

the initial functions and constants of A as well as for functions previously defined by 

recursion over A.  Now here is the way such a justification for RT might be argued.  At 

any given x = x0, f(x) may not be defined by E, for example if E(f, x) = [if x = x0 and f(x) 

= 0 then 1, else 0].  But if f(x) is defined at all by E, it is by use made of values f(y) that 

are previously defined. Write y    x if f(y) is previously defined and its value is used in 

the evaluation of x; then let fx be f restricted to {y : y    x}.  Thus the evaluation of f(x) is 

determined by fx when it is defined, i.e. f(x) = E(fx, x) for each such x.  It may be that {y : 

y    x} is empty if f(x) is defined outright in terms of previous functions; in that case x is 

minimal in the    relation.   In the case it is not empty, we may make a similar argument 

for f(y) for each y    x, and so on.  In order for this to terminate, the    relation must be 

well-founded.  Next, take F to be the functional given by F(f, x) = E(fx, x);  F is 

monotonic increasing, because if f ⊆ g then fx = gx.  So F has a LFP g.  But F defines our 

function f by transfinite recursion on   , so f is a fixed point of F and hence g ⊆ f. To 

conclude that f ⊆ g, we argue by transfinite recursion on   :  for a given x, if f(y) = g(y) 

for all y    x then f(x) = F(f, x) = E(fx, x) = E(gx, x) =F(g, x) = g(x).  Thus f is given by 

LFP recursion in terms of previously obtained functions in ARP(A) and hence itself 

belongs to ARP(A).  

The reason for restricting to first-order structures A in the formulation of RT is so 

as not to presume the property of monotonicity as an essential part of the idea of 

definition by recursion. I should think that all this can be elaborated, perhaps in an 
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axiomatic form, but if there is to be any thesis at all for definition by recursion over an 

arbitrary first-order structure (with Booleans), I cannot see that it would differ in any 

essential way from RT.  If there is a principled argument for assuming monotonicity of 

the functionals in a given second-order structure then we would also have a reasonable 

extension of RT to such.   
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