
ABOUT AND AROUND 
COMPUTING OVER THE 

REALS

Solomon Feferman
Logic Seminar, Stanford, April 17, 

2012



Two Competing Theories of 
Computing over R

• Two competing theories of computing over the 
reals:

• The BSS (Blum-Shub-Smale) model 

• The “bit” computation model (Banach-Mazur-
Grzegorczyck)

• Each [recently] claims to be the proper foundation 
of scientific computing and computational 
complexity 



The BSS model

• Full exposition of the BSS model and applications 
in Blum, Cuker, Shub, Smale, Complexity and Real 
Computation (1997)

• Nice exposition in Lenore Blum, “Computing over 
the reals:  Where Turing meets Newton”, Notices 
AMS 2004



The “Bit” Computation Model

• The “bit” computation (or “effective 
approximation”) model: Banach and Mazur 
ideas,1930s; developed by Grzegorczyck 
and, independently, Lacombe, 1955.

• Nice exposition by Mark Braverman and 
Stephen Cook in “Computing over the 
reals: Foundations for scientific 
computation”, Notices AMS 2006.  



These Theories are Incompatible

• Examples of incompatibility: 

• The exponential function is computable in the 
effective approx. model but not in the BSS model.

• Given a polynomial p(x) over Q, the function 
f(x)=1 if p(x) = 0, else 0, is computable in the BSS 
model but not (in general) in the effective 
approximation model.



Can Both be Reasonable?

• The BSS model is a reasonable theory of 
computation over R as an algebraic 
structure.

• The eff. approx. model is a reasonable 
theory of computation over R as a 
topological structure or as a second-order 
structure.  



Subsuming Both Under 
Generalized Recursion Theories (g.r.t.)

• Turing and Register computability over arbitrary 
algebraic structures (Friedman 1971)

• “While” computation schemata over arb. algebraic 
and topological structures (Tucker and Zucker 
2000)

• Higher type LFP schemata over arb. structures 
(Platek 1966, Moschovakis 1989, Feferman 1992)



The BSS model

• The BSS model makes sense over any ring A, 
possibly ordered.

• A BSS algorithmic procedure is given by a directed 
graph; top node for inputs, successor node for 
polynomial computation node, branching node on 
test for = (or <).  Also described in terms of 
generalized Turing machines or register machines.

• Finite-dimensional case uses sequences of fixed 
length, infinite dim. case sequences of arb. length.



Examples of BSS Algorithms

• Newton algorithm for R or C.  Given a rational fn. 
f and ε > 0, find a zero of f within accuracy ε: start 
with an input x, update by x → (x - f(x)/f′(x)) until 
reach |f(x)| < ε.  [A finite dim. case]

• Hilbert’s Nullstellensatz.  Given m polynomials in n 
variables over R or C, decide whether or not they 
have a common zero.  [An infinite dim. case] 



The BSS Model and Complexity

• The Mandelbrot set is not BSS-computable.

• Its complement is semi-computable; that 
can be used to “draw” it. 

• Notions of P/A and NP/A for any ring A.

• Transfer Thm. P/C = NP/C iff P/A = NP/A 
for any alg. closed field A of char. 0. 



The Effective Approximation Model[s]

• Explain for R, but generalizes to any complete 
separable metric space.

• Sequential (S-) effective approximation and 
Polynomial (P-) effective approximation. 



S-Approximation Computability

• Let I be a finite or infinite interval in R.

• In order to define f : I →R effectively, find a 
computable functional F which, given x in I, 
maps any Cauchy sequence s of rationals 
approaching x to F(s), a Cauchy sequence 
approaching f(x).  



S-Approximation Computability (cont’d)

• For simplicity, use approximations to reals x by 
sequences of dyadic rationals φ(n)/2^n  where 
φ:N→Z and 

• (i)    |x - φ(n)/2^n| ≤ 1/2^n for all n. 

• Then find computable F : (N→Z)→(N→Z) such 
that whenever (i) holds and F(φ) = ψ then 

• (ii)   |f(x) - ψ(m)/2^m| ≤ 1/2^m for all m.



The S-Eff. Approx. Functionals

• Using the effective correspondence of Z 
with N, this reduces to telling which 
functionals F:(N→N)→(N→N) are 
effectively computable.  

• Let T  be the class of total φ from N to N 
and P the class of partial φ from N to N.



The S-Eff.  Approx. Functionals (con’td)

• Define: F from T to T is eff. computable iff it is the 
restriction to T of a partial recursive functional Φ 
from P to P.  

• Alternative characterization (Grzegorczyck): F is 
eff. computable if it is generated by the primitive 
recursive and μ (min operator) schemata for 
functionals on T to T.  [Analogous to Kleene’s 
schemata for general rec. fns.]

• Cf. also Weirauch (2000) TTE uniform oracle 
computability. 



Continuity and P-Eff. Approx. Functions

• Theorem. If f : I →R is S-Approx. effectively 
computable, then f is continuous on I.

• Weierstrass Approximation Theorem.  Each 
continuous f on a closed interval I is uniformly 
approximable by polynomials over Q.

• P-Approximation theory (Pour-El 1974): Use 
(effective) sequences of polynomials over Q to 
directly approximate (computable) f.



Complexity in S-approx. Theory

• P, NP etc. defined for S-approx. functions 
and functionals in Ker-I Ko (1991).  (“In P, 
or not in P, that is the question.”)

• Differentiation does not preserve P-time.  

• Integration of f is P-time for all P-time 
computable f iff there is a collapse in a 
certain hierarchy. 



Relevance to Scientific Computation?

• Scientific computation (aka numerical analysis): 
techniques for solving one or more linear or 
polynomial eqns., interpolation, numerical 
integration and differentiation, max and mins, 
optimization, numerical soln. of differential and 
integral eqns. , etc.

• Classic algorithms: Newton method, Lagrange 
interpolation, Gaussian elimination, Euler’s 
method, etc.  Modern use of computers.

• Uses “floating point arithmetic,” error estimates.



The View From GRT:
Register Machines on 1st 

OrderStructures

• Register machine computability on arbitrary first-
order (possibly) many-sorted structures A 
(Friedman 1971).

• A may have one or more basic domains, 
operations on those domains, relations between 
those domains and designated constants.  Equality 
on a given domain may or may not be included 
among the basic relations.  



Register Machine Procedures

• “Finite algorithmic procedures” (fap)

• Given A, (i) enter inputs from A; (ii) set a 
register to a constant from A; (iii) perform 
one of the A-operations on register 
contents; (iv) test for one of the A-
relations on register contents and branch 
according to instructions.  

• FAP(A) = the partial fap computable fns.



Extensions of FAP Computability

• Let N = (N, Sc, Pd, 0, =).  Then FAP(N) is the set of 
all partial recursive functions.

• Define FAPC(A) = FAP(A, N), “faps with counting”.

• Take A* to be given by arbitrary finite sequences 
(or “stacks”) for each domain of A, with operations 
of adding (“push”) and deleting at the end (“pop”). 

• Define FAPS(A) = FAP(A, A*) and FAPCS(A) = 
FAP(A, N, A*).  



FAP and BSS Computability on R

• Let R = (R, 0, 1, +, -, ×, ÷, =, <). 

• FAP(R) = the BSS finite case partial computable 
functions, and FAPS(R) = FAPCS(R) = the BSS 
infinite case partial computable functions  
(Friedman and Mansfield 1992).

• Generalizations to arbitrary rings and fields, 
ordered or not, but always with the = relation.



“While” Computability on 
First Order Structures

• “While” schemata for computability on arbitrary 
first order structures (Tucker and Zucker 2000). 
Relations are treated as boolean valued functions.

• “While” schemata S, S′,...; ‘b’ for Boolean terms, ‘t’ 
for individual terms built from variables and a 
structure’s constants and functions:

• S :: = skip|x:=t|S;S′|if b then S else S′|while b do S.



While Partial Computable Functions

• While(A) = the partial functions on the domains of 
A computable by While schemata

• WhileC(A) = While(A,N), 
While*(A)=While(A,N,A*)

• Then While(A) = FAP(A), WhileC(A) = FAPC(A), 
and While*(A) = FAPCS(A)

• Generalized Church-Turing Thesis.  



“While” on Topological Partial Structures

• On structures A with a topology, the boolean 
valued functions of = and (e.g. on R) < are 
discontinuous, so must be replaced by partial 
functions, undefined at (x, y) when x = y.  

• Defn. of effectively uniform While and While* 
computable functions on metric A.

• Equivalence with S-effective approximation 
computability.



LFP Recursion on Arbitrary Structures

• The While and While* approach covers BSS 
computability on R, and S-eff. approx. computability 
on R via metric structures.

• The general theory of LFP recursion does the 
same by going to type 2 schemata over arbitrary 
structures, without invoking topology.  

• Goes back to Platek (1966), Moschovakis (1984, 
1989)  



Abstract Computation Procedures

• Abstract Computation Procedures (ACPs), 
(Feferman 1992); should have been called Abstract 
Recursion Procedures. 

• Here structures are specified by (possibly) many-
sorted domains, individual constants, partial 
functions, and partial monotonic functionals of 
type level 2.  



ACP Computable Functions and 
Functionals

• The ACP schemata are given by Explicit 
Definition in type levels 1 and 2, and LFP 
Recursion in type 2.

• ACP(A) = the set of partial functions over 
A generated by the ACP schemata.

• ACP*(A) = ACP(A, N, A*)



Relations to the Other Approaches

• While(A) = ACP(A) and While*(A) = ACP*(A) by 
Xu and Zucker 2005.

• So BSS finite and infinite dim. computable fns. on R 
are subsumed under the ACP approach.

• The type 2 functionals generated in ACP(N) are 
just the partial recursive functionals, so the S-
eff.approx. approach is also subsumed under the 
ACP approach.   



Extensional/Intensional Aspects

• The foregoing theories are all extensional.

• ACP(N) can also be given an intensional 
interpretation by replacing the partial functions 
and functionals by Gödel numbers.  

• Each type 2 functional in this interpretation of 
ACP(N) is an effective operator in the Myhill-
Shepherdson sense. 

• Actual computers can actually compute on codes.
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