
 1

About and Around Computing Over the Reals

Solomon Feferman

1. One theory or many? In 2004 a very interesting and readable article by Lenore

Blum, entitled “Computing over the reals: Where Turing meets Newton,” appeared in the

Notices of the American Mathematical Society. It explained a basic model of

computation over the reals due to Blum, Michael Shub and Steve Smale (1989),

subsequently exposited at length in their influential book, Complexity and Real

Computation (1997), coauthored with Felipe Cucker. The ‘Turing’ in the title of Blum’s

article refers of course to Alan Turing, famous for his explication of the notion of

mechanical computation on discrete data such as the integers. The ‘Newton’ there has to

do to with the well known numerical method due to Isaac Newton for approximating the

zeros of continuous functions under suitable conditions that is taken to be a paradigm of

scientific computing. Finally, the meaning of “Turing meets Newton” in the title of

Blum’s article has another, more particular aspect: in connection with the problem of

controlling errors in the numerical solution of linear equations and inversion of

matrices,Turing (1948) defined a notion of condition for the relation of changes in the

output of a computation due to small changes in the input that is analogous to Newton’s

definition of the derivative.

 The thrust of Blum’s 2004 article was that the BSS model of computation on the

reals is the appropriate foundation for scientific computing in general. By way of

response, two years later another very interesting and equally readable article appeared in

the Notices, this time by Mark Braverman and Stephen Cook (2006) entitled “Computing

over the reals: Foundations for scientific computing,” in which the authors argued that the

requisite foundation is provided by a quite different “bit computation” model, that is in

fact prima facie incompatible with the BSS model. The bit computation model goes back

to ideas due to Stefan Banach and Stanislaw Mazur in the latter part of the 1930s, but the

first publication was not made until Mazur (1963). In the meantime, the model was

refined and improved by Andrzej Grzegorczyk (1955) and independently by Daniel

Lacombe (1955) in terms of a theory of recursively computable functionals of the sort

familiar to logicians. Terminologically, something like “effective approximation

 2

computability” is preferable to “bit computability” as a name for this approach in its

applications to analysis.1

There are functions that are computable in each of these two models of

computation over the reals that are not computable in the other. For example, the

exponential function is computable in the effective approximation model but not in the

BSS model. And in the latter⎯but not in the former⎯given a non-trivial polynomial p

over the rationals, one can compute the function of x that is 1 just in case p(x) = 0 and is

0 otherwise. Despite their incompatibility, is there any way that these can both be

considered to be reasonable candidates for computation on the real numbers? As we

shall see, an obvious answer is provided very quickly by the observation that the BSS

model may be considered to be given in terms of computation over the reals as an

algebraic structure, while that of the effective approximation model can be given in

terms of computation over the reals as a topological structure of a particular kind, or

alternatively as a second-order structure over the rationals. But all such explanations

presume a general theory of computation over an arbitrary structure.

After explaining the BSS and effective computation models respectively in

sections 2 and 3 below, my main purpose here is to describe three theories of

computation over (more or less) arbitrary structures in sections 4 and 5, the first due to

Harvey Friedman, the second due to John Tucker and Jeffery Zucker, and the third due to

the author, adapting earlier work of Richard Platek and Yiannis Moschovakis. Finally,

and in part as an aside, I shall relate the effective approximation approach to the

foundations of constructive analysis in its groundbreaking form due to Errett Bishop.

 Before engaging in all that, let us return to the issue of computation over the reals

as a foundation for scientific computation, aka computational science or numerical

analysis. That subject is problem oriented toward the development of techniques for such

diverse tasks as solving systems of one or more linear and polynomial equations,

interpolation from data, numerical integration and differentiation, determination of

maxima and minima, optimization, and solutions of differential and integral equations.

Though nowadays these techniques are formulated as programs to be carried out on

1 These two are not the only theories of computation over the real numbers. See
Weirauch (2000) for a useful survey of various such notions.

 3

actual computers⎯large and small⎯many of them predate the use of computers by

hundreds of years (viz., Newton’s method, Lagrange interpolation, Gaussian elimination,

Euler’s method, etc., etc.). The justification for particular techniques varies with the

areas of application but there are common themes that have to do with identifying the

source and control of errors and with efficiency of computation. However, there is no

concern in the literature on scientific computation with the underlying nature of

computing over the reals as exact objects. For, in practice, those computations are made

in “floating point arithmetic” using finite decimals with relatively few significant digits,

for which computation per se simply reduces to computation with rational numbers.

 Besides offering a theory of computation on the real numbers, the main emphasis

in the articles of Blum (2004), Braverman and Cook (2006), and the book Blum, et al.

(1997) is on their relevance to the subject of scientific computation in terms of measures

of complexity. These use, among other things, analogues to the P and NP classifications

(due to Cook) from the theory of discrete computation.2 In addition to examples of

complexity questions in numerical analysis, they are illustrated with more recent popular

examples such as those having to do with the degree of difficulty of deciding membership

in the Mandlebrot set or various Julia sets. While complexity issues must certainly be

taken into account in choosing between the various theories of computation over the reals

on offer as a foundation for scientific computation, I take no position as to which of these

is most appropriate for that purpose. Rather, my main aim here is to compare them on

purely conceptual grounds.

2. The BSS model. A brief but informative description is given in Blum (2004), p. 1028,

while a detailed exposition is to be found in Blum, et al. (1997), Chs. 2 and 3, with the

first of these chapters devoted to what is called the finite dimensional case and the second

to its extension to the infinite dimensional case. As stated in these sources, the BSS

definition makes sense for any ring or field A, not only the reals R and the complex

2 It should be mentioned that pioneering work on a notion of polynomial time complexity
in analysis using the effective approximation approach had been made by Ko and
Friedman (1982) and Ko (1991); cf. the survey Ko (1998). For further work in this
direction, see Stoltenberg-Hansen (1999) and Bauer (2002).

 4

numbers C, and so on the face of it, it is an algebraic conception of computability. This

is reflected in the fact that inputs to a machine for computing a given algorithm are

unanalyzed entities in the algebra A, and that a basic admitted step in a computation

procedure is to test whether two machine contents x and y are equal or not, and then to

branch to further instructions accordingly. (In case A is ordered, one can also test

similarly whether x < y or not.) In the BSS description, an algorithmic procedure is

given by a directed graph whose top node represents the input stage and passage from a

given node to a successor node is made either by a direct computation, which in the case

of a ring is effected by a polynomial function (and in the case of a field by a rational

function), or by a decision step whose branches may proceed to a new node or return to

an earlier node. In the finite-dimensional case, the inputs are finite sequences of any

fixed length, while in the infinite-dimensional case they are sequences of arbitrary length

from A. The finite dimensional case is illustrated by the Newton algorithm for R or C as

follows: given a rational function f, to find a zero of f within a prescribed degree of

accuracy ε > 0, one starts with an input x, and successively updates that by replacing x by

x– f(x)/f′(x), until one reaches a value of x (if at all) for which |f(x)| < ε. The infinite

dimensional case is illustrated by a BSS algorithm to decide whether or not m given

polynomials f1, …, fm in n variables over C have a common zero, where the procedure is

to be described for n, m arbitrary; this is related in an essential way to the Hilbert

Nullstellensatz of 1893.3

 It is pointed out in Blum, et al. (1997) that a BSS algorithm for the finite-

dimensional case may be thought of more concretely in terms of register machines as a

3 As stated by Blum (2004), p. 1027, Hilbert’s Nullstellensatz (theorem on the zeros)
asserts in the case of the complex numbers C that if f1,…,fm are polynomials in C[x] for
indeterminates x = (x1,…,xn), then f1,…,fm have no common zero in Cn iff there are
polynomials g1,…gm in C[x] such that ∑ gifi = 1. This gives a semidecision procedure by
searching for such gi. That is turned into a BSS algorithm to decide whether or not the fi
have a common zero by use of effective bounds on the degrees of possible such gi found
by Grete Hermann in 1926.

 5

direct generalization of the notion due to Shepherdson and Sturgis (1963).4 Actually,

such a generalization to arbitrary fields was already made by Herman and Isard (1970).

For the infinite dimensional case, the BSS machine picture is treated instead as a form of

a Turing machine with a two-way infinite tape whose squares may be occupied by

elements of the ring or field A; the infinite tape allows for inputs consisting of sequences

of arbitrary length. Alternatively, it could be treated as a register machine with so-called

stack registers. Indeed, this falls under a very general adaptation of the register machine

approach to arbitrary structures that was made by Friedman (1971); this will be described

in sec. 4 below.

 It may be seen that in the case of rings, resp. fields, only piecewise polynomial

functions, resp. rational functions, are BSS computable. In particular, the Newton

algorithm can only be applied to such. But one could add any continuous function f to

the basic field structure and relativize the notion of BSS computable function to that. Of

course, doing so affects the complexity questions that are of major concern in Blum, et al.

(1997). In the opposite direction, one may ask what BSS algorithms can actually be

carried out on a computer. Tarski’s decision procedure (1951) for the algebra of real

numbers may be considered as a special case of such. Its centerpiece method reduces the

question of whether or not a system of polynomial equations and inequalities in one

variable with coefficients in R has a common solution, to a quantifier-free condition on

the coefficients of the polynomials. On the face of it, Tarski’s procedure runs in time

complexity as a tower of exponentials. That was cut down considerably to doubly

exponential upper bounds by George Collins in 1973 using a new method that he called

Cylindrical Algebraic Decomposition (CAD); Collins’ original work and many relevant

articles are to be found in the valuable source Caviness and Johnson (1998). The CAD

algorithm has actually been implemented for computers by one of Collins’ students, and

in a modified form in the system Mathematica; that works in reasonable time for

polynomials of relatively low degree. But in principle, Fischer and Rabin (1974,

reprinted in Caviness and Johnson), give an EXPTIME lower bound of the form 2cn for

4 See Cutland (1980) for a nice exposition and development of recursion theory on the
basis of register machines. This is also referred to by some as the Random Access Model
(RAM).

 6

deciding for sentences of length n whether or not they are true in R, no matter what

algorithm is used; the same applies even with non-deterministic algorithms, such as via

proof systems. They also showed that the “cut-point” by which EXPTIME sets in, i.e. the

least n0 such that for all inputs of length n ≥ n0, at least 2cn steps are needed, is not larger

than the length of the given algorithm or axiom system for proofs. Thus real algebra is

definitely infeasible on sufficiently large, though not exceptionally large inputs.

3. The theory of computability over R by effective approximation. In contrast to the

BSS model, the effective approximation or “bit computation” model of computation over

the reals is an analytic theory, specific to R, though the same idea can be generalized to

complete separable metric spaces relative to an enumerated dense subset. There are

actually two approaches to this model of computation, one that works with sequences

approximating arguments and values, that is referred to here as S-effective

approximation, and one that works by approximation of functions by polynomials,

referred to as P-effective approximation. It turns out that these are equivalent.

 To show that a real valued function f: I → R, where I is a finite or infinite

interval, is computable by S-effective approximation, given any x in I as argument to f,

one must work not with x but rather with an arbitrary sequential representation of x, i.e.

with a Cauchy sequence of rationals ⟨qn⟩n∈N which approaches x as its limit, in order to

effectively determine another such sequence ⟨rm⟩m∈N which approaches f(x) as limit.5 The

sequences in question are functions from N to Q, and so the passage from ⟨qn⟩n∈N to

⟨rm⟩m∈N is given by a computable type-2 functional F. One can standardize the

requirements here by restriction, for example, to dyadic rationals qn = φ(n)/2n where

φ: N → Z is such that

(1) |x – φ(n)/2n| ≤ 1/2n for all n.

5 There is no way to work effectively with real numbers given as Dedekind sections in the
rational numbers.

 7

In these terms, the requirement for S-effective approximation computability of f reduces

to obtaining a computable functional F: ZN → ZN such that for any φ: N → Z satisfying

(1) and for F(φ) = ψ we have

(2) (∀n) |x – φ(n)/2n| ≤ 1/2n ⇒ (∀m) |f(x) – ψ(m)/2m| ≤ 1/2m.

When this holds for all x in the domain of f we say that F effectively represents f. This

notion of computability of real functions is due independently to Grzegorczyk (1955) and

Lacombe (1955). It is illustrated in Braverman and Cook (2006) by proof of the bit-

computability of f(x) = ex using its usual power series expansion, thus showing that for

many such functions, one goes well beyond BSS computability over the reals in this

model.

 Using the effective correspondence of Z with N, the preceding explanation of

S-effective approximation computability of real functions reduces to the explanation from

classical recursion theory of the notion of effectively computable functional F: NN → NN.

Write T for the class NN of all total functions from N to N, and P for the class of all

partial functions from N to N. The original explanation of what is an effectively

computable functional (of type 2 over N) was that given by Kleene (1952) p. 326 for

F: P → P, in terms of Herbrand-Gödel calculability from a suitable system of equations

E with a symbol for an arbitrary partial function φ and a symbol ψ for a function defined

by E from φ. The idea is that for any φ in P, the values ψ(m) can be calculated by the

equational rules from E together with the diagram (i.e. formal graph) of φ. It is

immediate that any partial recursive F is monotonic in its arguments, i.e. if φ and φ′ are

partial functions with φ′ an extension of φ then F(φ′) is an extension of F(φ). Moreover

we have the continuity property that if F(φ) = ψ then each value ψ(n) depends only on a

finite number of values of φ, i.e. there is a finite subfunction φ0 of φ such that if φ′ is any

extension of φ0 and ψ′ = F(φ′) then ψ′(m) = ψ(m). Combining these facts, one has that

F(φ) is the union of F(φ0) for all finite φ0 ⊆ φ. Kleene’s main result for the partial

recursive functionals is his (“second”) Recursion Theorem, according to which each such

F has a least fixed point, obtained by taking the union of all finite iterations of F starting

with the empty function. An alternative approach to partial recursive functionals (that

 8

yields the same class as Kleene’s) is via recursive operators, as exposited for example in

Cutland (1980), Ch. 10; it only presumes the notion of partial recursive function,

independently of how that is defined.

 Now the computable functionals F: T →T may be defined to be those partial

recursive functionals F whose value for each total function φ is a total function F(φ). (It is

not enough to restrict a partial recursive functional to T, since its value on a total

argument f may still be partial.) But there are several other ways of defining which are

the computable functionals F: T →T without appealing to the notion of partial recursive

functional. One is due to Grzegorczyk (1955) by means of a direct generalization of

Kleene’s schemata for the general recursive functions using both primitive recursion and

the least number operator µ. Grzegorczyk deals with F(φ)(x), where φ = φ1,…,φj is a

sequence (possibly empty) of total functions, and x is a sequence x1,…,xk of numerical

arguments with k ≥ 1. For simplicity, we shall write F(φ, x) for Gregorczyk’s F(φ)(x).

These functionals reduce to functions of natural numbers F(x) when j = 0. A basic

computable functional F taken in the schemata is that for application, i.e. F(φ, x) = φ(x).

Then in addition to the primitive recursive schemata6 relativized uniformly to function

arguments φ, one has a scheme for the µ (minimum) operator formulated as follows.

Suppose given computable F(φ, x, y) such that ∀φ, x ∃y [F(φ, x, y) = 0]; then the

functional G defined by

 G(φ, x) = µy [F(φ, x, y) = 0]

is computable. An equivalent definition of computable functionals from total functions

to total functions has been given by Weirauch (2000) via uniform oracle Turing

machines, called by him the Type-2 Theory of Effectivity (TTE). In my view, Kleene’s

notion of partial recursive functional is the fundamental one, in that it specializes to

Grzegorczyk’s (or Weirauch’s) in the following sense: if F is a partial recursive

functional F: P → P, and F|T, the restriction of F to T, maps T to T, then F|T is definable

by the Grzegorczyk schemata, as may easily be shown.7

6 Actually, Grzegorczyk only assumes special consequences of primitive recursion from
which the general primitive recursive schemata are inferred.
7 One proof is as follows. Let E be a system of equations used to define F, and consider ψ
= F(φ) for any total φ; by assumption, for each i there is a unique j and a derivation of

 9

 It is a consequence of the continuity of partial recursive functionals that if F

effectively represents a real-valued function f on its domain I, then f is continuous at each

point of I. In particular, take I to contain 0 and consider the function f on I that is 0 on x

just in case x < 0 or x > 0 and otherwise is 1; since f is not continuous on I it is not

computable in the S-approximation sense. Thus, unlike the BSS model, the order relation

on R is not computable. In general, in the case that I is a finite closed interval, if f is

computable on I in the S-effective approximation sense, one has that it is effectively

uniformly continuous relative to the sequential limit representations of its arguments

(Grzegorczyk 1955 p.192). As we shall see, this connects with the Bishop constructive

approach to continuous functions, to be discussed in the final section.

 Let us turn now to the notion of P-effective approximation computability due to

Marian B. Pour-El (1974). That is suggested by the Weierstrass Approximation

Theorem, according to which every continuous function on a closed interval I is

uniformly approximable by a sequence of polynomials over Q. There is an effective

enumeration of all possible polynomials Pn(x) over Q with non-zero rational coefficients.

Then Pour-El defines f with domain I to be computable by P-effective approximation if

there are recursive functions φ and ψ such that for all M > 0, all n ≥ ψ(M), and all x in I,

(6) |f(x) – Pφ(n)(x)| ≤ 1/2M .

She extends this to f defined on R, by asking for a recursive function φ of two variables

such that for all k, and all M, n as above and all x in [-k, k],

(7) |f(x) – Pφ(k,n)(x)| ≤ 1/2M .

It is proved in Pour-El and Caldwell (1975) that P-effective computability is equivalent to

ψ(i) = j from E together with the diagram of φ. Any such derivation makes use only of a
finite subfunction φ|k of φ. Now let D(φ, i, j, k, d) = 0 hold when d is a code of a
derivation from φ|k of ψ(i) = j, otherwise = 1. D is primitive recursive uniformly in φ,
and for each φ and i there are j, k, d such that D(φ, i, j, k, d) = 0. Finally, F(φ, i) is the
first term of the least triple ⟨j, k, d⟩ such that D(φ, i, j, k, d) = 0.

 10

S-effective computability of functions on any closed interval I and on the full real line R.

Slightly more general results with an alternative proof are given in Shepherdson (1976).

Though the notions of P-effective computability are simpler than those of S-effective

computability, Shepherdson remarks that insofar as actual computation is concerned, “the

values are still given via approximating sequences [of rationals to reals]; this is

inescapable.”

4. The view from generalized recursion theory (g. r. t.); two theories of

computability on arbitrary structures. Beginning in the 1960s and continuing through

the 1970s and beyond there was much work on generalizations of recursion theory to

arbitrary structures. One of these generalizations was made by Harvey Friedman (1971)

by adaptation of the register machine approach as explained next.8 As will be seen

below, this approach to computability over arbitrary structures considerably antedates

and comprehends the BSS notions.
 By a (first-order) structure or algebra A is meant one of the form

(1) A = (A, c1,…,cj, f1,…,fk, R1,…,Rm),

where A is a non-empty set, each ci is a member of A, each fi is a partial function of one

or more arguments from A to A, and each Ri is a relation of one or more arguments on

A.9 For non-triviality, both k and m are not zero. The signature of A is given by the triple

(j, k, m) and the arity of each fi and each Ri. Of special note is that the test for equality of

elements of A is not assumed as one of the basic operations; rather, if equality is to be a

basic test, that is to be included as one of the relations Ri. A finite algorithmic procedure

(fap) π on A is given by a finite list of instructions I1, I2, …, It for some t, with I1 being

the initial instruction and It the terminal one. The machine has register names r0, r1, r2,

…, though only a finite number are needed for any given computation, namely those

mentioned in π; the register r0 is reserved for the output. The ri may also be thought of as

variables. The fap π may be used to calculate a partial n-ary function f on An to A for any

8 Friedman also considered a variant approach using infinite tapes as in Turing machines
and as in Blum (2004).
9 Friedman allowed partial relations in a suitable sense.

 11

n. Given an input (x1, …, xn), one enters xi into register ri, and proceeds to I1. Each

instruction other than It has one of the following four forms:

(2) ra: = rb

 ra: = ci

 ra: = fi(rb1, …, rbj), for j-ary fi

 if Ri(rb1, …, rbj) then go to Iu else Iv, for j-ary Ri.

In the first three cases, one goes to the next instruction after executing it. The

computation terminates only if the third instruction is defined at each stage where it is

called and if one eventually lands in It, at which point the contents of register r0 is the

value of f(x1, …, xn). An n-ary relation R is decidable by a fap π if its characteristic

function is computable by π. The class of fap computable partial functions on A is

denoted by FAP(A).

For the structure N = (N, 0, Sc, Pd, =), where N is the set of natural numbers and

Sc and Pd are respectively the successor and predecessor operations (taking Pd(0) = 0),

FAP(N) is equal to the class of partial recursive functions. For general structures A,

Friedman (1971) also introduced the notion of finite algorithmic procedure with

counting, in which certain registers are reserved for natural numbers and one can perform

the operations and tests on the contents of those registers that go with the structure N.

Then FAPC(A) is used to denote the partial functions on A computable by means of such

procedures.

 The notion of finite algorithmic procedure is directly generalized to many-sorted

structures

(3) A = (A1,…An, c1,…,cj, f1,…,fk, R1,…,Rm),

with the arity modified accordingly, while each register comes with a sort index limiting

which elements can be admitted as its contents. In particular, FAPC(A) can be identified

with FAP(A, N) where (A, N) denotes the structure A augmented by that for N. A

further extension of Friedman’s notions was made by Moldestad et al. (1980a, 1980b),

with stack registers which may contain finite sequences of elements of any one of the

basic domains Ai, including the empty sequence. The basic operations for such a register

are pop (remove the top element of a stack) and push (add the contents of one of the

registers of type Ai). This leads to the notion of what is computable by finite algorithmic

 12

procedures with stacks, FAPS(A), where we take the structure A to contain with each

domain Ai the domain Ai* of all finite sequences of elements of Ai, and with operations

corresponding to pop and push. If we want to be able to calculate the length n of a stack

and the qth element of a stack, we need also to have the structure N included. This leads

to the notion of finite algorithmic procedure with stacks and counting, whose computable

partial functions are denoted by FAPCS(A). In the case of the structure N, by any one of

the usual primitive recursive codings of finite sequences of natural numbers, we have

(4) FAP(N) = FAPC(N) = FAPS(N) = FAPCS(N).

Trivially, in general for any structure A we have the inclusions,

(5) FAP(A) ⊆ FAPC(A) ⊆ FAPCS(A), and

FAP(A) ⊆ FAPS(A) ⊆ FAPCS(A).

It is proved in Moldestad et al. (1980b) that for each of these inclusions there is a

structure A which makes that inclusion strict.

Consider the structure of real numbers as an ordered field,

R = (R, 0, 1, +, -, ×, −1, =, <).

It is stated in Friedman and Mansfield (1992), p. 298, that “with a little programming” the

FAP(R) functions are exactly the same as the BSS functions computable in the finite

dimensional case, and the FAPS(R) functions are exactly the same as the BSS functions

computable in the infinite dimensional case. It also follows from Friedman and Mansfield

(1992), p. 300, that FAPS(R) = FAPCS(R), because N can be embedded in R.

Appropriate generalizations of these results hold for arbitrary rings and fields A, ordered

or unordered.

 An alternative approach to computability over arbitrary structures due to John

Tucker and Jeffery Zucker that they developed over a number of years is provided in

their very usefully detailed expository piece, Tucker and Zucker (2000); this uses

definition by schemata or procedural statements rather than machines. Their approach

works over many-sorted algebras

(6) A = (A1,…An, c1,…,cj, f1,…,fk),

where the fi may be partial. By a standard structure A is one that includes the structure

B with domain{t, f} and basic Boolean functions as its operations. Then relations are

 13

treated as (possibly partial) functions into {t, f}, and branching on a relation is executed

via the if…then…else command. The basic notion of computability for standard algebras

is given by “while” schemata generated by the following rules (op. cit. p. 362) for

procedure statements S:

(7) S :: = skip|x: = t|S1;S2|if b then S1 else S2|while b do S,

where ‘b’ is a Boolean term. The set of partial functions computable on A by means of

these rules or schemata is denoted by While(A). Then to deal with computability with

counting, Tucker and Zucker simply expand the algebra A to the algebra (A, N). To

incorporate finite sequences for each domain Ai, they make a further expansion of that to

A*. This leads to the following notions of computability over A: WhileN(A) and

While*(A), given simply by While(A, N) and While(A*), respectively. The following

result is stated in Tucker and Zucker (2000) p. 487 for any standard algebra A:

(8) While(A) = FAP(A), WhileN(A) = FAPC(A), and

 While*(A) = FAPCS(A).

In other words, we have a certain robustness of computability in the While* sense.

Tucker and Zucker (1988) present a number of arguments in favor of a generalized

Church-Turing thesis for computability, according to which the functions that effectively

computable on a many-sorted algebra A in the informal sense are precisely the functions

that are While* computable on A; see also Tucker and Zucker (2000) pp. 493ff for a

briefer sketch of these arguments.

 So far, we are still dealing with essentially algebraic notions of computability. To

extend the While approaches to notions of computability on the reals, it would seem that

topological considerations must be brought to bear. That is done in a more general

setting in Sec. 7 (pp. 451-478) of Tucker and Zucker (2000). It is more difficult to

describe informally the several ways that is carried out loc. cit., so I shall simply give the

names of the notions introduced there, with the hope that they at least indicate what is

involved. First of all, the structures A = (A,…) dealt with are topological partial

algebras, where the partiality essentially has to do with the Boolean-valued functions of

equality and⎯in the case of R⎯order; as total functions these are discontinuous, so one

must replace them by partial functions which are undefined at (x, y) in A when x = y

 14

and⎯in the case of R⎯when neither x < y nor y < x. If the other basic functions on A

are taken to be continuous then so also are all the While* computable functions. That is

then specialized to metric partial algebras which are used to explain effectively uniform

While, resp. While*, and then approximable computability on A and effective

Weierstrass approximable computability on A; these three notions are shown to be

equivalent for suitable A (op. cit., p. 473). The Weierstrass notion is a generalization of

Pour-El’s P-computability that was described above. When further specialized to

functions on I to R, where I is a closed interval, they are further shown (op. cit., p. 474)

to be equivalent to Grzegorczyk-Lacombe computability, i.e. S-effective computability

described above.10 Thus the notions of While and While* computability serve to

subsume under a single framework the notions of computability in the BSS sense with

those computable in the effective approximation sense.

Another framework from g.r.t. that does not require direct appeal to topological

notions for the two notions of computability on the real numbers is provided in the next

section.

5. The higher type approach to computation on arbitrary structures. From the

schematic point of view, computable functions are generated from given functions by

explicit definition and by recursion, i.e. definition of a function in terms of itself.

Abstractly, recursion is given by a functional equation, f = F(f), which determines a

unique function f as the least fixed point (LFP) of F only if F is monotonic; moreover, the

LFP of F is in general a partial function. (For reasons that will be seen below, we now use

‘f’, ‘g’, … for partial function arguments of functionals in place of ‘φ’, ‘ψ’, … as was

done in sec. 3 above.) But then one has to ask where F comes from if it is not itself

explicitly generated; that would require determining it as the LFP of a higher type

operator G, and so on. This idea formed the underpinning of Richard Platek’s definition

of computability over fairly arbitrary structures A in his famous (but regrettably never

published) Stanford PhD dissertation, Platek (1966), in terms of a hierarchy of monotonic

10 For continuations of this work on computation on metric partial algebras, see Tucker
and Zucker (2004, 2005).

 15

partial functionals of arbitrary finite type over the domains of A. That allows one to start

not only with given functions over A but also given functionals in that hierarchy. For the

applications that concern us here, it would be sufficient to start with functionals of type

level ≤ 2 over the domains of A. Platek showed that in that case, everything of type level

≤ 2 that can be generated via recursion in higher types from such initial data can already

be generated via explicit definition and LFP definition with F of type level equal to 2.

Yiannis Moschovakis also took the LFP approach restricted to functionals of type

level ≤ 2 in his explanation of the notion of algorithm over arbitrary structures in his

papers Moschovakis (1984, 1989), featuring simultaneous LFP definitions, though those

can be eliminated in favor of single LFP definitions of the above form. Both the Platek

and Moschovakis approaches are extensional in a sense to be described below. In order

to tie that up both with computation over abstract data types and with Bishop’s approach

to constructive mathematics, in a pair of papers Feferman (1992a, 1992b), I extended the

use of LFP schemata to cover intensional situations, by requiring each basic domain Ai of

A to be equipped with an equivalence relation =i which the functions and functionals

must preserve.11 But unlike the approach to computation over R taken op. cit. in which

real numbers are dealt with as one of the basic domains, I here treat them as genuinely

type 1 objects, via functions on N representing Cauchy sequences of rational numbers.

For simplicity, I will reserve description of the intensional approach to the case of

computation over N, so that in effect each =i is taken to be the identity relation; but

intensionality has to be revisited for type 1 objects as will be explained below.

In more detail, this is how the development proceeds for what I call Abstract

Computation Procedures (ACPs) over an algebra

(1) A = (A0, A1, …, Ak, F0,…,Fm),

where each Ai is non-empty and the Fjs are individuals, functions or functionals of type

level 2 over the Ai satisfying a monotonicity condition to be explained below; A0 is fixed

to be the booleans {t, f}. We use letters f, g, h, … to range over partial functions of

arbitrary many-sorted arities given by arguments ranging over some finite product,

possibly empty, of the Ais with values in some Aj; in case the product is empty, such f is

11 See also Feferman (1996) where I treated streams in the extensional interpretation.

 16

simply identified with an element of Aj. The arity of f is determined by a pair σ = (i, j)

where i = (i1,…iν) lists the sorts of the product domain. Given f of arity σ, x = (x1,…,xν)

of arity i , and y of sort j, we write f(x) ≃y when f(x)↓ (i.e. f(x) is defined) and the value

of f(x) is y. Given f, g of arity (i, j) we write f ⊆ g if whenever f(x) ≃y then g(x) ≃y.

We can now turn to the functionals (which may reduce to functions or

individuals), for which we use the letters F, G, H,… . These have both a sequence

f = (f1,…,fµ) of partial function arguments of arities σ = (σ1,…,σµ), and individual

arguments x = (x1,…xν) of arity i, and have values F(f, x) in a specified domain Aj when

defined; the arity of such F is given by the triple (σ, i, j). We allow µ = 0, in which case F

reduces to a partial function of arity (i, j); we further allow ν = 0 as above, in which case

it reduces to an element of Aj when defined. Given f, g of arity σ, write f ⊆ g, if each

f ξ⊆ gξ; then F is said to be monotonic if whenever f ⊆ g and F(f, x) ≃y then F(g, x) ≃y.

This is automatically the case when there are no function arguments. The basic

assumption on the structure A above is that each Fk is monotonic for k = 0,…,m. We

further assume that the basic boolean functions corresponding to conjunction and

negation are among these.

Suppose given monotonic G(g, w) with a single function argument g of arity

σ = (i, j) where w is of arity i. Then for any g, the function λw.G(g, w) is again of arity σ.

Let ΓG(g) = λw.G(g, w), in other words ΓG = λgλw.G(g, w). Then LFP(ΓG) is defined to

be the unique function h such that

(2) ΓG(h) = h, and if ΓG(g) = g then h ⊆g.

We can now list the schemata for ACPs F, G, H… over A as follows:

I. (Initial functionals) F(f, x) ≃ Fl(f, x) for l = 0,…,m

II. (Identity functions) F(x) = x

III. (Application functionals) F(f, x) ≃ f(x)

IV. (Conditional definition) F(f, x, b) ≃[if b = t then G(f, x) else H(f, x)]

V. (Structural) F(f, x) ≃ G(fρ, xτ)

VI. (Individual substitution) F(f, x) ≃ G(f, x, H(f, x))

VII. (Function substitution) F(f, x) ≃ G(f, λu.H(f, x, u), x)

 17

VIII. (Least fixed point) F(f, x, u) ≃ LFP[λgλw.G(f, g, x, w)](u).

In IV of this list, ‘b’ is of boolean sort. In V, ρ: {1,…,µ′} → {1,…,µ}for some µ′ and

fρ = (fρ(1),…fρ(µ)); similarly for τ and xτ. In all the other cases the arities are taken to be

the appropriate ones. We denote by ACP(A) the set of all F of type levels 0, 1 and 2

generated from the initial F0,…,Fm specified by A, and by ACP1(A) (ACP2(A)) the

subset consisting of the functions of type level 1 (functionals of type level 2) among

these.

 As is easily seen, the reason the ACPs deserve to be called abstract procedures is

that they are preserved under isomorphism. That they also deserve to be called

computation procedures, at least in the case of N-standard structures A with arrays, is

due to the result below of Xu and Zucker (2005) below. A structure A is N-standard if it

is an expansion of the structure N = (N, 0, Sc, Pd). An N-standard structure has arrays if

with each basic domain Ai is associated the domain of all finite sequences from Ai, with

the appropriate operations of length, term, expansion and restriction. Let ACP(A) denote

the set of functions generated by the schemata I-VIII above. Xu and Tucker proved:

(3) If A is an N-standard structure with arrays, then

While*(A) = ACP1(A).

We also have a matchup with the Moschovakis (1984) theory of algorithms by the result

of Feferman (1992b) sec.9 that the ACPs are closed under simultaneous LFP recursion.12

Since it was seen in the preceding section that the BSS machine model of

computation on the real numbers (and on algebraic structures more generally) is

subsumed under While* computability, to show that we have a generalization of both

that and the effective approximation approach to computation on the reals, we specialize

to the case of ACPs over the structure N, which by the usual coding, includes the

associated structure with arrays. And for this, one simply comes down to showing that

(4) ACP2(N) = the partial recursive functionals over the natural numbers.

For it is easy to show that every partial recursive function is generated by the ACPs over

N, from which one obtains all the partial recursive functionals in the guise of recursive

12 See also Feferman (1996), Appendix A. Note also that Appendix C of that paper
contains several corrections to Feferman (1992b).

 18

operators as mentioned above. To prove the converse, one shows inductively that every

F in ACP(N) is a partial recursive function if of type level 1, and a partial recursive

functional if of type level 2. The crucial step is to show that the if G is a partial recursive

functional then the function LFP(ΓG) is a partial recursive function; for details, see

Feferman (1992b), secs. 10.2 and 11. So now the S-approximation theory of effective

computability of functions of real numbers is explained essentially as in sec. 3 above in

terms of total recursive functionals in ACP2(N). That is, Cauchy sequences of rational

numbers with effective moduli of convergence are represented in one way or another by a

class Rep of total functions on N. For any two such functions, f ≡ g is defined to hold if

the corresponding Cauchy sequences have the same limit, and a function F of real

numbers is represented by a functional F if for each real number x and each f representing

x we have that F(f) is a function representing F(x). Finally, a functional F serves to do

this if it maps Rep to Rep and if f ≡ g implies F(f) ≡ F(g).

Thus abstract computation procedures provide another way of subsuming the two

approaches to computation over the real numbers at a basic conceptual level. Of course,

this in no way adjudicates the dispute over the proper way to found scientific

computation on the real numbers or to deal with the relevant questions of complexity.

Coming back to basics, the foregoing illustrates another fundamental issue,

namely the difference between extensional and intensional aspects of computation. On

the face of it, the BSS approach is extensional, while that of S-effective approximation

theory is intensional in its essential use of Rep and ≡ on Rep. But there is an even more

basic difference that has been glossed over in the above explanation of ACPs. Namely,

functions f, g, h,… there are tacitly understood in the usual set-theoretic sense for which

the extensionality principle⎯that extensional equality implies identity⎯holds, i.e. if

f(n) = g(n) for all n in N, then f = g. By the intensional recursion-theoretic interpretation

of ACP(N) I mean what one gets by taking the function variables f, g, h, … to range

instead over indices of partial recursive functions (of the appropriate arities), rather than

the functions themselves. To connect this with the ordinary recursion theoretic

interpretation, let us write {f}(x) for f(x) in the above when f is such an index. Then f ⊆ g

and monotonicity of functionals is defined as above; write f ≡ g for f ⊆ g and g ⊆ f, i.e. if

 19

f and g are extensionally equal. Now one proves inductively for this interpretation that

each F in ACP2(N) preserves extensional equality and hence is an effective operator in

the sense of Myhill and Shepherdson (1955), i.e. if f ≡ g then F(f) ≡ F(g). That is also

used to show that we have closure in this interpretation under the LFP scheme, since by

the Myhill-Shepherdson theorem, every effective operator is the restriction to the partial

recursive functions of a partial recursive functional; for more details, see Feferman

(1992b), secs. 10.4 and 11. In the end, when speaking about actual computation, we have

intensionality throughout, since computers only work with finite symbolic representations

of the objects being manipulated.

6. Explicit mathematics and the Bishop approach to constructive analysis. In 1967

Errett Bishop published his ground-breaking book, Foundations of Constructive Analysis.

Bishop had for many years been a practicing analyst in the classical tradition to which he

contributed important work on Banach spaces, operator algebras, function algebras and

the theory of functions of several complex variables. In the mid-60s, while spending a

year at the Miller Institute in U. C. Berkeley, Bishop had a radical change of mind about

how mathematics ought to be developed. Namely he became convinced that it should be

carried out constructively so that each theorem has “numerical meaning”, i.e. can in

principle have a computational interpretation. But he found that the most sustained

previous effort to redevelop mathematics constructively⎯in the work of L. E. J. Brouwer

and his school of intuitionism⎯was very unsatisfactory “partly by extraneous

peculiarities of Brouwer’s system which made it vague and even ridiculous to practising

mathematicians, but chiefly by the failure of Brouwer and his followers to convince the

mathematical public that abandonment of the idealistic [i.e., classical] viewpoint would

not sterilize or cripple the development of mathematics.” (Bishop (1967) p. 2) In its

place, Bishop explained a way of developing analysis constructively that could be readily

understood by classical mathematicians and yet would be constructively meaningful at

the same time. Where Brouwer depended in part on the rejection of classical logical

reasoning as exemplified by use of the law of excluded middle to lead to existential

conclusions for which one may not have a witness, Bishop depends in part on the

systematic replacement of classical notions by related ones in which all witnessing

 20

information is explicitly stated and carried along in proofs. Furthermore, Brouwer

depended in his redevelopment of analysis on the use of the intuitive notion of “choice

sequence”, which has no direct classical interpretation, and on principles concerning that

notion which allowed him to prove such classically false statements as that every

function on a closed interval of the real numbers is uniformly continuous. Bishop, by

contrast, when dealing with functions on a closed interval [a, b], simply restricts himself

to those f which are not only uniformly continuous, but carry with them a uniform

modulus of convergence function, i.e. an effective function m: Q → Q such that for each

rational ε > 0 we have m(ε) > 0 and for all x, y in [a, b], if |x – y| < m(ε) then |f(x) – f(y)|

< ε. For Bishop, in effect, the objects with which one works are pairs (f, m) of functions

satisfying this condition on given closed interval [a, b]. Every theorem in Bishop is also

classically true; in practice it gives a constructive substitute for a classical theorem which

is equivalent to the latter under the assumption of the law of excluded middle.13

With such modifications, Bishop (1967) showed how substantial tracts of modern

analysis could be developed in an informal style meeting everyday standards of rigor.

Subsequently⎯in work with one of his students, Henry Cheng⎯Bishop and Cheng

(1972) published an improved version of his theory of measure; a couple of years later,

work on constructive probability theory was carried out by another student, Y.-K. Chan

(1974). But despite the evidence of its success in carrying out a great deal of

mathematics constructively without using strange notions or assumptions, Bishop’s

approach did not have any major impact, though it did take hold in a small but steadily

widening group. One of the first mathematicians outside of his immediate circle who

was to take it up was Douglas S. Bridges, who made several contributions to constructive

functional analysis in the mid 1970s leading up to the monograph Bridges (1979).

Bishop then began a collaboration with Bridges to make substantial additions and

improvements in his book that resulted in the volume, Constructive Analysis, Bishop and

Bridges (1985); that appeared after Bishop’s life and career was brought to a premature

close by his death due to cancer. There have been a number of further developments in

13 According to Bishop, only the particular consequences of the law of excluded middle
according to which for a function f: N → N either (∀n ∈ N) f(n) = 0 or (∃n ∈N) f(n)≠0,
(that he calls the Limited Principle of Omniscience) are needed for these equivalences.

 21

his school, not only in analysis but also in algebra and topology.14 But since my main

concern here is to relate the essentials of Bishop’s approach to contructive mathematics

(BCM) to the questions of computation of functions of real numbers, there is no need to

refer to anything beyond Bishop and Bridges (1985), abbreviated ‘BB’ in the following.

Ch. 1 of BB is devoted to Bishop’s “Constructivist manifesto”; the mathematical

work begins in Ch. 2, on the real numbers and calculus. That begins with some general

notions about sets and functions. Membership of an element x in a set A, x ∈ A, is

determined by x’s meeting certain construction requirements specified by A; these vary

from set to set. In addition, each set A carries with it an equivalence relation on A,

written =A, which is called the notion of equality for A. If one changes that notion for

given construction requirements, one changes the set. In the case of the set Z of integers

(or Z+ of positive integers), =Z is taken to be the identity. The set Q of rational numbers

is taken in BB to consist of all pairs (m, n) of integers for which n ∈ Z+ and m, n are

relatively prime; for this, too, the equality =Q is the identity. Alternatively, one could

take it to consist of all pairs (m, n) of integers for which n ≠ 0, endowing that set as usual

with the equality relation (m, n) =Q (m′, n′) iff m×n′ = m′×n.

By an operation from a set A into a set B is meant “a finite routine f which

assigns an element f(a) of B to each given element a of A. This routine must afford an

explicit, finite, mechanical reduction of the procedure for constructing f(a) to the

procedure for constructing a.” (BB, p.15) By a function or mapping of a set A into a set B

is meant an operation f from A into B such that we have f(a) =B f(a′) whenever a =A a′.

The equality of functions f, g from A to B is defined by the condition that for all a ∈A,

f(a) =B g(a). Note well that this is not the identity relation, since f, g may be given by

distinct procedures for computing the same value up to equality in B. By a sequence x of

elements of a set A is meant a function from Z+ (or sometimes from N) into A; the nth

term of x is given by xn = x(n); x is also denoted (xn). Moving on to the real numbers

(BB p.18), a sequence x = (xn) of rational numbers is called regular if for all m, n ∈Z+,

14 See, for example, Mines, Richman and Ruitenberg (1988) for algebra and Spitters
(2003) and Bridges and Vita (2006) for analysis.

 22

|xm − xn| ≤ 1/m+ 1/n. Thus regular sequences are Cauchy (or fundamental) in the usual

sense of the word. The set R of all real numbers is defined to consist of all regular

sequences, with the equality x =R y defined by: |xn − yn| ≤ 2/n for all n in Z+. This is

evidently a variant of the explanation of the explicit presentation of real numbers by

Cauchy sequences described in sec. 3 above, though with much slower rates of

convergence.

 The operations of addition, subtraction, multiplication and absolute value are

defined in a simple way from regular sequences so as to yield the expected functions on

R. For example, x + y is defined to be the sequence z with zn = x2n + y2n for all n. It is

only when we come to inverse for non-zero real numbers that we need to introduce some

new witnessing information. Classically, if a Cauchy sequence x converges to a positive

real number, there will exist positive integers j and m such that for all n ≥ j we have xn ≥

1/m. But constructively there is in general no way to compute effectively such j and m

from the given computation procedure used to exhibit x. Bishop’s definition for regular

sequences x is simply that x is positive if for some k, xk > 1/k; given such k, we may

choose m-1 ≤ (xk – k-1)/2 and j = m to satisfy the preceding conditions. Thus to exhibit x

as a positive real number, we must add the number k as part of its presentation. On the

other hand, x is defined to be non-negative if xn ≥ −1/n for all positive integers n. It is not

constructively true that if x is non-negative then either x =R 0 or x is positive, since we

don’t have enough information to decide which disjunct holds or to produce a suitable k

witnessing the positivity of x if x is not zero. Now, given these notions, we may define y

< x to hold if x – y is positive, and y ≤ x if x – y is non-negative. And with that, we may

proceed to define what is meant by a continuous function f on a closed interval, witnessed

by a uniform modulus of continuity function m(ε) as defined above. Functions f on other

intervals are described via the modulus information ma,b associated with each closed

subinterval [a, b].

The foregoing should give an idea of how Bishop and his followers proceed to

produce constructive substitutes for various classical notions in order to provide a

thorough-going constructive redevelopment of analysis. What is not clear from Bishop’s

 23

1967 presentation or that of Bishop and Bridges (1985) is how the computational content

of the results obtained is to be accounted for in recursion-theoretic terms, in the sense of

ordinary or generalized recursion theory as discussed in secs. 3-5 above. From the

logical point of view, that may be accomplished by formalizing the work of BB (and

BCM more generally) in a formal system T that has recursive interpretations. A variety

of such systems were proposed in the 1970s, first by Bishop himself and then by Nicholas

Goodman, Per Martin-Löf, John Myhill, Harvey Friedman and me and surveyed in

Feferman (1979), p. 173 and pp. 192-197 (cf. also Beeson 1985). Roughly speaking,

those account for the computational content of BCM in two different ways: the first treats

witnessing information implicitly and depends for its extraction on the fact that the

systems are formalized in intuitionistic logic, while the second kind treats witnessing

information explicitly as part of the package explaining each notion and does not require

the logic to be intuitionistic. For the first kind of system, the method of extraction is by

one form or another of the method of recursive realizability introduced by Kleene or by

the use of (recursive) functional interpretations originated by Gödel. Only the system T0

of Explicit Mathematics introduced in Feferman (1975) and applied to BCM in Feferman

(1979) is of the second kind, and it is only that whose direct interpretation relates it to the

theories of computation discussed above. Namely, T0 has variables of two kinds:

individuals a, b, c,…, x, y, z and classes (or “classifications”) A, B, C,…, X, Y, Z; the

ontological axiom tells us that every class is an individual; the informal meaning is that

classes are considered intensionally via their explicit defining properties.15 The basic

relation between individuals, besides that of identity, is a three-placed relation App(x, y,

z), also written xy ≃z, satisfying, with suitable constant symbols k, s, p, p0 and p1, the

conditions for a partial combinatory algebra with pairing and projection operations. The

informal meaning of xy ≃z is that x represents (or codes) a partial operation whose value

at y equals z. Thus operations may apply to operations, but also to classes via the

ontological axiom. T0 has a straightforward model in which the individual variables

range over the natural numbers and the relation App(x, y, z) holds just in case {x}(y) ≃z,

in the notation of ordinary recursion theory. On the other hand, within T0, Bishop’s

15 Later reformulations of systems of explicit mathematics use a relation R(x, X) to
express that the individual x represents (or codes) the class X.

 24

constructive analysis is formalized directly following the kinds of explanations sketched

above for operations f and sets A (considered as classes with equality relations),

functions, Z, Q, regular sequences, R, =R, < and ≤ for R, and functions of real variables

on closed intervals. Then one can see that the recursion theoretic model of T0 just

described fits the computational content of Bishop’s constructive mathematics with the

intensional recursion theoretic interpretation of ACP(N) described at the end of sec. 5.

As it turns out, and as explained in Feferman (1979), case studies of typical

arguments in Bishop’s constructive analysis show that it can be formalized in a

subsystem of T0 of the same strength as the system PA of Peano Arithmetic. Further

work of Feng Ye (2000) on the constructive theory of unbounded linear operators

suggests that in fact a subsystem of the same strength as the system PRA of Primitive

Recursive Arithmetic already suffices for that purpose. It is possible that one can push

this further by formalization in systems of feasible analysis such as that in Ferreira

(1994); that will take much more work.16 But the practice of Bishop style constructive

analysis needs to be examined directly for turning its results that predict computability in

principle to ones that demonstrate computability in practice.17 Presumably all of the

specific methods of scientific computation are subsumed under Bishop style constructive

mathematics. Assuming that is the case, here is where a genuine connection might be

made between constructive mathematics, the theory of computation, and scientific

computation, which puts questions of complexity up front. 18

Stanford University

Email: feferman@stanford.edu

References

16 In a personal communication, Stephen Cook has commented on Ferreira (1994) that “it
has a first-order part based on polynomial time functions over a discrete space, but this is
supplemented by powerful axioms such as the weak pigeonhole principle which allow
existence proofs with no feasible algorithmic content.”
17 See the suggestions that I made in that direction at the conclusion of Feferman (1984).
18 I would like to thank Michael Beeson, Lenore Blum, Douglas Bridges, Stephen Cook,
Jeffery Zucker, and especially the referee for their helpful comments on a draft of this
article.

 25

Bauer, A. (2002), A relation between equilogical spaces and type two effectivity,

Mathematical Logic Quarterly 48, 1-15.

Beeson, M. J. (1985), Foundations of Constructive Mathematics, Springer, New York.

Bishop, E. (1967), Foundations of Constructive Analysis, Springer, New York.

Bishop, E. and D. Bridges (1985), Constructive Analysis, Springer, New York.

Bishop, E. and H. Cheng (1972), Constructive Measure Theory, Memoirs of the
American Mathematical Society 116, AMS, Providence R. I.

Blum, L. (2004), Computability over the reals: Where Turing meets Newton, Notices
Amer. Math Soc. 51, 1024-1034.

Blum, L., M. Shub and S. Smale (1989), On a theory of computation and complexity over
the real numbers: NP-completeness, recursive functions and universal machines, Bull.
Amer. Math. Soc. 21, 1-46.

Blum, L., F. Cucker, M. Shub and S. Smale (1997), Complexity and Real Computation,
Springer, New York.

Braverman, M. and S. Cook (2006), Computing over the reals: Foundations for scientific
computing, Notices Amer. Math. Soc. 51, 318-329.

Bridges, D. S. (1979), Constructive Functional Analysis, Pitman, London.

Bridges, D. S. and L. S. Vita (2006), Techniques of Constructive Analysis, Universitext,
Springer-Verlag, Heidelberg.

Caviness B. F. and J. R. Johnson, eds. (1998), Quantifier Elimination and Cylindrical
Algebraic Decomposition, Springer, New York.

Chan, Y-K. (1974), Notes on constructive probability theory, Annals of Probability 2, 51-
75.

Cutland, N. J. (1980), Computability: An Introduction to Recursive Function Theory,
Cambridge Univ. Press, Cambridge.

Feferman, S. (1975), A language and axioms for explicit mathematics, in Algebra and
Logic (J. N. Crossley, ed.), 87-139.

__________ (1979), Constructive theories of functions and classes, in Logic Colloquium
’78 (M. Boffa, et al., eds.), North-Holland, Amsterdam, 159-224.

 26

__________ (1984), Between constructive and classical mathematics, in Computation
and Proof Theory (M. M. Richter, et al., eds.), Lecture Notes in Computer Science 1104,
143-162.

__________ (1992a), A new approach to abstract data types, I: Informal development,
Mathematical Structures in Computer Science 2, 193-229.

__________ (1992b), A new approach to abstract data types, II: Computability on ADTs
as ordinary computation, in Computer Science Logic (E. Börger, et al., eds.), Lecutre
Notes in Computer Science 626, 79-95.

__________ (1996), Computation on abstract data types: The extensional approach, with
an application to streams, Annals of Pure and Applied Logic 81, 75-113.

Ferreira, F. (1994), A feasible theory for analysis, J. Symbolic Logic 59, 1001-1011.

Fischer, M. and M. Rabin (1974), Super-exponential complexity of Presburger
arithmetic, in Complexity of Computation, AMS-SIAM Proceedings 7, 27-41; reprinted
in Caviness and Johnson (1998), 122-135.

Friedman, H. (1971), Algorithmic procedures, generalized Turing algorithms, and
elementary recursion theory, in Logic Colloquium ’69 (R. O. Gandy and C. M. E. Yates,
eds.), North-Holland, Amsterdam, 361-389.

Friedman, H. and R. Mansfield (1992), Algorithmic procedures, Transactions of the
American Mathematical Society 332, 297-312.

Grzegorczyk, A. (1955), Computable functionals, Fundamenta Mathematicae 42, 168-
202.

Herman, G. T. and S. D. Isard (1970), Computability over arbitrary fields, J. London
Math. Soc. 2, 73-79.

Kleene, S. C. (1952), Introduction to Metamathematics, North-Holland, Amsterdam.

Ko, K. (1991), Complexity Theory of Real Functions, Birkhäuser, Boston.

Ko, K. (1998), Polynomial-time computability in analysis, in Handbook of Recursive
Mathematics, Vol. 2, Recursive Algebra, Analysis and Combinatorics (Yu. L. Ershov, et
al., eds.), Elsevier, Amsterdam, 1271-1317.

Ko, K. and H. Friedman (1982), Computational complexity of real functions, Theoretical
Computer Science 20, 323-352.

 27

Lacombe, D. (1955), Extension de la notion de fonction récursive aux fonctions d’une ou
plusieurs variables réelles, I, II, III, Comptes Rendus de l’Académie des Science Paris,
240: 2470-2480, 241: 13-14, 241: 151-155.

Mazur, S. (1963), Computable analysis, Rozprawy Matematyczne 33.

Mines, R., F. Richman and W. Ruitenberg (1988), A Course in Constructive Algebra,
Springer, New York

Moldestad, J., V. Stoltenberg-Hansen and J. V. Tucker (1980a), Finite algorithmic
procedures and inductive definability, Mathematica Scandinavica 46, 62-76.

__ (1980b), Finite algorithmic
procedures and inductive definability, Mathematica Scandinavica 46, 77-94.

Moschovakis, Y. N. (1984), Abstract recursion as a foundation for the theory of recursive
algorithms, in Computation and Proof Theory (M. M. Richter, et al., eds.), Lecture Notes
in Computer Science 1104, 289-364.

________________ (1989), The formal language of recursion, J. Symbolic Logic 54,
1216-1252.

Myhill, J. and J. C. Shepherdson (1955), Effective operations on partial recursive
functions, Zeitschr. f. Mathematische Logik u. Grundlagen der Mathematik 1, 310-317.

Platek, R. A. (1966), Foundations of Recursion Theory, PhD Dissertation, Stanford
University.

Pour-El, M. B. (1974), Abstract computability and its relation to the general purpose
analog computer, Trans. Amer. Math. Soc. 199, 1-28.

Pour-El, M. B. and J. C. Caldwell (1975), On a simple definition of computable function
of a real variable with applications to functions of a complex variable, Zeitschr. f.
Mathematische Logik u. Grundlagen der Mathematik 21, 1-19.

Shepherdson, J. C. (1976), On the definition of computable function of a real variable,
Zeitschr. f. Mathematische Logik u. Grundlagen der Mathematik 22, 391-402.

Shepherdson, J. C. and H. E. Sturgis (1963), Computability of recursive functions, J.
Assoc. Computing Machinery 10, 217-255.

Spitters, B. (2003), Constructive and Intuitionistic Integration Theory and Functional
Analysis, PhD Dissertation, University of Nijmegen.

Stoltenberg-Hansen, V. and J. V. Tucker (1999), Concrete models of computation for
topological spaces, Theoretical Computer Science 219, 347-378.

 28

Tarski, A. (1951), A Decision Method for Elementary Algebra and Geometry, Univ. of
California Press, Berkeley; reprinted in Caviness and Johnson (1998), 24-84.

Tucker, J. V. and J. I. Zucker (1988), Program Correctness over Abstract Data Types,
with Error-State Semantics, CWI Monographs 6, North-Holland, Amsterdam.

_______________________ (2000), Computable functions and semicomputable sets on
many-sorted algebras, in Handbook of Logic in Computer Science Vol. 5 (S. Abramsky,
et al., eds.), Oxford University Press, Oxford, 317-523.

_______________________ (2004), Abstract versus concrete computation on metric
partial algebras, ACM Transactions on Computational Logic 5, 611-668.

_______________________ (2005), Computable total functions, algebraic specifications
and dynamical systems, J.l of Logical and Algebraic Programming 62, 71-108.

Weirauch, K. (2000), Computable Analysis, Springer, Berlin.

Xu, J. and J. Zucker (2005), First and second order recursion on abstract data types,
Fundamenta Informaticae 67, 377-419.

Ye, F. (2000), Toward a constructive theory of unbounded linear operators, J. Symbolic
Logic 65, 357-370.

