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Abstract This paper presents examples of infinite diagrams (as well as infinite limits
of finite diagrams) whose use is more or less essential for understanding and accept-
ing various proofs in higher mathematics. The significance of these is discussed with
respect to the thesis that every proof can be formalized, and a “pre” form of this thesis
that every proof can be presented in everyday statements-only form.

Keywords Diagrammatic reasoning · Infinite diagrams · Formalizability thesis

1 Introduction

A proof of a theorem in mathematics is what we require to convince ourselves and
others of the truth of the statement made by the theorem. Here ‘truth’ is taken in its
prima facie sense, i.e., the notions involved in the statement of the theorem are sup-
posed to be meaningful, and if it is to be truth for us, we are supposed to understand
the meaning of those notions. In order to be convinced of a proof, one must follow
the argument and check the various steps for ourselves, making use not only of what
is given in the proof itself but what is required from background knowledge, i.e.,
previous statements that we have already accepted to be true on some ground or
other. And that background knowledge may require understanding other notions not
explicitly involved in the statement of the theorem. So both background knowledge
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and the understanding of meanings is an essential component of what it takes to accept
a given proof. Even given that, it is possible to go through the steps of a given proof and
not understand the proof itself. That is a different level of understanding, which, when
successful, leads one to say, “Oh, I see!” In other words, this “really understanding
the proof” is a special kind of insight into how and why the proof works. And that
is necessary if one wants to follow proofs of related theorems and contribute to the
subject by creating new proofs oneself. It follows that one cannot truly be a consumer
and producer of mathematics without achieving real understanding of the arguments.1

Many proofs that mathematicians give rely on diagrams to a significant extent.
They were ubiquitous in Greek geometry and in early analysis, but doubts were cast
on their validity among other reasons because they might not be “typical”: the worry
was that they might in one way or another lead one to draw conclusions not justified
by the hypotheses of the theorem to be demonstrated or be incomplete by not dealing
with all possible cases. The process of rigorization of mathematics in the nineteenth
century has supposedly led to their elimination in principle from modern mathematics.
But the practice of reliance on diagrams in various ways is still integral to the pre-
sentation of mathematical proofs of all sorts, even outside of geometry and analysis.
That is because such use of diagrams is part of what we make use of in arriving at real
understanding of various proofs.

The concept of a mathematical diagram used here is a rather general one; it is
supposed to be a representation of an abstract mathematical configuration on a two-
dimensional surface consisting of points, lines, curves, arrows, with labels, marks,
shaded areas, and so on. Among the “and so on” there may be special features such
as the use of broken lines to represent three-dimensional or even higher-dimensional
aspects of the given configuration, of dotted lines to represent a construction to be made
at a certain point in the argument, of parallel lines viewed in perspective so that they
meet at “infinity,” etc. In view of all this it is genuinely questionable whether one can
say precisely what constitutes a mathematical diagram, let alone a diagram in general.

Most theorems in mathematics state a fact about infinitely many objects of a
certain kind, e.g., all triangles. But the diagram used in a proof only represents one
such object, and as already mentioned it is an issue whether the particular representa-
tion taken is typical, i.e., does not have features which are not shared by all the objects
under consideration. This is a frequent concern when dealing with proofs of geometric
theorems that rely to a significant extent on diagrams. What I want to do here is bring
attention to a different kind of diagram that is ubiquitous in modern mathematics, in
which there is a single infinite configuration under consideration, and what is exhibited
in the diagram is a typical finite part of that configuration, with the balance indicated
by the use of ellipsis, i.e., dots ‘…’ expressing ‘and so on’ or ‘and so forth’ in some
way. The consideration of such infinite diagrams is interesting because they enlarge the
question of what makes a diagram typical. Moreover, I shall argue that there are certain

1 Wilfrid Hodges has remarked to me that he is not alone in having said, “Oh, I see!” to proofs that he later
realized he hadn’t understood. He went on to say that “[a]rguably one should define ‘really understanding
a proof’ in terms of ability to paraphrase or adapt it, or apply it, or answer objections to it, and maybe other
kinds of reactions to it. If this leads to no clear dividing line between really understanding and not really
understanding, that seems to me to fit our experience.”
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Fig. 1 A diagrammatic proof of Pythagoras’ Theorem

proofs in modern mathematics where the use of such infinite diagrams is essential, i.e.,
it is not possible to even follow the proof without consulting the diagram at practically
every step of the way. In fact, there are certain theorems whose statement can’t even be
understood without reference to such a diagram. This raises a prima facie problem for
the thesis that every mathematical proof can be formalized. Actually, it already raises
the problem for the thesis that every proof of a mathematical theorem that may involve
diagrams and other possible devices can be replaced by an everyday statements-only
proof. I shall call these the Formalizability Thesis (ft), and the Pre-Formalizibility
Thesis (pft), respectively. Actually, the problems raised for these theses are already
issues for the essential use of finite diagrams for the understanding of various proofs,
so we need to attend to the question of what further problems, if any, may be raised
by the use of infinite diagrams in higher mathematics.

There has been a great resurgence of interest in reasoning with diagrams in mathe-
matics (and visual reasoning more generally) especially in the last couple of decades,
and the literature dedicated to that has become quite extensive. The survey article
by Mancosu (2005) provides an informative entry to the subject. Inevitably, what
I have to say in the following concerning the use of diagrams in general is no doubt
already to be found in that literature or overlaps it to a considerable extent. But as far
as I know, the considerations here concerning the modern uses of infinite diagrams
are novel.

Before starting, one thing I want to emphasize about diagrams of all sorts, whether
finite or infinite, is that we should not think of them in the way usually done, as
static figures when reading a text, but rather as they might be presented in a lecture,
constructed in stages.2 In that very process our understanding of what is going on
begins to feed into our understanding of the proof in which the diagram participates.
And then when it is completely before us, we may retrace various of its aspects to
further fill out that proof. Here’s a classic example of that, with a proof, in stages, of
Pythagoras’ Theorem (one of the hundreds of known proofs). The figure is taken from
Roger Nelsen’s Proofs Without Words (1993).

One starts with a diagram of a right triangle, say the lightly shaded one in the lower
right hand corner of the right hand diagram in Fig. 1, and then constructs the square on

2 A closely related point concerning Euclidean diagrammatic demonstrations is made by Manders (2008a,
3.1.1, pp. 68–69).
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its hypotenuse. Following that, we add three more copies of the original triangle, each
having the same square on the hypotenuse, to form a larger square whose side equals
the sum of the two sides of the original triangle. Its area is the area of the square on the
hypotenuse plus four times the area of the initial triangle. Then we form a different
representation of those four triangles in that large square by reassembling them as
shown in the left hand diagram of Fig. 1. This makes evident that the area of the large
square is also equal to the sum of the squares on the sides of the initial triangle plus four
times the square of its area. By subtraction from this equality we obtain Pythagoras’
Theorem. When carrying out that demonstration in class on a blackboard, we hardly
use all those words after the initial construction and reassembling, since the proof is
almost evident by inspection. (Alternatively, we may work from left to right.)

The plan of the paper is as follows. Before going to infinite diagrams per se, in
Sect. 2 I shall give examples of diagrams that are infinite limits of finite geometrical
diagrams; in those cases it is difficult to visualize the limiting figure, but the process
by which they are approximated is very clear. Section 3 presents three examples of the
use of infinite diagrams in modern mathematics, one from set theory, one from model
theory, and one from homological algebra. Finally, Sect. 4 discusses the relevance of
these examples to the theses pft and ft.

2 Finite diagrams with infinite limits

The first kind of infinite diagrams that I want to consider are those that are difficult
to picture in and of themselves but are easily conceived as limits of finite diagrams
obtained by iterating certain constructions. A simple example is provided by the famil-
iar Koch “Snowflake” that is used to demonstrate the existence of a bounded continuous
closed curve with no finite length and no tangent at any point. As shown in Fig. 2, it
is the limiting curve of a sequence of polygons beginning with an equilateral triangle
of side 1. The sequence is described inductively: at each stage, one simultaneously
divides each side of the polygon before us into three equal segments, then builds an
equilateral triangle on the middle segment, and finally deletes the base of the new

Fig. 2 Finite stages of the Koch
“snowflake”

123

Author's personal copy



Synthese (2012) 186:371–386 375

triangle except for its endpoints. Since the length of the circumference of this figure at
each stage is multiplied by 4/3, and since (4/3)n approaches infinity, the limiting curve
has no finite length. The first four terms of this sequence are shown in Fig. 2, though
three terms would have been sufficient to visualize where the process is heading.

The Koch snowflake is just one of a number of counter-intuitive or “pathological”
functions and figures that emerged in the latter part of the nineteenth century in the
process of the rigorization of analysis and the development of set theory and point-set
topology. Of these Henri Poincaré wrote in 1906:

Logic sometimes breeds monsters. For half a century there has been springing
up a host of weird functions, which seem to strive to have as little resemblance
as possible to honest functions that are of some use. No more continuity, or
else continuity but no derivatives, etc. …Formerly, when a new function was
invented, it was in view of some practical end. Today they are invented on pur-
pose to show our ancestors’ reasonings at fault, and we shall never get anything
more out of them. (Poincaré 1952, p. 125)

Implicitly referred to here is the well known example due to Weierstrass of an analyt-
ically defined continuous but nowhere differentiable function.

In contrast to Poincaré, Hans Hahn argued against the dependence on intuition
in mathematics in his famous essay, “The crisis in intuition” (Hahn 1933). He there
pointed to a number of mathematical “monsters” to support his critique, such as a sim-
plification due to Hilbert of Peano’s space filling curve, an example due to Brouwer of
a “map” of three “countries” which meet each other at every point of their boundaries,
and a curve due to Sierpiński which intersects itself at every point. Another topolog-
ical monster which could have been mentioned by Hahn is the so-called Alexander
“horned” sphere which is homeomorphic to the unit sphere in three dimensions yet
whose complement is not simply connected.

As I argued in Feferman (2000), the purpose of such monsters in the development
of modern mathematics was to show that when one makes precise in analytic terms
our intuitive notions of continuity, curve, tangent, boundary, connectedness, etc., ordi-
narily expected consequent properties don’t necessarily hold. Thus if it is smooth
curves about which one wants to obtain results, a hypothesis of differentiability must
be added, and so on. Ironically, as with the Koch snowflake above, the understanding
of how such counter-intuitive examples are generated makes use of intuitively clear
finite diagrams or pictures which approach the “monster” in the limit. For example,
the Peano-Hilbert example of a space-filling “curve” is the limit of curves that first go
through every quadrant of the unit square, then modified to go through every sub-quad-
rant, and so on. The Sierpiński “curve” begins by deleting the interior of an inscribed
equilateral triangle within an initial such triangle; the required figure is the skeleton
of what’s left in the limit of iterating this process. The Alexander horned sphere is
formed by successively growing “horns” from the unit sphere that are almost inter-
locked and whose end points approach each other. This can be visualized by posing
one’s thumb and forefinger of each hand toward those of the other hand as if one is
going to interlock them, then imagine growing a smaller thumb and forefinger on the
end of each of these, and so on.
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Fig. 3 A diagrammatic proof of the Cantor-Bernstein Theorem

The 1/3 construction procedure in the Koch snowflake (made public in 1904)
may have been suggested by the Cantor construction in the 1880s of an uncountable
nowhere dense subset of the closed interval [0, 1] having Lebesgue measure 0 that
is obtained by deleting successive middle open thirds. Later constructions, in 2 and
3 dimensions, respectively, of uncountable nowhere dense sets of measure 0 are the
so-called Sierpiński carpet and the Menger sponge. The notion of measure was intro-
duced in part to serve as a precise extension to more or less arbitrary sets of the intuitive
notions of length, area and volume. All are examples of what are now called fractals,
popularly enjoyed for their unusal semi-visual properties.

3 Proofs appealing to representations of infinite diagrams

Let us now turn to infinite diagrams which can be visualized in full, in contrast to
those of the preceding section, though they may also involve the iteration of certain
constructions. Three examples are given here, the first from set theory, the second
from model theory, and the third from homological algebra.

We begin with a proof of the Cantor-Bernstein Theorem.3 Given two sets A, B one
defines A � B to hold if there is a one-one mapping of A into B, and A ≡ B if
there is a one-one mapping of A onto B. The Cantor-Bernstein Theorem tells us that
if A � B and B � A, then A ≡ B. In the diagram used for the proof in Fig. 3, A is
represented by a broken line above and B by a broken line below, with the reason for
the breaks explained in the process of the proof. One begins by taking f to be a 1−1
map of A into B and g to be a 1−1 map of B into A. To proceed, we look alternately
at what each of f, g misses on the other side, beginning with A0 = A − g(B) and
B0 = B− f (A). Then A0 can be matched up on the B side with B1 = f (A0), while B0
can be matched up on the A side with A1 = g(B0), so A0 ≡ B1 by f while A1 ≡ B0
by the inverse g−1 of g. Moving on, we define A2 as g(B1) and B2 as f (A1), and then
A3 as g(B2) and B3 as f (A2). This leads us to define An and Bn in general for all n, in
such a way that A2n ≡ B2n+1 by f and A2n+1 ≡ B2n by g−1. Hence the union of the
An’s is in 1−1 correspondence with the union of the Bn’s. But those unions might not
exhaust the sets A and B. That can hold for example, if both A0 and B0 are countable
while A and B are uncountable; then the respective unions are countable while their
complements are uncountable. The part to the right of the ellipsis on each side of the

3 Also called the Schröder-Bernstein theorem. According to Kuratowski and Mostowski (1968, p. 190), its
first correct proof was obtained by F. Bernstein and published in a book by E. Borel in 1898.
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diagram represents that possibly non-empty complement. To finish off the proof, one
argues that f is a 1−1 map of A minus the union of the An’s onto B minus the union
of the Bn’s, since no element of the latter can be caught as the image by f of some
A2n or by g−1 of some A2n+1.4

The next example is drawn from the subject of what are called amalgamation theo-
rems in model theory as exposited in Hodges (1997, pp. 134–149). I assume some basic
knowledge of the subject as needed for the following notation: ‘L’, ‘L1’, ‘L2’, …are
used for first order relational languages, and ‘A’, ‘B’, …with or without subscripts
or superscripts are used for L-structures for various L. Given structures A0, A1 for
the same language, we write A0 ≡ A1 when A0 and A1 are elementarily equivalent,
and A0 � A1 when A0 is an elementary substructure of A1. Then we write A0 → A1
when there exists a substructure A′

0 of A1 for which A0 ≡ A′
0 and A′

0 � A1. A basic
result that is used in the main result below is the Tarski-Vaught Theorem according to
which if A0 � A1 � A2 � · · · and A = ∪n An , then each An � A.

Amalgamation theorems apply to the case when we have two languages L1 and
L2 with a common non-empty sublanguage L = L1 ∩ L2 and structures A in L1
and B in L2 that are somehow to be related over L. Throughout the following, the
A structures with or without subscripts or superscripts are in L1 and similarly the B
structures are in L2. We write ‘A|L’ and ‘B|L’ for the respective restrictions of A and
B to L. Then the preceding notation is extended so that ‘A ≡ B’ is written to mean
that A|L ≡ B|L, while ‘A � B’ is written to mean that A|L � B|L, and ‘A → B’ is
written to mean that A|L → B|L. We assume proved the Elementary Amalgamation
Theorem (Hodges 1997, p. 135, Theorem 5.3.1) by which if A0 ≡ B0, then there
exists A1 with A0 � A1 and B0 → A1. This is pictured in Fig. 4.

It follows immediately that under the same conditions there exist A1 and B1 such
that A0 � A1 and B0 � B1 and B0 → A1 and A1 → B1. This is illustrated in Fig. 5.

We are now in a position to construct an infinite diagram to prove the Strong Amal-
gamation Theorem (due to Abraham Robinson and exposited in Hodges 1997, p. 147,
Theorem 5.5.1): Given A ≡ B, there exists a structure C in L1 ∪L2 such that A → C
and B → C , i.e., A → C |L1 and B → C |L2. The proof appeals to Fig. 6.

In Fig. 6 we write ‘A0’ for ‘A’ and ‘B0’ for ‘B,’ and use the diagram of Fig. 4 to
construct suitable A1 and B1 satisfying the pictured relations and then the same to
construct suitable A2 and B2, and so on. Let Aω = ∪n An and Bω = ∪n Bn . By the
Tarski–Vaught Theorem, each An � Aω and each Bn � Bω. Also Aω|L ≡ Bω|L by
the successive →-relations between the An’s and the Bn’s. So we can construct a C
in L1 ∪ L2 that agrees with Aω up to isomorphism on L1 and agrees with Bω up to
isomorphism on L2, as required. By the way, from the Strong Amalgamation The-
orem one quickly infers Craig’s Interpolation Theorem and Robinson’s Consistency
Theorem.

My final example involving infinite diagrams comes from homological algebra.
Such diagrams are ubiquitous in that subject as they are in combinatorial topology;

4 I don’t remember where I first saw this use of an infinite diagram for the proof of the Cantor-Bernstein
Theorem. Another diagram is used in the proof of a lemma for the theorem given in Hrbacek and Jech (1999),
p. 67. Still another diagram is used in an automated proof of the theorem in Barker-Plummer et al. (1996);
there the diagram is used to provide strategic information to the theorem prover employed (grover).
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Fig. 4 Diagram for elementary amalgamation

Fig. 5 One alternation of elementary amalgamation

Fig. 6 Infinitely iterated alternation of elementary amalgamation

a classic reference is Mac Lane (1975). For a quick illustration, I here follow three
pages from an introductory text, Jans (1964), pp. 27–29, devoted to an explanation
and the first part of a proof appealing to a certain infinite diagram of what is called the
Exact Sequence of Homology Theorem.5 This deals with abstract complexes given
by an infinite sequence of modules Cn over a ring R, where n is in Z, the set of
integers.6 Such a complex is given by a collection of R homomorphisms, dn : Cn →
Cn−1, called differentials, such that for each n, dndn+1 = 0. For any such sequence,
we have Ker(dn) ⊇ Im(dn+1), and we can form the homology groups Hn(C) =
Ker(dn)/ Im(dn+1). Homological algebra is concerned with information about these
groups for various complexes. One defines a complex map f : A → C between any
two complexes, to be a collection of R homomorphisms fn : An → Cn such that the
following diagram is commutative

where the vertical homomorphisms are given by the fn’s and the horizontal ones are
given by the dn’s, i.e., for each n, fn−1dn = dn fn (superscripts on maps attached
to specific complexes are dropped when there is no ambiguity). It is then shown by
an easy argument that whenever this holds, the map f induces (for each n) an R
homomorphism, f∗ : Hn(A) → Hn(C). By an exact sequence of complexes

0 → A → B → C → 0 (1)

5 I only discovered after choosing this example that Rav (2007), p. 298, footnote 12, had pointed to the
very same result and essential use of a diagram.
6 In applications, Cn = 0 for all n < 0.
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Fig. 7 Connecting homomorphism for exact sequence of homology

where j : A → B and π : B → C , is meant one where for each n, the sequence

0 → An → Bn → Cn → 0 (2)

is exact, i.e., Ker(πn) = Im( jn) for each n. The Exact Sequence of Homology Theo-
rem states that whenever 0 → A → B → C → 0 is an exact sequence then there is
an induced “long” exact sequence

given by a sequence of homomorphisms θ : Hn+1(C) → Hn(A) called the connecting
maps. The proof occupies three pages in Jans (1964), 29–31, and appeals repeatedly
to the diagram on p. 29, reproduced here as Fig. 7.

Of this, Jans says that the dashed arrow from Cn to An−1 is used to indicate the
path to follow for the construction of the connecting map θ . While that proof—which
I shall not reproduce here—is written out fully in symbols, anyone who studies it can
hardly deny that the diagram in Fig. 7 is absolutely indispensable for understanding
how it proceeds by “diagram chasing,” i.e., the demonstration that the composition of
maps along various paths from a given node to another in the diagram always gives
the same result.7 This is completely typical of arguments in homological algebra,
combinatorial topology and modern algebraic geometry.

Note that from a logical point of view there is an essential difference between the
infinite diagrams in Figs. 3 and 6 and that in Fig. 7, namely the former ones are con-
structed inductively while the latter is not. Indeed, one could say that what is at issue
in Fig. 7 is just showing how the connecting map is determined for a finite diagram
confined to the indices n + 1, n and n − 1 in Fig. 7. However, a little further on
in the subject one is led to inductively generated infinite diagrams, namely after the
introduction in Jans (1964) p. 33 of the notion of a projective resolution

7 In standard terminology, this is the statement that the diagram is commutative.
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· · · → Pn → Pn−1 → · · · → P1 → P0 → 0; (3)

see for example the proof of the Simultaneous Resolution Theorem (ibid., p. 39). How-
ever, it would take us too far afield to explain the notions involved and the diagrams
in question.

4 Proofs from diagrams and the Formalizability Thesis

All of this touches on a larger issue, namely the thesis that every proof can in principle
be formalized, i.e., has a counterpart formal derivation in some formal system. For
present purposes I will refer to this as the Formalizability Thesis (ft).8 It should be
clearly distinguished from the Formalist Thesis, according to which mathematics has
no content but merely consists in following formal rules. The Formalizability The-
sis is usually considered with respect to the statements-only proofs that one meets
in practice, i.e., which consist of a sequence of statements given in natural language
augmented by various kinds of mathematical symbolism. By the Pre-Formalizability
Thesis (pft) I mean the thesis that every proof of a mathematical theorem that may
involve diagrams and other possible devices can be replaced by an everyday state-
ments-only proof. In Sect. 1 I argued that for something to be a proof for us it is not
sufficient that we be able to check through it step by step but we must also under-
stand it as a whole. Moreover, there are proofs that make use of diagrams in a way
that contributes substantially to the understanding of the proof. In particular, in the
preceding I offered three examples of such from modern mathematics employing infi-
nite diagrams, with the claim for the last—from homological algebra—that reference
to the diagram is essential for its proof; moreover, that is just one of a multitude of
proofs of that character. These sorts of examples raise a prima facie challenge to the
Pre-Formalizability Thesis and thence to the Formalizability Thesis. Even examples
from more elementary mathematics can be produced which raise the same challenges
and use only finite diagrams. Nevertheless, I shall make a case in the following both
for pft and then for ft. In addition I shall explain why it is also necessary to consider
proofs employing infinite diagrams in doing so.

4.1 The case for PFT

I have not seen any general discussions in the literature of the Pre-Formalizability
Thesis but that does not mean that a case does not have to be made for it. Moreover,
the case for ft clearly requires acceptance of pft. Let us look at several example areas
that may constitute specific challenges to pft.

First of all, consider the “proofs without words” in Nelsen (1993). The initial ones
among these make use of dot-patterns and other kinds of patterns that illustrate arith-
metical identities such as ones of the form f (1) + f (2) + · · · + f (n) = g(n) for

8 Some of my colleagues such as Michael Beeson and Natarajan Shankar say that ft is now universally
granted, and so a defence of it is in effect beating a dead horse. That that is not the case is evidenced by
various well-known critics of ft cited, for example, in Rav (1999; 2007).
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various f and suitable g. The remarkable thing about these is that the typical exam-
ples such as those for the sum of the first n positive integers or first n odd numbers
with some small n lead to a very quick conviction as to the truth of the statements for
arbitrary n. The basis of that conviction may be only partially reasoned and when made
explicit, may not be sufficient to be converted to a statements-only proof. But massive
experience with these shows that in all cases they can be established by an inductive
argument which may be quite different from the one suggested by the diagram. pft
only requires that we be able to replace a proof making use of diagrams by another
one that is diagram-free.9

Euclidean geometry provides one of the most extensive body of diagram based
proofs in mathematics. For many of these proofs, reference to the diagram is appar-
ently indispensable in order to follow and understand the proof; take, for example,
Euclid’s proof in I.47 of the Pythagorean Theorem, or even the simpler proof described
in Sect. 1 above. Nevertheless, in the critical reexamination of Euclidean geometry in
the late nineteenth century by Pasch, Hilbert and others, the Pre-Formalizability The-
sis was in effect claimed to hold. As referenced by Mancosu (2005) pp. 14–15, this is
quite explicit in the case of Pasch; in the case of Hilbert it is only explicit in various
of his lectures on geometry and not in his Grundlagen der Geometrie of 1899. Still,
these are statements in principle, not a demonstration that pft holds for Euclidean
geometry. That has only been established quite recently in the work of Avigad et al.
(2009) via a formal system E that is faithful to Euclid’s and Euclidean style proofs.
The system E takes Manders’ 2008b distinction between exact (or metrical) and co-
exact (or topological) attributes as its point of departure, and builds on experience
from the Ph.D. dissertation of Mumma (2006) which provides a formal system Eu
in which diagrams are still bona fide objects. Some examples are given in Sect. 4.2
(pp. 734–738) of Avigad et al. (2009) of how Euclidean proofs can systematically be
replaced by informal statements-only proofs that can then be formalized directly in E.

The process of rigorization of analysis that began in the nineteenth century and
that was followed by the rigorization of topology in the twentieth century and the
subsequent rewriting of mathematics Bourbaki style would seem to make the case
for pft in these areas without much further ado. Still, as we saw in Sect. 2, various
unusual figures (“monsters”) were produced in the process to serve as counterexam-
ples to putative (pre-rigorous) theorems, and one must test pft for those cases. I have
not checked the literature to verify that each of the figures in question does indeed
have a description in analytic terms, but in general they are obtained as the limit of an
inductively generated sequence of finite diagrams, each of which can, in principle, be
described analytically, though that might require a certain amount of work.

Let’s look, finally, at the three examples of infinite diagrams described in Sect. 3.
There is no difficulty for each of these in simply replacing each proof by one in
which those diagrams are eliminated in favor of symbols for the entities and their

9 Jamnik (2001) deals with dot pattern proofs of such arithmetical identities in a systematic way. The idea
is that one is led directly from small typical diagrams to formulate a conjecture leading to a program P that
constructs for each n a formal proof P(n) of the given identity. Then the general statement of the identity
follows by the recursive ω-rule. However, each such P must still be supplemented by a proof of correctness
at the meta level to arrive at a fully formal proof and that inevitably involves an inductive argument.
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relationships that are partially represented in the diagrams, and the proofs may then
be carried out in the everyday statements-only form. As we shall see, what is difficult
in these cases, as compared to the ones above from more elementary mathematics,
is not the verification of the Pre-Formalizability Thesis but rather the Formalizability
Thesis.

Note that it is not claimed in any of the above cases that understanding and convic-
tion are retained in the process of eliminating appeal to diagrams in favor of proofs
in statements only form. The Pre-Formalizability Thesis makes no demands in that
respect. Moreover, in practice students of such proofs often supply their own pictures
and diagrams with which to gain the requisite insight and conviction.

4.2 The case for FT

It is the Formalizability Thesis rather than the Pre-Formalizability Thesis that has been
the subject of extensive discussion and controversy. Historically, that had its origins
in Frege’s Begriffsschrift and was considerably bolstered by the work of Whitehead
and Russell in the Principia Mathematica. Then at a more general level the idea of a
formal system came to the forefront via Hilbert through his finitist consistency pro-
gram, and for that reason the view is called by some Hilbert’s Thesis; however, it
should be understood independently of Hilbert’s program.10 Just what the thesis means
without begging the question as to what a “proof” is is hard to say, but the idea is
common enough, and has both many defenders and opponents. Some recent strong
critiques of it which also form a guide to the relevant literature have been mounted
by Rav (1999, 2007) and Pelc (2009), while—in a response to Rav (1999)—Azzouni
(2004) argued for a version of formalism, according to which “[o]rdinary mathemat-
ical proofs indicate (one or another) mechanically checkable derivation of theorem
from the assumptions those…proofs presuppose.” (ibid., p. 205).11

While there are very general precise explanations of what constitutes a formal
system, a real difficulty in any defense of ft lies in saying just what formal system
is to be associated with a given informal proof, i.e., what is to be taken for its lan-
guage, axioms and rules of inference, and what it means to formalize a given proof
in such a system.12 Nevertheless there is an extensive body of experience in modern
mathematical logic that can be appealed to, to flesh this out in a great variety of cases.

10 In addition, Hilbert is often mistakenly referred to as a formalist.
11 These particular discussions use ‘proof’ for the informal arguments found in mathematical practice
and ‘derivation’ for their presumed counterparts in formal systems, but that terminology is by no means
universal. For a careful discussion of formal vs. informal provability, see Leitgeb (2009).
12 Philippe de Rouilhan observed that Frege and Russell each proposed a strong form of ft, namely that
there is a single formal system in whose language every mathematical notion can be expressed and in which
every mathematical theorem can be derived. We know the fates of their specific proposals due to incon-
sistency and incompleteness, respectively. In general, Gödel’s incompleteness theorem undermines any
proposal for such a strong form of ft. However, some claim that all mathematical notions can be defined in
the language of set theory while others claim that they can all be defined in the language of category theory;
just what such claims come to deserves further analysis. (In neither case, of course, is it claimed that some
specific axiomatic system of set theory, resp. category theory, is sufficient to derive all of mathematics.)
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One might argue that—granting pft—the thesis has independent plausibility for infor-
mal proofs consisting solely of a reasoned sequence of statements that only involve
words and symbols, since there is hardly any dispute as to the formalizability of indi-
vidual statements in a suitable language. However, the difficulty lies in the steps from
one statement to the next whose justification may be evident to the human mathemati-
cian specializing in the subject matter of the proof but that require extensive filling in,
in order to create a fully formal derivation. And it is in this respect where the kind of
reasoning behind the examples in Sect. 3 from modern infinitistic mathematics raises
particular difficulties, because it is not in general simply logical microsteps that have
to be inserted. Rather, in practice, the expert human mathematician routinely calls on
a repertoire of prior notions, methods and results from his memory to readily recog-
nize the validity of the steps in question. Depending on the mathematics of the proof
in question, those notions, methods and results may be about sets and functions, or
models and satisfaction, or modules and groups and homomorphisms, and so on. But
they may also involve mathematics not explicitly present in the steps being filled in.
For example, in the case of infinite diagrams, there is constant appeal to the indexing,
and hence to background knowledge about the integers, including the use of inductive
arguments. And supplying the detailed intermediate steps in a suitable formal system
is by no means routine. However, it is here where the considerable experience in recent
years with the mechanical verification of proofs comes in to give additional substance
to the thesis. See for example, http://www.mizar.org/ for the Mizar system of proof
checking in a formal system of set theory, and Nipkow et al. (2002) for the Isabelle
higher-order logic proof-assistant. Note the use of the word ‘assistant,’ for the prep-
aration of an informal statements-only proof for formal checking requires detailed
guidance by the mathematician(s) in charge.13

Despite this kind of evidence, one must still give attention to the critical side and
to the more specific question whether the kind of use of diagrams illustrated in this
paper provides specific material for arguments contra the Formalizability Thesis. Rav’s
general criticism is of “the belief that through complete formalization (in a suitable
formal language) mathematical proofs attain the optimum of certainty and reliability”
(Rav 2007, p. 291). He points out that that view is not to be confounded with stan-
dards of rigor that, historically, have changed and evolved and varied from subject
to subject within mathematics. By contrast, Rav identifies the true function of proofs
within mathematical practice to lie in their interconnected role in the development of
individual subjects. As he wrote in his earlier article, “Why do we prove theorems?”,

Proofs are for the mathematician what experimental procedures are for the exper-
imental scientist: in studying them one learns of new ideas, new concepts, new
strategies—devices which can be assimilated for one’s own research and be
further developed. (Rav 1999, p. 20)

The article Rav (2007) continues and elaborates these themes as part of his critique
of Azzouni (2004). Pelc, on the other hand, is focused on the much more restrictive

13 An interesting recent example is provided by the mechanical proof check in Avigad et al. (2007) of the
Erdős-Selberg “elementary” proof of the prime number theorem also using Isabelle.
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question, “Why do we believe theorems?”, as he entitles his 2009 paper. Without
dismissing Rav’s points, he says that

[n]evertheless, the role of proofs as a means of convincing the mathematical
community of the validity of theorems is very important. While proofs can also
serve other purposes, only proofs can directly serve this purpose. …[here] we
are only interested in the ‘convincing’ role of proofs.” (Pelc 2009, p. 85)

And in this respect Pelc’s main criticism of the Formalizability Thesis is found in the
abstract to his paper:

The formalist [sic!] point of view maintains that formal derivations underlying
proofs, although usually not carried out in practice, contribute to the confidence
in mathematical theorems. Opposing this opinion, the main claim of the present
paper is that such a gain of confidence obtained from any link between proofs
and formal derivations is even in principle impossible in the present state of
knowledge (Pelc 2009, p. 84).

For his argument, Pelc defines a natural number M that is so large that no theorem T
whose shortest possible derivation in ZFC is of length greater than M will be mechan-
ically checkable by a physically realizable process within anything like feasible time.
And then he goes on to suggest that the proof by Wiles of Fermat’s Last Theorem
could be a candidate for such T “in the present state of knowledge.” (Considering
the great progress being made in the actual mechanical checking of proofs referred to
above, this is rather incautious speculation.)

It is seen that the arguments of Rav and Pelc are not arguments against the Form-
alizability Thesis per se, but rather arguments to the effect that informal proofs serve
a number of purposes that cannot be served by any supposed formalizations of them,
first and foremost their role in convincing us of the truth of the statements which they
purport to establish. In the introduction, I, too, took that to be the primary purpose of
proofs and added that understanding proofs is a necessary part of that. In particular, in
Sect. 2 and 3 I brought forth some examples of diagrams which play to some extent
or other an essential role in gaining that understanding; indeed, I claimed that that
is completely the case in the final example considered in Sect. 3 (and is so also for
similar proofs throughout homological algebra and topology).14 Nevertheless, I do
not see that as an argument against the Formalizability Thesis.

In other words, I believe that the Formalizability Thesis should be given a very
strict reading, namely that (i) every good proof has an underlying logical structure, (ii)
that structure is completely analyzed in the derivation that formalizes the proof, and,
finally (iii) that derivation assures the correctness of the theorem proved on the basis of
the background assumptions expressed by the axioms and rules of the system in which

14 Note that I have only been concerned here with the use of diagrams in more or less sophisticated mathe-
matical reasoning. Besides the work of Avigad et al. (2009) on Euclidean geometry mentioned above there
is also an extensive literature on systematic reasoning with diagrams outside of these areas; see, among
others, Allwein and Barwise (1996); Jamnik (2001) and Shin and Lemon (2008) for an introduction to
that. Other directions of work, such as Barwise and Etchemendy (1996) involve heterogeneous systems of
reasoning, e.g., employing manipulations of icons on a computer screen.
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the proof is formalized.15 This is an in principle thesis that has nothing to do with
conviction, understanding, or feasibility and it seems to me to be perfectly consistent
with the view of the central and methodological virtues of proofs emphasized by the
critics.16

The Formalizability Thesis is especially important for logicians since the claims
for formalizability of various particular informal arguments are ubiquitous in our
work. This goes back to Gödel’s proof of his incompleteness theorems, especially the
second theorem, on unprovability of consistency, the standard argument for which
requires formalizing the proof of the first incompleteness theorem. And just as for
Gödel’s theorems, the significance of all the subsequent work in metamathematics for
the potentialities and limitations of mathematical thought depends essentially on the
extent to which the various formal systems of algebra, number theory, analysis and set
theory that have emerged in that work account for extensive swaths of mathematical
practice. The underlying logical structure of mathematics is an essential part of what
makes it such a distinctive body of thought and it is exactly the Formalizability Thesis
that allows us to say in precise terms a good deal—but by no means all—of what we
are up to when we are doing mathematics.
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