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Presentation to the panel, �Does mathematics need new axioms?�

ASL 2000 meeting, Urbana IL, June 5, 2000

Solomon Feferman

The point of departure for this panel is a somewhat controversial paper that I

published in the American Mathematical Monthly under the title �Does mathematics need

new axioms?� [4].  The paper itself was based on a lecture that I gave in 1997 to a joint

session of the American Mathematical Society and the Mathematical Association of

America, and it was thus written for a general mathematical audience.  Basically, it was

intended as an assessment of Gödel�s program for new axioms that he had advanced most

prominently in his 1947 paper for the Monthly, entitled �What is Cantor�s continuum

problem?� [7].  My paper aimed to be an assessment of that program in the light of

research in mathematical logic in the intervening years, beginning in the 1960s, but

especially in more recent years.

In my presentation here I shall be following [4] in its main points, though enlarging

on some of them.  Some passages are even taken almost verbatim from that paper where

convenient, though of course all expository background material that was necessary there

for a general audience is omitted.1  For a logical audience I have written before about

various aspects of the questions dealt with here, most particularly in the article �Gödel�s

program for new axioms: Why, where, how and what?� [2] and prior to that in �Infinity in

mathematics. Is Cantor necessary?�(reprinted as Chs. 2 and 12 in [3]).

********************

My paper [4] opened as follows:

The question, �Does mathematics need new axioms?,� is ambiguous in practically
every respect.
   �  What do we mean by �mathematics�?
   �  What do we mean by �need�?
   �  What do we mean by �axioms�?
   You might even ask, What do we mean by �does�?

Amusingly, this was picked up for comment by The New Yorker in its issue of May 10,

1999, in one of its little end fillers (op.cit., p. 50), as follows:

�New� apparently speaks for itself.
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I had to admit, they had me there.

********************

Part of the multiple ambiguities that we see in the leading question here lies in the

various points of view from which it might be considered.  The crudest differences are

between the point of view of the working mathematician not in logic related fields (under

which are counted, roughly, 99% of all mathematicians), then that of the mathematical

logician, and, finally, that of the philosopher of mathematics.  Even within each of these

perspectives there are obviously divergent positions.  My own view is that the question is an

essentially philosophical one: Of course mathematics needs new axioms--we know that

from Gödel�s incompleteness theorems--but then the questions must be: Which ones? and

Why those?

Let�s start by making some preliminary distinctions as to the meaning of �axiom�.

The Oxford English Dictionary defines �axiom� as used in logic and mathematics by: � A

self-evident proposition requiring no formal demonstration to prove its truth, but received

and assented to as soon as mentioned.�  I think it�s fair to say that something like this

definition is the first thing we have in mind when we speak of axioms for mathematics: this

is the ideal sense of the word.  It�s surprising how far the meaning of axioms has become

stretched from the ideal sense in practice, both by mathematicians and logicians.  Some have

even taken it to mean an arbitrary assumption and so refuse to take seriously what status

axioms are to hold.

When the working mathematician speaks of axioms, he or she usually means those

for some particular part of mathematics such as groups, rings, vector spaces, topological

spaces, Hilbert spaces, and so on.  These kinds of axioms have nothing to do with self-

evident propositions, nor are they arbitrary starting points.  They are simply definitions of

kinds of structures which have been recognized to recur in various mathematical situations. I

take it that the value of these kinds of structural axioms for the organization of

mathematical work is now indisputable.

In contrast to the working mathematician�s structural axioms, when the logician

speaks of axioms, he or she means, first of all, laws of valid reasoning that are supposed to

apply to all parts of mathematics, and, secondly, axioms for such fundamental concepts as

                                                                                                                                                
1 The parts taken from [4] are reprinted here with the kind permission of the American Mathematical
Monthly.
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number, set and function that underly all mathematical concepts; these are properly called

foundational axioms.

The foundational axioms correspond to such basic parts of our subject that they

hardly need any mention at all in daily practice, and many mathematicians can carry on

without calling on them even once.  Some mathematicians even question whether

mathematics needs any axioms at all of this type: for them, so to speak, mathematics is as

mathematics does.  According to this view, mathematics is self-justifying, and any

foundational issues are local and resolved according to mathematical need, rather than global

and resolved according to possibly dubious logical or philosophical doctrines.

One reason the working mathematician can ignore the question of need of

foundational axioms--and I think that we [members of the panel] are all agreed on this--is

that the mathematics of the 99% group I indicated earlier can easily be formalized in ZFC

and, in fact, in much weaker systems.  Indeed, research in recent years in predicative

mathematics and in the Reverse Mathematics program shows that the bulk of it can be

formalized in subsystems of analysis hardly stronger than !1
1-CA,2 and moreover the

scientifically applicable part can be formalized in systems conservative over PA and even

much weaker systems.3  So, foundationally, everyday mathematics rests in principle on

unexceptionable grounds.

Before going on to the perspectives of the mathematical logician and the philosopher

of mathematics on our leading question, let�s return to Gödel�s program for new axioms to

settle undecided arithmetical and set-theoretical problems.  Of course, the part of Gödel�s

program concerning arithmetical problems goes back to his fundamental incompleteness

results, as first indicated in ftn. 48a of his famous 1931 paper [6].  It was there that Gödel

asserted the true reason for incompleteness to be that �the formation of ever higher types

can be continued into the transfinite�; he repeated this reason periodically since then, but

did not formulate in print the exact nature of such further axioms.  An explicit formulation

of the program in pursuit primarily of settling CH only appeared in the 1947 article on

Cantor�s Continuum Problem (and its 1964 revision in the light of subsequent events).  It

was also there that Gödel made the distinction between new axioms based on intrinsic

reasons and those based on extrinsic reasons.  Concerning the former he pointed to axioms

of Mahlo type, of which he said that �these axioms show clearly, not only that the axiomatic

system of set theory as known today is incomplete, but also that it can be supplemented

                                                
2 For predicative mathematics, cf. [3], Chs. 13 and 14; for Reverse Mathematics, cf. Simpson [19].
3 Cf. [3], Chs. 13 and 14 for the claim about PA.  Feng Ye has shown in his dissertation [20] that
substantial portions of scientifically applicable functional analysis can be carried out constructively in a
conservative extension of PRA.
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without arbitrariness by new axioms which are only the natural continuation of those set up

so far.� ([7], p. 520)  Since Gödel thought CH is false and recognized that Mahlo-type

axioms would be consistent with V=L, he proposed other reasons for choosing new axioms;

hopefully, these would be �based on hitherto unknown principles...which a more profound

understanding of the concepts underlying logic and mathematics would enable us to

recognize as implied by these concepts�, and if not that, then one should look for axioms

which are �so abundant in their verifiable consequences...that quite irrespective of their

intrinsic necessity they would have to be assumed in the same sense as any well-established

physical theory.� ([7], p. 521)

My co-panelists are better equipped than I to report on the subsequent progress on

Gödel�s program in the case of set theory.4  Briefly, the research in this direction has

concentrated primarily on higher axioms of infinity, also known as large cardinal axioms

(LCAs).  These are divided roughly between the so-called �small� large cardinals such as

those in the Mahlo hierarchies of inaccessible cardinals, and the �large� large cardinals, a

division that corresponds roughly to existence axioms accepted on intrinsic gournds (or

consistent with V = L) and those accepted on extrinsic grounds.  The division is not a sharp

one but falls somewhere below the first measurable cardinal. 5  By all accounts from the

specialists, the high point in the development of �large� large cardinal theory is the

technically very impressive work extending �nice� properties of Borel and analytic sets,

such as Lebesgue measurability, the Baire property, and the perfect subset property--via the

determinateness of associated infinitary games--to arbitrary sets in the projective hierarchy,

all under the assumption of the existence of infinitely many Woodin cardinals.6

But the striking thing, despite all such progress, is that--contrary to Gödel�s hopes

--the Continuum Hypothesis is still completely undecided, in the sense that it is independent

of all remotely plausible axioms of infinity, including all �large� large cardinal axioms

which have been considered so far.7  In fact, it is consistent with all those axioms--if they

are consistent--that the cardinal number of the continuum is anything it �ought� to be, i.e.

anything which is not excluded by König�s Theorem.8  That may lead one to raise doubts

                                                
4 That was indeed stressed in the presentations of Maddy and Steel.
5 Cf. Kanamori [11], p. 471.
6 This is due, cumulatively, to the work of many leading workers in higher set theory; cf. Martin and Steel
[15] and Steel�s presentation to this panel discussion, for the history of contributions.
7 Interestingly, the only detailed approach we know of to settle CH that Gödel himself tried--first negatively
and then positively--was not via axioms for large cardinals but rather via proposed axioms on scales of
functions between alephs of finite index.  Whatever the merits of those axioms qua axioms, his attempted
proofs (c. 1970) using them proved to be defective; cf. [8], 405-425.
8 Cf. Martin [14].  The situation reported there in 1976 is unchanged to date.
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not only about Gödel�s program but its very presumptions.  Is the Continuum Hypothesis a

definite problem as Gödel and many current set-theorists believe?  

Here�s a kind of test of one�s views of that: as has been widely publicized, a Clay

Mathematics Institute that has recently been established in Cambridge, Massachusetts is

offering what it calls Millennium Prizes of $1,000,000 each for the solution of seven

outstanding open mathematical problems, including P = NP, the Riemann Hypothesis, the

Poincaré conjecture, and so on.  But the Continuum Problem is not on that list.  Why not?

It�s one of the few in Hilbert�s list from one hundred years ago that�s still open.  Would

you feel confident in going to the scientific board of that institute and arguing that the

Continuum Problem has unaccountably been left off, and that its solution, too, should be

worth a cool million?  

My own view--as is widely known--is that the Continuum Hypothesis is what I have

called an �inherently vague� statement, and that the continuum itself, or equivalently the

power set of the natural numbers, is not a definite mathematical object.  Rather, it�s a

conception we have of the totality of �arbitrary� subsets of the set of natural numbers, a

conception that is clear enough for us to ascribe many evident properties to that supposed

object (such as the impredicative comprehension axiom scheme) but which cannot be

sharpened in any way to determine or fix that object itself.  On my view, it follows that the

conception of the whole of the cumulative hierarchy, i.e. the transfinitely cumulatively

iterated power set operation, is even more so inherently vague, and that one cannot in general

speak of what is a fact of the matter under that conception.  For example, I deny that it is a

fact of the matter whether all projective sets are Lebesgue measurable or have the Baire

property, and so on.  

What then--on this view--explains the common feeling that set theory is such a

coherent and robust subject, that our ordinary set-theoretical intuitions are a reliable guide

through it (as in any well accepted part of mathematics), and that thousands of interesting

and prima facie important results about sets which we have no reason to doubt have already

been established?  Well, I think that only shows that in set theory as throughout

mathematics, a little bit goes a long way--in other words, that only the crudest features of

our conception of the cumulative hierarchy are needed to build a coherent and elaborate

body of results.  Moreover, one can expect to make steady progress in expanding this body

of results, but even so there will always lie beyond this a permanently grey area in which

such problems as that of the continuum fall.  

While Gödel�s program to find new axioms to settle the Continuum Hypothesis has

not been--and will likely never be--realized, what about the origins of his program in the

incompleteness results for consistent formal systems extending number theory?
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Throughout his life Gödel said we would need new, ever-stronger set-theoretical axioms to

settle open arithmetical of even the simplest, purely universal form, problems that he

frequently referred to as of �Goldbach type�.  But the incompleteness theorem by itself

gives no evidence that any open arithmetical problems--or equivalently, finite combinatorial

problems--of mathematical interest will require new such axioms.

We�re all familiar with the fact that the !0
1 statement shown undecidable by the first

incompleteness theorem for a given formal system S (containing arithmetic) is cooked up

by a diagonal construction, while the consistency statement Con(S) shown independent by

the second incompleteness theorem is of definite metamathematical interest, but not of

mathematical interest in the usual sense.  Also familiar is the work of Paris and Harrington

proving the independence from PA of a special finite version of Ramsey�s Theorem, and,

beyond that, the work of Harvey Friedman proving the independence of a finite version of

Kruskal�s Theorem from a moderately impredicative system and of an Extended Kruskal

Theorem from the system of !1
1-Comprehension.9  Each of these is a !0

2 statement shown

true by ordinary mathematical means (i.e., in a way understandable to mathematicians

without invoking any mention of what axioms they depend on, or of any metamathematical

notions) and is established to be independent of the respective S by showing that it implies

(or is even equivalent to) the 1-consistency of S, 1-Con(S).10

For a number of years, Friedman has been trying to go much farther, by producing

mathematically perspicuous finite combinatorial statements " whose proof requires the

existence of many Mahlo cardinals and even of stronger axioms of infinity (like those for

the so-called subtle cardinals), and he has come up with various candidates for such ".11

From the point of view of metamathematics, this kind of result is of the same character as

the earlier work just mentioned; that is, for certain very strong systems S of set theory, the "

produced is equivalent to (or is slightly stronger than) 1-Con(S).  But the conclusion to be

drawn is not nearly as clear as for the earlier work, since the truth of " is now not a result of

ordinary mathematical reasoning, but depends essentially on accepting 1-Con(S).  In my

view, it is begging the question to claim this shows we need axioms of large cardinals in

order to demonstrate the truth of such ", since this only shows that we �need� their 1-

consistency.  However plausible we might find the latter for one reason or another, it

                                                
9 Cf. Paris and Harrington [16] and, for results related to Kruskal�s Theorem, Simpson [19], p. 408.
10 1-Con(S) is the statement of #-consistency of S restricted to $0

1 sentences; in other words, it says that
each such sentence provable in S is true.
11 In [4] I referred to Friedman [5] for his then most recent work in that direction.  More recently, Friedman
has been promoting rather different statements derived from Boolean relation theory; cf. my comments on
Friedman�s Urbana presentation below.
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doesn�t follow that we should accept those axioms themselves as first-class mathematical

principles.  

My point here is simply that there is a basic difference between accepting systems

such as ZFC + LCA, where LCA is the applicable large cardinal axioms, and accepting

1-Con(ZFC + LCA).  As to the question of the need of large cardinal assumptions to settle

finite combinatorial problems of the sort produced by Friedman, there is thus, in my view,

an equivocation between needing a given axiom and needing its 1-consistency; it is only the

latter that is demonstrated by his work.  But if one does not grant that there is a fact of the

matter whether statements LCA of various large cardinal axioms are true, is there a

principled reason for accepting 1-Con(ZFC + LCA) without accepting ZFC + LCA itself?

Of course, if one does think that there is a fact of the matter as to whether such statements

LCA are true, then the equivocation is a non-issue.  But then, what is it that leads one to

recognize LCA rather than its negation to be true?  

Returning to the question of mathematical interest, there is not a shred of evidence

so far that we will need anything beyond ZFC--let alone much weaker systems--to settle

outstanding combinatorial problems of interest to the working mathematician, such as those

on the Millennium Prize list, nor is there any evidence that the kind of metamathematical

work we�ve seen from Paris-Harrington to Friedman will bear any relevance to the solutions

of these problems, if they are ever solved at all.  

Thus, as I said at the outset, I think we are left to regard the question: Does

mathematics need new axioms?, as primarily a philosophical one.  And if you agree with me

on that, then we have the discouraging conclusion that we can expect as many answers to the

question as there are varieties of the philosophy of mathematics; among those that have been

seriously supported in one quarter or another, we have the platonic-realist, structuralist,

naturalist, predicativist, constructivist, and formalist philosophies.12  In other words, if the

problem is indeed a philosophical one, we can hardly expect an answer that will command

anywhere near general assent.  

But as a mathematical logician, if not as a working mathematician or philosopher of

mathematics, I can end with a bit more positive conclusion.  Even if mathematics doesn�t

convincingly need new axioms, it may need for instrumental and heuristic reasons the work

that has been done and continues to be done in higher set theory.  For example, in my own

subject--proof theory--analogues of large cardinal notions have proved to be very important

in the construction of recursive ordinal notation systems for the �ordinal analysis� of

                                                
12 Perhaps one should even add the philosophy that is implicit in the view that category theory provides the
proper foundations of mathematics.  What to call it?
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various subsystems of analysis and admissible set theory.13  So far, these just employ

symbols that act in the notation systems like �small� large cardinals, and do not depend on

the assumption that such cardinals actually exist.  The widespread appearance of analogue

large cardinal notions (and, more generally, large set notions) also in admissible set theory,

constructive set theory, constructive type theory and my own systems of explicit

mathematics14 suggests that there should be a general theory of such notions which

includes all these as special cases.  So far, these analogues correspond mostly to �small�

large cardinals.  At any rate, without the considerable work in higher set theory that led to

such notions, these other areas of mathematical logic might still be back where they were in

the early 1960s.  It remains to be seen whether the bulk of that work, which is on �large�

large cardinals, can have similar applications, and if not--why not.

Responses to the other presentations

Response to Maddy.

Maddy argues from a position that she calls the naturalistic point of view as to the

philosophy of mathematics.15  According to this, mathematical practice, and set-theoretical

practice in particular, is not in need of philosophical justification.  �Justification ... comes

from within ... in ...terms of what means are most effective for meeting the relevant

mathematical ends.  Philosophy follows afterwards, as an attempt to understand the practice,

not to justify or to criticize it.�  From that point of view, the original panel question is �a bit

off target�.  Rather, �it would be more appropriate to ask whether or not some particular

axiom ...would or would not help this particular practice...meet one or more of its particular

goals.�  The example given, from contemporary set theory, is the assumption of many

Woodin cardinals.  

The naturalistic point of view in philosophy, as usually described, is that the entities

to be admitted are just those posited by and studied in the natural sciences, and that the

methods of justification and explanation are somehow continuous with those of the natural

sciences.16  One of the foremost exponents of the naturalist position in this sense is Quine

and, according to his view, only that part of mathematics is justified as is indispensable to

scientific practice.  Thus, Maddy�s use of �naturalism� to describe her point of view is

                                                
13 Cf., e.g., Pohlers [17] and Rathjen [18].
14 For these, cf. Aczel and Richter [1], Griffor and Rathjen [9], and Jäger and Studer [10].
15 Maddy has elaborated this position in [13].  That is incidentally a retreat from her attempt in [12] to
formulate a compromise between Gödelian platonic realism and Quinean scientific realism (one form of
naturalism) that would justify current higher set-theoretical practice.
16 Cf. (R. Audi, ed.) The Cambridge Dictionary of Philosophy, 2nd edn. (1999), p. 596.
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strikingly contrary to that, since her aim, above all, is to account for and in some sense give

approbration to that part of current set-theoretical practice which accepts various large

cardinal axioms (that happen to be inconsistent with V = L, among other things).  This she

does by taking mathematics in general and set theory in particular as a �science� to be

studied in its own right, independently of its relationships to the natural sciences.  

While Maddy keeps invoking mathematical practice in general in the scope of her

naturalism, she does not reflect on the many instances in its history in which the question of

what entities are to be admitted to mathematics and what methods are legitimate had to be

faced, leading to substantial revisions from what�s OK to what�s not OK and vice versa.  In

binding itself to mathematical practice, this kind of naturalism is in danger of being unduly

transitory.  Even if one takes the proposed naturalistic point of view and mathematical

practice as exemplified in set theory for granted, there is a crucial question as to what

determines the �mathematical ends� for which the �most effective� means are to be

sought.  And having chosen the ends, in what sense does effectiveness justify the means?

Why is it to be presumed that the �good� properties of Borel and analytic sets should

generalize to all projective sets, given that they don�t hold for all sets?

Maddy says her naturalist needn�t concern herself with �whether the CH has a

determinate truth value in some Platonic world of sets� or �confront the question of

whether or not it is �inherently vague�. �  Why then is it assumed that there has to be a

determinate answer to whether all projective sets have the perfect subset property or the

property of Baire, etc.?  Is there something essentially different about the character of these

set-theoretical problems that makes the latter determinate but not (necessarily) the former?

At any rate, admitting the possibility of some kind of indeterminateness for CH seems to me

to be a slippery slope for the naturalist.  

As a final point, Maddy suggests that I�m in favor of limiting mathematics, though

�the essence of pure mathematics is its freedom.�  Surely she does not think that anything

goes in mathematics.  Old-style infinitesimals, Dirac delta-functions, unrestricted

comprehension?  If not, what justifies what is to be admitted to mathematics?  Once it is

agreed that there has to be some sort of justification, intrinsic or extrinsic, then one is in the

game of potentially limiting mathematics in some way or other.  I don�t hew to any sort of

absolute principle in favor of limiting mathematics.

Response to Steel

In his discussion of my contention that the continuum problem is inherently vague,

Steel says that �if the language of 3d order arithmetic [in which it is couched] permits

vague or ambiguous sentences, then it is important to trim or sharpen it so as to elimitate
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these...it may be that, in the end, our solution to the Continuum Problem is best seen as

resolving some ambiguity.�  

It is useful, in response, to elaborate my ideas about vagueness more generally.

These can be illustrated, to begin with, in the context of very familiar, set-theoretically low

down mathematics.  The conception of the structure N of the natural numbers is not a vague

one (at least in my view); statements about N have a definite truth value, and the axioms of

PA are among those and (on reflection) are evident for it.  By comparison, the notion of

feasible (or feasibly computable) natural number is a vague one, and inherently so; there is

no reasonable way to make it definite.  Though we might well admit certain statements about

feasible numbers as being evident, e.g. if n and m are feasible, so is n+m, we cannot speak

of truth or falsity of statements about feasible numbers in general.  Nevertheless, the notion

of feasibly computable number is sufficiently suggestive to act as a heuristic for a

reasonable mathematical theory.  Similarly, the notion of random number between 1 and 10

is vague, but the conception of it makes it evident that the probability of such a number

being less than 6 is 1/2.  It is from such vague beginnings that substantial, coherent, and

even robust mathematical theories can be developed--without committing oneself to a notion

of truth as to the notions involved.  

In the case of set theory, it is at the next level (over N) that issues of evidence,

vagueness, and truth arise.  Once the conception of the structure of arbitrary sets of natural

numbers is presented to us and we reflect on it, the axioms of second-order arithmetic

(�analysis�) become evident for it.  Nevertheless, in my view, the meaning of �arbitrary

subset of N� is vague, and so I would strongly resist talking about truth or falsity of analytic

statements.  In opposition to my view it might be argued that the structure of the continuum,

when conceived geometrically, is not vague, and hence that analytic statements have a

definite truth value via the interpretation of analysis in the real numbers.  Probably if a poll

were taken, few mathematicians would agree with me that the notion of arbitrary real

number is vague, and so I would not want to make an issue of it.  But I believe I would

garner substantially greater support of my consequent view that the notion of arbitrary

subset of the real numbers (existing independently of any human definitions or

constructions) is vague, since we no longer have the anchor of geometric intuition there.

Moreover, I would argue that it is inherently vague, in the sense that there is no reasonable

way the notion can be sharpened without violating what the notion is supposed to be about.

For example, the assumption that all subsets of the reals are in L or even L(R) would be

such a sharpening, since that violates the idea of �arbitrariness�.  In the other direction, it is

hard to see how there could be any non-circular sharpening of the form that there are as

many such sets as possible.  It is from such considerations that I have been led to the view
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that the statement CH is inherently vague and that it is meaningless to speak of its truth

value; the fact that no remotely plausible axioms of higher set theory serve to settle CH only

bolsters my conviction.  From the quote above, Steel is apparently willing to countenance an

ambiguity in the notions involved in CH.  If, as he puts it, the best thing then to do would be

to resolve the ambiguity, it would show CH to be vague but not inherently so; that is the nub

of our disagreement.

Relatedly, Steel characterizes my views as being instrumentalistic, which he takes to

be a �dodge�, but he oversimplifies my position in that respect.  One kind of

instrumentalism that I have espoused, to the extent that I have done so in one place or

another, is very much a Hilbertian one (in the relativized sense):  given a system S that one

understands and accepts, if another system T is reduced to S, conservatively in the language

of S, then that justifies the use of T, even if one does not grant definite meaning to the

language of T beyond that of S.  As an example, the overwhelming part (if not all) of

scientifically applicable mathematics can be formalized in certain higher order systems T

which are conservative over PA, and in fact much of it is already conservative over PRA; that

thereby justifies the use and applications of such T (cf. [3], Chs. 13, 14).  Similar results

hold for the bulk of everyday mathematics (whether pure or applied) conservatively (for

certain analytic statements) over constructively justified systems (cf. [3], pp. 201 ff).  This

kind of instrumentalism is thus philosophically satisfactory.

I have also argued (e.g. in [3], p. 73), that one�s picture of the cumulative hierarchy

is clear enough as a whole to justify confidence in the use of ZFC (and like theories) for

deriving number-theoretical results.  This is a pragmatic instrumentalism which is not

philosophically satisfactory since there is thus far no philosophically satisfactory

justification for ZFC, at least none in my view.  But the result of the case studies cited above

shows that though this kind of instrumentalism admits much more in principle than the

preceding, there is no real difference in practice (i.e., with respect to the mathematics of the

�99% of all mathematicians�).

Response to Friedman

The core of Friedman�s presentation consists of two daring predictions about the

effect of his new work on Boolean relation theory, which it is claimed will eventually force

the mathematical community to accept fully (perhaps after a period of controversy) new

large cardinal axioms.  Which those are is not specified, and in particular it is not said

whether these will just be �small� large cardinals (presumably palatable to mathematicians

with a certain amount of encouragement) or also �large� large cardinals.  It is also not

predicted how long this will take.  If he is right, time will tell.  If not ...?  The criteria a-g he
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proposes for the adoption of new axioms set a very high bar (Olympic sized), but in my

view appropriately so.

Finally, Friedman addresses my point that there is an equivocation between needing

a large cardinal axiom and needing the statement of its 1-consistency (over ZFC).  He says

that the choices are essentially equivalent for the purposes of proving !0
2 statements.  Of

course.  He also says that it is more natural to develop such consequences of, say, Boolean

relation theory under the assumption of the axiom rather than the statement of its 1-

consistency.  I also agree to that.  But I do not agree with his conclusion that this will show

we �need� large cardinal axioms.  It is neither here nor there that he means by �"  needs

large cardinals to prove� that �any reasonable formal system that proves " must interpret

large cardinals in the sense of Tarski.�  If " is equivalent to the statement of 1-consistency

of a large cardinal axiom LCA and PA #  T and T proves "  then of course LCA is

interpreted in T by the formalized completeness theorem.  But that doesn�t show that we

need either LCA or its consequence " in the normal sense of the word.    
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