
Math 177: Homework N2
Solutions

1. Recall that if X is a smooth vector field and f is a smooth function, the directional derivative
of f along X is the smooth function Xf defined by (Xf)(p) = dfp(X(p)). This operation satisfies
the product rule: X(fg) = (Xf)g+ f(Xg). Moreover, if Y is another smooth vector field, we have
that X = Y if and only if Xf = Y f for all f .

a) For any smooth function f , we have

[X, [Y,Z]]f = X([Y,Z]f)− [Y,Z](Xf)

= X(Y (Zf)− Z(Y f))− Y (Z(Xf)) + Z(Y (Xf))

= (XY Z −XZY − Y ZX + ZY X)f.

Similarly,
[Y, [Z,X]]f = (Y ZX − Y XZ − ZXY +XZY )f,

[Z, [X,Y ]]f = (ZXY − ZY X −XY Z + Y XZ)f.

Summing these up, we see that

([X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]])f = 0

for all f , which implies the Jacobi identity.

b) For any smooth function g, we have

[X, fY ]g = X(fY g)− fY (Xg)

= (Xf)(Y g) + fX(Y g)− fY (Xg)

= df(X)(Y g) + f [X,Y ]g

= (df(X)Y + f [X,Y ])g.

It follows that [X, fY ] = df(X)Y + f [X,Y ].

2. To say that the flow of X is a symmetry of ` means that (Xt)∗` = ` for all t. More explicitly,
this means that for any point p ∈ R2 and any vector v ∈ `p, we have d(Xt)p(v) ∈ `Xt(p). Since
` = ker(α), this is equivalent to αXt(p)(d(Xt)p(v)) = 0, which is the same thing as ((Xt)∗α)p(v) = 0
by definition of the pullback. This shows that the flow of X is a symmetry of ` if and only if
ker((Xt)∗α) = ker(α) for all t. Two linear functionals have the same kernel if and only if they
are proportional, so this is equivalent to the existence of a function g = g(p, t) on R2 × R such
that (Xt)∗α = gα. Since X and α are smooth and α is nonvanishing, the function g is necessarily
smooth. It is therefore sufficient to show that the following two conditions are equivalent:
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1. (Xt)∗α = gα for some smooth function g = g(p, t) on R2 × R;

2. LXα = fα for some smooth function f = f(p) on R2.

By definition of the Lie derivative, we have

d

dt

∣∣∣∣
t=0

(Xt)∗α = LXα.

Since
d

dt

∣∣∣∣
t=0

(gα) =
∂g

∂t

∣∣∣∣
t=0

α,

we have that 1 implies 2 with f(p) = (∂tg)(p, 0).
To show that 2 implies 1, first note that

d

dt
(Xt)∗α = (Xt)∗(LXα) = (Xt)∗(fα) =

(
(Xt)∗f

)(
(Xt)∗α

)
= (f ◦Xt)

(
(Xt)∗α

)
.

Hence, if we fix a point p ∈ R2, a tangent vector v at p, and define a (smooth) function h : R→ R
by h(t) = ((Xt)∗α)p(v), then h satisfies the ordinary differential equation

h′(t) = f(Xt(p))h(t)

with initial condition h(0) = αp(v). This equation has a unique solution, namely

h(t) = exp

(∫ t

0
f(Xs(p)) ds

)
αp(v).

Since p and v were arbitrary, it follows that (Xt)∗α = gα with

g(p, t) = exp

(∫ t

0
f(Xs(p)) ds

)
.

3. It is enough to find such a curve in the fourth quadrant, since we can then obtain solutions in
the other quadrants by reflecting along the coordinate axes. Note that a line in the plane will form
a triangle with the coordinate axes in the fourth quadrant if and only if its slope is positive and its
y-intercept is negative. It is then given by an equation of the form y = px − q with p > 0, q > 0.
Since we want the area of the triangle to be equal to 2a2, we must have

1

2
q
q

p
= 2a2,

i.e. q = 2a
√
p. Hence, we are looking for a curve which is tangent to the family of lines {y =

px− g(p)}, where g(p) = 2a
√
p. Since g is strictly concave, its Legendre transform gives us such a

curve (see Arnold’s book, p. 20). It is given by

f(x) = inf
p

(xp− g(p)) = xp̂− g(p̂)

where p̂ satisfies g′(p̂) = x. Since g′(p) = a/
√
p, we have p̂ = a2/x2, so that

f(x) = x
a2

x2
− 2a

a

x
= −a

2

x
.

The curve y = −a2/x therefore gives us a solution in the fourth (and second, by symmetry) quadrant.
By reflecting across the x-axis, we see that the curve y = a2/x is a solution in the first and third
quadrant.
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4. Let 〈, 〉 and ω denote the standard inner product and the standard symplectic form on R2n

respectively, and let h denote the complex-valued bilinear form on R2n corresponding to the standard
Hermitian form on Cn under the identification

R2n ∼= Cn

(x, y) 7→ x+ iy

(where x, y ∈ Rn). Let J denote the linear transformation R2n → R2n corresponding to multiplica-
tion by i on Cn under this identification. An easy computation shows that

h(v, w) = 〈v, w〉 − iω(v, w)

and
g(v, w) = ω(v, Jw), ω(v, w) = g(Jv,w)

for all v, w ∈ R2n.
Let A ∈ U(n). By definition, this means that h(Av,Aw) = h(v, w) for all v, w ∈ R2n. Comparing

real and imaginary parts, we see that this is equivalent to 〈Av,Aw〉 = 〈v, w〉 and ω(Av,Aw) =
ω(v, w). The first equation means that A ∈ O(2n), and the second means that A ∈ Sp(2n). Thus

U(n) = O(2n) ∩ Sp(2n).

If A ∈ O(2n) ∩GL(n,C), then A preserves 〈, 〉 and AJ = JA, so

ω(Av,Aw) = 〈JAv,Aw〉 = 〈AJv,Aw〉 = 〈Jv,w〉 = ω(v, w)

for all v, w ∈ R2n. Thus A ∈ Sp(2n). Since we already know that U(n) = O(2n) ∩ Sp(2n) and
U(n) ⊂ GL(n,C), this shows that U(n) = O(2n) ∩GL(n,C).

Similarly, if A ∈ Sp(2n) ∩GL(n,C), we have

〈Av,Aw〉 = ω(Av, JAw) = ω(Av,AJw) = ω(v, Jw) = 〈v, w〉

for all v, w ∈ R2n, so that A ∈ O(2n). It follows that U(n) = Sp(2n) ∩GL(n,C).
We have shown that

U(n) = O(2n) ∩ Sp(2n) = O(2n) ∩GL(n,C) = Sp(2n) ∩GL(n,C).

To only thing left to prove is that these equalities remain true if we replace O(2n) by SO(2n). This
follows from the fact that every element of GL(n,C) preserves the standard orientation of R2n and
hence has positive determinant when viewed as a real 2n× 2n matrix.

5. We want to solve the quasilinear equation

x∂xu+ y∂yu = u− xy

with initial condition u(2, y) = 1 + y2. The characteristic vector field is given by A(x, y, u) =
(x, y, u − xy) and the initial submanifold is Γ = {(2, y0, 1 + y20) | y0 ∈ R} (see Arnold’s book, §7).
This gives us the system of ordinary differential equations

ẋ = x

ẏ = y

u̇ = u− xy
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with initial conditions x(0) = 2, y(0) = y0, u(0) = 1 + y20. From the first two equations we see that
x = 2et, y = y0e

t. The third equation can then be rewritten as

u̇− u = −2y0e
2t.

Multiplying both sides by e−t, we obtain the equation

d

dt
(e−tu) = −2y0e

t,

whose general solution is u = −2y0e
2t + Cet, C ∈ R. The initial condition u(0) = 1 + y20 implies

that C = 1 + 2y0 + y20 = (1 + y0)
2. Thus

u = −2y0e
2t + (1 + y0)

2et = −xy +

(
1 +

2y

x

)2 x

2
= −xy +

x

2
+ 2y +

2y2

x
.

6. We want to solve the quasilinear equation

ut + uux = −x

with initial condition u|t=0 = 0. The characteristic vector field is A(t, x, u) = (1, u,−x) and the
initial submanifold is Γ = {(0, x0, 0) | x0 ∈ R}. Hence, we need to solve the system of ordinary
differential equations

ṫ = 1

ẋ = u

u̇ = −x

with initial condition t(0) = 0, x(0) = x0, u(0) = 0. The first equation implies that t(s) = s + C
for some constant C, and the initial condition tells us that C = 0. The second and third equations
imply that x′′(s) = −x(s); the general solution to this equation is

x(s) = c1 cos(s) + c2 sin(s),

and we have u(s) = x′(s) = c2 cos(s) − c1 sin(s). The initial conditions for x and u imply that
c1 = x0 and c2 = 0. Thus u = −x0 sin(s) = −x0 sin(t) and x = x0 cos(s) = x0 cos(t). It follows that

u = −x0 cos(t)
sin(t)

cos(t)
= −x tan(t).

The function tan(t) is well-defined for t ∈ [0, π/2), but it goes to ∞ when t → π/2. Thus π/2 is
the largest value of T for which the solution to our Cauchy problem can be extended to the interval
[0, T ).
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