Math 177: Homework N2 Solutions

1. Recall that if X is a smooth vector field and f is a smooth function, the directional derivative of f along X is the smooth function $X f$ defined by $(X f)(p)=d f_{p}(X(p))$. This operation satisfies the product rule: $X(f g)=(X f) g+f(X g)$. Moreover, if Y is another smooth vector field, we have that $X=Y$ if and only if $X f=Y f$ for all f.
a) For any smooth function f, we have

$$
\begin{aligned}
{[X,[Y, Z]] f } & =X([Y, Z] f)-[Y, Z](X f) \\
& =X(Y(Z f)-Z(Y f))-Y(Z(X f))+Z(Y(X f)) \\
& =(X Y Z-X Z Y-Y Z X+Z Y X) f
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& {[Y,[Z, X]] f=(Y Z X-Y X Z-Z X Y+X Z Y) f} \\
& {[Z,[X, Y]] f=(Z X Y-Z Y X-X Y Z+Y X Z) f}
\end{aligned}
$$

Summing these up, we see that

$$
([X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]) f=0
$$

for all f, which implies the Jacobi identity.
b) For any smooth function g, we have

$$
\begin{aligned}
{[X, f Y] g } & =X(f Y g)-f Y(X g) \\
& =(X f)(Y g)+f X(Y g)-f Y(X g) \\
& =d f(X)(Y g)+f[X, Y] g \\
& =(d f(X) Y+f[X, Y]) g
\end{aligned}
$$

It follows that $[X, f Y]=d f(X) Y+f[X, Y]$.
2. To say that the flow of X is a symmetry of ℓ means that $\left(X^{t}\right)_{*} \ell=\ell$ for all t. More explicitly, this means that for any point $p \in \mathbb{R}^{2}$ and any vector $v \in \ell_{p}$, we have $d\left(X^{t}\right)_{p}(v) \in \ell_{X^{t}(p)}$. Since $\ell=\operatorname{ker}(\alpha)$, this is equivalent to $\alpha_{\left.X^{t} p\right)}\left(d\left(X^{t}\right)_{p}(v)\right)=0$, which is the same thing as $\left(\left(X^{t}\right)^{*} \alpha\right)_{p}(v)=0$ by definition of the pullback. This shows that the flow of X is a symmetry of ℓ if and only if $\operatorname{ker}\left(\left(X^{t}\right)^{*} \alpha\right)=\operatorname{ker}(\alpha)$ for all t. Two linear functionals have the same kernel if and only if they are proportional, so this is equivalent to the existence of a function $g=g(p, t)$ on $\mathbb{R}^{2} \times \mathbb{R}$ such that $\left(X^{t}\right)^{*} \alpha=g \alpha$. Since X and α are smooth and α is nonvanishing, the function g is necessarily smooth. It is therefore sufficient to show that the following two conditions are equivalent:

1. $\left(X^{t}\right)^{*} \alpha=g \alpha$ for some smooth function $g=g(p, t)$ on $\mathbb{R}^{2} \times \mathbb{R}$;
2. $L_{X} \alpha=f \alpha$ for some smooth function $f=f(p)$ on \mathbb{R}^{2}.

By definition of the Lie derivative, we have

$$
\left.\frac{d}{d t}\right|_{t=0}\left(X^{t}\right)^{*} \alpha=L_{X} \alpha
$$

Since

$$
\left.\frac{d}{d t}\right|_{t=0}(g \alpha)=\left.\frac{\partial g}{\partial t}\right|_{t=0} \alpha
$$

we have that 1 implies 2 with $f(p)=\left(\partial_{t} g\right)(p, 0)$.
To show that 2 implies 1 , first note that

$$
\frac{d}{d t}\left(X^{t}\right)^{*} \alpha=\left(X^{t}\right)^{*}\left(L_{X} \alpha\right)=\left(X^{t}\right)^{*}(f \alpha)=\left(\left(X^{t}\right)^{*} f\right)\left(\left(X^{t}\right)^{*} \alpha\right)=\left(f \circ X^{t}\right)\left(\left(X^{t}\right)^{*} \alpha\right)
$$

Hence, if we fix a point $p \in \mathbb{R}^{2}$, a tangent vector v at p, and define a (smooth) function $h: \mathbb{R} \rightarrow \mathbb{R}$ by $h(t)=\left(\left(X^{t}\right)^{*} \alpha\right)_{p}(v)$, then h satisfies the ordinary differential equation

$$
h^{\prime}(t)=f\left(X^{t}(p)\right) h(t)
$$

with initial condition $h(0)=\alpha_{p}(v)$. This equation has a unique solution, namely

$$
h(t)=\exp \left(\int_{0}^{t} f\left(X^{s}(p)\right) d s\right) \alpha_{p}(v) .
$$

Since p and v were arbitrary, it follows that $\left(X^{t}\right)^{*} \alpha=g \alpha$ with

$$
g(p, t)=\exp \left(\int_{0}^{t} f\left(X^{s}(p)\right) d s\right)
$$

3. It is enough to find such a curve in the fourth quadrant, since we can then obtain solutions in the other quadrants by reflecting along the coordinate axes. Note that a line in the plane will form a triangle with the coordinate axes in the fourth quadrant if and only if its slope is positive and its y-intercept is negative. It is then given by an equation of the form $y=p x-q$ with $p>0, q>0$. Since we want the area of the triangle to be equal to $2 a^{2}$, we must have

$$
\frac{1}{2} q \frac{q}{p}=2 a^{2}
$$

i.e. $q=2 a \sqrt{p}$. Hence, we are looking for a curve which is tangent to the family of lines $\{y=$ $p x-g(p)\}$, where $g(p)=2 a \sqrt{p}$. Since g is strictly concave, its Legendre transform gives us such a curve (see Arnold's book, p. 20). It is given by

$$
f(x)=\inf _{p}(x p-g(p))=x \hat{p}-g(\hat{p})
$$

where \hat{p} satisfies $g^{\prime}(\hat{p})=x$. Since $g^{\prime}(p)=a / \sqrt{p}$, we have $\hat{p}=a^{2} / x^{2}$, so that

$$
f(x)=x \frac{a^{2}}{x^{2}}-2 a \frac{a}{x}=-\frac{a^{2}}{x} .
$$

The curve $y=-a^{2} / x$ therefore gives us a solution in the fourth (and second, by symmetry) quadrant. By reflecting across the x-axis, we see that the curve $y=a^{2} / x$ is a solution in the first and third quadrant.
4. Let \langle,$\rangle and \omega$ denote the standard inner product and the standard symplectic form on $\mathbb{R}^{2 n}$ respectively, and let h denote the complex-valued bilinear form on $\mathbb{R}^{2 n}$ corresponding to the standard Hermitian form on \mathbb{C}^{n} under the identification

$$
\begin{aligned}
\mathbb{R}^{2 n} & \cong \mathbb{C}^{n} \\
(x, y) & \mapsto x+i y
\end{aligned}
$$

(where $x, y \in \mathbb{R}^{n}$). Let J denote the linear transformation $\mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ corresponding to multiplication by i on \mathbb{C}^{n} under this identification. An easy computation shows that

$$
h(v, w)=\langle v, w\rangle-i \omega(v, w)
$$

and

$$
g(v, w)=\omega(v, J w), \quad \omega(v, w)=g(J v, w)
$$

for all $v, w \in \mathbb{R}^{2 n}$.
Let $A \in U(n)$. By definition, this means that $h(A v, A w)=h(v, w)$ for all $v, w \in \mathbb{R}^{2 n}$. Comparing real and imaginary parts, we see that this is equivalent to $\langle A v, A w\rangle=\langle v, w\rangle$ and $\omega(A v, A w)=$ $\omega(v, w)$. The first equation means that $A \in O(2 n)$, and the second means that $A \in S p(2 n)$. Thus

$$
U(n)=O(2 n) \cap S p(2 n) .
$$

If $A \in O(2 n) \cap G L(n, \mathbb{C})$, then A preserves \langle,$\rangle and A J=J A$, so

$$
\omega(A v, A w)=\langle J A v, A w\rangle=\langle A J v, A w\rangle=\langle J v, w\rangle=\omega(v, w)
$$

for all $v, w \in \mathbb{R}^{2 n}$. Thus $A \in S p(2 n)$. Since we already know that $U(n)=O(2 n) \cap S p(2 n)$ and $U(n) \subset G L(n, \mathbb{C})$, this shows that $U(n)=O(2 n) \cap G L(n, \mathbb{C})$.

Similarly, if $A \in S p(2 n) \cap G L(n, \mathbb{C})$, we have

$$
\langle A v, A w\rangle=\omega(A v, J A w)=\omega(A v, A J w)=\omega(v, J w)=\langle v, w\rangle
$$

for all $v, w \in \mathbb{R}^{2 n}$, so that $A \in O(2 n)$. It follows that $U(n)=S p(2 n) \cap G L(n, \mathbb{C})$.
We have shown that

$$
U(n)=O(2 n) \cap S p(2 n)=O(2 n) \cap G L(n, \mathbb{C})=S p(2 n) \cap G L(n, \mathbb{C})
$$

To only thing left to prove is that these equalities remain true if we replace $O(2 n)$ by $S O(2 n)$. This follows from the fact that every element of $G L(n, \mathbb{C})$ preserves the standard orientation of $\mathbb{R}^{2 n}$ and hence has positive determinant when viewed as a real $2 n \times 2 n$ matrix.
5. We want to solve the quasilinear equation

$$
x \partial_{x} u+y \partial_{y} u=u-x y
$$

with initial condition $u(2, y)=1+y^{2}$. The characteristic vector field is given by $A(x, y, u)=$ $(x, y, u-x y)$ and the initial submanifold is $\Gamma=\left\{\left(2, y_{0}, 1+y_{0}^{2}\right) \mid y_{0} \in \mathbb{R}\right\}$ (see Arnold's book, $\S 7$). This gives us the system of ordinary differential equations

$$
\begin{aligned}
& \dot{x}=x \\
& \dot{y}=y \\
& \dot{u}=u-x y
\end{aligned}
$$

with initial conditions $x(0)=2, y(0)=y_{0}, u(0)=1+y_{0}^{2}$. From the first two equations we see that $x=2 e^{t}, y=y_{0} e^{t}$. The third equation can then be rewritten as

$$
\dot{u}-u=-2 y_{0} e^{2 t} .
$$

Multiplying both sides by e^{-t}, we obtain the equation

$$
\frac{d}{d t}\left(e^{-t} u\right)=-2 y_{0} e^{t}
$$

whose general solution is $u=-2 y_{0} e^{2 t}+C e^{t}, C \in \mathbb{R}$. The initial condition $u(0)=1+y_{0}^{2}$ implies that $C=1+2 y_{0}+y_{0}^{2}=\left(1+y_{0}\right)^{2}$. Thus

$$
u=-2 y_{0} e^{2 t}+\left(1+y_{0}\right)^{2} e^{t}=-x y+\left(1+\frac{2 y}{x}\right)^{2} \frac{x}{2}=-x y+\frac{x}{2}+2 y+\frac{2 y^{2}}{x} .
$$

6. We want to solve the quasilinear equation

$$
u_{t}+u u_{x}=-x
$$

with initial condition $\left.u\right|_{t=0}=0$. The characteristic vector field is $A(t, x, u)=(1, u,-x)$ and the initial submanifold is $\Gamma=\left\{\left(0, x_{0}, 0\right) \mid x_{0} \in \mathbb{R}\right\}$. Hence, we need to solve the system of ordinary differential equations

$$
\begin{aligned}
\dot{t} & =1 \\
\dot{x} & =u \\
\dot{u} & =-x
\end{aligned}
$$

with initial condition $t(0)=0, x(0)=x_{0}, u(0)=0$. The first equation implies that $t(s)=s+C$ for some constant C, and the initial condition tells us that $C=0$. The second and third equations imply that $x^{\prime \prime}(s)=-x(s)$; the general solution to this equation is

$$
x(s)=c_{1} \cos (s)+c_{2} \sin (s)
$$

and we have $u(s)=x^{\prime}(s)=c_{2} \cos (s)-c_{1} \sin (s)$. The initial conditions for x and u imply that $c_{1}=x_{0}$ and $c_{2}=0$. Thus $u=-x_{0} \sin (s)=-x_{0} \sin (t)$ and $x=x_{0} \cos (s)=x_{0} \cos (t)$. It follows that

$$
u=-x_{0} \cos (t) \frac{\sin (t)}{\cos (t)}=-x \tan (t)
$$

The function $\tan (t)$ is well-defined for $t \in[0, \pi / 2)$, but it goes to ∞ when $t \rightarrow \pi / 2$. Thus $\pi / 2$ is the largest value of T for which the solution to our Cauchy problem can be extended to the interval $[0, T)$.

