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Chapter 1

What is a differential equation?

1.1 Preliminaries

Differential equations and system of equations are equations or system of equations involving

derivatives of unknown functions. If all the unknown functions are of the same one variable

then the differential equations are called ordinary. In the case of functions of more than one

variable one speaks of partial differential equations.

Thus any system of ordinary differential equations can be written as

F (t, u(t), u′(t), u′′(t), . . . , u(k)(t)) = 0, (1.1.1)

t ∈ [a, b], where u : [a, b] → Rm is a vector-valued function, and F is a map of a domain U

in the space RN , N = km+ 2 to Rl for some integer l.

An important observation is that it is always possible to equivalently rewrite the system

(1.1.1) to involve only the first derivatives of the unknown functions.
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Indeed, the system

F (t, u(t), v1(t), v2(t), . . . , vk−1(t), v′k−1(t)) = 0,

u′(t) = v1(t),

v′1(t) = v2(t),

. . .

v′k−2(t) = vk−1(t),

t ∈ [a, b], u, v1, . . . , vk−1 : [a, b]→ Rm, is equivalent to the system (1.1.1).

Let us stress the point that when dealing with concrete equations this transformation

is not always the best way of action. However, in many cases it is, and also for theoretical

purposes considering the systems of first order differential equations is sufficient and we will

usually do that. In other words, we will be studying the systems

F (t, u(t), u′(t)) = 0, (1.1.2)

t ∈ [a, b], u : [a, b]→ Rm, F : U → Rl, where U is a domain in R2k+1.

1.2 Vector fields

A vector field v on a domain U ⊂ V is a function which associates to each point x ∈ U a

vector v(x) ∈ Vx, i.e. a vector originated at the point x.

Let v be a vector field on a domain U ∈ V . If we fix a basis in V and parallel transport

this basis to all spaces Vx, x ∈ V , then for any point x ∈ V the vector v(x) ∈ Vx is described

by its coordinates (v1(x), v2(x), . . . , vn(x)). Therefore, to define a vector field on U is the

same as to define n functions v1, . . . , vn on U , i.e. to define a map (v1, . . . , vn) : U → Rn. We

call a vector field v Ck-smooth if the functions v1, . . . , vn are smooth on U .

Thus, if a basis of V is fixed, then the difference between the maps U → Rn and vector

fields on U is just a matter of geometric interpretation. When we speak about a vector field
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v we view v(x) as a vector in Vx, i.e. originated at the point x ∈ U . When we speak about

a map v : U → Rn we view v(x) as a point of the space V , or as a vector with its origin at

0 ∈ V .

Vector fields naturally arise in a context of Physics, Mechanics, Hydrodynamics, etc. as

force, velocity and other physical fields.

There is another very important interpretation of vector fields as first order differential

operators.

Let C∞(U) denote the vector space of infinitely differentiable functions on a domain

U ⊂ V . Let v be a C∞-smooth vector field on V . We associate with v a linear operator

Dv : C∞(U)→ C∞(U),

given by the formula

Dv(f) = df(v), f ∈ C∞(U).

In other words, we compute at any point x ∈ U the directional derivative of f in the direction

of the vector v(x). Clearly, the operator Dv is linear: Dv(af + bg) = aDv(f) + bDv(g) for

any functions f, g ∈ C∞(U) and any real numbers a, b ∈ R. It also satisfies the Leibniz rule:

Dv(fg) = Dv(f)g + fDv(g).

In view of the above correspondence between vector fields and first order differential

operators it is sometimes convenient just to view a vector field as a differential operator.

Hence, when it will not be confusing we may drop the notation Dv and just directly apply

the vector v to a function f (i.e. write v(f) instead of Dv(f)).

Let v1, . . . , vn be a basis of V , and x1, . . . , xn be the coordinate functions in this basis. We

would like to introduce the notation for the vector field obtained from vectors v1, . . . , vn by

parallel transporting them to all points of the domain U . To motivate the notation which we

are going to introduce, let us temporarily denote these vector fields by v1, . . . ,vn. Observe

that Dvi(f) = ∂f
∂xi
, i = 1, . . . , n. Thus the operator Dvi is just the operator ∂

∂xi
of taking
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i-th partial derivative. Hence, viewing the vector field vi as a differential operator we will

just use the notation ∂
∂xi

instead of vi. Given any vector field v with coordinate functions

a1, a2, . . . , an : U → R we have

Dv(f)(x) =
n∑
i=1

ai(x)
∂f

∂xi
(x), for any f ∈ C∞(U),

and hence we can write v =
n∑
i=1

ai
∂
∂xi

. Note that the coefficients ai here are functions and not

constants.

1.3 Differential equations as vector fields

If m = l, i.e. the number of equations is equal to the number of unknown functions the system

is called determined. If l > m it is called over-dertermined and if l < m under-determined.

We will be dealing in this class exclusively with determined systems.

More precisely, for determined system one usually imposes an additional condition, that

the minor of the Jacobi matrix of the map F : U → Rl corresponding to the last m coor-

dinates does not vanish at every point (t, u, y) ∈ U ⊂ R2m+1 = R × Rm × Rm for which

F (t, u, y) = 0. Then according to the implicit functions locally near each such point the

system (1.1.2) can be solved with respect to the derivatives, i.e. written in the form

u′(t) = v(t, u(t)), (1.3.1)

t ∈ [a, b], u : Rm → R, v : R× Rm → R.

Let us consider first the case when v is independent of t, i.e. the system has the form

u′(t) = v(u(t)), (1.3.2)

t ∈ [a, b], u, v : Rm → R. A system of this type is called autonomous. It is useful to think

about v as a vector field on Rm, or on a domain Ω ⊂ Rm. In other words, if coordinates in

Rm are denoted by (u1, . . . , um) and the coordinate functions of v are (v1, . . . vm) then we
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can think of v as a vector field v =
m∑
1

vi(u) ∂
∂ui

. Then the problem of solving the ODE (1.3.2)

can be interpreted as finding a path

u : [a, b]→ Rm (1.3.3)

such that its velocity vector u′(t) at each point t ∈ [a, b] coincides with the vector field v at

the point u(t), i.e. with the vector v(u(t)). Usually one also impose an initial condition on

the solution: u(a) = A ∈ Rm.

The space Rm on which the vector field v lives is called the phase space of the system

(1.3.2), and the solutions (1.3.3) are called phase curves or integral curves of the system

(1.3.2). The dimension of the phase space is called the order of the system.

If one thinks about the vector field v as a velocity vector field of a motion of some fluid

then phase curves are trajectories of the individual particles. In the mechanical context,

when we think about the parameter t as the time, it is customary to denote the derivative

by the dot, i.e. to write u̇ instead of u′.

Let us point out, however, that usually for problems arising from Mechanics the phase

space is not the space in which the motion takes place. Indeed, consider, for instance, the

so-called, 3-body problem when, three bodies (say, the Sun, the Earth and the Moon) move

in the 3-space according to the law of gravity, The motion of this system can be described

by Newton equations of the form

ü1 = f1(u1, u2, u3),

ü2 = f2(u1, u2, u3),

ü3 = f3(u1, u2, u3),

where u1, u2, u3 ∈ R3 are positions of (the centers of mass) of the bodies. After transforming

this into a system of first order equations we get a vector field in R18. This is the phase space

of our system. Thus a motion of a the 3-body system corresponds to a phase trajectory of

the corresponding point in its 18-dimensional phase space.
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A non-autonomous system (1.3.1) can be viewed as a time-dependent vector field vt(u) =

v(t, u). For instance, one encounters this situation when studying a non-steady flow of a

fluid. Note that any non-autonomous system of order m can be viewed as an autonomous

system of order m+ 1:

u̇ = v(τ(t), u(t)),

τ̇ = 1.

The space Rm+1 = Rm×R of variables (u, τ) is called the extended phase space of the original

non-autonomous system (1.3.1). In the extended phase space we can write the system as

˙̂u = v̂(û(t)), (1.3.4)

where û = (u, τ) ∈ Rm+1,

v̂ =
∑

vi(û)
∂

∂ui
+

∂

∂τ
.

1.4 Line (direction) fields and Pfaffian equations

Let us denote by λ the line field λ := Span(v̂) generated by the vector field v̂. We note that

the vector field v̂ can be uniquely reconstructed from λ, and hence the system (1.3.4) can be

equivalently viewed as the line field λ. 1

More generally, given any line field λ in a domain U ⊂ Rn one can consider the problem of

its integration as finding integral curves for this line field, i.e. paths u : [a, b]→ U such that

u̇(t) ∈ λu(t) for any t ∈ [a, b]. Note that in this case while the direction of the velocity vector

is prescribed at any point, its length is not. Hence, one can reparameterize γ by composing it

with a diffeomorphism φ : [c, d]→ [a, b] and get a different integral path which corresponds

to the same integral curve viewed as a submanifold of U .

Note that in our original example of the line field λ generated by the vector field when the

line field λ has a non-singular projection to one of the coordinates lines (namely, τ). Hence,

1In Arnold’s book is used the term direction field for the line field λ.
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any integral curve is graphical with respect to this projection, and therefore we can choose

τ as the parameter on them. In fact any line field, in a neighborhood of each point projects

non-singularly to one of the coordinate axes, and hence the corresponding coordinate can be

chosen as a parameter for integral curves near that point.

Consider now the case when n = 2, i.e. when λ is a line field on a domain U ⊂ R2. Then,

if the line field λ is co-orientable it can be defined by a Pfaffian equation

α = 0

for a 1-form α = Pdx+Qdy on U .

A solution of this equation, or which is the same, an integral curve of the line field

λ = {α = 0}. Hence, if it is given parametrically by x = x(t), y = y(t), t ∈ [a, b], then we get

(P (x(t), y(t))ẋ(t) +Q(x(t), y(t))ẏ(t)) dt = 0

or

P (x(t), y(t))ẋ(t) +Q(x(t), y(t))ẏ(t) = 0.

Near a point where (x0, y0) ∈ U where Q(x0, y0) 6= 0 (i.e. near a point where the projection

of the line field λ to the x-axis is non-singular, we can equivalently write the equation

Pdx+Qdy = 0 as dy = −P
Q
dx, and hence look for solutions y = f(x) of the equation

f ′(x) = −P (x, f(x))

Q(x, f(x)
,

and similarly if P (x0, y0) 6= 0 we can write the equation in the form dx = −Q
P
dy and look

for solutions x = g(y) of the equation

g′(y) = −Q(g(y), y)

P (g(y), y)
.

Example 1.1. Vector field on the line. Consider a vector field v(x) = f(x) ∂
∂x

on R where

f(x) 6= 0 for all x ∈ R. Consider the corresponding differential equation

ẋ = v(x).
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Passing to the extended phase space R2 with coordinates (x, t) this equivalent to a Pafaffian

equation

dx = f(x)dt,

which in turn can be rewritten as

dt =
dx

f(x)
,

because by our assumption f(x) 6= 0. Suppose we are looking for an integral curve passing

through a point (t0, x0). Then integrating this equation we get

t− t0 =

x∫
x0

dx

f(x)
.
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Chapter 2

Phase flow

In this chapter we denote by U, V domains in Rn. However, everything can be generalized

to the case when U and V are any two n-dimensional manifolds.

2.1 Action of a diffeomorphism on a vector field

Let f : U → V be a diffeomorphism. Let us denote by Vect(U) and Vect(V ) the spaces of

vector fields on U and V , respectively.

Given a diffeomorphism f : U → V one can define the push-forward map f∗ : Vect(U)→

Vect(V ) as follows. Let X ∈ Vect(U) be a vector field on U . Then we define the vector field

Y = f∗X by the formula

Y (v) = dxf(X(u)), where u = f−1(v).

Let us point out that unlike the pull-back operator f ∗ on differential forms which defined for

any smooth maps and not, necessarily for diffeomorphisms, the push-forward operator f∗ on

vector fields is defined only for diffeomorphisms (why?).

We can similarly define the push-forward operator on line fields. If X is a vector field

and λ = Span(X) the line field which it generates then f∗λ = Span(f∗v).
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Exercise 2.1. 1. Suppose n = 2 and a line field λ on U is defined by a Pfaffian equation

α = 0, where α is a 1-form on U . Show that given a diffeomorphism f : U → V the

line field f∗λ on V can be defined by a Pfaffian equation β = 0, where

β :=
(
f−1
)∗
α = (f ∗)−1 α.

2. Let P : U → V be the map introducing polar coordinates. In other words, U =

{0 < r < ∞, 0 < φ < 2π} is a domain in R2 with Cartesian coordinates (r, φ),

V = R2 \ {y = 0, x ≥ 0} in R2 with Cartesian coordinates (x, y) and P is defined by

the formula

P (r, φ) = (r cosφ, r sinφ).

Let X = a ∂
∂r

+ b ∂
∂φ

be a vector field on U . Find Y := P∗X = A ∂
∂x

+B p
∂y
. This can also

be equivalently formulated as relating the expressions of a given vector field Y on R2

in two different bases, the basis
(
∂
∂x
, ∂
∂y

)
and

(
∂
∂r
, ∂
∂φ

)
.

2.2 Isotopy and diffeotopy

Let us denote by ∆ ⊂ R an interval in R. This interval can be closed, open, semi-open, and

even concides with the whole R or the rays (a,∞) or (−∞, a).

Let us recall that a homotopy ft : U → V , t ∈ ∆, is just a continuous family of continuous

maps U → V , which depends continuously on the parameter ∆. Equivalently, one can think

of a homotopy as a continuous map F : U ×∆ → V . The relation to the first definition is

given by the formula

F (x, t) = ft(x), for x ∈ U, t ∈ ∆.

In this course we will always assume all homotopies to be smooth, i.e. F : U ×∆→ V is at

least a C1-smooth map.

We will also need two special cases of a homotopy, called an isotopy and a diffeotopy.

A homotopy ft : U → V , t ∈ ∆, is called a diffeotopy if ft : U → V is a diffeomorphism

for each t ∈ U . A homotopy ft : U → V , t ∈ ∆, is called an isotopy if for each t ∈ U the map
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ft : U → V is an embedding, i.e. a diffeomorphism onto its image ft(U). Thus, an embedding

need not to be onto, and the image ft(U) can move during an isotopy. Of course, a diffeotopy

is a special case of an isotopy.

Let ft : U → U (note that the source and the target are the same!) be a diffeotopy. Then

we can define a family of vector fields Xt on U by the formula

Xt(x) =
dft
dt

(f−1
t (x)), x ∈ U, t ∈ ∆. (2.2.1)

Equivalently, one can write

Xt(ft(x)) =
dft
dt

(x), x ∈ U, t ∈ ∆,

which means that for every x0 ∈ U the path t 7→ ft(x0), t ∈ ∆, is a solution of the equation

ẋ = Xt(x) (2.2.2)

For any t0 ∈ ∆ this solution satisfies the initial condition x(t0) = ft(x0).

2.3 Rectification theorems

Theorem 2.2. Let X be a C1-smooth vector field in a domain Ω ⊂ Rn. Then for any point

x0 ∈ Ω there exists ε > 0 and a neighborhood U 3 x0, U ⊂ Ω, such that there exists an

isotopy ft : U → Ω, t ∈ (−ε, ε) such that

f0(x) = x for all x ∈ U ; (2.3.1)

dft(x)

dt
= X(ft(x)). (2.3.2)

We will prove this theorem later on in Section ??.

The isotopy ft is called the local phase flow of the vector field X. If ft defined globally, i.e.

it is a diffeotopy U → U , even defined for small interval of time (−ε, ε) then it is automatically

defined for all t ∈ R, see the next section.
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Theorem 2.2 have several corollaries, most of which are essentially equivalent to the

theorem itself.

First, we note that by the standard trick of reducing the non-autonomous case to an

autonomous one in a space of a bigger dimension, Theorem 2.2 implies its own generalization:

Theorem 2.3. Let Xt, t ∈ ∆ be a C1-smooth family of vector fields in a domain Ω ⊂ Rn.

Then for any points x0 ∈ Ω and t0 ∈ ∆ there exists ε > 0 and a neighborhood U 3 x0, U ⊂ Ω,

such that there exists an isotopy ft : U → Ω, t ∈ (t0 − ε, t0 + ε) which satisfies

• ft0(x) = x for all x ∈ U ;

• dft(x)
dt

= Xt(ft(x)), x ∈ U, t ∈ (t0 − ε, t0 + ε)

The next theorem shows that two non-vanishing smooth vector fields are locally diffeo-

morphic. More precisely,

Theorem 2.4. Let X be a C1-smooth vector field in a domain Ω ⊂ Rn. Suppose that that

X(a) 6= 0 for some point a ∈ Ω. Then there exists a local coordinate system (y1, . . . , yn) on

a neighborhood U 3 a, U ⊂ Ω, centered at the point a such that the vector field X on U is

equal to ∂
∂y1

.

In particular,

Theorem 2.5. Let λ be a C1-smooth line field in a domain Ω ⊂ Rn. Then for any point

a ∈ Ω there exists a neighborhood U 3 a, U ⊂ Ω and a local coordinate system (y1, . . . , yn)

on U , centered at the point a such that the line field Y on U is spanned by the vector field

∂
∂y1

.

Proof of Theorem 2.4. We can assume without loss of generality that a is the origin of

the Cartesian coordinate system, and the vector X(a) coincides with the vector ∂
∂x1

at the

point a. This could be achieved by rotating and scaling the original Cartesian system of

coordinates. Let

Dn−1
δ := {x1 = 0;

n∑
2

x2
j ≤ δ2}.
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Suppose that ε is chosen so small that Dn−1
δ ⊂ U , where U is the neighborhood provided by

Theorem 2.2. Let ft : U → Ω, t ∈ (−ε, ε) be the local phase flow constructed in Theorem 2.2.

Denote

H := {|x1| ≤ ε,

n∑
2

x2
j ≤ δ2}

and define a map F : H → Ω given by the formula F (x1, x2, . . . , xn) = fx1(0, x2, . . . , xn)).

The map F is an embedding, provided that ε, δ are small enough. Indeed, the differential

of F at the origin is the identity map (why?), and hence by the implicit function theorem

it is an embedding in a sufficiently small neighborhood of 0. But F∗(
∂
∂x1

) = X, and hence,

assuming that ε, δ are small enough, the coordinate system introduced on the neighborhood

U ′ = F (H) by the diffeomorphism F−1 : U ′ → H is the required one. �

This theorem, in particular implies existence of the solution of a system ẋ = X(x) for

any initial data x(t0) = x0 on an interval (t − ε, t + ε), provided that the vector field X is

C1-smooth. It also implies the uniqueness of solution with given initial data and its smooth

dependence on the initial data.

2.4 Phase flow

Let X be a smooth vector field in a domain Ω ⊂ Rn. Choose a ∈ Ω. Recall that according

to Theorem 2.3 there exists a neighborhood U 3 a in Ω and ε > 0 such that there exists a

local phase flow for the equation

ẋ = X(x), x ∈ Ω, (2.4.1)

i.e. an isotopy ft : U → Ω, t ∈ (−ε, ε), such that

• f0(x) = x for all x ∈ U ;

• dft(x)
dt

= Xt(ft(x)), x ∈ U, t ∈ (−ε, ε).
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Let us observe that that the interval (−ε, ε) depends on the choice of an initial point

a ∈ Ω and its neighborhood U . However, if the flow is defined on the whole Ω, i.e. it is a

diffeotopy ft : Ω→ Ω then the flow is defined for all t ∈ R.

Indeed, let E = sup ε such that the flow is defined on (−ε, ε). Suppose that E <∞. Then

the flow is defined on (−E + δ, E + δ) for δ < ε0
2

but then we can define it on (−E ′, E ′),

where E ′ = E − δ + 3ε0
4
> E by the formula ft := f 3ε0

4
◦ f

t− 3ε0
4

for t ∈ (E − δ, E ′). This

contradiction shows that E =∞, i.e. the flow is defined for all t ∈ R. The following lemma

follows from the definition of the flow.

Lemma 2.6. Suppose the flow ft : Ω→ Ω for a vector field X is defined for all t ∈ R. Then

1. ft ◦ fu = ft+u for all t, u ∈ R;

2. f0 = Id;

3. f−t = f−1
t .

One may express this lemma by saying that the flow of an autonomous system which is

defined for all t ∈ R forms a 1-parametric group of diffeomorphisms.

Often for the flow ft generated by a vector field X we will use the notation X t instead

of ft.

Conversely, any 1-parametric group of diffeomorphisms ft : Ω → Ω corresponds to a

vector field X on Ω. Indeed, according to the formula (2.2.1) the isotopy ft defines a family

of vector fields Xt(x) = dft
dt

(f−1
t (x)), x ∈ Ω, t ∈ R. But in this case, denoting y = f−1

t (x)

Xt(x) =
dft
dt

(y) = lim
u→0

ft+u(y)− ft(y)

u
= lim

u→0

fu(x)− ft(x)

u
= X0(x),

i.e. Xt is independent of t.

Proposition 2.7. Suppose that a vector field X on Ω integrates to a flow X t : Ω→ Ω, t ∈ R,

and f : Ω → Ω̃ a diffeomorphism. Denote X̃ := f∗X. Then the vector field X̃ integrates to

a flow X̃ t, t ∈ R, on Ω̃ and

X̃ t = f ◦X t ◦ f−1, t ∈ R.
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Proof. For any point y = f(x) ∈ Ω̃ we have

d

dt
(X̃ t(y))

∣∣
t=0

=
d

dt
(f ◦X t ◦ f−1(y))

∣∣
t=0

=
d

dt
(f ◦X t(x))

∣∣
t=0

= dxf(
d

dt
(X t(x)

∣∣
t=0

) = dxf(X(x))

= f∗X(y) = X̃(y).

�

2.5 Symmetries

Let λ be a line field in Ω ⊂ Rn. A diffeomorphism f : Ω → Ω is called a symmetry of the

line field λ if f∗λ = λ.

Lemma 2.8. All symmetries of the line field λ form a group.

Indeed, Id is a symmetry, if f, g are symmetries then f ◦ g is a symmetry and if f is a

symmetry then f−1 is a symmetry.

Consider a differential equation

ẋ = Xt(x), x ∈ Ω, t ∈ ∆. (2.5.1)

with the phase space Ω ⊂ Rn. Let λ be the corresponding line field on its extended phase

space Ω×∆. Then any symmetry f : Ω×∆→ Ω×∆ of the line field λ is called the symmetry

of the equation (2.5.1).

Let us stress the point that a symmetry is a diffeomorphism of an extended phase space,

i.e. it acts on space-time domain, even in the case of an autonomous system. Of course, in

the case of an autonomous system ẋ = X(x), x ∈ Ω, one can consider also more restricted

class of symmetries, namely diffeomorphisms h : Ω → Ω preserving the vector field X, i.e.

h∗X = X, as for instance, in the following

Proposition 2.9. Consider an autonomous system ẋ = X(x) on Ω ⊂ Rn. Suppose that it

integrates to a phase flow X t : Ω → Ω. Then for each s ∈ R the diffeomorphism Xs is a

symmetry of the equation.
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Proof. Let us compute Y := Xs
∗(X). By definition of the phase flow,

X(x) =
d

dt
X t(x)

∣∣
t=0
.

On the other hand, by the chain rule for any path γ : (−ε, ε) → Ω such that γ(0) = x and

γ′(0) = X(x) we have d
dt
f(γ(t))

∣∣
t=0

= dfx(X(x)) = f∗X(f(x)). Denote f := Xs. Then

f∗X(f(x)) =
d

dt
f ◦X t(x)

∣∣
t=0

=
d

dt
Xs+t(x)

∣∣
t=0

= X(Xs(x)).

In other words, f∗X(f(x)) = X(f(X)), i.e. f∗X = X. �

Theorem 2.10. Let Y and λ be a vector field and a line field in Ω.

• Y integrates to a flow Y s : Ω→ Ω;

• Y admits a transverse hypersurface Σ such that
⋃
s∈R

Y s(Σ) = Ω and either

(a) Y s(Σ) 6= Y s′(Σ) for s 6= s′, or

(b) the flow Y s is defined for all s ∈ R and either Y s(Σ) ∩ Y s′(Σ) = ∅, or Y s(Σ) =

Y s′(Σ) (in the latter case the flow is periodic for s, s′ ∈ R).

Suppose that Y s is a symmetry of λ for all s ∈ R. Then the order of the differential equation

corresponding to λ can be reduced by 1. In particular, if dim Ω = 2 then the Pfaffian equation

corresponding to λ can be reduced to an equation with separable variables, and hence solved

in quadratures.

Proof. We consider below only the case n = 2. The proof in the general case follows a similar

scheme. In this case Σ is a 1-dimensional manifold, and hence it is diffeomorphic either to R

or to S1. We will concentrate below on the case of R. Consider a parameterization φ : R→ Σ.

Define a map Φ : R2 → Ω by the formula

Φ(u, v) = Y v(φ(u)).
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We can think about (u, v) as curvilinear coordinates in Ω. The flow Y s in these coordinates

look like translation along the v-direction:

(u, v) 7→ (u, v + s).

The line field λ in these coordinates can be defined by a 1-form α = P (u, v)du+Q(u, v)dv.

Let us assume that P 6= 0. In fact, at every point (u, v) either P (u, v) 6= 0 or Q(u, v) 6= 0.

The case when Q 6= 0 can be considered similarly. Then we can define the line field λ by a

Pfaffian equation du+R(u, v)dv = 0, where R = Q
P

.

The fact that the line field λ is preserved by the flow Y s means that

(Y s)∗(du+R(u, v)dv) = fs(u, v)(du+R(u, v)dv).

But (Y s)∗(du+R(u, v)dv) = du+R(u, v+s)dv. Hence, fs(u, v) ≡ 1 and R(u, v+s) = R(u, v),

i.e. the function R is independent of V , so we will just write R(u).

Thus in coordinates (u, v) the equation takes the form

du+R(u)dv = 0

which is an equation with separable variables. �

Let us notice that if we change the variables (u, v) to (u, V ) where v = h(V ) then the

variables will separate anyway. Indeed, the form du + R(u)dv in coordinates (u, V ) takes

the form du+R(u)h′(V )dV . And thus the variables in the equation du+R(u)h′(V )dV = 0

separate as well.

Hence, it is not so important that the coordinate v along trajectories of Y coincides with

the time-parameter, but what is crucial is that v is constant on translates of Σ under the

flow Y s.

2.6 Quasi-homogeneous equations

Consider in Rn the vector field

Y =
∑

αixi
∂

∂xi
,
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where α1, . . . , αn. It is called an Euler field with weights α1, . . . , αn, or just an Euler field,

if all weights are equal to 1.

The vector field Y integrates to a 1-parametric group of linear transformations Y s : Rn →

Rn given by the formula

Y s(x1, . . . , xn) = (eα1sx1, . . . , e
αnsxn).

A function f : Rn → R is called quasi-homogeneous of degree d with weights α1, . . . , αn

if f(Y s(x)) = edsF (x) for all x ∈ Rn, s ∈ R.

A line field λ in a domain Ω is called quasi-homogeneous with weights α1, . . . , αn) if

Y s
∗ λ = λ for all s, i.e. transformations Y s are symmetries of λ.1

A differential equation is called quasi-homogeneous if the corresponding line field in the

extended phase space is quasi-homogeneous.

When all the weights are equal to 1 then the one uses the term homogeneous instead of

quasi-homogeneous.

Exercise 2.11. 1. Consider a system of equations ẋ = f(x), x ∈ Rn. Suppose that the

coordinate functions fi are quasi-homogeneous of degrees di with the same weights α1, . . . , αn.

The corresponding line field λ in the extended phase space (x, t) is given by the system of

Pfaffian equations

dx1 = f1(x1, . . . , xn)dt;

. . .

dxn = fn(x1, . . . , xn)dt.

Suppose d1 − α1 = · · · = dn − αn. Prove that the line field λ is quasi-homogeneous and find

the weights. Let Y s be the quasi-homogeneous flow Y s(x1, . . . , xn) = (eα1sx1, . . . , e
αnsxn).

Compute the push-forward by Y s of the vector field X =
n∑
1

fi
∂
∂xi

.

1 Note that the above definition implies, among other things that domain Ω itself is invariant with respect

to Y s, i.e. Y s(Ω) = Ω for all s ∈ R.
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2. Consider equation of k-th order with respect to 1 unknown function:

dky

dxk
= f(x, y).

Suppose that f(x, y) is a quasi-homogeneous function of degree d with weights α, β. Find a

relation between α, β and d which ensures that the line field representing the system in its

extended (k + 1)-dimensional phase space is quasi-homogeneous (and find weights).

2.7 Digression: Differential forms

2.7.1 Multilinear functions

A function l(X1, X2, . . . , Xk) of k vector arguments X1, . . . , Xk ∈ V (i.e. a function l :

V × · · · × V︸ ︷︷ ︸
k

→ R) is called k-linear (or multilinear) if it is linear with respect to each

argument when all other arguments are fixed. We say bilinear instead of 2-linear. Multilinear

functions are also called tensors. Sometimes, one may also say a “k-linear form”, or simply

k-form instead of a “k-linear functions”. However, we will reserve the term k-form for a

skew-symmetric tensors which will be defined in Section 2.7.2 below.

If one fixes a basis v1 . . . vn in the space V then with each bilinear function f(X, Y ) one

can associate a square n× n matrix as follows. Set aij = f(vi, vj). Then A = (aij)i,j=1,...,n is

called the matrix of the function f in the basis v1, . . . , vn. For any 2 vectors

X =
n∑
1

xivi, Y =
n∑
1

yjvj

we have

f(X, Y ) = f

(
n∑
i=1

xivi,

n∑
j=1

yjvj

)
=

n∑
i,j=1

xiyjf(vi, vj) =
n∑

i,j=1

aijxiyj = XTAY .

Similarly, with a k-linear function f(X1, . . . , Xk) on V and a basis v1, . . . , vn one can

associate a “k-dimensional” matrix

A = {ai1i2...ik ; 1 ≤ i1, . . . , ik ≤ n},
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where

ai1i2...ik = f(vi1 , . . . , vik) .

If Xi =
n∑
j=1

xijvj, i = 1, . . . , k , then

f(X1, . . . , Xk) =
n∑

i1,i2,...ik=1

ai1i2...ikx1i1x2i2 . . . xkik .

2.7.2 Symmetric and skew-symmetric tensors

A multilinear function (tensor) is called symmetric if it remains unchanged under the trans-

position of any two of its arguments:

f(X1, . . . , Xi, . . . , Xj, . . . , Xk) = f(X1, . . . , Xj, . . . , Xi, . . . , Xk)

Equivalently, one can say that a k-tensor f is symmetric if

f(Xi1 , . . . , Xik) = f(X1, . . . , Xk)

for any permutation i1, . . . , ik of indices 1, . . . , k.

Exercise 2.12. Show that a bilinear function f(X, Y ) is symmetric if and only if its matrix

(in any basis) is symmetric.

.

A tensor is called skew-symmetric (or anti-symmetric) if it changes its sign when one

transposes any two of its arguments:

f(X1, . . . , Xi, . . . , Xj, . . . , Xk) = −f(X1, . . . , Xj, . . . , Xi, . . . , Xk).

The matrix A of a bilinear skew-symmetric function is skew-symmetric, i.e.

AT = −A.

Any linear function is (trivially) symmetric and skew-symmetric.
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Example 2.13. The determinant det(X1, . . . , Xn) (considered as a function of columns

X1, . . . , Xn of a matrix) is a skew-symmetric n-linear function.

Exercise 2.14. Prove that any n-linear skew-symmetric function on Rn is proportional to

the determinant.

The space of skew-symmetric k-linear functions on a vector space V is denoted by Λk(V ∗).

Note that Λ1(V ∗) = V ∗. Note that if k > dimV then any skew-symmetric k-linear function

on V is ideentically equal to 0.

2.7.3 Exterior product

Given k linear functions l1, . . . , lk on V we define its exterior product l1∧· · ·∧ lk as a k-linear

skew-symmetric function whose value on vectors A1, . . . , Ak ∈ V is given by the formula

l1 ∧ · · · ∧ lk(A1, . . . , Ak) =

∣∣∣∣∣∣∣∣∣∣∣∣

l1(A1 l1(A2) . . . l1(Ak)

l2(A1 l2(A2) . . . l2(Ak)

lk(A1 lk(A2) . . . lk(Ak)

∣∣∣∣∣∣∣∣∣∣∣∣
.

Exercise 2.15. Show that l1∧· · ·∧ lk = 0 if and only if linear functions l1, . . . , lk are linearly

dependent.

In particular one can take an exterior product xi1∧xi2∧· · ·∧xik of any k out of n, k ≤ n,

coordinate functions xi1 , . . . , xi2 , . . . xik , i1 < · · · < ik. Its value on vectors A1, . . . , Ak is the

determinant of the k × k-matrix formed by coordinates of vector A1, . . . , Ak with numbers

i1, . . . , ik.

Exercise 2.16. Show that k-forms xi1∧xi2∧· · ·∧xik , i1 < · · · < ik form a basis. In particular

dim Λk(V ∗) =
(
n
k

)
= n!

k!(n−k)!
.

We extend the definition of the exterior product by linearity to any forms. Given a k-form

α =
∑

i1<···<ik
ai1...ikxi1 ∧ xi2 ∧ · · · ∧ xik and a l-form β =

∑
j1<···<jl

ai1...ikxjl ∧ xj2 ∧ · · · ∧ xjl we
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define α ∧ β as a (k + l)-form

α ∧ β =
∑

i1<···<ik,j1<···<jl

ai1...ikai1...ikxi1 ∧ xi2 ∧ · · · ∧ xik ∧ xjl ∧ xj2 ∧ · · · ∧ xjl .

Of course, in this sum all terms with repeated coordinates are 0, and terms which differ by

a permutation differ by an appropriate sign .

Exercise 2.17. Prove the the exterior product has the following properies:

• (associativity) α ∧ (β ∧ γ) = (α ∧ β) ∧ γ.

• (skew-commutativity) for a k-form α and an l-form β we have α ∧ β = (−1)klβ ∧ α.

2.7.4 Differential forms

Generalizing the notion of a differential 1-form we define a differential k-form on a domain

U in a vector space V as a field of k-linear skew-symmetric functions αx on Vx, x ∈ U .

For instance in Rn with coordinates x1, . . . , xn we can consider differential n-form dx1 ∧

· · · ∧ dxn. Its value on any n vectors A1, . . . , AnRn
x is the determinant of the matrix formed

by these vectors as columns. This determinant is an oriented volume of the parallelepiped

spanned by these vectors. The difference between the n-linear form x1 ∧ · · · ∧ xn and the

differential n-form dx1 ∧ · · · ∧ dxn, that the former one can be only applied to the vectors

originated at the origin, while the latter one can be applied to vectors originated at any

point x ∈ Rn. But the result would be the same as to first parallel transport the vectors to

the origin, and then apply x1 ∧ · · · ∧ xn.

Any differential k-form α on a domain U ⊂ Rn can be written as α =
∑

i1<···<ik
ai1...ikdxi1 ∧

dxi2 ∧ · · · ∧ dxik , where the coefficients ai1...ik are functions on U .

Note that a 0-form is just a function.
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2.7.5 Pull-back of a differential form

Suppose we are given two domains U ⊂ V and U ′ ⊂ V ′ and a diffeomorphism f : U → U ′.

Then for any differential k-form α on U ′ we define the differential form f ∗α on U , called

pull-back of α) by the formula

(f ∗α)x(X1, . . . , Xk) = αf(x)(dxf(X1), . . . , dxf(Xk).

Here X1, . . . Xk ∈ TxV are vectors originated at x ∈ U ⊂ V and df : TxV → Tf(x)V is the

differential of the map f and x.

If one think about the diffeomorphism f as a change of coordinatesm theen the pull-back

operator just rewrite the form in new coordinates.

An important property of the pull-back operator is that it preserves the exterior product:

Proposition 2.18. f ∗(α ∧ β) = f ∗α ∧ f ∗β.

Proposition 2.18 together with the chain rule implies

Proposition 2.19. Let f : U → U ′ be a diffeomorphism, x1, . . . xn are coordinates in V ′

and u1, . . . , um are coordinates in U , so that the map f is given in these coordinates as

f(u1, . . . , um) = (f1(u1, . . . , um), . . . , fn(u1, . . . , um)).

Let α =
∑

i1<···<ik
ai1...ikdxi1 ∧ dxi2 ∧ · · · ∧ dxik be a differential form on U ′. Then

f ∗α =
∑

i1<···<ik

ai1...ik ◦ fdfi1 ∧ dfi2 ∧ · · · ∧ dfik ,

Indeed,

f ∗α = f ∗(
∑

i1<···<ik

ai1...ikdxi1 ∧ dxi2 ∧ · · · ∧ dxik)∑
i1<···<ik

f ∗ai1...ik(f
∗dxi1) ∧ f ∗(dxi2) ∧ · · · ∧ f ∗(dxik) =

∑
i1<···<ik

ai1...ik ◦ fdfi1 ∧ dfi2 ∧ · · · ∧ dfik .

In other words, to change coordinates in a differential form one just need to replace each

coordinate by its expression through new coordinate. This proposition makes changing co-

ordinates in a differential form a simple exercise.
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2.7.6 Exterior differential

Given a k-form α =
∑

i1<···<ik
ai1...ikdxi1 ∧ dxi2 ∧ · · · ∧ dxik we define its exterior differential dα

as a (k + 1)-form

dα =
∑

i1<···<ik

dai1...ik ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxik .

For instance for a 0-form, i.e. a function f , the exterior differential is just the usual differen-

tial: df =
n∑
1

∂f
∂xi
dxi. For a differential 1-form α =

n∑
1

fidxi we have

dα =
∑

1≤i<j≤n

(
∂fj
∂xi
− ∂fi
∂xj

)
dxi ∧ dxj.

For a differential n-form α =
n∑
1

fidx1 ∧ . . . ˇ(dxi) · · · ∧ dxn (dxi is missing) we have

dα =

(
n∑
1

(−1)i−1 ∂fi
∂xi

)
dx1 ∧ · · · ∧ dxn.

For any n form α on an n-dimensional space we have dα = 0.

Proposition 2.20. Let α be a differential k-form, and β a differential l-form

1. d2 = 0, i.e. for any differential form α we have d(dα) = 0.

2. d(α ∧ β) = (dα) ∧ β + (−1)kα ∧ dβ.

3. Let f : U → U ′ be a diffeomorphism, α a differential k-form on U ′. Then df ∗α = f ∗dα.

A differential k-form α is called closed if dα = 0, and it is called exact if there exists a

differential (k − 1)-form β such that α = dβ.

Any exact form is closed, as it follows from Proposition 2.20.3.

Locally any closed form is exact, but globally this is not true, and depends on the topology

of the domain U . For instance, in Rn any closed form is exact but on Rn \ 0 the (n− 1)-form

θ =
n∑
1

(−1)i−1xidx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn
rn

,

where r =

√
n∑
1

x2
i , is closed but not exact.
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2.8 Directional derivative revisited

Let X be a smooth vector field defined on a domain U ⊂ Rn (more generally we can assume

that U is any n-dimensional manifold). Given a function f : U → R we can define the

directional derivative LXf of f along X:

LXf = lim
s→0

f(x+ tX)− f(x)

t
. (2.8.1)

The directional derivative has many other notation: DX(f), ∂f
∂X
, df(X), . . . .

Let us denote by X t : U ′ → U , t ∈ (−ε, ε), the local phase flow of X t defined on a

neighborhood U ′ ⊂ U of a point a ∈ U .

Let us observe that the directional derivative can be also defined by the formula

LXf(a) =
d

ds
f ◦Xs

∣∣∣
s=0

(a). (2.8.2)

It turns out that formula (2.8.2) can be generalized to define an analog of directional deriva-

tives for differential forms and vector fields, which is the Lie derivative.

2.9 Lie derivative of a differential form

Let ω be a differential k-form. We define the Lie derivative LXω of ω along a vector field X

as

LX ω =
d

ds
(Xs)∗ω

∣∣∣
s=0

. (2.9.1)

Note that if ω is a 0-form, i.e. a function f , then (Xs)∗f = f ◦Xs, and hence, in this case

definitions (2.8.2) and (2.9.1) coincide, i.e. for functions the Lie derivative is the same as the

directional derivative.

Proposition 2.21. The following identities hold

1. LX(ω1 ∧ ω2) = (LXω1) ∧ ω2 + ω1 ∧ LXω2.

2. LX(dω) = d(LXω).
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Proof.

1. LX(ω1 ∧ ω2) =
d

ds
(Xs)∗(ω1 ∧ ω2)

∣∣∣
s=0

=
d

ds

(
(Xs)∗ω1 ∧ (Xs)∗ω2

)∣∣∣
s=0

=
d

ds

(
(Xs)∗ω1

)∣∣∣
s=0
∧ ω2 + ω1 ∧

d

ds

(
(Xs)∗ω2

)∣∣∣
s=0

= (LXω1) ∧ ω2 + ω1 ∧ LXω2.

2. LX(dω) =
d

ds

(
(Xs)∗dω

)∣∣∣
s=0

=
d

ds

(
d(Xs)∗ω

)∣∣∣
s=0

= d
( d
ds

(Xs)∗ω
∣∣∣
s=0

)
= LX(dω).

�

The following formula of Élie Cartan provides an effective way for computing the Lie

derivative of a differential form.

Theorem 2.22. Let X be a vector field and ω a differential k-form. Then

LXω = d(X ω) +X dω. (2.9.2)

Proof. Suppose first that ω = f is a 0-form. Then LXf = df(X) = X df , which is equivalent

to formula (2.9.2), because in this case the first term in the formula is equal to 0. Then, using

Proposition 2.212) we get

LXdf = dLXf = d(df(X)) = d(X df),

which is again equivalent to (2.9.2) because in this case ddf = 0. Next we note that if the

30



formula (2.8.1) holds for ω1 and ω2 then it holds also for ω1 ∧ ω2. Indeed, we have

(?) LX(ω1 ∧ ω2) = (LXω1) ∧ ω2 + ω1 ∧ LXω2

= (X dω1 + d(X ω1)) ∧ ω2 + ω1 ∧ (X dω2 + d(X ω2))

= (X dω1) ∧ ω2 + ω1 ∧ (X dω2) + d(X ω1) ∧ ω2 + ω1 ∧ d(X ω2)

On the other hand, denoting by d1 and d2 the degrees of ω1 and ω2, we get

(??) X d(ω1 ∧ ω2) + d(X (ω1 ∧ ω2))

= X (dω1 ∧ ω2 + (−1)d1ω1 ∧ dω2) + d((X ω1) ∧ ω2 + (−1)d1ω1 ∧ (X ω2))

= (X dω1) ∧ ω2 + (−1)d1+1dω1 ∧ (X ω2) + (−1)d1(X ω1) ∧ dω2 + ω1 ∧ (X dω2)

+ d(X ω1) ∧ ω2 + (−1)d1+1X ω1 ∧ dω2 + (−1)d1dω1 ∧ (X ω2) + ω1 ∧ (d(X ω2))

= (X dω1) ∧ ω2 + ω1 ∧ (X dω2) + d(X ω1) ∧ ω2 + ω1 ∧ d(X ω2) .

Comparing the computation in (?) and (??) we conclude that

LX(ω1 ∧ ω2) = X d(ω1 ∧ ω2) + d(X (ω1 ∧ ω2)).

By induction we can prove a similar formulas for an exterior product of any number of forms.

Finally we observe that any differential k-form ω can be written in coordinates as∑
1≤i1<···<ik≤n

fi1...ik(x)dxi1 ∧ · · · ∧ dxik ,

i.e. ω is a sum of exterior products of functions (0-forms) and exact 1-forms, and hence

Cartan’s formula follows. �

Proposition 2.23. We have

LXω = 0 ⇐⇒ (Xs)∗ ω = ω for all s ∈ R.

Proof. If (Xs)∗ ω ≡ ω then LXω = d
ds

(Xs)∗ω
∣∣∣
s=0

= 0. To prove the converse we note that

d

ds
(Xs)∗ω

∣∣∣
s=s0

= lim
t→0

(Xs0+t)∗ω − (Xs0)∗ω

t
= (Xs0)∗

(
lim
t→0

(X t)∗ω − ω
t

)
= (Xs0)∗ (LXω) ,

and hence if LXω = 0 then (Xs)∗ ω = ω. �
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2.10 Lie bracket of vector fields

Let A,B ∈ Vect(U) be two vector fields on a domain U ⊂ Rn. As it was shown in 52H, there

is a vector field C ∈ Vect(V ), called the Lie bracket of the vector fields A and B and denoted

by C = [A,B], which is characterized by the following property: for any smooth function

φ : U → R one has

LCφ = (LALB − LBLA)φ.

A surprising fact here is that though the right-hand side of this equation seems to be the

second order differential operator, the left-hand side is the first order operator, so the second

derivatives on the right side cancel each other.

Recall that the bracket [A,B] has the following properties

• Lie bracket is a bilinear operation;

• [A,B] = −[B,A] (skew-symmetricity);

• [[A,B]C] + [[B,C], A] + [[C,A], B] = 0 (Jacobi identity);

• If A =
n∑
1

aj
∂
∂xj

and B =
n∑
1

bj
∂
∂xj

then

[A,B] =
n∑
i=1

(
n∑
j=1

aj
∂bi
∂xj
− bj

∂ai
∂xj

)
∂

∂xi
. (2.10.1)

In this section we will give a new interpretation of the Lie bracket [A,B].

Recall that given a diffeomorphism f : U → V we can define the push-forward map

f∗ : Vect(U)→ Vect(V ).

We can also define the pull back map

f ∗ : Vect(V )→ Vect(U)

by the formula f ∗ := f−1
∗ . Note that we also have f ∗ = f−1

∗ .
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We define the Lie derivative LAB of the vector field B along the vector field A in a similar

way as we defined in Section 2.9 the Lie derivative of a differential form. Namely,

LAB =
d (As)∗B

ds

∣∣∣
s=0

. (2.10.2)

More explicitly,

LAB(x) = lim
s→0

dAs(x) (A−s) (B(As(x))−B(x)

s
.

Similarly, to Proposition 2.23 we have

Proposition 2.24.

LAB = 0 ⇐⇒ (As)∗B ≡ B for all s ∈ R.

Proof. We have

d (As)∗B

ds

∣∣∣
s=s0

= lim
s→0

(As+s0)
∗
B − (As0)∗B

s

= lim
s→0

(As0)∗
(

(As)∗B −B
s

)
= (As0)∗

(
lim
s→0

(As)∗B −B
s

)
= (As0)∗ (LAB) .

Hence, if LAB = 0 then d(As)∗B
ds

for all s and hence (As)∗B = (A0)
∗
B = B. The converse is

obvious. �

Theorem 2.25. For any two vector fields A,B ∈ Vect(U)

LAB = [A,B].

Proof. Note that As(x) = x+ sA(x) + o(s). Hence, we can write

dyA
−s = Id− sdyA+ o(s),

where we view here A as a map Rn → Rn. Furthermore, plugging y = As(x) we get

dAs(x)A
−s = Id− sdxA+ o(s).
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Indeed, dAs(x)A− dxA →
s→0

0 and hence s(dyA− dxA) = o(s). We also have

B(As(x)) = B(x+ sA(x) + o(x)) = B(x) + sdxB(A(x)) + o(s).

Thus, ignoring o(s)-terms we get

LAB = lim
s→0

1

s

(
dAs(x)

(
A−s

)
(B(As(x)))−B(x)

)
= lim

s→0

1

s
((Id− sdxA)) (B(x) + sdxB(A(x)))−B(x))

= lim
s→0

1

s
(B(x)− sdxA(B) + sdxB(A)−B(x)) = dxB(A)− dxA(B).

But the right-hand-side expression written in coordinates has the form

dxB(A)− dxA(B) =
n∑
i=1

(
n∑
j=1

aj
∂bi
∂xj
− bj

∂ai
∂xj

)
∂

∂xi

which coincides with the expression (2.10.1) for the Lie bracket. �

Exercise 2.26. Prove that for any smooth function φ one has

L[A,B]φ =
∂2(φ ◦ As ◦Bt)

∂s∂t
.

If [A,B] = 0 then one says that the vector field A and B commute.

Lemma 2.27. Suppose two commuting vector fields A,B on Ω can be integrated into phase

flows At, Bs. Then

At ◦Bs = Bs ◦ At,

t, s ∈ R, i.e. the flows of commuting vector fields. Conversely, if two flows At, Bs commute

for all t, s ∈ R then [A,B] = 0.

Proof. We have [A,B] = LAB. Then according to Proposition 2.24 we have

(As)∗B = B. (2.10.3)
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Recall from Proposition 2.7 that for any diffeomorphism f : Ω→ Ω if f ∗B = C then

Ct = f−1 ◦Bt ◦ f, t ∈ R.

Applying this to f = As and using (2.10.3) we conclude

Bt = A−s ◦Bt ◦ As,

or

As ◦Bt = Bt ◦ As, s, t ∈ R.

�

2.11 First integrals

Suppose we are given a differential equation

ẋ = A(x), (2.11.1)

where A is a vector field on the domain U ⊂ Rn A function φ : U → R is called a first integral,

or simply an integral of equation (2.11.1) if it is constant on solutions of this equation, or

equivalently on integral curves of the vector field A.

Clearly, a necessary and sufficient condition for φ to be an integral is to satisfy the

equation LAφ = 0. Here LAφ denotes the directional derivative of φ along A.

If φ is an integral of (2.10.2) then the solutions are contained in the level sets of the

function φ, and hence, this allows us to reduce the order of equation by 1. If (2.10.2) has

two integrals φ1, φ2, then the solutions lie in the intersection of level sets {φ1 = c1} and

{φ2 = c2}, c1, c2 ∈ R. Hence, if these level sets transverse to each other (which means that

the differential dφ1 and dφ2 are linearly independent at every point of the intersection),

then the solutions lie in {φ1 = c1} ∩ {φ2 = c2}, which allows to further reduce the order

of the system. If the order is reduced to 1 then the equation can be explicitly integrated in

quadratures. Such systems are called completely intregrable.

35



Some important examples of integrals which come from Mechanics are discussed in the

next section.

2.12 Hamiltonian vector fields

Consider the vector space R2n with coordinates (p1, . . . , pn, q1, . . . , qn) and a closed differential

2-form ω =
n∑
1

dpi∧dqi. Note that this form is non-degenerate, i.e. its matrix is non-degenerate

at every point. Therefore, the map J : Vect(R2n)→ Ω1(R2n) given by the formula X 7→ X ω

is an isomorphism between the space Vect(R2n) of vector fields and the space Ω1(R2n) of

differential 1-forms on Rn. In coordinates the map J associates with a vector field
n∑
1

Pi
∂
∂Pi

+

n∑
1

Qi
∂
∂Qi

the differential form
n∑
1

Pidqi −Qidpi.

Lemma 2.28. Given a vector field A on R2n the differential 1-form J(A) = A ω is closed

if and only if LAω = 0.

Proof. Indeed, according to Cartan’s formula (2.9.2) we have LAω = d(A ω) = dJ(A)

because ω is closed. �

Given a function H : R2n → R we denote by XH the vector field −J−1(dH). Vector fields

obtained by this construction are called Hamiltonian.

To find a coordinate expression for XH we write XH =
n∑
1

ai
∂
∂pi

+ bi
∂
∂qi

. Then

XH ω =

(
n∑
1

ai
∂

∂pi
+ bi

∂

∂qi

)
n∑
1

dpi ∧ dqi =
n∑
1

−bidpi + aidqi.

Hence, the equation

XH ω = −dH = −
n∑
1

∂H

∂pi
dpi +

∂H

∂qi
dqi

implies ai = −∂H
∂qi
, bi = ∂H

∂pi
, i = 1, . . . , n. Thus,

XH =
n∑
1

−∂H
∂qi

∂

∂pi
+
∂H

∂pi

∂

∂qi
.
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In a shorter form, omitting indices we will write

XH = −∂H
∂q

∂

∂p
+
∂H

∂p

∂

∂q
.

Thus the system of differential equations corresponding to the vector field XH has the form

ṗ = −∂H
∂q

q̇ =
∂H

∂p
.

(2.12.1)

These equations play an important role in Mechanics, and called Hamilton canonical equa-

tions. They describe the phase flow of a mechanical system. Here the coordinates q =

(q1, . . . , qn) determine a position of the system, or a point in the configuration space of

the mechanical system. The coordinates p = (p1, . . . , pn) are called momenta and can be

viewed as vectors of the cotangent bundle to the configuration space. The function H is the

full energy of the system expressed through coordinates and momenta.

Lemma 2.29. The function H is a first integral of the equation (2.12.1), i.e. LXHH = 0.

Proof.

LXHH = dH(XH) = −∂H
∂p

∂H

∂q
+
∂H

∂q

∂H

∂p
= 0.

�

Example 2.30. Consider Newton equations

q̈i = −∂U
∂qi

, i = 1, . . . , n,

or in shorter notation

q̈ = −∂U
∂q

= −∇U.

Reducing it to a system of first order equation we get

ṗ = −∂U
∂q

(2.12.2)

q̇ = p. (2.12.3)
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Consider the full energy H(p, q) =
n∑
1

p2i
2

+U(q) = 1
2
p2+U(q). Then ∂H

∂q
= ∂U

∂q
and ∂H

∂p
= p, and

hence equation (2.12.2) takes the form (2.12.1) with this Hamiltonian function H. Lemma

2.29 is the law of conservation law of energy.

Lemma 2.31. Let XH be a Hamiltonian vector field and Xs
H the phase flow it generates.

Then (Xs
H)∗ ω = ω for all s ∈ R. In other words, the flow of a Hamiltonian vector field

preserves the form ω.

Proof. It is sufficient to prove that LXHω = 0. Using Theorem 2.22 we get

LXHω = d(XH ω) +XH dω.

But ω is closed, and hence dω = 0, while XH ω = dH. Thus, LXHω = ddH = 0. �

2.13 Canonical transformations

The equations (2.12.1) are called canonical because they are invariant with respect to a large

group of transformation of the phase space. Let us call a diffeomorphism f : R2n → R2n a

symplectomorphism (or alternatively a canonical transformation) if it preserves the form ω.

Then it preserves also the form of the equations (2.12.1). Indeed, suppose f(p, q) = (p̃, q̃).

Then f ∗(ω) = f ∗(dp ∧ dq) = dp̃ ∧ dq̃ = ω = dp ∧ dq. Thus if we express the function H(p, q)

through the coordinates p̃, q̃, H(p, q) = H̃(p̃, q̃) then the equation (2.12.1) will take the same

form in coordinates (p̃, q̃):

˙̃p = −∂H̃
∂q̃

˙̃q =
∂H̃

∂p̃
.

(2.13.1)

The following proposition provides an important class of canonical transformations,

Proposition 2.32. Consider any diffeomorphism f : U → V between two domains U, V ⊂

Rn. Let Df be the Jacobi matrix of the map U . Then the map

(p, q) 7→
(
(Df)−1)T p, f(q))
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is a symplectomorphism f̂ of the domain Û = {p ∈ Rn, q ∈ U} to the domain V̂ = {p ∈

Rn, q ∈ V }. Here
(
(Df)−1)T is the matrix transpose to inverse of the Jacobi matrix Df .

In other words, any change of q-coordinates extends to a canonical change of the (p, q)-

coordinates.

Proof. Let us denote the elements of the matrix (Df)−1 by gij, i, j = 1, . . . , n. Thus,
n∑
i

gji
∂fi
∂qk

= δjk, δjk = 1 if j = k and δjk = 0 if j 6= k.

Let us compute f̂ ∗(pdq) = f̂ ∗
(

n∑
1

pidqi

)
. We have

f̂(p1, . . . , pn, q1, . . . , qn) =

(
n∑
1

gj1pj, . . . ,
n∑
1

gjnpj, f1(q), . . . , fn(q)

)
.

Hence,

f̂ ∗(pdq) = f̂ ∗

(
n∑
1

pidqi

)
=

n∑
i=1

n∑
j=1

gjipjdfi

=
n∑

i,j,k=1

gji
∂fi
∂qk

pjdqk =
n∑

j,k=1

δjkpjdqk

=
n∑
1

pkdqk = pdq.

Hence,

f̂ ∗ω = f̂ ∗dp ∧ dq = d(f̂ ∗(pdq)) = d(pdq) = dp ∧ dq = ω.

�

Corollary 2.33. . Suppose that there exists a change of coordinates q̃ = f(q) such that

in new coordinates the Hamiltonian function H is independent of the coordinate q̃1. Then

p̃1 =
n∑
1

gj1pj is a first integral of the system (2.12.1). Here the notation gij stands for the

elements of the matrix (Df)−1.

Proof. Let us extend the coordinate change q 7→ q̃ = f(q) to a canonical change of

coordinates (p, q) 7→ (p̃, q̃) = f̃(p, q) as in Proposition 2.32. Then the equation in the new
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coordinates (p̃, q̃) also has the canonical Hamiltonian form (2.13.1). Then ˙̃p1 = ∂H
∂q̃1

= 0

because by assumption the Hamiltonian is independent of the coordinate q̃1. Hence p̃1 =
n∑
1

gj1pj is constant along trajectories, i.e. it is a first integral. �

2.14 Example: angular momentum

Consider a Newton equation

q̈ = −∇U(q), q ∈ R3, (2.14.1)

which describes the motion of a particle of mass 1 in a field with a potential energy function

U(q). Suppose there exists an axis l in R3 such that the function U(q) remains invariant with

respect to rotations around l.

The system (2.14.1) can be rewritten in the Hamiltonian form (2.12.1) with the Hamil-

tonian function H = p2

2
+ U(q) =

p21
2

+
p22
2

+
p23
2

+ U(q1, q2, q3). Let us assume for simplicity

that the q3-axis coincides with the axis l.

Let us change coordinates (q1, q2, q3) to cylindrical coordinates (φ, r, z):

q1 = r cosφ, q2 = r sinφ, q3 = z.

Equivalently,

φ = arctan
q2

q1

, r =
√
q2

1 + q2
2, z = q3.

Computing the Jacobi matrix D(φ,r,z)
D(q1,q2,q3)

we get
∂φ
∂q1

∂φ
∂q2

∂φ
∂q3

∂r
∂q1

∂r
∂q2

∂r
∂q3

∂z
∂q1

∂z
∂q2

∂z
∂q3

 =


− q2
q21+q22

q1
q21+q22

0

q1√
q21+q22

q2√
q21+q22

0

0 0 1


Then the inverse matrix is equal to

−q2
q1√
q21+q22

0

q1
q2√
q21+q22

0

0 0 1


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Let us extend the coordinate change (q1, q2, q3) 7→ (r, φ, z) to a canonical coordinate

change

(q1, q2, q3, p1, p2, p3) 7→ (φ, r, z, pφ, pr, pz),

where we denoted by pr, pφ, pz momenta variables corresponding to new coordinates (r, φ, z).

In fact, we need only the coordinate pφ which is given by pφ = −p1q2 + q1p2. Thus, the

function −p1q2 + p2q1 is the first integral. It is called the angular momentum around the

q3-axis.

Recall that along trajectories we have pi = q̇i, i = 1, 2, 3. Hence, q1q̇2 − q̇1q2 is constant

along the trajectories. But this is exactly the projection M3 of the cross-product M = q × q̇

to the q3-axis which is the axis of rotational symmetry. Introducing cylindrical coordinates

(r, φ, z)with the axis q3 as z, then we get M3 = r2φ̇.

In particular, if U(q) is invariant under all rotations, i.e. it depends only on the distance

r = ||q|| from the origin, then all components of the angular momentum vector M = q×q̇, and

hence, the angular momentum vector M is constant along trajectories. Note that qṀ = 0,

and hence the motion happens in the plane orthogonal to the vector M . In the cylindrical

coordinates with M at its axis, the absolute value of the angular momentum,

||M || = r2φ̇

is preserved.
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Chapter 3

Solving one first order partial

differential equation

3.1 Jet spaces

When studying functions on Rn, or a domain in Rn it is useful to consider their graphs which

live in Rn × R = Rn+1, i.e. for u : Rn → R its graph

Γu := {z = u(x1, . . . , xn)} ⊂ Rn+1.

Similarly, when studying first order partial differential equations with respect to a func-

tion on Rn it is useful to consider a simultaneous graph of a function and all its derivatives:

Λu = {z = u(x), p1 =
∂u

∂x1

(x), . . . pn =
∂u

∂xn
(x), x = (x1, . . . , xn) ∈ Rn} ⊂ R2n+1,

where we denoted coordinates in R2n+1 = Rn × Rn × R by (x, p, z), x, p ∈ Rn, z ∈ R.

The coordinate z is reserved for graphing the value of a function u and p1, . . . , pn for the

corresponding first partial derivatives.

The space R2n+1 in this context is called the 1-jet space of functions on Rn and usually

denoted by J1(Rn). We denote by π the projection J1(Rn)→ Rn → Rn given by the formula

π(x, p, z) = x, (x, y, z) ∈ J1(Rn) = Rn × Rn ×R.
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A map s : Rn → J1(Rn) is called a section if π ◦ s = Id : Rn × Rn. In other words, if

s(x) = (x, v(x), u(x)) ∈ Rn × Rn × R for x ∈ Rn. With every function u : Rn → R one can

associate a very special section. Namely,

x 7→
(
x,

∂u

∂x1

(x), . . . ,
∂u

∂xn
(x), u(x)

)
, x ∈ Rn,

which maps Rn onto the simultaneous graph of the function u and all its first partial deriva-

tives. Sections of this type are called holonomic. We note that most of the sections are not

holonomic..

The following lemma gives a necessary and sufficient condition for a section s : Rn →

R2n+1 to be holonomic. Denote by λ the differential 1-form

λ := dz −
n∑
1

pidxi,

and by ξ the hyperplne field defined by the Pfaffian equation λ = 0. This hyperplane field is

called a contact structure.

Lemma 3.1. A section s : Rn → J1(Rn) is holonomic if and only if s∗λ = 0. In other words,

s is holonomic if its image is tangent to the contact structure ξ.

Proof. We have s(x) = (x, p = v(x), z = u(x)), and hence the equation

0 = s∗λ = s∗(dz − pdx) = du− vdx

is equivalent to

v1(x) =
∂u

∂x1

(x), . . . , vn(x) =
∂u

∂xn
(x)

which is the definition of a holonomic section.

Submanifolds of dimension n which are tangent to ξ are called Legendrian. We note that

a general Legendrian submanifold need not be necessarily graphical.

Exercise 3.2. Give an example of a non-graphical Legendrian submanifold Λ ⊂ J1(Rn).
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3.2 The case n = 1

When n = 1 then the 1-jet space is 3-dimensional, J1(R) = R3. A holonomic section s : R→

J1(R) is a simultaneous graph of a function and its derivative:

s(x) = (x, p = f ′(x), z = f(x)).

The contact structure ξ is the 2-dimensional plane field given by a Pfaffian equation dz −

pdx = 0.

Let Σ ⊂ J1(R) be a 2-dimensional submanifold. Suppose that for a ∈ Σ the tangent

plane TaΣ is transverse to the contact plane ξa. Then the line `a = TaΣ ∩ ξa is called the

characteristic line. If Σ is transverse to ξ everywhere, then ` = {`a}a∈Σ is a tangent line field

to Σ (which is called the characteristic line field). The integral curves of this line field are

called characteristics.

Lemma 3.3. Characteristics are Legendrian submanifolds. In particular, if a characteristic

Λ ⊂ R is graphiical with respect to the projection J1(R) → R then it is a holonomic, i.e.

there exists a function h : (a, b)→ R such that s(x) = (c, h′(x), h(x)), x ∈ (a, b).

3.3 Characteristics in the n-dimensional case

Let Σ ⊂ J1(Rn) be a hypersurface. A point a ∈ Σ is called singular if TaΣ = ξa.

Otherwise, i.e. if TaΣ is transverse to ξa, it is called regular. At a regular point a ∈ Σ the

intersection Πa = TaΣ ∩ ξa is an (2n − 1)-dimensional subspace. Here are some conditions

which guarantees transversality of Σ ⊂ J1(Rn) and ξ = {λ = 0}, i.e. regularity of all points

of Σ.

Example 3.4. 1. Suppose a Σ = {F = 0} where for every point a ∈ Σ there exists

i = 1, . . . , n such that ∂F
∂pi

(a) 6= 0. Then Σ is transverse to ξ.

2. Suppose the hypersurface Σ is tangent to the z-directions (e.g. the defining it function

F is independent of z. Then Σ is transverse to ξ.
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Lemma 3.5. Suppose Σ is transverse to ξ. Then for any point a ∈ Σ there exists a unique

line `a ⊂ Πa = ξa ∩ Ta which is characterized by the following condition. Given any vectors

v ∈ `a and w ∈ Πa we have

dλ(v, w) = 0.

In other words, `a is the kernel of the form dλ|Πa.

Proof. The contact hyperplane field ξ − {dz − pdx = 0} is transverse to the z-axis, and

hence the form dλ = dp ∧ dx|ξ has the maximal rank 2n. Therefore the restriction of this

form to the codimension 1 subspace Πa ⊂ ξa has rank 2n− 1, because the rank cannot drop

more than by 1, but on the other hand the rank of a skew-symmetric form is always even.

Hence, there exists a 1-dimensional kernel `a ⊂ Πa of the form dλ|Πa , i.e. dλ(v, w) = 0 for

any vectors v ∈ `a, w ∈ Πa.

The line field ` = {`a}a∈Σ which is tangent to Σ is called the characteristic line field, and

its integral curves are called characteristics.

The next lemma gives an explicit expression for a vector field directing the line field `.

Lemma 3.6. Suppose Σ = {F (x, p, z) = 0} and a = (x, p, z) ∈ Σ a regular point. Then the

line `a is generated by the vector

v =
n∑
1

Fpi
∂

∂xi
−

n∑
1

(Fxi + piFz)
∂

∂pi
+

n∑
1

piFpi
∂

∂z
. (3.3.1)

Proof. Given any vector w = (X, Y, Z) ∈ Πa = ξa ∩TaΣ its coordinates should satisfies the

following conditions. The equation dFa(w) = 0 takes the form

FxX + FpP + FzZ = 0. (3.3.2)

The equation λ(w) = 0 takes the form

Z − pX = 0. (3.3.3)
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Hence, vectors in ξa have the form (X,P, pX), and the necessary and sufficient condition for

a vector w to be ξa ∩ TaΣ is that it satisfies the equation

(Fx + pFz)X + FpP = 0.

Let v = (X̃, Ỹ , Z̃) be a non-zero vector given by (3.3.1). We have Z̃ = pX̃ =
n∑
1

pxX̃i and

(Fx + pFz)X̃ + FpP̃ = (Fx + pFz)Fp − Fp(Fx + pFz) = 0, and hence v ∈ Πa. We also have

v dλ = v dp ∧ dx = P̃ dx− X̃dp,

and for any vector w = (X,P, pX) ∈ Πa, we have

PX̃ − P̃X = (Fx + pFz)X + FpP = 0. (3.3.4)

Lemma 3.7. Let Σ ⊂ J1(Rn) be a hypersurface transverse to ξ, and ` the characteristic line

field. Let L ⊂ Σ be a submanifold such that λ|L = 0 and L is transverse to `. Let L̂ denote

the union of all trajectories of the characteristic foliation intersecting L. Then λ|L̂ = 0.

In other words, if we flow a k-dimensional submanifold of Σ tangent to ξ along the

characteristics, then it swaps a (k + 1)-dimensional submanifold of Σ tangent to ξ.

Proof. Choose a non-vanishing vector field v ∈ `. At a point a ∈ L the tangent TaL̂ ⊂ Πa is

spanned by TaL and the vector v(a). Note that dλTaL̂ = 0 because dλ|TaL = 0 by assumption,

and dλ(v(a), w) = 0 for all w ∈ TaL̂ because v(a) ∈ `a = Ker dλ|Πa . We also note that the

flow of the vector field v on L̂ preserves the form µ := λ|L̂. Indeed, the Lie derivative

Lv(λ|L̂) = d(λ(v)) + v dλ) = 0. Here the first term vanishes because v ∈ ` ⊂ ξ, and the

second one vanishes because v ∈ ` = Ker (dλ|Π). Therefore, if λ vanishes in one point of

a trajectory of v, then it vanishes at every point of this trajectory. But by definition any

trajectory of v on L̂ intersects L, and as we had seen above λ vanishes on L̂ at the points of

L. Hence, it vanishes, everywhere.

Lemma 3.8. Let Σ ⊂ J1(Rn) be a hypersurface transverse to ξ, and ` the characteristic line

field. Then any Legendrian submanifold L ⊂ Σ is tangent to `.
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Proof. Recall that a Legendrian submanifold is an n-dimensional submanifold tangent to

Σ. Suppose that for a point a ∈ Σ the characteristic line `a is transverse to TaL. Consider

the (n+ 1)-dimensional space S := Span(TaL, v). We have S ⊂ Πa ⊂ ξa. On the other hand,

dλ|S = 0. Indeed, dλ|TaL = 0 by assumption, and dλ(v, w) = 0 for all w ∈ S and v ∈ `a

because `a = Ker dλ|Πa . But dλ is a non-degenerate form on a 2n-dimensional space ξa.

Hence, it cannot vanish on a subspace of dimension > n.

Theorem 3.9. Let Ω1,Ω2 ⊂ Rn−1 = {xn = 0} be two bounded open domains such that

Ω1 ⊂ Ω2, and φ : Ω2 → R a smooth function. Consider a Cauchy problem

∂u

∂xn
= f

(
x1, . . . , xn−1,

∂u

∂x1

, . . . ,
∂u

∂xn−1

, u

)
u(x1, . . . , xn−1, 0) = φ(x1, . . . , xn−1).

(3.3.5)

with respect to a function u : Rn → R. Then for a sufficiently small ε > 0 the Cauchy

problem (3.3.5) has a unique solution for (x1, . . . , xn−1 ∈ Ω1, |xn| ≤ ε. This solution can be

found using the following procedure. Consider a system of ordinary differential equations

ẋi = − ∂f
∂pi

(x, p1, . . . , pn−1, z), i = 1, . . . , n− 1,

ẋn = 1,

ṗi =
∂f

∂xi
(x, p1, . . . , pn−1, z) + pi

∂f

∂z
(x, p1, . . . , pn−1, z),

ż = f(x, p1, . . . , pn−1, z)−
n−1∑

1

pi
∂f

∂pi
(x, p1, . . . , pn−1, z),

(3.3.6)

Let

xj = αj(c1, . . . , cn−1, t), j = 1, . . . , n− 1, xn = t, (3.3.7)

pj = βj(c1, . . . , cn−1, t), j = 1, . . . , n− 1, (3.3.8)

z = γ(c1, . . . , cn−1, t), (3.3.9)
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be the solution of system (3.3.6) with initial data

xj(0) = cj, j = 1, . . . , n− 1, (c1, . . . , cn−1) ∈ Ω2,

xn(0) = 0.,

pj(0) =
∂φ

∂xj
(c1, . . . , cn−1), j = 1, . . . , n− 1,

z(0) = φ(c1, . . . , cn−1).

The system of algebraic equations (3.3.7) can be resolved with respect to ci, i = 1, . . . , n−1:

cj = δj(x1, . . . , xn), j = 1, . . . , n− 1,

for sufficiently small values of xn. Then the function

u(x1, . . . , xn) := γ(δ1(x1, . . . , xn), . . . , δn−1(x1, . . . , xn), t)

is the solution of the Cauchy problem for (3.3.5).

3.4 Integrable systems

3.4.1 Generating functions

Consider a canonical transformation (symplectomorphism) f : R2n → R2n. We endow the

source the space by canonical coordinates (p, q) and the target space by

with the canonical coordinates (P,Q). Suppose that the map f is given by coordinate function

P = P (p, q), (3.4.1)

Q = Q(p, q). (3.4.2)

Then dp ∧ dq = dP ∧ dQ, or

d(pdq +QdP ) = 0.
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If (3.4.1) can be resolved with respect to the variables, p,Q, i.e. if we can express from (3.4.1)

p and Q as functions of q and P :

p = p(q, P ), Q = Q(q, P )

then the differential 1-form

λ : −p(q, P )dq +Q(q, P )dP

is closed, and hence exact, because all closed forms in the whole Euclidean space are exact.

Therefore, there exists a function S(q, P ), such that dS = λ, or

p =
∂S

∂q
(q, P ), (3.4.3)

Q =
∂S

∂P
(q, P ). (3.4.4)

Conversely, any function S(q, P ) defines via formulas (3.4.3) a canonical transformation if

(and this is a very big ”IF”) equations (3.4.3) can be resolved with respect to the variables P

and Q. The function S(q, P ) is called a generating function for the canonical transformation

(3.4.1). Given a transformation its generating function, if exists is defined up an additive

constant.

3.4.2 Polarizations

The above construction of a generating function is a special case of a more general phe-

nomenon. We begin with the following Linear Algebra lemma. Consider the standard sym-

plectic space R2n. Note that the n-dimensional coordinate subspaces Lq = {p = 0} and

Lp = {q = 0} are Lagrangian and they intersect at one point, the origin. This is an example

of a polarization. In general, a polarization is any pair L1, L2 ⊂ R2n of Lagrangian subspaces

of R2n which are transverse, i.e. intersect only at the origin.

Lemma 3.10. For any polarization L1, L2 ⊂ R2n there is a linear canonical transform

F : R2n → R2n such that F (L1) = Lq and F (L2) = Lp. In other words, any two polarizations

are equivalent under a linear symplectic change of coordinates.
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Proof. To simplify the notation, we will prove it only for the case n = 2. The general case

is similar. Let e1, f1, e2, f2 be the standard symplectic basis of R4, i.e.

ω(e1, f1) = ω(e2, f2) = 1, ω(e1, f2) = ω(e2, f1) = ω(f1, f2) = ω(e1, e2) = 0.

We have Lq = Span(e1, e2), Lp = Span(f1, f2).

Take any basis v1, v2 ∈ L1. Consider ω-orthogonal complements v⊥ω1 , v⊥ω2 of vectors v1

and v2. Then ⊃ L1, v
⊥ω
2 ⊃ L1, and dim(v⊥ω1 ) = dim(v⊥ω2 ) = 3 and v⊥ω1 ∩ v⊥ω2 = L1.

There exists a non-zero vector w1 ∈ L2 ∩ v⊥ω2 . Then w1 /∈ v⊥ω1 (because v⊥ω1 ∩ v⊥ω2 = L1),

and therefore ω(v1, w1) 6= 0. By scaling w1 with a scalar factor we can arrange that ω(v1, w1).

Similarly we can find a vector w2 ∈ L2 ∩ v⊥ω1 , such that ω(v2, w2) = 1. Summarizing our

construction we get

ω(v1, w1) = ω(v2, w2) = 1, ω(v1, w2) = ω(v2, w1) = ω(v1, v2) = ω(w1, w2) = 0.

Hence the linear transformation which sends the basis v1, w1, v2, w2 to the basis e1, f1, e2, f2

preserves the symplectic form ω and maps the polarization L1, L2 onto the polarization

Lq, Lp.

Let us now revisit the generating function construction for canonical transfornations.

Consider a canonical transformation f : R2n → R2n given by the formulas (3.4.1) and take

its graph

Γf = {(p, q, P = P (p, q), Q = Q(p, q))}.

Then ΓF is Lagrangian for the symplectic form

Ω := dp ∧ dq − dP ∧ dQ = dp ∧ dq + dQ ∧ dP.

Note that the Lagrangian coordinate planes Lq,P and Lp,Q form a polarization of R4n =

R2n×R2n. But as it follows from Lemma 3.10 any other pair of transverse Lagrangian planes

also form a polarization, and because all polarizations are symplectically equivalent one can

associates a generating function with any polarization (L1, L2) for which the projection of

Γf onto L1 along L2 is non-degenerate. Hence, if the polarization Lq,P and Lp,Q does not
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satisfy this condition, then one might want to search for another polarization for which

this condition holds. For instance, one can try the polarization Lq,Q, Lp,P . Unfortunately, for

sufficiently complicated transformation the regularity of projection condition does not hold

for any polarization. A hint of what can be done in this case is given in Section 3.4.6 below.

3.4.3 First order systems

Consider a first order Hamiltonian system with the Hamiltonian

H(p, q) =
p2

s
+ U(q).

We will assume that the

0 ≤ U(q)→|q| → ∞∞,

that U(q) = 0 and that q = 0 is the only critical point of the potential U . The Hamiltonian

equations are

dotp = −U ′(q),

q̇ = p.

The Hamiltonian is an integral of the system, so the (unparametrized) trajectories are energy

levels

Mh :=

{
p2

2
+ U(q)

}
, h ∈ R.

The integral

I(h) :=
1

2π

∫
Mh

pdq.

is called the action of the trajectory. We have

I(h) =
1

2π

∫∫
H≤h

dp ∧ dq,

and hence the action I(h) is up to the factor 1
2π

just the area of the domain enclosed by the

trajectory Mh. Note that due to our assumption on U the function I(h) is monotonically
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increasing and we have I ′(h) > 0. Hence, we can parameterize the level sets Mh by the

parameter I instead of h, so we will write M̃I instead of Mh when I(h) = I. We will also

denote by g(I) the inverse function to I(h), i.e. g(I(h)) = h.

Our goal to find a variable φ, valued in R/2πZ (i.e. defined up to addition of a multiple

of 2π like the angular coordinate), and such that

(p, q) 7→ (I, φ)

is a canonical change of coordinates, i.e. dp∧dq = dI ∧dφ. To do that we will try to find the

generating function S(I, q) for this canonical transformation, i.e. the function which satisfies

p =
∂S(I, q)

∂q
,

φ =
∂S(I, q)

∂I
.

Choose the point q0(I) = (0,−
√
g(I)) ∈ M̃I and denote by γI,q a path which is contained

in the level set Mh with I(h) = I and which projects to the interval [0, q] on the q-axis. This

path is not unique, but we ignore this for a moment. Define the generating function S(I, q)

by the formula

S(I, q) =

∫
γ(I,q)

pdq = −
q∫

0

√
2g(I)− 2U(q)dq. (3.4.5)

Then we have

∂S(I, q)

∂q
= p

and we define

φ =
∂S(I, q)

∂I
=
g′(I)

2

q∫
0

dq√
2g(I)− 2U(q)

.

We note that the path S(I, q) is defined up to adding a full loop around the level set M̃I .

But
∫̃
MI

pdq = 2πI, and therefore the variable φ is defined up to addition of a multiple of

∂(2πI))
∂I

= 2π.
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Example 3.11. Suppose U(q) = q2

2
. then I(h) = 1

2π

∫
p2+q2=2h

pdq = h, and hence g(I) = I,

M̃I = Mh = {p2 + q2 = 2I} We then have

S(I, q) = −
q∫

0

√
2I − q2dq,

∂S(I, q)

∂I
= −

q∫
0

dq√
2I − q2

= −

q√
2I∫

0

2du√
1− u2

= − arcsin

(
q√
2I

)
.

But this integral coincides up to a constant with the angular polar coordinate.

3.4.4 Tori and Lagrangian tori

Before considering the general case we discuss n-dimensional tori. An n-dimensional torus is a

submanifold diffeomorphic to the product of n circles: T = S1×· · ·×S1. Thinking of the circle

S1 as the quotient R/2π/Z, i.e. as parameterized by real number? up to multiples of 2π, we

can think of the torus as a tuples of n cyclic coordinates φi ∈ R/2π/Z. The decomposition of

a torus into a product of n circles is not unique. For instance, given any integer-valued (n×n)-

matrix A with detA = 1 the map x 7→ Ax of Rn induces a transformation Â : T n → T n.

For instance, when n = 2 and A =

1 0

1 1

, the transformation Â sends the meridians

φ1 = const to latitudes, but send the parallels φ2 = const} to curves which run once around

meridians and once around parallels.

Consider now a Lagrangian torus T in the symplectic space (R2n, dp∧ dq), dp∧ dq|T = 0.

Equivalently, this means that the differential for pdq|T is closed.

Example 3.12. The torus Ta1,...,an := {|z1| = a1, |z2| = a2, |zn| = an} ⊂ Cn = R2n is

Lagrangian.

Suppose we fixed a splitting of a Lagrangian torus T ⊂ R2n into the product S1×· · ·×S1.

Let φi be the corresponding cyclic coordinates. The numbers

Ij :=

∫
φk=ck, k 6=j

pdq
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are called periods of the Lagrangian torus T . They depend on the choice of the splitting, but

independent of any constants ck and any continuous deformation of the coordinate system.

Example 3.13. Periods of the torus Ta1,...,an := {|z1| = a1, |z2| = a2, |zn| = an} ⊂ Cn = R2n

are equal to Ij = πa2
j .

3.4.5 The general case

Suppose now we are given an integrable Hamiltonian system

p̈ = −∂H
∂q

;

q̈ =
∂H

∂p
, p, q ∈ Rn.

which has n independent integrals G1 = H,G2, . . . , Gn in involution:

{Gi, Gj} = 0, i, j = 1, . . . n.

Here independence means the linear independence of the differentials dG1, . . . , dGn at every

point, or equivalently, that the Jacobi matrix of the map (G1, . . . , Gn) : R2n → Rn has the

rank n.

According to the Liouville-Arnold theorem the compact common level sets Ta = {Ga =

a1, . . . , Gn = an} are n-dimensional tori, and the motion on these tori are quasi-periodic, i.e.

given by equations

φ̇1 = ω1,

. . . ,

φ̇n = ωn,

for some angular coordinates φ1, . . . φn ∈ R/2πZ, defined up to multiples of 2

pi. The constants ω1, . . . , ωn depends on the tori Ta and vary continuously with a.
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The goal of this section is to explain how these angular coordinates could be found. For

this we will try to find a canonical change of coordinates

(p, q) 7→ (I, φ), I = h(a).

Choose some c ∈ Rn. There exists a diffeomorphism F of the product (Bε(c) := {a ∈

Rn; ||a− c|| < ε})× (T = S1×· · ·×S1) onto a neighborhood of the torus Tc, so that a×T is

mapped onto the Lagrangian torus Ta. For each a ∈ Bε(c) we define Ij as periods of Ta with

respect to the above splitting. One can show that the map a 7→ I(a) = (I1(a), . . . , In(a)) is

1-1 in Bε(c), and hence we can invert this map: a = g(I).

We will also choose a base point z0 ∈ T = S1 × · · · × S1 Then F (a) = (p(a), q(a)) ∈ Ta.

Let us assume that the projection of Ta onto the coordinate q-space is 1−1 in a neighborhood

of the point F (a). Pick any path γaq(a),q in this neighborhood connecting the point F (a) =

(p(a), q(a)) with the point which projects to the point q and define

S(q, I) =

∫
γ
g(I)
q(g(I)),q

pdq.

Then we have ∂S
∂q

= p, and hence if we view S as a generating function, and define

φ :=
∂S

∂I
,

then the transformation (p, q) 7→ (I, φ) is canonical. In fact the same formulas define the

coordinates φ globally, but only up to multiples of 2π because going around one of factors

of the torus by definition increases the action function S by 2πIj, and increases ∂S
∂Ij

by 2π.

The coordinates I, φ are called action-angle coordinates. In action angles coordinates the

Hamiltonian depends only the action coordinates Ij, and hence Ij are integrals, and the

Hamiltonian system takes a simple form φ̇ = ∂H
∂I
.

Exercise 3.14 (Geodesics on an ellipsoid of revolution). Take an ellipsoid E := {x2 + y2 +

2z2 = 1} and consider the problem of a free particle moving on the surface of the ellipsoid.
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The Lagrangian of this system is just the kinetic energy

L = T =
1

2
(ẋ2 + ẏ2 + ż2).

It is clearly useful to pass to the cylindrical coordinates:

x = r cos θ, y = r sin θ, z.

Then

ẋ = cos θṙ − r sin θθ̇,

ẏ = sin θṙ + r cos θθ̇.

We also have

z = ± 1√
2

√
1− x2 − y2,

ż = ∓ 1√
2

xẋ+ yẏ√
1− x2 − y2

=

∓ 1√
2

rṙ√
1− r2

.

Hence,

T =
1

2

(
(ṙ)2 + r2(θ̇)2 + (ż)2

)
=

1

2

(
(ṙ)2 + r2(θ̇)2 +

r2(ṙ)2

1− r2

)
=

1

2

(
(ṙ)2

1− r2
+ r2(θ̇)2

)
.

Making the Legendre transform we get the Hamiltonian

H =
1

2

(
(1− r2)p2

r +
p2
θ

r2

)
.

The Hamiltonian is independent of θ and hence, pθ is an integral (it is the angular mo-

mentum). The integrals G1 = H and G2 = θ Poisson commute, and hence the system is

integrable. The invariant tori are

Ta = {G1 = a2
1, G2 = a2

2} =

|pθ| = a2
2, |pr| =

√
a2

1 −
a22
r2

1− r2

 , a1, a2 ≥ 0

To have these tori non-empty and non-degenerate a2
2 < a2

1 and in this case we have r ∈ (a2
a1
, 1).

Find action-angle coordinates and integrate the system explicitly.
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3.4.6 Fixed points of canonical transformation

In this section we illustrate the power of the method of generating functions for the problem

concerning existence of fixed points of symplectomorphisms. The following conjecture for-

mulated by V.I. Arnold in 1960s stimulated the development of a new subject of symplectic

topology.

Conjecture 3.15 (Arnold’s fixed points conjecture). Let (M,ω) be a closed symplectic man-

ifold and f : M → M a Hamiltonian diffeomorphism. Then f has at least as many fixed

points, as the minimal number of critical points of a smooth function φ : M → R.

Remark 3.16. In this generality the conjecture is still open. For the case of 2-torus and

other surfaces it was first proven by myself in [3]. For the case of an n-dimensional torus it

was proven by C. Conley and E. Zehnder in [1]. It was generalized to other manifolds by

the work of many people: M. Gromov ([6]), A. Floer ([5]), K. Fukaya and K Ono ([7]) and

others. It is now known for all symplectic manifolds, but the lower bound for the manifold

is not quite as good as predicted by Conjecture 3.15.

We note that this minimal number is at least 2 because any function on a closed manifold

has at least two critical points, the minimum and the maximum. In fact, it is usually larger.

For instance, for the 2-dimensional torus this number is 3, if one allows fixed points to be

degenerate, and 4 in the non-degenerate case.

3.5 Proof of Arnold’s conjecture for the 2-torus

Lemma 3.17. Given a loop γ : S1 → M consider a map F : S1 × [0, 1] → M given by the

formula γ(u, t) = ft(γ(u)), u ∈ S1, t ∈ [0, 1]. Then
∫

S1×[0,1]

F ∗ω = 0.

Proof. The tangent space to S1× [0, 1] is generated by the vector fields ∂
∂u

and ∂
∂t

. We have

∂

∂t
F ∗ω =

∂F

∂t
ω = XHt ω = −dHt.
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Hence, ∫
S1×[0,1]

F ∗ω =

1∫
0

(
∂

∂t
F ∗ω

)
dt = −

1∫
0

 ∫
ft(γ)

dHt

 dt = 0,

because the integral of the exact 1-form dHt over a closed curve ft(γ) is equal to 0.

We prove below Arnold’s fixed point conjecture for the 2-torus, but we will only prove

existence of 1 fixed point. A slightly more precise argument allows to prove existence of at

least 3 fixed points. The current proof was first given in [4].

What is remarkable about this proof that it could be given by H. Poincaré. In fact, the

first half of the proof almost precisely follows the first page of Poincaré’s paper [2].

Theorem 3.18 (C. Conley and E. Zehnder,[1]). Any Hamiltonian diffeomorphism f of the

2-torus (T 2, ω) = (R2/Z2, dp ∧ dq) must have at least 1 fixed point.

Proof. We view the torus T 2 as the quotient R2/Z2, i.e. the set of points (p, q) ∈ R2 up to

addition of a vector with integer coordinates. Let us denote by π the projection R2 → T 2.

The area form Ω = dp ∧ dq on R2 descends to the an area form ω on R2, i.e. π∗ω = Ω.

The Hamiltonian isotopy ft : T 2 → T 2 lifts to a Hamiltonian isotopy Ft : R2 → R2 such

that F0 = Id and φ ◦ Ft = ft for all t ∈ [0, 1].

We have F (p, q) = (P (p, q), Q(p, q)) and dP ∧ dQ = dp ∧ dq. Let us first assume that F

is C1-close to the identity. Then its graph

ΓF = {(p, q, P,Q)| P = P (p, q), Q = Q(p, q)} ⊂ R4

is graphical with respect to the splitting of R4n into the (q, P )- and (p,Q)-coordinate sub-

spaces, i.e.

ΓF = {p = p(q, P ), Q = Q(q, P )},

and hence the equation dp ∧ dq = dP ∧ dQ is equivalent to the existence of a function

G(q, P ) such that pdq+QdP = dG. Fixed points p = P,Q = q of F are zeroes of the 1-form

(p − P )dq + (Q − q)dP = d(G − qP ). In other words, fixed points are exactly the critical

points of the function G̃(q, P ) := G(q, P )− qP.
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Lemma 3.19. The function G̃ (called a generating function of the canonical transformationF )

is 1-periodic in variables q, P , i.e. G̃(q + 1, P ) = G̃(q, P + 1) = G̃(q, P ).

Proof. Take a path γ in the coordinate plane (p, q) connecting points γ(0) = (q0, p0) and

γ(1) = (q0 + 1, p0). Note that the projection γ̃ := π ◦ γ of this path to the torus T 2 is

a loop. Consider a family of paths δs : [0, 1] → R4 = R2 × R2, s ∈ [0, 1], defined by the

formula (p, q) = δ(t), (P,Q) = Fs(δ(t)), so that the path δs lies on the graph ΓFs . Denote

(Ps, Qs) := Fs(p0, q0). Then Fs(p0, q0 + 1) = (Ps, Qs + 1). Thus, δs(0) = (p0, q0, Ps, Qs),

δs(1) = (p0, q0 + 1, Ps, Qs + 1). Then by Stokes’ formula

G̃(q0 + 1, P1)− G̃(q0, P1) =

∫
δ1

dG̃ =

∫
δ1

(p− P )dq + (Q− q)dP.

But (p− P )dq + (Q− q)dP = pdq − PdQ+ d(P (Q− q)). Hence,

G̃(q0 + 1, P0)− G̃(q0, P0) =

∫
δ1

pdq − PdQ+ d(P (Q− q))

=

∫
γ

pdq −
∫
F◦γ

pdq +

∫
δ1

d(P (Q− q)),

But the latter integral is equal to 0 because the function P (Q− q) is equal to 0 at the end

points of the path δ1. On the other hand,
∫
γ

pdq =
∫
F◦γ

pdq. Indeed, denote β(s) := (Ps, Qs)

β(s) := (Ps, Qs + 1), Then,
∫
β

pdq −
∫
β

pdq. Hence,

∫
γ

pdq −
∫
F◦γ

pdq =

∫
γ

pdq +

∫
β

pdq −
∫
F◦γ

pdq −
∫
β

pdq.

Consider a square A = [0, 1]× [0, 1] and a map Φ : A→ R2 defined by the formula Φ(t, s) =

Fs(γ(t)). Then∫
γ

pdq +

∫
β

pdq −
∫
F◦γ

pdq −
∫
β

pdq =

∫
∂A

Φ∗(pdq) =

∫
A

Φ∗(dp ∧ dq).
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Denote Φ := π ◦ Φ : A → T 2. Recall that the projection π : R2 → T 2 satisfies π(p, q) =

π(p, q) + 1). Therefore, Φ(0, s) = Φ(1, s) for s ∈ [0, 1]. We have dp ∧ dq = π∗ω, and hence

Φ∗(dp ∧ dq) = Φ
∗
ω. But by Lemma 3.17 we have

∫
A

Φ
∗
ω = 0. Hence,

G̃(q0 + 1, P0)− G̃(q0, P0) =

∫
A

Φ∗(dp ∧ dq) =

∫
A

Φ
∗
ω = 0.

We similarly check that G̃(q0, P0 + 1) = wtG(q0, P0).

Thus the function G̃ hence descends to the torus T 2, and hence must have at least 2

critical points, the maximum and the minimum. In fact, one can show that it has to have

at least 3 critical points. But Its critical points are in 1-1 correspondence with the fixed

points of f , and therefore, f has as many fixed points. This concludes the proof of Arnold’s

conjecture for the 2-torus for the case when f (and hence F ) is C1-small

Consider now the of the general F . Recall that the Hamiltonian isotopy Ft connects F0 =

Id with F1 = F . For any integer N > 0 we can present F as a composition F = F̃N ◦ . . . F̃1,

where we denote

F̃k = F k
N
, k = 1, . . . , N.

By taking N sufficiently large we can make all the diffeomorphisms F̃k arbitrarily C1-small.

We consider below the case N = 2, the general case differs only in the notation.

As above, we can conclude, that the product Γ := ΓF̃1
× ΓF̃2

⊂ R8 of the graphs of F̃1

and F̃2 is given by the equations

p1 = p1(q1, P1), Q1 = Q1(q1, P1), p2 = p2(q2, P2), Q2 = Q2(q2, P2).

Furthermore, we have pidqi +QidPi = dGi and the functions G̃i = Gi− qiPi are Z2-periodic,

i = 1, 2. Set G̃(q1, P1, q2, P2) := G1(q1, P1) + G2(q2, P2). Fixed points of F are in 1-1 corre-

spondence with the intersection Γ∩{p2 = P1, Q1 = q2, p1 = P2, Q2 = q1}, i.e. with the zeroes

of the 1-form

α :=(p1 − P2)dq1 + (Q1 − q2)dP1 + (p2 − P1)dq2 + (Q2 − q1)dP2

=dG(q1, q2, P1, P2) + d
(

(P1 − P2)(q1 − q2)
)
.
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Changing the variables (q1, q2, P1, P2) 7→ (q1, u1 := q2 − q1, P1, U1 := P2 − P1) we get

α = d(Ĝ+ u1U1), where Ĝ(q1, u1, P1, U1) := G̃(q1, q1 + u1, P1, P1 + U1).

Similarly to the proof of Lemma 3.19, one can check that the function Ĝ is periodic with

respect to all variables, and in particular, in variables (q1, P1), and hence it descends to a

function

T 2 × R2 = R2/{q1 ∼ q1 + 1, P1 ∼ P1 + 1} → R.

Note also that this function and its derivatives are bounded. Then the following lemma

implies that the function G̃(q1, P1, u1, U1) must have some critical points, which, as we showed

above, corresponds to fixed points of F .

Lemma 3.20. Let M be a closed manifold, C : Rn → R a non-degenerate quadratic form,

and φ : M × Rn → R a smooth function which is bounded and has bounded 1st derivatives.

Then the function ψ(x, y) = φ(x, y) + C(y), x ∈M, y ∈ Rn has at least 1 critical point.

Proof. [Sketch of the proof] We can assume that C(y) =
k∑
1

y2
j −

n∑
k+1

y2
j . Suppose that k 6= 0

(if k = 0 we can change the sign of the function ψ). Consider a map h : Rk → M × Rn

such that h(y1, . . . , yk) = (x0, y1, . . . , yk, 0, . . . , 0) when ||y||2 =
k∑
1

y2
j is large enough. Let

us denote by H the space of all maps h with this property. For any h ∈ H the function

ψ ◦ h : Rk → R is bounded below and achieves its minimal value at a point ah ∈ Rk. Indeed,

lim
||y||→∞

ψ ◦ h = +∞. Denote bh = h(ah) ∈ M × Rn. There exists a point b ∈ M × Rn such

that ψ(b) ≥ ψ(bh) for all h ∈ H (why?). Then b is a critical point of ψ (why?).
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