Math 177: Homework N3

Due on Monday, May 28

1. A particle of mass m is moving in \mathbb{R}^{3} in a central field with potential energy $U(r)$. Write its Hamiltonian function and the equation of motion in the canonical coordinates $\left(r, \phi, \theta, p_{r}, p_{\phi}, p_{\theta}\right)$ associated with the spherical coordinates coordinates (r, ϕ, θ).
2. The Lagrangian of a mechanical system is given by the formula
$L\left(q_{1}, q_{2}, q_{3}, \dot{q}_{1}, \dot{q}_{2}, \dot{q}_{3}\right)=\left(1+q_{1}^{2}+q_{2}^{2}\right)\left(\dot{q}_{1}^{2}+4 \dot{q}_{1} \dot{q}_{2}+3 \dot{q}_{2}^{2}\right)-\left(q_{1}-q_{2}\right)^{2}-\left(q_{2}-q_{3}\right)^{2}-\left(q_{3}-q_{1}\right)^{2}$.
Find the Hamiltonian function of the system.
3. Suppose that \mathbb{R}^{2} is endowed with an area form $\omega=d p \wedge d q$. Let $H_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}, t \in[0,1]$, be a family of smooth functions equal to 0 outside of the unit disc D. Let $X_{t}:=X_{H_{t}}$ be the Hamiltonian vector field generated by H_{t}, i.e. $\left.X_{t}\right\lrcorner \omega=-d H_{t}$. Let $f_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the flow of area preserving transformations generated by X_{t}, i.e.

$$
\frac{d f_{t}}{d t}(x)=X_{t}\left(f_{t}(x)\right)
$$

Let $z_{0} \in \operatorname{Int} D$ be a fixed point of f_{1}, i.e. $f_{1}\left(z_{0}\right)=z_{0}$. Denote by γ the loop $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ defined by the formula $\gamma(t)=f_{t}\left(z_{0}\right), t \in[0,1]$. Then the integral $S\left(z_{0}\right):=\int_{\gamma} p d q-H_{t} d t$ is called action of the fixed point z_{0}.

Prove that for any path $\delta:[0,1] \rightarrow \mathbb{R}^{2}$ such $\delta(0) \in \mathbb{R}^{2} \backslash D$ and $\delta(1)=z_{0}$ one has

$$
\int_{\delta} p d q-\int_{f_{1}(\delta)} p d q=S\left(z_{0}\right) .
$$

In particular, the integral in the left hand side of the equation is independent of the choice of the path δ, so that the action depends only on f_{1} and not on a choice of the Hamiltonian H_{t} which generates it.
4. Prove the following Hamiltonian form of the least action principle. Consider a system given by a Hamiltonian function $H(q, p)$ on the phase space $T^{*} M$. Fix two points $a, b \in M$ and denote by \mathcal{P} the space of all paths $\gamma:[0,1] \rightarrow T^{*} M$ with end points $\gamma(0) \in T_{a}^{*}(M), \gamma(1) \in$ $T_{b}^{*}(M)$. Prove that the trajectory of the system which starts at a point of $T_{a}^{*}(M)$ and ends at a point of $T_{b}^{*}(M)$ is an extremal of the action functions

$$
S(\gamma)=\int_{\gamma} p d q-H d t
$$

where $\gamma \in \mathcal{P}$.
5. Find an area preserving transformation $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(P, Q)=f(p, q)$, if its graph is given by the generating function $F(q, P)=\left(q+q^{3}\right) P$. In other words, the graph of the area preserving map f in $\left(\mathbb{R}^{4}=\mathbb{R}^{2} \times \mathbb{R}^{2}, d p \wedge d q-d P \wedge d Q\right)$ given by the generating function F with respect to the polarization of \mathbb{R}^{4} by the coordinate plane (q, P) and (p, Q).

Each problem is 10 points.

