Math 177: Homework N3

Solutions

1. A particle of mass m is moving in R? in a central field with potential energy U(r).
Write its Hamiltonian function and the equation of motion in the canonical coordinates

(r, 6,0, pr, pg, Do) associated with the spherical coordinates coordinates (r, ¢, 0).

In the Cartesian coordinates the Lagrangian is equal

1, . i
L=§qf+QS+Q§—U(T),

where 7 = \/¢? + ¢3 + ¢3 and hence the Hamiltonian is equal to

1
H =i +p5 +p3) + U(r). (1)
We have
q1 = rsinf cos ¢,
g2 = rsin fsin ¢,
q3 = rcosf.
Thus

dqy = sin 6 cos ¢dr + r cos 0 cos ¢pdf — r sin 6 sin pdo,
dge = sin @ sin ¢dr + r cos 0 sin ¢pdf + r sin 0 cos pdo,

dgs = cos Odr — rsin 6d6.



Therefore

p1dqr + padge + ps3dgs = pi1(sin € cos ¢pdr + r cos 6 cos ¢pdf — rsin @ sin pdg)
+ pa(sin O sin ¢dr + 7 cos 0 sin ¢df + r sin 0 cos ¢pdd) + ps(cos Odr — r sin 6db)
= (p1 sin @ cos ¢ + po sin @ sin ¢ + p3 cos O)dr
+ (p17 cos 6 cos ¢ + por cos 0sin ¢ — p3rsin 0)do

+ (—pyrsin@sin ¢ + porsin 6 cos ¢)do.
We want in new coordinates (7, ¢, 8, p,, ps, po) to satisty
p1dqi + pagz + p3dgs = prdr + psdd + pedt

, and hence we get

p1 sin 6 cos ¢ ~+pg sin 0 sin ¢ + p3 cos =D,
P17 cos 6 cos ¢ +por cos @ sin ¢ — p3rsinf = py
p1(—rsinfsin @) ~+por sin 6 cos ¢ = Dy

Solving this linear system with respect to py, p2 and ps and plugging the results into (1) we
get

1 2 2
H:—(pf—i—&—i- il )+U(r).

2 r?2  r2sinf?
Alternatively one can first express ¢; in spherical coordinates, and then perform the

Legendre transform.

2. The Lagrangian of a mechanical system is given by the formula

L(a1, 92,43, 1, 2+ G3) = (1467 +63) (47 + 4did + 35 + 43) — (01— @2)" — (2 —3)* — (@3 —1)*.
Find the Hamiltonian function of the system.

via the Legendre transform

The Hamiltonian H(q, p) is related to the Lagrangian L(g

H(q,p) = p¢ — L(q,q), where p =

4)
oL
dq



In our case
pr= 14+ 6) (260 + 44),

p2 = (1+ ¢ +q3)(4¢1 + 6do)

ps=2(1+ ¢ + ¢3)ds.

Or,
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Solving the system with respect to ¢ we get

0 = —3p1 + 2po
1 — 5749 . 9 . o9\
201+ ¢ + ¢3)
Gy — 2p1 — p2
2 7 571 . 9 . o
201+ ¢ + ¢3)
, 1
=
201+ ¢ + ¢3)
Therefore,
H(q,p) = ———5—— (14 (=3p1 + 2p2)* + 4(=3p1 + 2p2) (2p1 — p2) + 3(2p1 — p2)* + 3

1
(- @) — (- +(@G—a)= ] (1 — 3p} — p3 + 4p1p2)

41+ ¢} + ¢3

+ (1 — @)= (2 — @)+ (3 — @)™

3. Suppose that R? is endowed with an area form w = dp A dq. Let H; : R? - R, t € [0,1],
be a family of smooth functions equal to 0 outside of the unit disc D. Let X; := Xy, be the
Hamiltonian vector field generated by Hy, i.e. X; Jw = —dH,. Let f; : R? — R? be the flow

of area preserving transformations generated by X, i.e.

df,

dt (z) = Xi(fi(z)).



Let 2z € IntD be a fixed point of fi, i.e. fi(29) = 20. Denote by ~ the loop 7 : [0, 1] — R?

defined by the formula v(t) = fi(z0), ¢t € [0,1]. Then the integral S(z) := [ pdg — Hdt is
v
called action of the fixed point z.

Prove that for any path § : [0, 1] — R? such §(0) € R?*\ D and §(1) = 2, one has

—/pdq+ /pdq:S(Zo)-
) f1(0)

In particular, the integral in the left hand side of the equation is independent of the choice
of the path 4, so that the action depends only on f; and not on a choice of the Hamiltonian

H; which generates it.

Denote @ := {0 < s,t <1} C R? and consider a map F : Q x R? given by the formula

Q(s,t) = fu(9(s))-

Consider the form \ := F*pdq and apply to its Stokes’ theorem

QQ/A:Q/dA.
/Az/pdq+/pdq— /pdq- (2)

Note that

oQ § ¥ fi(y)
On the other hand,
1 1 @ @
/d)\:/dF*pdq:/F*dp/\dq:/ /g o lds | dt (3)
q q
Q Q Q 0 \o [ds O
But
op _,__OH 0g_ . _OH
ot ' oo 1T oy



Therefore,
1 1 @ @ 1 1 @ _9H
/F*dp/\dq:/ /38 o |ds dt:/ /68 % \ds | dt
9 g 9 oH
Q 0 0o |0s Ot 0 0 |0s dp
1 1

1 1

_ OHdp  O0HJq _/ /3H(P(S,t)aQ(8,t))

_/ / (8}9 0s * dq as) ds | dt = s ds | dt
0o \0 o \0

1

— [ (1,0, 01,1) = Hp0.0),0,1))it.

0

We have (p(0,t),4(0,t)) = f:(6(0)) = d(0), and

(p(l’t)7Q(1’t)) = ft(ZO) - fY(t)'
Hence

/W@@WMLM—H@@mﬂ&mﬁz/HMmﬁ

Combining equations (2)-(5)

—/pdq+ /pdq:/pdq—Hdt.

é F1i(y) v

4. Prove the following Hamiltonian form of the least action principle. Consider a system

given by a Hamiltonian function H (g, p) on the phase space T*M. Fix two points a,b € M

and denote by P the space of all paths 7 : [0, 1] — T*M with end points v(0) € T(M),~v(1) €

TF(M). Prove that the trajectory of the system which starts at a point of 7*(M) and ends

at a point of T;7(M) is an extremal of the action functions

5() = [ pdg ~ H,

Y

where v € P.



Let us deduce the Euler Lagrange equations for the above variational problem for the-

Hamiltonian action functional S(~y fpdq — Hdt. Take a variation 7.(t) := v(t) + €h(t),
where h(t) = (p = hi(t),q = hg(t)) and hQ(O) = ho(1) = 0. Then

50 = S0) = [ ((0(0) + el () dl6) + eha(®) - p(0)i(0)

1

4 [(H) + (o). 0(0) + ehalt) ~ H(0),a(t))i

0
1
: OH  0H
:e/@m+mmmi/&7m 5%0& +0(e).
0 0

Integration by part and taking into account the boundary conditions hs(0) = ha(1) = 0 we

get
1 1
/MM:—/mm.
0 0
Therefore,
S(e) = S() =
1 1
/ —phs + Ghy)d /(_hl —h2> dt | +0(e)
0 0
oOH
- — ] — — 0(e).
/ = G+ (= G hadt | +0(0)

0

The diffential (or it is called in calculus of variations, the variation 65, i.e. the linear part

of the action functional is equal to
1
0H 0H
0S = ) — —)h — —— )hodt.
/( p 8q> 1+ (g 8p) 2
0

At critical points 0.5 = 0 for any hy, ho, and hence this leads to the equations

o om . oH

6



But this is just the Hamiltonian system of equations, and hence the variational principle is

equivalent to Hamiltonian equations.

5.Find an area preserving transformation f : R? — R? (P,Q) = f(p,q), if its graph is
given by the generating function F(q, P) = (¢ + ¢*)P. In other words, the graph of the area
preserving map f in (R* = R? x R? dp A dg — dP A dQ) given by the generating function F
with respect to the polarization of R* by the coordinate plane (g, P) and (p, Q).

We have

OF
p:_:P(l_l_qu)a

dq
OF ;
Q=op=atd"

Solving with respect to variables P, () we get

p__ P
1+ 3¢?

Q=q+q.

These formulas define the required canonical transformation.



