Math 177: Homework N2

Due on Wednesday, May 14

- 1. Prove the following properties of the Lie bracket of two vector fields:
- a) Jacobi identity:

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.$$

b) Given a function f and vector fields X, Y one has

$$[X, fY] = df(X)Y + f[X, Y].$$

- 2. Let α be a non-vanishing differential 1-form and X a vector field on \mathbb{R}^2 Show that in order that the flow X^t of X was a symmetry of the line field $\ell = \{\alpha = 0\}$ it is necessary and sufficient that $L_X \alpha = f \alpha$ for some function f on \mathbb{R}^2 .
- 3. Find a curve on the plane whose tangent lines form with the coordinate axis triangles of area $2a^2$.
- 4. Let us view \mathbb{C}^n as \mathbb{R}^{2n} with the operator of multiplication by i. Denote by
 - GL(2n) the group of invertible real linear transformations of \mathbb{R}^{2n} ;
 - $GL(n,\mathbb{C}) \subset GL(2n,\mathbb{R})$ the group of invertible complex linear transformation of \mathbb{C}^n ;
 - $U(n) \subset GL(n,\mathbb{C})$ the group of unitary transformations of \mathbb{C}^n , i.e. transformations preserving the Hermitian form $\sum_{1}^{n} z_k \overline{w_k}$;

- $Sp(2n) \subset GL(2n,\mathbb{R})$ the group of symplectic transformations of \mathbb{R}^{2n} , i.e. transformations preserving the symplectic form $\omega = \sum_{1}^{n} x_k \wedge y_k$;
- $SO(2n) \subset GL(2n,\mathbb{R})$ the group of orthogonal transformations of \mathbb{R}^{2n} , i.e. transformations which preserves the standard scalar dot-product.

Prove that

$$SO(2n) \cap Sp(2n) = GL(n, \mathbb{C}) \cap SO(2n) = GL(n, \mathbb{C}) \cap Sp(2n) = U(n).$$

5. Consider a PDE

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = u - xy.$$

Using the method of characteristics solve the Cauchy problem for the initial data $u(2,y) = 1 + y^2$.

6. Find the largest value of t for which the solution of the Cauchy problem for the partial differential equation

$$u_t + uu_x = -\sin x, \ u|_{t=0} = 0,$$

can be extended to the interval [0, t).

Each problem is 10 points