Math 177: Homework N2

Due on Wednesday, May 14

1. Prove the following properties of the Lie bracket of two vector fields:
a) Jacobi identity:

$$
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0
$$

b) Given a function f and vector fields X, Y one has

$$
[X, f Y]=d f(X) Y+f[X, Y]
$$

2. Let α be a non-vanishing differential 1 -form and X a vector field on \mathbb{R}^{2} Show that in order that the flow X^{t} of X was a symmetry of the line field $\ell=\{\alpha=0\}$ it is necessary and sufficient that $L_{X} \alpha=f \alpha$ for some function f on \mathbb{R}^{2}.
3. Find a curve on the plane whose tangent lines form with the coordinate axis triangles of area $2 a^{2}$.
4. Let us view \mathbb{C}^{n} as $\mathbb{R}^{2 n}$ with the operator of multiplication by i. Denote by

- $G L(2 n)$ the group of invertible real linear transformations of $\mathbb{R}^{2 n}$;
- $G L(n, \mathbb{C}) \subset G L(2 n, \mathbb{R})$ the group of invertible complex linear transformation of \mathbb{C}^{n};
- $U(n) \subset G L(n, \mathbb{C})$ the group of unitary transformations of \mathbb{C}^{n}, i.e. transformations preserving the Hermitian form $\sum_{1}^{n} z_{k} \overline{w_{k}}$;
- $S p(2 n) \subset G L(2 n, \mathbb{R})$ the group of symplectic transformations of $\mathbb{R}^{2 n}$, i.e. transformations preserving the symplectic form $\omega=\sum_{1}^{n} x_{k} \wedge y_{k}$;
- $S O(2 n) \subset G L(2 n, \mathbb{R})$ the group of orthogonal transformations of $\mathbb{R}^{2 n}$, i.e. transformations which preserves the standard scalar dot-product.

Prove that

$$
S O(2 n) \cap S p(2 n)=G L(n, \mathbb{C}) \cap S O(2 n)=G L(n, \mathbb{C}) \cap S p(2 n)=U(n) .
$$

5. Consider a PDE

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=u-x y
$$

Using the method of characteristics solve the Cauchy problem for the initial data $u(2, y)=$ $1+y^{2}$.
6. Find the largest value of t for which the solution of the Cauchy problem for the partial differential equation

$$
u_{t}+u u_{x}=-\sin x,\left.\quad u\right|_{t=0}=0
$$

can be extended to the interval $[0, t)$.

Each problem is 10 points

