Math 177: Homework N1 Solutions

1. Consider a system of two quasi-homogeneous equations

$$
\begin{aligned}
& x y \frac{d y}{d x}=z^{2} \\
& z \frac{d z}{d x}=x y, \quad x, y, z>0 .
\end{aligned}
$$

Find a change of variables which reduces it to a first order system.

Rewrite the system in the Pfaffian form

$$
\begin{aligned}
& x y d y=z^{2} d x \\
& z d z=x y d x
\end{aligned}
$$

First determine the weights Assign $x \rightarrow \alpha, y \rightarrow \beta, z \rightarrow \gamma$. Then

$$
2 \beta=2 \gamma, 2 \gamma=2 \alpha+\beta
$$

i.e. we can choose $\alpha=1, \beta=\gamma=2$. Choose new coordinates $u=x, v=\frac{y}{x^{2}}, s=\frac{z}{x^{2}}$. Then $y=u^{2} v, z=u^{2} s$, and hence the system takes the form

$$
\begin{aligned}
& u^{3} v\left(2 u v d u+u^{2} d v\right)-u^{4} s^{2} d u=0 \\
& u^{2} s\left(2 s u d u+u^{2} d s\right)-u^{3} v d u=0
\end{aligned}
$$

or simplifying the equations we get

$$
\begin{aligned}
& \left(2 v^{2}-s^{2}\right) d u+u v d v=0 \\
& \left(2 s^{2}-v\right) d u+s u d s=0
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\frac{d u}{u} & =\frac{v}{s^{2}-2 v^{2}} d v= \\
\frac{d u}{u} & =\frac{s}{v-2 s^{2}} d s
\end{aligned}
$$

Hence, we reduced the system to 1 first order equation

$$
\frac{v}{s^{2}-2 v^{2}} d v=\frac{s}{v-2 s^{2}} d s
$$

After solving we find v, s, and then we can find the remaining variable u from the equation

$$
\frac{d u}{u}=\frac{s}{v-2 s^{2}} d s
$$

2. A particle is moving in a central potential field $V(x)=C\|x\|^{\alpha}$ in \mathbb{R}^{3}. Suppose that there exists a homothety $x \mapsto \lambda x, x \in \mathbb{R}^{3}$, which maps a periodic orbit Γ_{1} onto a periodic orbit Γ_{2}. Suppose that the periods of the orbits are T_{1} and T_{2}, respectively. Find α.

The Newton equation of motion is $\ddot{x}=-\nabla V(x)=C \alpha\|x\|^{\alpha-1} e_{r}$, where e_{r} is the radial unit vector field. Reducing to the first order system we get

$$
\begin{aligned}
& \dot{x}=y \\
& \dot{y}=C \alpha\|x\|^{\alpha-1} e_{r}
\end{aligned}
$$

, or

$$
\begin{aligned}
& d x=y d t \\
& d y=C \alpha\|x\|^{\alpha-1} e_{r} d t
\end{aligned}
$$

Assigning weights $x \rightarrow a, y \rightarrow b, t \rightarrow c$, we get:

$$
a=b+c, b=(\alpha-1) a+c,
$$

i.e. $a(2-\alpha)=2 c$. We can take $a=1, c=\frac{2-\alpha}{2}$. That means that the $x \mapsto \lambda x, t \mapsto \lambda^{\frac{2-\alpha}{2}}$ is a symmetry of the system. This implies that $T_{2}=\lambda^{\frac{2-\alpha}{2}} T_{1}$, and hence $\frac{2-\alpha}{2}=\log _{\lambda} \frac{T_{2}}{T_{1}}=$ $\frac{\ln T_{2}-\ln T_{1}}{\ln \lambda}$, or

$$
\alpha=\frac{2 \ln \lambda}{\ln T_{1}-\ln T_{2}}-2 .
$$

3. Compute the phase flow of the vector field on the plane

$$
v=x \frac{\partial}{\partial y}+y \frac{\partial}{\partial x} .
$$

Suppose that a line field

$$
\ell:=\{a(x, y) d x+b(x, y) d y=0\}
$$

is invariant under this flow. Which change of variables one needs to make in order to solve the equation

$$
a(x, y) d x+b(x, y) d y=0
$$

The phase flow of v given by solving the system

$$
\begin{aligned}
& \dot{x}=y, \\
& \dot{y}=x
\end{aligned}
$$

Solving it we get

$$
\begin{aligned}
& x(t)=x_{0} \cosh t+y_{0} \sinh t, \\
& y(t)=x_{0} \sinh t+y_{0} \cosh t,
\end{aligned}
$$

The trajectories of this system is the families of hyperbolas

$$
x^{2}-y^{2}=C .
$$

. It is impossible to find a curve transverse to all trajectories. So the change of variables has to be done separately in quadrants We will do it the quadrant $|x|<y$.

Then the ray $r_{0}:=\{y=0, x \geq 0\}$ is transverse to all the trajectories. After the time t flow the ray r_{0} is mapped onto the ray $r_{t}=\{y=(\tanh t) x\}$. We note that Hence, as the new coordinatex in which variable separate we can choose $u=y x, v=x^{2}=y^{2}$.
4. Find the solutions, the criminant and the discriminant of the equation

$$
\left(y^{\prime}\right)^{3}+3 x y^{\prime}-3 y=0
$$

Consider $\Sigma=\left\{p^{3}+3 x p-3 y=0\right\} \subset J^{1}(\mathbb{R})$. The characteristics are given by the system of equations

$$
\begin{aligned}
& F(x, y, p)=p^{3}+3 x p-3 y=0 \\
& d F=3\left(p^{2}+x\right) d p+3 p d x-3 d y=0 . \\
& d y-p d x=0 .
\end{aligned}
$$

Hence,

$$
\left(p^{2}+x\right) d p=0
$$

Hence, there are solutions for $d p=0$. They are lines

$$
y=C x+\frac{C^{3}}{3}
$$

There also the solution $x=-p^{2}$. This equation together with the equation of Σ defines the criminant. The discriminant is its projection to the (x, y)-plane, which is given by

$$
y^{2}=\frac{4}{9} x^{3}
$$

5. Let $f=\sum_{1}^{n} a_{i j} x_{i} x_{j}$ be a quadratic form on \mathbb{R}^{n}. Show that its Legendre transform $g(p)$ is again a quadratic form $g(p)=\sum_{1}^{n} b_{i j} p_{i} p_{j}$ and that the value of these forms at the points corresponding to each other under the Legendre map coincide.
(Legendre map is a diffeomorphism $x \mapsto p$ which is used in the definition of Legendre transform.)

We can assume that A is a symmetric matrix (because one can always rewrite a quadratic form with a symmetric matrix). We will also assume that A is not degenerate because otherwise the Legendre transform is not well defined. Then

$$
f(x)=\frac{1}{2}\langle A x, x\rangle
$$

The factor $\frac{1}{2}$ is inserted to simplify computations. Legendre transform $\hat{f}(p)$ is given by

$$
\hat{f}(p)=\langle x, p\rangle-\frac{1}{2}\langle A x, x\rangle
$$

where $p=\nabla f(x)=A x$, or $x=A^{-1} p .$. Hence,

$$
\hat{f}(p)=\left\langle A^{-1} p, p\right\rangle-\frac{1}{2}\left\langle p, A^{-1} p\right\rangle=\frac{1}{2}\left\langle A^{-1} p, p\right\rangle .
$$

Under the Legendre map $p=A x$ we have

$$
\hat{f}(p)=\hat{f}(A x)=\frac{1}{2}\langle x, A x\rangle=f(x)
$$

Each problem is 10 points.

