Math 177. Geometric Methods in ODE
 Spring 2018

Take-home Final Exam

Due on Monday, June 4

1. Prove that the following Cauchy problem :

$$
\left(x^{3}-3 x y^{2}\right) \frac{\partial u}{\partial x}+\left(3 x^{2} y-y^{3}\right) \frac{\partial u}{\partial y}=0,\left.\quad u\right|_{x^{2}+y^{2}=2}=\sin y,
$$

has no solution in a neighborhood of the point $(1,1)$.
2. Consider a Lagrangian system in the upper half plane

$$
\{(x, y) ; y>0\} \subset \mathbb{R}^{2}
$$

with the Lagrangian function

$$
L(x, y, \dot{x}, \dot{y})=\frac{\dot{x}^{2}+\dot{y}^{2}}{y^{2}}
$$

Write the equation of motion in the Hamiltonian form, find explicitly all the trajectories and describe qualitatively their behavior.
3. Consider the contact plane field $\xi=\{d z-y d x=0\}$ in \mathbb{R}^{3}. A 1 dimensional submanifold $\Gamma \subset \mathbb{R}^{3}$ is called Legendrian if it is tangent to ξ. Denote by π the projection $(x, y, z) \mapsto(x, y)$. Suppose that the submanifold Γ is connected and closed (i.e. diffeomorphic to a circle). Prove that the projected curve $\pi(\Gamma) \subset \mathbb{R}^{2}$ must have self intersection points.

Each problem is 10 points.

