Math 177. Geometric Methods in ODE
 Spring 2018

Take-home Final Exam

1. Prove that the following Cauchy problem :

$$
\left(x^{3}-3 x y^{2}\right) \frac{\partial u}{\partial x}+\left(3 x^{2} y-y^{3}\right) \frac{\partial u}{\partial y}=0,\left.\quad u\right|_{x^{2}+y^{2}=2}=\sin y,
$$

has no solution in a neighborhood of the point $(1,1)$.
At the point $x=1, y=1$ the equation reads

$$
-2 \frac{\partial u}{\partial x}+2 \frac{\partial u}{\partial y}=0,
$$

or

$$
d u(v)=0, \quad \text { where } v=(-1,1)
$$

But the vector v is tangent to the circle $\left\{x^{2}+y^{2}=2\right\}$ at the point $(1,1)$, and hence

$$
d u(v)=\left.\frac{d(\sin y)}{d y}\right|_{y=1}=-\cos 1 \neq 0
$$

2. Consider a Lagrangian system in the upper half plane

$$
\{(x, y) ; y>0\} \subset \mathbb{R}^{2}
$$

with the Lagrangian function

$$
L(x, y, \dot{x}, \dot{y})=\frac{\dot{x}^{2}+\dot{y}^{2}}{y^{2}} .
$$

Write the equation of motion in the Hamiltonian form, find explicitly all the trajectories and describe qualitatively their behavior.

We have

$$
H=\frac{y^{2}\left(p_{x}^{2}+p_{y}^{2}\right)}{4}
$$

The corresponding Hamiltonian system is

$$
\begin{align*}
\dot{x} & =\frac{y^{2} p_{x}}{2} \tag{1}\\
\dot{y} & =\frac{y^{2} p_{y}}{2} \tag{2}\\
\dot{p}_{y} & =-\frac{y\left(p_{x}^{2}+p_{y}^{2}\right)}{2} \tag{3}\\
\dot{p}_{x} & =0 . \tag{4}
\end{align*}
$$

Hence we have 2 integrals, H and p_{x}. Recall that $p_{x}=\frac{\partial L}{\partial x}=\frac{2 \dot{x}}{y^{2}}$. Hence, if $p_{x} \neq 0$ then

$$
\frac{4 H}{p_{x}^{2}}=\frac{y^{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)}{\dot{x}^{2}}=\text { const. }
$$

The following picture illustrates the meaning of the quantity $\frac{y^{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)}{\dot{x}^{2}}$.

Thus, $\frac{4 H}{p_{x}^{2}}$ is the distance from the point (x, y) in the configuration space to the point of intersection of the x-axis with the normal to the trajectory $(x(t), y(t))$. In other words, all trajectories with $p_{x} \neq 0$ are semicircles with their center at a point of the x-axis.

If $p_{x}=0$ then from the Hamiltonian system (1) we get

$$
\begin{aligned}
\dot{x} & =0 \\
\dot{y} & =\frac{y^{2} p_{y}}{2} \\
\dot{p}_{y} & =-\frac{y\left(p_{y}^{2}\right)}{2} \\
\dot{p}_{x} & =0 .
\end{aligned}
$$

From the integral $H=E$ we get $p_{y}=\frac{2 \sqrt{E}}{y}$, and hence the second equation (1) takes the form

$$
\dot{y}=\sqrt{E} y .
$$

Hence, $x=$ const, $y=C e^{\sqrt{E t}}$, and therefore the trajectory is the ray orthogonal to the x-axis.
3. Consider the contact plane field $\xi=\{d z-y d x=0\}$ in \mathbb{R}^{3}. A 1 dimensional submanifold $\Gamma \subset \mathbb{R}^{3}$ is called Legendrian if it is tangent to ξ. Denote by π the projection $(x, y, z) \mapsto(x, y)$. Suppose that the submanifold Γ is connected and closed (i.e. diffeomorphic to a circle). Prove that the projected curve $\pi(\Gamma) \subset \mathbb{R}^{2}$ must have self intersection points.

Denote the projection of the curve to the (x, y)-plane by $\bar{\Gamma}$. Note that

$$
\int_{\Gamma}(d z-y d x)=0
$$

because Γ is tangent to $\xi=\{d z-y d x=0\}$.
But

$$
\int_{\Gamma}(d z-y d x)=\int_{\Gamma} d z-\int_{\Gamma} y d x .
$$

The first integral is equal to 0 , because the integral of an exact 1 -form over a closed curve vanishes. On the other hand,

$$
\int_{\Gamma} y d x=\int_{\bar{\Gamma}} y d x
$$

But the integral in the right-hand-side is the area enclosed by the curve $\bar{\Gamma}$, and hence if $\bar{\Gamma}$ had no self-intersection points this would imply that $\int_{\bar{\Gamma}} y d x \neq 0$.

