The Cayley-Hamilton theorem

Theorem 1. Let A be a $n \times n$ matrix, and let $p(\lambda) = \det(\lambda I - A)$ be the characteristic polynomial of A. Then p(A) = 0.

Proof. Step 1: Assume first that A is diagonalizable. In this case, we can find an invertible matrix S and a diagonal matrix

$$D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \ddots & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{bmatrix}$$

such that $A = SDS^{-1}$. The k-th power of D is given by

$$D^{k} = \begin{bmatrix} \lambda_{1}^{k} & 0 & \dots & 0 \\ 0 & \ddots & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & \lambda_{n}^{k} \end{bmatrix}.$$

This implies

$$p(D) = \begin{bmatrix} p(\lambda_1) & 0 & \dots & 0 \\ 0 & \ddots & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & p(\lambda_n) \end{bmatrix}$$

For each j = 1, ..., n, the number λ_j is an eigenvalue of A. This implies $p(\lambda_j) = 0$ for j = 1, ..., n. Thus, we conclude that p(D) = 0.

On the other hand, the identity $A = SDS^{-1}$ implies $A^k = SD^kS^{-1}$ for all k. Therefore, we have $p(A) = Sp(D)S^{-1}$. Since p(D) = 0, we conclude that p(A) = 0. This completes the proof of the Cayley-Hamilton theorem in this special case.

Step 2: To prove the Cayley-Hamilton theorem in general, we use the fact that any matrix $A \in \mathbb{C}^{n \times n}$ can be approximated by diagonalizable matrices. More precisely, given any matrix $A \in \mathbb{C}^{n \times n}$, we can find a sequence of matrices $\{A_k : k \in \mathbb{N}\}$ such that $A_k \to A$ as $k \to \infty$ and each matrix A_k has n distinct eigenvalues. Hence, the matrix A_k is diagonalizable for each

 $k \in \mathbb{N}$. Therefore, it follows from our results in Step 1 that $p_k(A_k) = 0$, where $p_k(\lambda) = \det(\lambda I - A_k)$ denotes the characteristic polynomial of A_k .

Note that each entry of the matrix p(A) can be written as a polynomial in the entries of A. Since $\lim_{k\to\infty} A_k = A$, we conclude that $\lim_{k\to\infty} p_k(A_k) = p(A)$. Since $p_k(A_k) = 0$ for every $k \in \mathbb{N}$, we must have p(A) = 0.

Decomposition into generalized eigenspaces

We'll need the following tool from algebra:

Theorem 2. Suppose that $f(\lambda)$ and $g(\lambda)$ are two polynomials that are relatively prime. (This means that any polynomial that divides both $f(\lambda)$ and $g(\lambda)$ must be constant, i.e. of degree 0.) Then we can find polynomials $p(\lambda)$ and $q(\lambda)$ such that $p(\lambda) f(\lambda) + q(\lambda) g(\lambda) = 1$.

This is standard result in algebra. The polynomials $p(\lambda)$ and $q(\lambda)$ can be found using the Euclidean algorithm. A proof can be found in most algebra textbooks.

This result is the key ingredient in the proof of the following theorem:

Theorem 3. Let A be an $n \times n$ matrix, and let $f(\lambda)$ and $g(\lambda)$ be two polynomials that are relatively prime. Moreover, let x be a vector satisfying f(A) g(A) x = 0. Then there exists a unique pair of vectors y, z such that f(A) y = 0, g(A) z = 0, and y + z = x. In other words, $\ker(f(A) g(A)) =$ $\ker f(A) \oplus \ker g(A)$.

Proof. Since the polynomials $f(\lambda)$ and $g(\lambda)$ are relatively prime, we can find polynomials $p(\lambda)$ and $q(\lambda)$ such that

$$p(\lambda) f(\lambda) + q(\lambda) g(\lambda) = 1.$$

This implies

$$p(A) f(A) + q(A) g(A) = I.$$

In order to prove the existence part, we define vectors y, z by y = q(A) g(A) xand z = p(A) f(A) x. Then

$$f(A) y = f(A) q(A) g(A) x = q(A) f(A) g(A) x = 0,$$

$$g(A) z = g(A) p(A) f(A) x = p(A) f(A) g(A) x = 0,$$

and

$$y + z = (p(A) f(A) + q(A) g(A)) x = x.$$

Therefore, the vectors y, z have all the required properties.

In order to prove the uniqueness part, it suffices to show that ker $f(A) \cap$ ker $g(A) = \{0\}$. Assume that x lies in the intersection of ker f(A) and ker g(A), so that f(A) x = 0 and g(A) x = 0. This implies p(A) f(A) x = 0 and q(A) g(A) x = 0. Adding both equations, we obtain x = (p(A) f(A) + q(A) g(A)) x = 0. This shows that show that ker $f(A) \cap \ker g(A) = \{0\}$, as claimed.

Let A be a $n \times n$ matrix, and denote by $p(\lambda) = \det(\lambda I - A)$ the characteristic polynomial of A. By virtue of the fundamental theorem of algebra, we may write the polynomial $p(\lambda)$ in the form

$$p(\lambda) = (\lambda - \lambda_1)^{\alpha_1} \cdots (\lambda - \lambda_m)^{\alpha_m},$$

where $\lambda_1, \ldots, \lambda_m$ are the *distinct* eigenvalues of A and $\alpha_1, \ldots, \alpha_m$ denote their respective algebraic multiplicities. (Note that we do not require A to have n distinct eigenvalues! Some of the numbers $\alpha_1, \ldots, \alpha_m$ may be greater than 1.)

For abbreviation, write $p(\lambda) = g_1(\lambda) \cdots g_m(\lambda)$, where $g_j(\lambda) = (\lambda - \lambda_j)^{\alpha_j}$ for $j = 1, \ldots, m$. Repeated application of the previous theorem yields the direct sum decomposition

 $\ker p(A) = \ker g_1(A) \oplus \ldots \oplus \ker g_m(A),$

i.e.

$$\ker p(A) = \ker (A - \lambda_1 I)^{\alpha_1} \oplus \ldots \oplus (A - \lambda_m I)^{\alpha_m}.$$

The spaces $\ker(A-\lambda_1 I)^{\alpha_1}, \ldots, (A-\lambda_m I)^{\alpha_m}$ are called the *generalized eigenspaces* of A.

At this point, we can use the Cayley-Hamilton theorem to our advantage: according to that theorem, we have p(A) = 0, hence ker $p(A) = \mathbb{C}^n$. As a result, we obtain the following decomposition of \mathbb{C}^n into generalized eigenspaces:

$$\mathbb{C}^n = \ker(A - \lambda_1 I)^{\alpha_1} \oplus \ldots \oplus (A - \lambda_m I)^{\alpha_m}.$$

Theorem 4. Let $A \in \mathbb{C}^{n \times n}$ be given. Then we can find matrices $L, N \in \mathbb{C}^n$ with the following properties:

(i) L + N = A
(ii) LN = NL
(iii) L is diagonalizable
(iv) N is nilpotent, i.e. Nⁿ = 0.
Moreover, the matrices L and N are unique (i.e. there exists only one pair of matrices with that property).

Proof. Existence: Consider the decomposition of \mathbb{C}^n into generalized eigenspaces:

$$\mathbb{C}^n = \ker(A - \lambda_1 I)^{\alpha_1} \oplus \ldots \oplus (A - \lambda_m I)^{\alpha_m}.$$

Consider the linear transformation from \mathbb{C}^n into itself that sends a vector $x \in \ker(A-\lambda_j I)^{\alpha_j}$ to $\lambda_j x$ (j = 1, ..., m). Let L be the $n \times n$ matrix associated with this linear transformation. This implies $Lx = \lambda_j x$ for all $x \in \ker(A - \lambda_j I)^{\alpha_j}$. Clearly, $\ker(L - \lambda_j I) = \ker(A - \lambda_j I)^{\alpha_j}$ for j = 1, ..., m. Therefore, there exists a basis of \mathbb{C}^n that consists of eigenvectors of L. Consequently, L is diagonalizable.

We claim that A and L commute, i.e. LA = AL. It suffices to show that LAx = ALx for all vectors $x \in \ker(A - \lambda_j I)^{\alpha_j}$ and all $j = 1, \ldots, m$. Indeed, if x belongs to the generalized eigenspace $\ker(A - \lambda_j I)^{\alpha_j}$, then Axlies in the same generalized eigenspace. Therefore, we have $Lx = \lambda_j x$ and $LAx = \lambda_j Ax$. Putting these facts together, we obtain $LAx = \lambda_j Ax = ALx$, as claimed. Therefore, we have LA = AL.

We now put N = A - L. Clearly, L + N = A and $LN = LA - L^2 = AL - L^2 = NL$. Hence, it remains to show that $N^n = 0$. As above, it is enough to show that $N^n x = 0$ for all vectors $x \in \ker(A - \lambda_j I)^{\alpha_j}$ and all $j = 1, \ldots, m$. By definition of L and N, we have $Nx = Ax - Lx = (A - \lambda_j I)x$ for all $x \in \ker(A - \lambda_j I)^{\alpha_j}$. From this it is easy to see that $N^n x = (A - \lambda_j I)^n x$. However, $(A - \lambda_j I)^n x = 0$ since $x \in \ker(A - \lambda_j I)^{\alpha_j}$ and $\alpha_j \leq n$. Thus, we conclude that $N^n x = 0$ for all $x \in \ker(A - \lambda_j I)^{\alpha_j}$. This completes the proof of the existence part.

Uniqueness: We next turn to the proof of the uniqueness statement. Suppose that $L, N \in \mathbb{C}^{n \times n}$ satisfy (i) – (iv). We claim that $Lx = \lambda_j x$ for all vectors $x \in \ker(A - \lambda_j I)^{\alpha_j}$ and all $j = 1, \ldots, m$. To this end, we use the formula $L - \lambda_j I = (A - \lambda_j I) - N$. Since N commutes with $A - \lambda_j I$, it follows that

$$(L - \lambda_j I)^{2n} = \sum_{l=0}^{2n} {\binom{2n}{l}} (-N)^l (A - \lambda_j I)^{2n-l}.$$

Using the identity $N^n = 0$, we obtain

$$(L - \lambda_j I)^{2n} = \sum_{l=0}^{n-1} {\binom{2n}{l}} (-N)^l (A - \lambda_j I)^{2n-l}$$

Suppose that $x \in \ker(A-\lambda_j I)^{\alpha_j}$. Since $\alpha_j \leq n$, we have $(A-\lambda_j I)^{2n-l}x = 0$ for all $l = 0, \ldots, n-1$. This implies $(L-\lambda_j I)^{2n}x = 0$. Since L is diagonalizable, we it follows that $(L-\lambda_j I)x = 0$. Thus, we conclude that $Lx = \lambda_j x$ for all vectors $x \in \ker(A-\lambda_j I)^{\alpha_j}$ and all $j = 1, \ldots, m$.

Since

$$\mathbb{C}^n = \ker(A - \lambda_1 I)^{\alpha_1} \oplus \ldots \oplus (A - \lambda_m I)^{\alpha_m},$$

there is exactly one matrix L such that $Lx = \lambda_j x$ for $x \in \ker(A - \lambda_j I)^{\alpha_j}$ and $j = 1, \ldots, m$. This completes the proof of the uniqueness statement.