
The Cayley-Hamilton theorem

Theorem 1. Let A be a n × n matrix, and let p(λ) = det(λI − A) be the
characteristic polynomial of A. Then p(A) = 0.

Proof. Step 1: Assume first that A is diagonalizable. In this case, we
can find an invertible matrix S and a diagonal matrix
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such that A = SDS−1. The k-th power of D is given by
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This implies
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For each j = 1, . . . , n, the number λj is an eigenvalue of A. This implies
p(λj) = 0 for j = 1, . . . , n. Thus, we conclude that p(D) = 0.

On the other hand, the identity A = SDS−1 implies Ak = SDkS−1 for
all k. Therefore, we have p(A) = S p(D) S−1. Since p(D) = 0, we conclude
that p(A) = 0. This completes the proof of the Cayley-Hamilton theorem in
this special case.

Step 2: To prove the Cayley-Hamilton theorem in general, we use the
fact that any matrix A ∈ Cn×n can be approximated by diagonalizable ma-
trices. More precisely, given any matrix A ∈ Cn×n, we can find a sequence
of matrices {Ak : k ∈ N} such that Ak → A as k → ∞ and each matrix Ak

has n distinct eigenvalues. Hence, the matrix Ak is diagonalizable for each
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k ∈ N. Therefore, it follows from our results in Step 1 that pk(Ak) = 0,
where pk(λ) = det(λI − Ak) denotes the characteristic polynomial of Ak.

Note that each entry of the matrix p(A) can be written as a polynomial
in the entries of A. Since limk→∞ Ak = A, we conclude that limk→∞ pk(Ak) =
p(A). Since pk(Ak) = 0 for every k ∈ N, we must have p(A) = 0.

Decomposition into generalized eigenspaces

We’ll need the following tool from algebra:

Theorem 2. Suppose that f(λ) and g(λ) are two polynomials that are rel-
atively prime. (This means that any polynomial that divides both f(λ) and
g(λ) must be constant, i.e. of degree 0.) Then we can find polynomials p(λ)
and q(λ) such that p(λ) f(λ) + q(λ) g(λ) = 1.

This is standard result in algebra. The polynomials p(λ) and q(λ) can be
found using the Euclidean algorithm. A proof can be found in most algebra
textbooks.

This result is the key ingredient in the proof of the following theorem:

Theorem 3. Let A be an n × n matrix, and let f(λ) and g(λ) be two
polynomials that are relatively prime. Moreovr, let x be a vector satisfy-
ing f(A) g(A) x = 0. Then there exists a unique pair of vectors y, z such that
f(A) y = 0, g(A) z = 0, and y + z = x. In other words, ker(f(A) g(A)) =
ker f(A) ⊕ ker g(A).

Proof. Since the polynomials f(λ) and g(λ) are relatively prime, we can
find polynomials p(λ) and q(λ) such that

p(λ) f(λ) + q(λ) g(λ) = 1.

This implies

p(A) f(A) + q(A) g(A) = I.

In order to prove the existence part, we define vectors y, z by y = q(A) g(A) x
and z = p(A) f(A) x. Then

f(A) y = f(A) q(A) g(A) x = q(A) f(A) g(A) x = 0,
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g(A) z = g(A) p(A) f(A) x = p(A) f(A) g(A) x = 0,

and

y + z = (p(A) f(A) + q(A) g(A)) x = x.

Therefore, the vectors y, z have all the required properties.
In order to prove the uniqueness part, it suffices to show that ker f(A) ∩

ker g(A) = {0}. Assume that x lies in the intersection of ker f(A) and
ker g(A), so that f(A) x = 0 and g(A) x = 0. This implies p(A) f(A) x = 0
and q(A) g(A) x = 0. Adding both equations, we obtain x = (p(A) f(A) +
q(A) g(A)) x = 0. This shows that show that ker f(A) ∩ ker g(A) = {0}, as
claimed.

Let A be a n × n matrix, and denote by p(λ) = det(λI − A) the charac-
teristic polynomial of A. By virtue of the fundamental theorem of algebra,
we may write the polynomial p(λ) in the form

p(λ) = (λ − λ1)
α1 · · · (λ − λm)αm ,

where λ1, . . . , λm are the distinct eigenvalues of A and α1, . . . , αm denote
their respective algebraic multiplicities. (Note that we do not require A to
have n distinct eigenvalues! Some of the numbers α1, . . . , αm may be greater
than 1.)

For abbreviation, write p(λ) = g1(λ) · · · gm(λ), where gj(λ) = (λ − λj)αj

for j = 1, . . . , m. Repeated application of the previous theorem yields the
direct sum decomposition

ker p(A) = ker g1(A) ⊕ . . . ⊕ ker gm(A),

i.e.

ker p(A) = ker(A − λ1I)α1 ⊕ . . . ⊕ (A − λmI)αm .

The spaces ker(A−λ1I)α1 , . . . , (A−λmI)αm are called the generalized eigenspaces
of A.

At this point, we can use the Cayley-Hamilton theorem to our advan-
tage: according to that theorem, we have p(A) = 0, hence ker p(A) = Cn.
As a result, we obtain the following decomposition of Cn into generalized
eigenspaces:

C
n = ker(A − λ1I)α1 ⊕ . . . ⊕ (A − λmI)αm .
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Theorem 4. Let A ∈ Cn×n be given. Then we can find matrices L, N ∈ Cn

with the following properties:
(i) L + N = A
(ii) LN = NL
(iii) L is diagonalizable
(iv) N is nilpotent, i.e. Nn = 0.
Moreover, the matrices L and N are unique (i.e. there exists only one pair
of matrices with that property).

Proof. Existence: Consider the decomposition of Cn into generalized
eigenspaces:

C
n = ker(A − λ1I)α1 ⊕ . . . ⊕ (A − λmI)αm .

Consider the linear transformation from Cn into itself that sends a vector
x ∈ ker(A−λjI)αj to λjx (j = 1, . . . , m). Let L be the n×n matrix associated
with this linear transformation. This implies Lx = λjx for all x ∈ ker(A −
λjI)αj . Clearly, ker(L − λjI) = ker(A − λjI)αj for j = 1, . . . , m. Therefore,
there exists a basis of Cn that consists of eigenvectors of L. Consequently, L
is diagonalizable.

We claim that A and L commute, i.e. LA = AL. It suffices to show
that LAx = ALx for all vectors x ∈ ker(A − λjI)αj and all j = 1, . . . , m.
Indeed, if x belongs to the generalized eigenspace ker(A − λjI)αj , then Ax
lies in the same generalized eigenspace. Therefore, we have Lx = λjx and
LAx = λjAx. Putting these facts together, we obtain LAx = λjAx = ALx,
as claimed. Therefore, we have LA = AL.

We now put N = A − L. Clearly, L + N = A and LN = LA − L2 =
AL − L2 = NL. Hence, it remains to show that Nn = 0. As above, it
is enough to show that Nnx = 0 for all vectors x ∈ ker(A − λjI)αj and all
j = 1, . . . , m. By definition of L and N , we have Nx = Ax−Lx = (A−λjI)x
for all x ∈ ker(A−λjI)αj . From this it is easy to see that Nnx = (A−λjI)nx.
However, (A − λjI)nx = 0 since x ∈ ker(A − λjI)αj and αj ≤ n. Thus, we
conclude that Nnx = 0 for all x ∈ ker(A − λjI)αj . This completes the proof
of the existence part.

Uniqueness: We next turn to the proof of the uniqueness statement.
Suppose that L, N ∈ Cn×n satsify (i) – (iv). We claim that Lx = λjx for
all vectors x ∈ ker(A − λjI)αj and all j = 1, . . . , m. To this end, we use the
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formula L−λjI = (A−λjI)−N . Since N commutes with A−λjI, it follows
that

(L − λjI)2n =
2n
∑

l=0

(

2n

l

)

(−N)l (A − λjI)2n−l.

Using the identity Nn = 0, we obtain

(L − λjI)2n =
n−1
∑

l=0

(

2n

l

)

(−N)l (A − λjI)2n−l.

Suppose that x ∈ ker(A−λjI)αj . Since αj ≤ n, we have (A−λjI)2n−lx = 0 for
all l = 0, . . . , n−1. This implies (L−λjI)2nx = 0. Since L is diagonalizable,
we it follows that (L − λjI)x = 0. Thus, we conclude that Lx = λjx for all
vectors x ∈ ker(A − λjI)αj and all j = 1, . . . , m.

Since

C
n = ker(A − λ1I)α1 ⊕ . . . ⊕ (A − λmI)αm ,

there is exactly one matrix L such that Lx = λjx for x ∈ ker(A−λjI)αj and
j = 1, . . . , m. This completes the proof of the uniqueness statement.
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