Math 52H: Homework N2

Due to Friday, January 23

1. Do Exercise 4.5 from the online text:

 (a) For any special orthogonal operator (i.e. an orthogonal operator with determinant equal to 1) \(A : V \to V \) the operators \(A^* : \Lambda^k(V^*) \to \Lambda^k(V^*) \) and \(\ast \) commute, i.e.
 \[
 A^* \circ \ast = \ast \circ A^*.
 \]

 (b) Let \(A \) be a special orthogonal matrix of order \(n \) with \(\det A = 1 \). Prove that the absolute value of each \(k \)-minor \(M \) of \(A \) is equal to the absolute value of its complementary minor of order \((n - k) \). Here \(k \) is any integer between 1 and \(n \). (Hint: Apply (a) to the form \(x_{i_1} \wedge \cdots \wedge x_{i_k} \)).

2. Given a parallelepiped \(P(v_1, v_2, v_3, v_4) \subset \mathbb{R}^4 \), compute the 3-dimensional volume of each of its 3-dimensional face. Here

 \[
 v_1 = (1, 1, 1, 1),
 v_2 = (1 - 1, 1, 1),
 v_3 = (1, 1, -1, 1),
 v_4 = (1, 1, 1, -1).
 \]

 Compare the orientation of \(\mathbb{R}^4 \) given by the basis \(v_1, v_2, v_3, v_4 \) with the orientation given by its standard basis \(e_1, e_2, e_3, e_4 \).
3. A vector subspace \(L \subset V \) of a vector space \(V \) is called \textit{invariant} with respect to a linear operator \(A : V \to V \) if \(A(v) \in L \) for each vector \(v \in L \).

Let \(A : V \to V \) be a linear operator, and \(l_1, \ldots, l_k \in V^* \) be linear independent vectors from the dual space \(V^* \). Suppose that
\[
A^*(l_1 \wedge \cdots \wedge l_k) = cl_1 \wedge \cdots \wedge l_k,
\]
for some non-zero real number \(c \in \mathbb{R} \). Prove that the vector subspace \(\text{Span}(l_1, \ldots, l_k) \) is invariant with respect to the dual operator \(A^* : V^* \to V^* \).

4. Let \(\eta \) be an exterior 2-form on a vector space \(V \). Suppose that \(\eta \wedge \eta = 0 \). Prove that there exists two 1-forms \(\alpha, \beta \in V^* \) such that \(\eta = \alpha \wedge \beta \).

5. An exterior 2-form \(\beta \) on \(\mathbb{R}^4 \) is called self-dual if \(\star \beta = \beta \). What is the dimension of the space of self-dual exterior 2-forms on \(\mathbb{R}^4 \). Find a basis of this space.

All problems and subproblems are 10 points.