Math 52H: Solutions to the Final Exam

March 19, 2012

1. Let $T \subset \mathbb{R}^{3}$ be the torus defined by the parametric equations

$$
\begin{aligned}
& x=(a+R \cos \theta) \cos \phi \\
& y=(a+R \cos \theta) \sin \phi \\
& z=R \sin \theta,
\end{aligned}
$$

where $0<R<a$ are constants. the parameters ϕ, θ take values in $[0,2 \pi]$
a) Compute the area of T;
b) Compute the volume of the domain bounded by the torus T.
a) Let us compute the pull-back of the area form σ of the torus T by the parametrization map

$$
\Phi(\theta, \phi)=(a+R \cos \theta) \cos \phi,(a+R \cos \theta) \sin \phi, R \sin \theta) .
$$

We have

$$
\begin{aligned}
& \frac{\partial \Phi}{\partial \theta}=(-R \sin \theta \cos \phi,-R \sin \theta \sin \phi, R \cos \theta) \\
& \frac{\partial \Phi}{\partial \phi}=(-(a+R \cos \theta) \sin \phi,(a+R \cos \theta) \cos \phi, 0)
\end{aligned}
$$

Then

$$
\begin{aligned}
& E=\left\|\frac{\partial \Phi}{\partial \theta}\right\|^{2}=R^{2}, \\
& E=\left\langle\frac{\partial \Phi}{\partial \theta}, \frac{\partial \Phi}{\partial \phi}\right\rangle=0, \\
& G=\left\|\frac{\partial \Phi}{\partial \phi}\right\|^{2}=(a+R \cos \theta)^{2} .
\end{aligned}
$$

Hence,

$$
\sqrt{E G-F^{2}}=R(a+R \cos \theta),
$$

and therefore,

$$
\Phi^{*} \sigma=R(a+R \cos \theta) d \theta \wedge d \phi
$$

and

$$
\operatorname{Area}(T)=\int_{T} \sigma=\int_{0 \leq \phi, \theta \leq 2 \pi} \Phi^{*} \sigma=\int_{0}^{2 \pi} \int_{0}^{2 \pi} R(a+R \cos \theta) d \theta d \phi=4 \pi^{2} a R .
$$

b) Denote by U the domain bounded by T. By Stokes' theorem we have

$$
\operatorname{Vol}(U)=\int_{U} d x \wedge d y \wedge d z=\int_{T} z d x \wedge d y
$$

Using the parameterization Φ we get

$$
\begin{aligned}
& \int_{T} z d x \wedge d y=\int_{0 \leq \phi, \theta \leq 2 \pi} \Phi^{*}(z d x \wedge d y) \\
& =R \sin \theta(-R \sin \theta \cos \phi d \theta-(a+R \cos \theta) \sin \phi d \phi) \wedge(-R \sin \theta \sin \phi d \theta+(a+r \cos \theta) \cos \phi) d \phi) \\
& =R^{2}(a+R \cos \theta) \sin ^{2} \theta d \phi \wedge d \theta
\end{aligned}
$$

Thus,

$$
\operatorname{Vol}(U)=\int_{0 \leq \phi, \theta \leq 2 \pi} R^{2}(a+R \cos \theta) \sin ^{2} \theta d \phi \wedge d \theta=2 \pi^{2} a R^{2}
$$

2. Let u, v be two smooth functions on the unit disc $D=\left\{x^{2}+y^{2} \leq 1\right\} \subset \mathbb{R}^{2}$. Suppose that

- everywhere in D one has

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =\frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y} & =-\frac{\partial v}{\partial x}
\end{aligned}
$$

- $u=x, v=y$ when $x^{2}+y^{2} \leq \frac{1}{2}$;
- $u^{2}+v^{2} \neq 0$ in $D \backslash 0$.

Prove that the differential 1-form

$$
\alpha=\frac{u d y-v d x}{u^{2}+v^{2}}
$$

is closed in D and compute $\int_{\partial D} \alpha$. Here ∂D is oriented counter-clockwise.
We will denote partial derivatives by $u_{x}, u_{y}, v_{x}, v_{y}$. Thus we have $u_{x}=v_{y}, u_{y}=-v_{x}$. We compute

$$
\begin{aligned}
& d \alpha=\frac{(d u \wedge d y-d v \wedge d x)}{u^{2}+v^{2}}-2 \frac{(u d u+v d v) \wedge(u d y-v d x)}{\left(u^{2}+v^{2}\right)^{2}} \\
& =\frac{1}{\left(u^{2}+v^{2}\right)^{2}}\left(\left(u^{2}+v^{2}\right)\left(u_{x}+v_{y}\right) d x \wedge d y-2\left(u u_{x} d x+u u_{y} d y+v v_{x} d x+v v_{y} d y\right) \wedge(u d y-v d x)\right) \\
& =\frac{1}{\left(u^{2}+v^{2}\right)^{2}}\left(u^{2} u_{x}+v^{2} u_{x}+u^{2} v_{y}+v^{2} v_{y}-2\left(u^{2} u_{x}+u v v_{x}+u v u_{y}+u v u_{y}+v^{2} v_{y}\right)\right) d x \wedge d y \\
& ==\frac{1}{\left(u^{2}+v^{2}\right)^{2}}\left(u^{2}\left(-u_{x}+v_{y}\right)+v^{2}\left(u_{x}-v_{y}\right)-2 u v\left(v_{x}+u_{y}\right)\right) d x \wedge d y=0
\end{aligned}
$$

in view of the equations for the partial derivatives.
Thus the form α is closed in $\mathbb{R}^{2} \backslash 0$. Denote $D^{\prime}=\left\{x^{2}+y^{2} \leq \frac{1}{2}\right\}$. Then

$$
\int_{\partial D} \alpha=\int_{\partial D^{\prime}} \alpha=\int_{\partial D^{\prime}} \frac{x d y-y d x}{x^{2}+y^{2}}=2 \pi .
$$

3. Consider \mathbb{R}^{4} with coordinates $\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$. Denote $\omega=d x_{1} \wedge d y_{1}+d x_{2} \wedge d y_{2}$. Let
$H: \mathbb{R}^{4} \rightarrow \mathbb{R}$ be a smooth function equal to x_{2} outside the ball $B_{1}(0)$ of radius 1 centered at 0 . Suppose a vector vield \mathbf{v} satisfies

$$
\mathbf{v}\lrcorner \omega=d H .
$$

Compute the flux of \mathbf{v} through the 3-dimensional disc

$$
D=\left\{y_{2}=0, x_{1}^{2}+y_{1}^{2}+x_{2}^{2} \leq 2\right\}
$$

co-oriented by the normal vector $(0,0,0,1)$ at the origin.

Flux $_{D} \mathbf{v}=\int_{D} \eta$, where $\left.\eta=\mathbf{v}\right\lrcorner \Omega, \Omega=d x_{1} \wedge d y_{1} \wedge d x_{2} \wedge d y_{2}$. Let us compute η. we have

$$
\left.\left.\eta=\mathbf{v}\lrcorner \Omega=\frac{1}{2}(\mathbf{v}\lrcorner \omega^{2}\right)=(\mathbf{v}\lrcorner \omega\right) \wedge \omega=d H \wedge \omega=d(H \omega) .
$$

Applying Stokes' theorem we find

$$
\int_{D} \eta=\int_{\partial D} H \omega
$$

Recall that by assumption $\left.H\right|_{\partial D}=x_{2}$. Using again Stokes' theorem we conclude that

$$
\int_{\partial D} H \omega=\int_{\partial D} x_{2} \omega=\int_{D} d x_{2} \wedge \omega=\int_{D} d x_{1} \wedge d y_{1} \wedge d x_{2}
$$

The absolute value of the latter integral is just the volume of the Euclidean ball of radius $\sqrt{2}$, i.e. it is equal to $\frac{8 \pi \sqrt{2}}{3}$. However, the orientation of D is determined by the co-orientation of D by the vector $(0,0,0,1)$ at the origin is opposite to the orientation given by coordinates x_{1}, y_{1}, x_{2}. Hence,

$$
\operatorname{Flux}_{D} \mathbf{v}=-\frac{8 \pi \sqrt{2}}{3}
$$

4. Let us consider the complex vector space \mathbb{C}^{2} with coordinates $z_{1}=x_{1}+i y_{1}, z_{2}=$ $x_{2}+i y_{2}$. We can also view \mathbb{C}^{2} as the real space \mathbb{R}^{4} with cooedinates $\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$. Denote

$$
\alpha:=\frac{1}{2}\left(x_{1} d y_{1}-y_{1} d x_{1}+x_{2} d y_{2}-y_{2} d x_{2} .\right.
$$

Take any vector $c=\left(c_{1}, c_{2}\right) \in \mathbb{C}^{2}$ of length 1 , i.e. $\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}=1$. Denote by Γ_{c} the circle $\Gamma_{c}(t)=c e^{2 \pi i t}, t \in[0,1]$. Compute $\int_{\Gamma_{c}} \alpha$.

We compute the integral directly. Denote $c_{1}=a_{1}+i b_{1}, c_{2}=a_{2}+i b_{2}$. We have

$$
\begin{aligned}
& \Gamma_{c}(t)=c e^{2 \pi i t}=\left(c_{1} e^{2 \pi i t}, c_{2} e^{2 \pi i t}\right) \\
& =\left(a_{1} \cos 2 \pi i t-b_{1} \sin 2 \pi i t, a_{1} \sin 2 \pi i t+b_{1} \cos 2 \pi i t, a_{2} \cos 2 \pi i t-b_{2} \sin 2 \pi i t, a_{2} \sin 2 \pi i t+b_{2} \cos 2 \pi i t\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\Gamma_{c}^{*} \alpha= & \pi\left(\left(a_{1} \cos 2 \pi i t-b_{1} \sin 2 \pi i t\right)^{2}+\left(a_{1} \sin 2 \pi i t+b_{1} \cos 2 \pi i t\right)^{2}\right. \\
& \left.+\left(a_{2} \cos 2 \pi i t-b_{2} \sin 2 \pi i t\right)^{2}+\left(a_{2} \sin 2 \pi i t+b_{2} \cos 2 \pi i t\right)^{2}\right) d t=\pi\left(\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}\right) d t=\pi d t
\end{aligned}
$$

Thus,

$$
\int_{\Gamma_{c}}=\pi .
$$

5. Let S^{n-1} be the unit sphere in \mathbb{R}^{n}. Verify whether the map $f: S^{n-1} \rightarrow S^{n-1}$ given by the formula $f(x)=-x$ is homotopic to the identity map. Consider the volume form on S^{n-1} :

$$
\sigma=\sum_{1}^{n}(-1)^{i-1} x_{i} d x_{1} \wedge \ldots \stackrel{i}{\vee} \cdots \wedge d x_{n}
$$

If we orient the sphere is the co-orientation outward to the unit ball that $\int_{S^{n-1}} \sigma>0$. On the other hand, $f^{*} \sigma=(-1)^{n} \sigma$. Thus, $f^{*} \sigma=\sigma$ if n is even and $f^{*} \sigma=-\sigma$ if n is odd. Thus, for n odd the diffeomorphism f is not homotopic to the identity map. Indeed, given two homotopic maps $f, g: S^{n-1} \rightarrow S^{n-1}$ we must have $\int_{S^{n-1}} f^{*} \sigma=\int_{S^{n-1}} g^{*} \sigma$, because the form σ is closed on $S^{2 n-1}$, but in our case $\int_{S^{n-1}} f^{*} \sigma<0$ while $\int_{S^{n-1}} \sigma>0$.

If $n=2 k$ is even then the map f is homotopic to the identity. Indeed, we can think about $\mathbb{R}^{n}=\mathbb{R}^{2 k}$ as \mathbb{C}^{k}. Then the required homotopy $f_{t}: S^{2 k-1} \rightarrow S^{2 k-1}$ can be defined by the formula

$$
f_{t}(z)=e^{\pi i t} z
$$

for $z=\left(z_{1}, \ldots, z_{k}\right) \in S^{2 k-1}$ and $t \in[0,1]$.

