
Math 52H: Solutions to the Final Exam

March 19, 2012

1. Let T ⊂ R3 be the torus defined by the parametric equations

x = (a+R cos θ) cosφ

y = (a+R cos θ) sinφ

z = R sin θ,

where 0 < R < a are constants. the parameters φ, θ take values in [0, 2π]

a) Compute the area of T ;

b) Compute the volume of the domain bounded by the torus T .

a) Let us compute the pull-back of the area form σ of the torus T by the parametrization

map

Φ(θ, φ) = (a+R cos θ) cosφ, (a+R cos θ) sinφ,R sin θ).

We have

∂Φ

∂θ
= (−R sin θ cosφ,−R sin θ sinφ,R cos θ),

∂Φ

∂φ
= (−(a+R cos θ) sinφ, (a+R cos θ) cosφ, 0).
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Then

E =

∥∥∥∥∂Φ

∂θ

∥∥∥∥2

= R2,

E =

〈
∂Φ

∂θ
,
∂Φ

∂φ

〉
= 0,

G =

∥∥∥∥∂Φ

∂φ

∥∥∥∥2

= (a+R cos θ)2.

Hence,
√
EG− F 2 = R(a+R cos θ),

and therefore,

Φ∗σ = R(a+R cos θ)dθ ∧ dφ

and

Area(T ) =

∫
T

σ =

∫
0≤φ,θ≤2π

Φ∗σ =

2π∫
0

2π∫
0

R(a+R cos θ)dθdφ = 4π2aR.

b) Denote by U the domain bounded by T . By Stokes’ theorem we have

Vol(U) =

∫
U

dx ∧ dy ∧ dz =

∫
T

zdx ∧ dy.

Using the parameterization Φ we get∫
T

zdx ∧ dy =

∫
0≤φ,θ≤2π

Φ∗(zdx ∧ dy)

= R sin θ (−R sin θ cosφdθ − (a+R cos θ) sinφdφ) ∧ (−R sin θ sinφdθ + (a+ r cos θ) cosφ)dφ)

= R2(a+R cos θ) sin2 θdφ ∧ dθ.

Thus,

Vol(U) =

∫
0≤φ,θ≤2π

R2(a+R cos θ) sin2 θdφ ∧ dθ = 2π2aR2.
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2. Let u, v be two smooth functions on the unit disc D = {x2 + y2 ≤ 1} ⊂ R2. Suppose

that

• everywhere in D one has

∂u

∂x
=
∂v

∂y
∂u

∂y
= −∂v

∂x
;

• u = x, v = y when x2 + y2 ≤ 1
2
;

• u2 + v2 6= 0 in D \ 0.

Prove that the differential 1-form

α =
udy − vdx
u2 + v2

is closed in D and compute
∫
∂D

α. Here ∂D is oriented counter-clockwise.

We will denote partial derivatives by ux, uy, vx, vy. Thus we have ux = vy, uy = −vx. We

compute

dα =
(du ∧ dy − dv ∧ dx)

u2 + v2
− 2

(udu+ vdv) ∧ (udy − vdx)

(u2 + v2)2

=
1

(u2 + v2)2

(
(u2 + v2)(ux + vy)dx ∧ dy − 2(uuxdx+ uuydy + vvxdx+ vvydy) ∧ (udy − vdx)

)
=

1

(u2 + v2)2

(
u2ux + v2ux + u2vy + v2vy − 2(u2ux + uvvx + uvuy + uvuy + v2vy)

)
dx ∧ dy

==
1

(u2 + v2)2

(
u2(−ux + vy) + v2(ux − vy)− 2uv(vx + uy)

)
dx ∧ dy = 0

in view of the equations for the partial derivatives.

Thus the form α is closed in R2 \ 0. Denote D′ = {x2 + y2 ≤ 1
2
}. Then∫

∂D

α =

∫
∂D′

α =

∫
∂D′

xdy − ydx
x2 + y2

= 2π.

3. Consider R4 with coordinates (x1, y1, x2, y2). Denote ω = dx1 ∧ dy1 + dx2 ∧ dy2. Let
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H : R4 → R be a smooth function equal to x2 outside the ball B1(0) of radius 1 centered at

0. Suppose a vector vield v satisfies

v ω = dH.

Compute the flux of v through the 3-dimensional disc

D = {y2 = 0, x2
1 + y2

1 + x2
2 ≤ 2},

co-oriented by the normal vector (0, 0, 0, 1) at the origin.

FluxD v =
∫
D

η, where η = v Ω, Ω = dx1 ∧ dy1 ∧ dx2 ∧ dy2. Let us compute η. we have

η = v Ω =
1

2
( v ω2) = ( v ω) ∧ ω = dH ∧ ω = d(Hω).

Applying Stokes’ theorem we find ∫
D

η =

∫
∂D

Hω.

Recall that by assumption H|∂D = x2. Using again Stokes’ theorem we conclude that∫
∂D

Hω =

∫
∂D

x2ω =

∫
D

dx2 ∧ ω =

∫
D

dx1 ∧ dy1 ∧ dx2.

The absolute value of the latter integral is just the volume of the Euclidean ball of radius
√

2, i.e. it is equal to 8π
√

2
3
. However, the orientation of D is determined by the co-orientation

of D by the vector (0, 0, 0, 1) at the origin is opposite to the orientation given by coordinates

x1, y1, x2. Hence,

FluxD v = −8π
√

2

3
.

4. Let us consider the complex vector space C2 with coordinates z1 = x1 + iy1, z2 =

x2 + iy2. We can also view C2 as the real space R4 with cooedinates (x1, y1, x2, y2). Denote

α :=
1

2
(x1dy1 − y1dx1 + x2dy2 − y2dx2.
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Take any vector c = (c1, c2) ∈ C2 of length 1, i.e. |c1|2 + |c2|2 = 1. Denote by Γc the circle

Γc(t) = ce2πit, t ∈ [0, 1]. Compute
∫
Γc

α.

We compute the integral directly. Denote c1 = a1 + ib1, c2 = a2 + ib2. We have

Γc(t) = ce2πit = (c1e
2πit, c2e

2πit)

= (a1 cos 2πit− b1 sin 2πit, a1 sin 2πit+ b1 cos 2πit, a2 cos 2πit− b2 sin 2πit, a2 sin 2πit+ b2 cos 2πit).

Hence,

Γ∗cα = π
(
(a1 cos 2πit− b1 sin 2πit)2 + (a1 sin 2πit+ b1 cos 2πit)2

+(a2 cos 2πit− b2 sin 2πit)2 + (a2 sin 2πit+ b2 cos 2πit)2
)
dt = π(|c1|2 + |c2|2)dt = πdt.

Thus, ∫
Γc

= π.

5. Let Sn−1 be the unit sphere in Rn. Verify whether the map f : Sn−1 → Sn−1 given by the

formula f(x) = −x is homotopic to the identity map. Consider the volume form on Sn−1:

σ =
n∑
1

(−1)i−1xidx1 ∧ . . .
i
∨ · · · ∧ dxn.

If we orient the sphere is the co-orientation outward to the unit ball that
∫

Sn−1

σ > 0. On the

other hand, f ∗σ = (−1)nσ. Thus, f ∗σ = σ if n is even and f ∗σ = −σ if n is odd. Thus,

for n odd the diffeomorphism f is not homotopic to the identity map. Indeed, given two

homotopic maps f, g : Sn−1 → Sn−1 we must have
∫

Sn−1

f ∗σ =
∫

Sn−1

g∗σ, because the form σ

is closed on S2n−1, but in our case
∫

Sn−1

f ∗σ < 0 while
∫

Sn−1

σ > 0.

If n = 2k is even then the map f is homotopic to the identity. Indeed, we can think

about Rn = R2k as Ck. Then the required homotopy ft : S2k−1 → S2k−1 can be defined by

the formula

ft(z) = eπitz,

for z = (z1, . . . , zk) ∈ S2k−1 and t ∈ [0, 1].
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