Math 52H: Solutions to the Final Exam

March 19, 2012

1. Let $T \subset \mathbb{R}^3$ be the torus defined by the parametric equations

$$x = (a + R\cos\theta)\cos\phi$$
$$y = (a + R\cos\theta)\sin\phi$$
$$z = R\sin\theta,$$

where 0 < R < a are constants. the parameters ϕ, θ take values in $[0, 2\pi]$

- a) Compute the area of T;
- b) Compute the volume of the domain bounded by the torus T.

a) Let us compute the pull-back of the area form σ of the torus T by the parametrization map

$$\Phi(\theta, \phi) = (a + R\cos\theta)\cos\phi, (a + R\cos\theta)\sin\phi, R\sin\theta).$$

We have

$$\frac{\partial \Phi}{\partial \theta} = (-R\sin\theta\cos\phi, -R\sin\theta\sin\phi, R\cos\theta),\\ \frac{\partial \Phi}{\partial \phi} = (-(a+R\cos\theta)\sin\phi, (a+R\cos\theta)\cos\phi, 0).$$

Then

$$E = \left\| \frac{\partial \Phi}{\partial \theta} \right\|^2 = R^2,$$

$$E = \left\langle \frac{\partial \Phi}{\partial \theta}, \frac{\partial \Phi}{\partial \phi} \right\rangle = 0,$$

$$G = \left\| \frac{\partial \Phi}{\partial \phi} \right\|^2 = (a + R \cos \theta)^2.$$

Hence,

$$\sqrt{EG - F^2} = R(a + R\cos\theta),$$

and therefore,

$$\Phi^*\sigma = R(a + R\cos\theta)d\theta \wedge d\phi$$

and

$$\operatorname{Area}(T) = \int_{T} \sigma = \int_{0 \le \phi, \theta \le 2\pi} \Phi^* \sigma = \int_{0}^{2\pi} \int_{0}^{2\pi} R(a + R\cos\theta) d\theta d\phi = 4\pi^2 a R.$$

b) Denote by U the domain bounded by T. By Stokes' theorem we have

$$\operatorname{Vol}(U) = \int_{U} dx \wedge dy \wedge dz = \int_{T} z dx \wedge dy.$$

Using the parameterization Φ we get

$$\int_{T} z dx \wedge dy = \int_{0 \le \phi, \theta \le 2\pi} \Phi^*(z dx \wedge dy)$$

= $R \sin \theta (-R \sin \theta \cos \phi d\theta - (a + R \cos \theta) \sin \phi d\phi) \wedge (-R \sin \theta \sin \phi d\theta + (a + r \cos \theta) \cos \phi) d\phi)$
= $R^2(a + R \cos \theta) \sin^2 \theta d\phi \wedge d\theta.$

Thus,

$$\operatorname{Vol}(U) = \int_{0 \le \phi, \theta \le 2\pi} R^2(a + R\cos\theta)\sin^2\theta d\phi \wedge d\theta = 2\pi^2 a R^2.$$

2. Let u, v be two smooth functions on the unit disc $D = \{x^2 + y^2 \le 1\} \subset \mathbb{R}^2$. Suppose that

• everywhere in D one has

$$rac{\partial u}{\partial x} = rac{\partial v}{\partial y}$$
 $rac{\partial u}{\partial y} = -rac{\partial v}{\partial x}$

- u = x, v = y when $x^2 + y^2 \le \frac{1}{2}$;
- $u^2 + v^2 \neq 0$ in $D \setminus 0$.

Prove that the differential 1-form

$$\alpha = \frac{udy - vdx}{u^2 + v^2}$$

is closed in D and compute $\int \limits_{\partial D} \alpha.$ Here ∂D is oriented counter-clockwise.

We will denote partial derivatives by u_x, u_y, v_x, v_y . Thus we have $u_x = v_y, u_y = -v_x$. We compute

$$\begin{aligned} d\alpha &= \frac{(du \wedge dy - dv \wedge dx)}{u^2 + v^2} - 2\frac{(udu + vdv) \wedge (udy - vdx)}{(u^2 + v^2)^2} \\ &= \frac{1}{(u^2 + v^2)^2} \left((u^2 + v^2)(u_x + v_y)dx \wedge dy - 2(uu_xdx + uu_ydy + vv_xdx + vv_ydy) \wedge (udy - vdx) \right) \\ &= \frac{1}{(u^2 + v^2)^2} \left(u^2u_x + v^2u_x + u^2v_y + v^2v_y - 2(u^2u_x + uvv_x + uvu_y + uvu_y + v^2v_y) \right) dx \wedge dy \\ &= = \frac{1}{(u^2 + v^2)^2} \left(u^2(-u_x + v_y) + v^2(u_x - v_y) - 2uv(v_x + u_y) \right) dx \wedge dy = 0 \end{aligned}$$

in view of the equations for the partial derivatives.

Thus the form α is closed in $\mathbb{R}^2 \setminus 0$. Denote $D' = \{x^2 + y^2 \leq \frac{1}{2}\}$. Then

$$\int_{\partial D} \alpha = \int_{\partial D'} \alpha = \int_{\partial D'} \frac{x dy - y dx}{x^2 + y^2} = 2\pi.$$

3. Consider \mathbb{R}^4 with coordinates (x_1, y_1, x_2, y_2) . Denote $\omega = dx_1 \wedge dy_1 + dx_2 \wedge dy_2$. Let

 $H : \mathbb{R}^4 \to \mathbb{R}$ be a smooth function equal to x_2 outside the ball $B_1(0)$ of radius 1 centered at 0. Suppose a vector vield **v** satisfies

$$\mathbf{v} \,\lrcorner\, \omega = dH.$$

Compute the flux of \mathbf{v} through the 3-dimensional disc

$$D = \{y_2 = 0, \ x_1^2 + y_1^2 + x_2^2 \le 2\},\$$

co-oriented by the normal vector (0, 0, 0, 1) at the origin.

Flux_D $\mathbf{v} = \int_{D} \eta$, where $\eta = \mathbf{v} \,\lrcorner\, \Omega$, $\Omega = dx_1 \wedge dy_1 \wedge dx_2 \wedge dy_2$. Let us compute η . we have

$$\eta = \mathbf{v} \,\lrcorner\, \Omega = \frac{1}{2} (\,\mathbf{v} \,\lrcorner\, \omega^2) = (\,\mathbf{v} \,\lrcorner\, \omega) \land\, \omega = dH \land\, \omega = d(H\omega).$$

Applying Stokes' theorem we find

$$\int_{D} \eta = \int_{\partial D} H\omega$$

Recall that by assumption $H|_{\partial D} = x_2$. Using again Stokes' theorem we conclude that

$$\int_{\partial D} H\omega = \int_{\partial D} x_2 \omega = \int_{D} dx_2 \wedge \omega = \int_{D} dx_1 \wedge dy_1 \wedge dx_2.$$

The absolute value of the latter integral is just the volume of the Euclidean ball of radius $\sqrt{2}$, i.e. it is equal to $\frac{8\pi\sqrt{2}}{3}$. However, the orientation of D is determined by the co-orientation of D by the vector (0, 0, 0, 1) at the origin is opposite to the orientation given by coordinates x_1, y_1, x_2 . Hence,

$$\operatorname{Flux}_D \mathbf{v} = -\frac{8\pi\sqrt{2}}{3}.$$

4. Let us consider the complex vector space \mathbb{C}^2 with coordinates $z_1 = x_1 + iy_1, z_2 = x_2 + iy_2$. We can also view \mathbb{C}^2 as the real space \mathbb{R}^4 with coordinates (x_1, y_1, x_2, y_2) . Denote

$$\alpha := \frac{1}{2}(x_1dy_1 - y_1dx_1 + x_2dy_2 - y_2dx_2)$$

Take any vector $c = (c_1, c_2) \in \mathbb{C}^2$ of length 1, i.e. $|c_1|^2 + |c_2|^2 = 1$. Denote by Γ_c the circle $\Gamma_c(t) = ce^{2\pi i t}, t \in [0, 1]$. Compute $\int_{\Gamma} \alpha$.

We compute the integral directly. Denote $c_1 = a_1 + ib_1, c_2 = a_2 + ib_2$. We have

$$\Gamma_c(t) = ce^{2\pi i t} = (c_1 e^{2\pi i t}, c_2 e^{2\pi i t})$$

= $(a_1 \cos 2\pi i t - b_1 \sin 2\pi i t, a_1 \sin 2\pi i t + b_1 \cos 2\pi i t, a_2 \cos 2\pi i t - b_2 \sin 2\pi i t, a_2 \sin 2\pi i t + b_2 \cos 2\pi i t).$
Hence,

$$\Gamma_c^* \alpha = \pi \left((a_1 \cos 2\pi i t - b_1 \sin 2\pi i t)^2 + (a_1 \sin 2\pi i t + b_1 \cos 2\pi i t)^2 + (a_2 \cos 2\pi i t - b_2 \sin 2\pi i t)^2 + (a_2 \sin 2\pi i t + b_2 \cos 2\pi i t)^2 \right) dt = \pi (|c_1|^2 + |c_2|^2) dt = \pi dt.$$

Thus,

$$\int_{\Gamma_c} = \pi.$$

5. Let S^{n-1} be the unit sphere in \mathbb{R}^n . Verify whether the map $f: S^{n-1} \to S^{n-1}$ given by the formula f(x) = -x is homotopic to the identity map. Consider the volume form on S^{n-1} :

$$\sigma = \sum_{1}^{n} (-1)^{i-1} x_i dx_1 \wedge \dots \bigvee^{i} \dots \wedge dx_n.$$

If we orient the sphere is the co-orientation outward to the unit ball that $\int_{S^{n-1}} \sigma > 0$. On the other hand, $f^*\sigma = (-1)^n \sigma$. Thus, $f^*\sigma = \sigma$ if n is even and $f^*\sigma = -\sigma$ if n is odd. Thus, for n odd the diffeomorphism f is not homotopic to the identity map. Indeed, given two homotopic maps $f, g: S^{n-1} \to S^{n-1}$ we must have $\int_{S^{n-1}} f^*\sigma = \int_{S^{n-1}} g^*\sigma$, because the form σ is closed on S^{2n-1} , but in our case $\int_{S^{n-1}} f^*\sigma < 0$ while $\int_{S^{n-1}} \sigma > 0$. If n = 2k is even then the map f is homotopic to the identity. Indeed, we can think

If n = 2k is even then the map f is homotopic to the identity. Indeed, we can think about $\mathbb{R}^n = \mathbb{R}^{2k}$ as \mathbb{C}^k . Then the required homotopy $f_t : S^{2k-1} \to S^{2k-1}$ can be defined by the formula

$$f_t(z) = e^{\pi i t} z,$$

for $z = (z_1, \dots, z_k) \in S^{2k-1}$ and $t \in [0, 1]$.