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Chapter 1

Introduction

To be rewritten.

A Stein manifold is a properly embedded complex submanifold of some CN .
Hence Stein manifolds are necessarily noncompact, and properly embedded com-
plex submanifolds of Stein manifolds are again Stein. Stein manifolds arise, e.g.,
from closed complex projective manifolds X ⊂ CPN : If H ⊂ CPN is any hy-
perplane, then X \H is Stein.
Using this construction, it is not hard to see that every closed Riemann surface
with at least one point removed is Stein. In fact, as we will see below, any open
Riemann surface is Stein. Already this example shows that the class of Stein
manifolds is much larger than the class of affine algebraic manifolds.
Stein manifolds can also be described intrinsically. The most important for us
characterization id due to Grauert (see [28]). Let (V, J) be a complex manifold,
where J denotes the complex multiplication on tangent spaces. A smooth func-
tion φ : V → R is called exhausting if it is proper (i.e., preimages of compact
sets are compact) and bounded from below. To a function φ we can associate
the 1-form dCφ := dφ ◦ J and the 2-form

ωφ := −ddCφ.

The function is called J-convex or strictly plurisubharmonic if ωφ(v, Jv) > 0
for every nonzero tangent vector v. This is equivalent to saying that ωφ is a
symplectic (i.e., closed and nondegenerate) form compatible with J .
Since the function φst(z) := |z|2 on CN is exhausting and i-convex with respect
to the standard complex structure i on CN , every Stein manifold admits an
exhausting J-convex function (namely the restriction of φst). The following
theorem asserts that the converse is also true.

Theorem 1.1 (Grauert [28]). A complex manifold which admits an exhausting
J-convex function is Stein.
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8 CHAPTER 1. INTRODUCTION

J-convexity is an open property, and hence the exhausting J-convex function in
Grauert’s theorem can assumed to be Morse, i.e. having non-degenerate critical
points.
We now turn to one of the main problems addressed in this book: Given a
smooth manifold V 2n of real dimension 2n, when does it admit a Stein structure?
Clearly, a necessary condition is the existence of an almost complex structure J ,
i.e., an endomorphism of the tangent bundle with J2 = −1l.
A second necessary condition arises from the following property of J-convex
functions (see Chapter 2): If p is a nondegenerate critical point of a J-convex
function on a complex manifold of real dimension 2n, then its Morse index
satisfies ind(p) ≤ n. Since J-convexity is a C2-open condition, every J-convex
function can be perturbed to a J-convex Morse function. In particular, every
Stein manifold (V 2n, J) admits an exhausting Morse function with ind(p) ≤ n
at all critical points. By Morse theory, this implies that V has a handlebody
decomposition using only handles of index at most n. The following theorem
asserts that these two necessary conditions are also sufficient in real dimension
2n > 4.

Theorem 1.2 (Eliashberg [14]). Let V 2n be an open smooth manifold of di-
mension 2n > 4 with an almost complex structure J and an exhausting Morse
function φ without critical points of index > n.

(i) Then V admits a Stein structure. More precisely, J is homotopic through
almost complex structures to an integrable complex structure J̃ such that
φ is J̃-convex.

(ii) If in addition J is integrable, then there exists an isotopy ht : V → V ,
with h0 = Id such φ ◦ h1 is J-convex, and, in particular, h1(V ) ⊂ V is
Stein with the induced complex structure J .

More precisely, as we explain in this book, existence of a Stein structure on a
given smooth manifold is equivalent to existence of a certain symplectic geo-
metric analogue of it, which we call Weinstein structure. We will show that
without any dimensional constraints, a Weinstein structure can be upgraded to
a Stein one, while the situation with the existence of Weinstein structure is is
drastically different in dimension 4. For instance, S2 × R2 does not admit any
Stein (and Weinstein). complex structure (see [LiMa]). However, Theorem 1.2
has the following topological analogue.

Theorem 1.3 (Gompf [25]). Let V 4 be an oriented open topological 4-manifold
which admits a (possibly infinite) handlebody decomposition without handles of
index > 2. Then V is homeomorphic to a Stein surface. Moreover, any ho-
motopy class of almost complex structures on V is induced by an orientation
preserving homeomorphism from a Stein surface.

One could ask whether the above h-principle type results can be expanded
to prove an analogues of Smale’s h-cobordism theorem of J-convex functions,
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as well as its parametric versions in the spirit of pseudoisotopy theory. In
particular,

(i) Suppose a Stein manifold (V, J) is diffeomorphic to R2n, and which is J-
convex at infinity. Does it admit an exhausting J-convex function with
only one critical point, the minimum?

(ii) Suppose ϕ0, ϕ1 : V :→ R be two exhausting Morse functions which are
J0− and J1-convex, respectively for two Stein structures J0 and J1 on
V Suppose that ϕ0 and ϕ1 have no critical points at infinity and can be
connected by a path ϕt, t ∈ [0, 1] of smooth functions without critical points
of index > n, and without critical points outside a compact subset of V .
Is there a homotopy (Jt, ϕt), t ∈ [0, 1], such that ϕt is Jt-convex, and all
functions ϕt, t ∈ [0, 1] have no critical points outside a compact set?

As it was shown recently P. Seidel and I. Smith, [56] and M. McLean, [48], the
answer to Question (i) is negative. On the other hand, the answer is positive
in dimension 4, see [15]. We will provide in this book some partial answers to
Question (ii), which in general is widely open.
This book is organized as follows. In Chapters 2 and 3 we explore basic prop-
erties of J-convex functions and hypersurfaces. Chapter 4 we construct special
hypersurfaces that play a crucial role in extending J-convex functions over han-
dles. The next two chapters contain background material which is standard but
sometimes not easy to find in the literature. In Section 7.2 we derive a general
result on real analytic approximations from standard results in complex analysis.
Chapter 5 collects some facts about smooth embeddings and immersions, and
more specifically Legendrian and isotropic embeddings in contact manifolds. In
Chapter 11 we describe the attaching of handles in the almost complex and in
the holomorphic category, and how to pass from one to the other. Theorem 1.2
is proved at the end of this chapter.
The last two chapters contain results whose proofs have not appeared in the lit-
erature. The main result of Chapter ?? reduces the deformation theory of Stein
structures to the deformation theory of Weinstein structures. In Chapter 15 we
show that in the subcritical case this deformation theory reduces to pure Morse
theory, which leads to a version of the h-cobordism theorem for Stein manifolds.
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Chapter 2

J-convex functions and
hypersurfaces

2.1 Linear algebra

A complex vector space (V, J) is a real vector space V of dimension 2n with
an endomorphism J satisfying J2 = −1l. A Hermitian form on (V, J) is an R-
bilinear map H : V × V → C which is C-linear in the first variable and satisfies
H(X, Y ) = H(Y,X). If H is, moreover, positive definite it is called Hermitian
metric. We can write a Hermitian form H uniquely as

H = g − iω,

where g is a symmetric and ω a skew-symmetric bilinear form on the real vector
space V . The forms g and ω determine each other:

g(X, Y ) = ω(X,JY ), ω(X, Y ) = g(JX, Y )

for X,Y ∈ V . Moreover, the forms ω and g are invariant under J , which can
be equivalently expressed by the equation

ω(JX, Y ) + ω(X, JY ) = 0.

Conversely, given a skew-symmetric J-invariant form ω, we can uniquely recon-
struct the corresponding Hermitian form H:

H(X,Y ) := ω(X, JY )− iω(X, Y ). (2.1)

For example, consider the complex vector space (Cn, i) with coordinates z1 =
x1 + iy1, . . . , zn = xn + iyn. It carries the standard Hermitian metric

(v, w) :=
n∑

j=1

vjw̄j = 〈v, w〉 − iω0(v, w),

13



14 CHAPTER 2. J-CONVEX FUNCTIONS AND HYPERSURFACES

where 〈·, ·〉 is the Euclidean metric and ω0 =
∑

j dxj ∧ dyj the standard sym-
plectic form on Cn.

2.2 J-convex functions

An almost complex structure on a smooth manifold V of real dimension 2n is
an automorphism J : TV → TV satisfying J2 = −1l on each fiber. The pair
(V, J) is called almost complex manifold. It is called complex manifold if J is
integrable, i.e. J is induced by complex coordinates on V . By the theorem of
Newlander and Nirenberg [51], a (sufficiently smooth) almost complex structure
J is integrable if and only if its Nijenhuis tensor

N(X, Y ) := [JX, JY ]− [X, Y ]− J [X, JY ]− J [JX, Y ], X, Y ∈ TV,

vanishes identically.
In the following let (V, J) be an almost complex manifold. To a smooth function
φ : V → R we associate the 2-form

ωφ := −ddCφ,

where the differential operator dC is defined by

dCφ(X) := dφ(JX)

for X ∈ TV .1 The form ωφ is in general not J-invariant. However, it is J-
invariant if J is integrable. To see this, consider the complex vector space
(Cn, i). Given a function φ : Cn → R, define the complex valued (1, 1)-form

∂∂̄φ :=
n∑

i,j=1

∂2φ

∂zi∂z̄j
dzi ∧ dz̄j .

Using the identities

dzj ◦ i = i dzj , dz̄j ◦ i = −i dz̄j

we compute

dCφ =
∑

j

∂φ

∂zj
dzj ◦ i +

∂φ

∂z̄j
dz̄j ◦ i =

∑

j

i
∂φ

∂zj
dzj − i

∂φ

∂z̄j
dz̄j ,

ddCφ = −2i
∑

i,j

∂2φ

∂zi∂z̄j
dzi ∧ dz̄j .

1Sometimes it will be important for us to to reflect in the notation dependence of the
operator dC and the form ωφ on J . In this case we will write dJ and ωJ,φ instead of dC and
ωφ
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Hence
ωφ = 2i∂∂̄φ (2.2)

and the i-invariance of ωφ follows from the invariance of ∂∂̄φ.
A function φ is called J-convex2 if ωφ(X, JX) > 0 for all nonzero tangent vectors
X. If ωφ is J-invariant it defines by (2.1) a unique Hermitian form

Hφ := gφ − iωφ,

and φ is J-convex iff the Hermitian form Hφ is positive definite.
From (2.2) we can derive a simple expression for the form Hφ associated to a
function φ : Cn → R in terms of the matrix aij := ∂2φ

∂zi∂z̄j
. For v, w ∈ Cn we

have

ωφ(v, w) = 2i
∑

ij

aijdzi ∧ dz̄j(v, w) = 2i
∑

ij

aij(viw̄j − wiv̄j)

= 2i
∑

ij

(aijviw̄j − āij v̄iwj) = −4Im




∑

ij

aijviw̄j



 ,

hence

Hφ(v, w) = 4
n∑

i,j=1

∂2φ

∂zi∂z̄j
viw̄j . (2.3)

Example 2.1. The function φ(z) :=
∑

j |zj |2 on Cn is i-convex with respect to
the standard complex structure i. The corresponding form Hφ equals 4( , ),
where ( , ) is the standard Hermitian metric on Cn.

2.3 The Levi form of a hypersurface

Let Σ be a smooth (real) hypersurface in an almost complex manifold (V, J).
Each tangent space TpΣ ⊂ TpV , p ∈ Σ, contains a unique maximal complex
subspace ξp ⊂ TpΣ which is given by

ξp = TpΣ ∩ JTpΣ.

Suppose that Σ is cooriented by a transverse vector field ν to Σ in V such that
Jν is tangent to Σ. The hyperplane field ξ can be defined by a Pfaffian equation
{α = 0}, where the sign of the 1-form α is fixed by the condition α(Jν) > 0.
The 2-form

ωΣ := dα|ξ
is then defined uniquely up to multiplication by a positive function. As in the
previous section we may ask whether ωΣ is J-invariant. The following lemma
gives a necessary and sufficient condition in terms of the Nijenhuis tensor.

2Throughout this book, by convexity and J-convexity we will always mean strict convexity
and J-convexity. Non-strict (J-)convexity will be referred to as weak (J-)convexity.
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Lemma 2.2. The form ωΣ is J-invariant for a hypersurface Σ if and only if
N |ξ×ξ takes values in ξ. The form ωΣ is J-invariant for every hypersurface Σ
if and only if for all X, Y ∈ TV , N(X,Y ) lies in the complex plane spanned by
X and Y . In particular, this is the case if J is integrable or if V has complex
dimension 2.

Proof. Let Σ ⊂ V be a hypersurface and α a defining 1-form for ξ. Extend α
to a neighborhood of Σ such that α(ν) = 0. For X, Y ∈ ξ we have [X, Y ] ∈ TΣ
and therefore J [X,Y ] = aν + Z for some a ∈ R and Z ∈ ξ. This shows that

α(J [X, Y ]) = 0

for all X, Y ∈ ξ. Applying this to various combinations of X, Y , JX and JY
we obtain

α
(
N(X,Y )

)
= α([JX, JY ])− α([X, Y ]),

α
(
JN(X,Y )

)
= α([X, JY ]) + α([JX, Y ]).

The form ωΣ is given by

ωΣ(X, Y ) =
1
2

(
X · α(Y )− Y · α(X)− α([X, Y ]

)
= −1

2
α([X, Y ]).

Inserting this in the formulae above yields

−1
2
α
(
N(X, Y )

)
= ωΣ(JX, JY )− ωΣ(X, Y ),

−1
2
α
(
JN(X, Y )

)
= ωΣ(X,JY ) + ωΣ(JX, Y ).

Hence the J-invariance of ωΣ is equivalent to

α
(
N(X, Y )

)
= α

(
JN(X, Y )

)
= 0,

i.e. N(X, Y ) ∈ ξ for all X, Y ∈ ξ. This proves the first statement and the ’if’ in
the second statement. For the ’only if’ it suffices to note that if N(X, Y ) does
not lie in the complex plane spanned by X and Y for some X, Y ∈ TV , then
we find a hypersurface Σ such that X,Y ∈ ξ and N(X, Y ) /∈ ξ.

Remark 2.3. Given any hypersurface Σ, and any almost complex structure J it
is always possible to find another almost complex structure J̃ such that ξJ =
ξ eJ = ξ, and the form dαξ for a 1-form α defining ξ, is J̃-invariant. Moreover, if
ξ is non-integrable. i.e. if dα|ξ is non-degenerate, the space of almost complex
sructures J̃ with these properties is contractible. See discussion of this in Section
?? below.
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A hypersurface Σ is called Levi-flat if ωΣ ≡ 0. This is exactly the Frobenius
integrability condition for the hyperplane field ξ on Σ. Hence, on a Levi-flat
hypersurface ξ integrates to a real codimension 1 holomorphic foliation.
It is called J-convex (or strictly pseudoconvex) if ωΣ(X,JX) > 0 for all nonzero
X ∈ ξ. If ωΣ is J-invariant it defines a Hermitian form LΣ on ξ by the formula

LΣ(X,Y ) := ωΣ(X, JY )− iωΣ(X,Y )

for X, Y ∈ ξ. The Hermitian form LΣ is called the Levi form of the (coori-
ented) hypersurface Σ. We will use the notation LΣ(X) for the quadratic form
LΣ(X, X). Note that Σ is Levi-flat iff LΣ ≡ 0, and J-convex iff LΣ is positive
definite. We will sometimes also refer to ωΣ as the Levi form.
As pointed out above, the Levi form is defined uniquely up to multiplication
by a positive function. Hence, in the computation of LΣ we will sometimes use
the notation .= instead of =, indicating that some positive coefficients could be
dropped in the computation.
If the hypersurface Σ is given by an equation {φ = 0} for a function φ : V → R,
then we can choose α = −dCφ as the 1-form defining ξ (with the coorientation
of Σ given by dφ). Thus the Levi form can be defined as

ωΣ(X, Y ) = −ddCφ(X, Y ).

This shows that regular level sets of a J-convex function φ are J-convex (being
cooriented by dφ). It turns out that the converse is also almost true (similarly
to the situation for convex functions and hypersurfaces).

Lemma 2.4. Let φ : V → R be a smooth function on an almost complex
manifold without critical points such that all its level sets are compact and J-
convex. Then there exists a convex increasing function f : R → R such that the
composition f ◦ φ is J-convex.

Proof. Consider a regular level set Σ of φ. For a function f : R → R we have

dC(f ◦ φ) = f ′ ◦ φ dCφ,

−ddC(f ◦ φ) = −f ′′ ◦ φ dφ ∧ dCφ− f ′ ◦ φ ddCφ.

By the J-convexity of Σ, the term −f ′ ◦ φ ddCφ is positive definite on the
maximal complex subspace ξ ⊂ Σ if f ′ > 0. The form ωphi|V has the rank
= dimR V − 1, and hence there exists a unique vector field X ∈ TV which
satisfies the conditions i(X)(ωφ|V ) = 0 and ddCφ(X) = 1. It is sufficient for
us to ensure the inequality ωf◦φ(X, JX) > 0. We have −dφ ∧ dCφ(X, JX) = 1,
and by compactness of the level sets,

ωf◦φ(X, JX) = −ddC(f ◦ φ)(X, JX) > f ′′ ◦ φ− h ◦ φ f ′ ◦ φ

for some smooth function h : R → (0,∞). Now solve the differential equation
f ′′(y) = h(y)f ′(y) with initial condition f ′(y0) > 0. The solution exists for all
y ∈ R and satisfies f ′ > 0, so f ◦ φ is J-convex.
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Remark 2.5. The proof of the preceding lemma also shows: If φ : V → R is
J-convex, then f ◦ φ is J-convex for any function f : R → R with f ′ > 0 and
f ′′ ≥ 0.

A vector field is called complete if its flow exists for all forward and backward
times. For a J-convex function φ, let ∇φφ be the gradient of φ with respect to
the metric gφ = ωφ(·, J ·). In general, ∇φφ need not be complete:

Example 2.6. The function φ(z) :=
√

1 + |z|2 on C satisfies

∂2φ

∂z∂z̄
=

∂

∂z

z√
1 + |z|2

=
1

√
1 + |z|23 ,

so gφ = 4(1 + |z|2)−3/2〈 , 〉, where 〈 , 〉 is the standard metric. In particular, φ
is i-convex. Its gradient is determined from

dφ =
x dx + y dy√

1 + |z|2
=

4
√

1 + |z|23 〈∇φφ, ·〉,

thus ∇φφ = 1+|z|2
4 (x ∂

∂x + y ∂
∂y ). A gradient line γ(t) with |γ(0)| = 1 is given by

γ(t) = h(t)γ(0), where h(t) satisfies h′ = 1+h2

4 h. This shows that γ(t) tends to
infinity in finite time, hence the gradient field ∇φφ is not complete.

However, the gradient field ∇φφ can always be made complete by composing φ
with a sufficiently convex function:

Proposition 2.7. Let φ : V → [a,∞) be an exhausting J-convex function on
an almost complex manifold. Then for any diffeomorphism f : [a,∞) → [b,∞)
such that f ′′ > 0 and limy→∞ f ′(y) = ∞, the function f ◦ φ is J-convex and its
gradient vector field is complete.

Proof. The function ψ := f ◦ φ satisfies

ddCψ = f ′′ ◦ φ dφ ∧ dCφ + f ′ ◦ φ ddCφ .

In particular, ψ is J-convex if f ′ > 0 and f ′′ > 0. The metric associated to ψ is
given by

gψ(X, Y ) = −ddCψ(X, JY )

= +f ′′ ◦ φ [dφ(X)dφ(Y ) + dCφ(X)dCφ(Y )] + f ′ ◦ φ gφ(X, Y ) .

Let us compute the gradient ∇ψψ. We will find it in the form

∇ψψ = λ∇φφ

for a function λ : V → R. The gradient is determined by

gψ(∇ψψ, Y ) = dψ(Y ) = f ′ ◦ φ dφ(Y )
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for any vector Y ∈ TV . Using dφ(∇φφ) = gφ(∇φφ,∇φφ) =: |∇φφ|2 and
dCφ(∇φφ) = gφ(∇φφ, J∇φφ) = 0, we compute the left hand side as

gψ(∇ψψ, Y )

= λ
{

f ′′ ◦ φ [dφ(∇φφ)dφ(Y ) + dCφ(∇φφ)dCφ(Y )] + f ′ ◦ φ gφ(∇φφ, Y )
}

= λ{f ′′ ◦ φ |∇φφ|2dφ(Y ) + f ′ ◦ φ dφ(Y )}.

Comparing with the right side, we find

λ =
f ′ ◦ φ

f ′′ ◦ φ |∇φφ|2 + f ′ ◦ φ
.

Since φ is proper, we only need to check completeness of the gradient flow for
positive times. Consider an unbounded gradient trajectory γ : [0, T ) → V , i.e.,
a solution of

dγ

dt
(t) = ∇φφ

(
γ(t)

)
, lim

t→T
φ
(
γ(t)

)
= ∞.

Here T can be finite or +∞. The function φ maps the image of γ diffeomorphi-
cally onto some interval [c,∞). It pushes forward the vector field ∇φφ (which
is tangent to the image of γ) to the vector field

φ∗(∇φφ) = h(y)
∂

∂y
,

where t and y are the coordinates on [0, T ) and [c,∞), respectively, and

h(y) := |∇φφ|2
(
φ−1(y)

)
> 0.

Similarly, φ pushes forward ∇ψψ = λ∇φφ to the vector field

φ∗(∇ψψ) = λ
(
φ−1(y)

)
h(y)

∂

∂y
=

f ′(y)h(y)
f ′′(y)h(y) + f ′(y)

∂

∂y
=: v(y).

Hence completeness of the vector field ∇ψψ on the trajectory γ is equivalent to
the completeness of the vector field v on [c,∞). An integral curve of v satisfies
dy
ds = v(y), or equivalently,

ds =
f ′′(y)h(y) + f ′(y)

f ′(y)h(y)
dy.

Thus completeness of the vector field v is equivalent to

+∞ =
∫ ∞

c

f ′′(y)h(y) + f ′(y)
f ′(y)h(y)

dy =
∫ ∞

c

f ′′(y)dy

f ′(y)
+

∫ ∞

c

dy

h(y)
.

The first integral on the right hand side is equal to
∫∞

c d
(
ln f ′(y)

)
, so it diverges

if and only if limy→∞ f ′(y) = ∞.

We will call an exhausting J-convex function completely exhausting if its gradient
vector field ∇φφ is complete.
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2.4 J-convexity and geometric convexity

Next we investigate the relation between i-convexity and geometric convexity.
Consider Cn = Cn−1×R×R with coordinates (z1, . . . , zn−1, u+iv). Let Σ ⊂ Cn

be a hypersurface which is given as a graph {u = f(z, v)} for some smooth
function f : Cn−1 × R → R. Assume that f(0, 0) = 0 and df(0, 0) = 0. Every
hypersurface in a complex manifold can be locally written in this form.
The Taylor polynomial of second order of f around (0, 0) can be written as

T2f(z, v) =
∑

i,j

aijziz̄j + 2Re
∑

i,j

bijzizj + v l(z, z̄) + cv2, (2.4)

where l is some linear function of z and z̄, and aij = ∂2f
∂zi∂z̄j

(0, 0). Let Σ be
cooriented by the gradient of the function f(z, v) − u. Then the 2-form ωΣ at
the point 0 is given on X, Y ∈ ξ0 = Cn−1 by

ωΣ(X, Y ) = 2i∂∂̄f(X, Y ) = 2i
∑

i,j

aijdzi ∧ dz̄j(X, Y )

= −4Im (AX, Y ),

where A is the complex (n − 1) × (n − 1) matrix with entries aij . Hence the
Levi form at 0 is

LΣ = 4〈A·, ·〉.
If the function f is (strictly) convex, then

T2f(z, 0) + T2f(iz, 0) = 2
∑

ij

aijziz̄j > 0

for all z 0= 0, so the Levi form is positive definite. This shows that convexity of
Σ implies i-convexity. The converse is not true, see the examples below. It is
true, however, locally after a biholomorphic change of coordinates.

Proposition 2.8 (R.Narasimhan). A hypersurface Σ ⊂ Cn is i-convex if and
only if it can be made (strictly) convex in a neighborhood of each of its points
by a biholomorphic change of coordinates.

Proof. The ’if’ follows from the discussion above and the invariance of J-convexity
under biholomorphic maps. For the converse write Σ in local coordinates as a
graph {u = f(z, v)} as above and consider its second Taylor polynomial (2.4).
Let w = u + iv, and perform in a neighborhood of 0 the holomorphic change of
coordinates w̃ := w − 2

∑
ij bijzizj . Then

ũ =
∑

aijziz̄j + ṽ l(z, z̄) + cṽ2 + O(3).

After another local change of coordinates w′ := w̃ − λw̃2, λ ∈ R, we have

u′ = ũ + λ(v′)2 + O(3) =
∑

aijziz̄j + v′l(z, z̄) + (c + λ)(v′)2 + O(3).
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For λ sufficiently large the quadratic form on the right hand side is positive
definite, so the hypersurface Σ is convex in the coordinates (z, w′).

Consider for a moment a cooriented hypersurface in Rn with the Euclidean
metric 〈 , 〉. Its second fundamental form

II : TΣ× TΣ → R

can be defined as follows. For X ∈ TxΣ let γ : (−ε, ε) → Σ be a curve with
γ(0) = x and γ̇(0) = X. Then

II(X, X) := −〈γ̈(0), ν〉,

where ν is the unit normal vector to Σ in x defining the coorientation. The
matrix representing the second fundamental form equals the differential of the
Gauss map which associates to every point its unit normal vector. Our sign
convention is chosen in such a way that the unit sphere in Rn has positive
principal curvatures if it is cooriented by the outward pointing normal vector
field. The mean curvature along a k-dimensional subspace S ⊂ TxΣ is defined
as

1
k

k∑

i=1

II(vi, vi)

for some orthonormal basis v1, . . . , vk of S. If Σ is given as a graph {xn =
f(x1, . . . , xn−1)} with f(0) = 0 and df(0) = 0, then for X ∈ Rn−1 we can
choose the curve

γ(t) :=
(
tX, f(tX)

)

in Σ. Taking the second derivative we obtain

II(X, X) =
∑

ij

∂2f

∂xi∂xj
(0)XiXj , (2.5)

if Σ is cooriented by the gradient of the function f − xn. This leads to the
following geometric characterization of i-convexity:

Proposition 2.9. The Levi form of a cooriented hypersurface Σ ⊂ Cn with
respect to the standard complex structure i is given at a point z ∈ Σ by

LΣ(X) =
1
2

(
II(X, X) + II(iX, iX)

)
(2.6)

for X ∈ TzΣ. Thus Σ is i-convex if and only if at every point z ∈ Σ the mean
curvature along any complex line in TzΣ is positive.

Proof. Write Σ locally as a graph {u = f(z, v)} with f(0, 0) = 0 and df(0, 0) =
0, and such that the gradient of f − u defines the coorientation of Σ. Consider



22 CHAPTER 2. J-CONVEX FUNCTIONS AND HYPERSURFACES

the second Taylor polynomial (2.4) of f in (0, 0). In view of (2.5), the mean
curvature along the complex line generated by X ∈ Cn−1 is given by

1
2

(
II(X, X) + II(iX, iX)

)
=

1
2

(
T2f(X) + T2f(iX)

)

=
∑

ij

aijXiX̄j = LΣ(X, X),

and the proposition follows.

As we already mentioned above the Levi form LΣ is invariantly defined only up
to multiplication by a positive function. However, for a hypersurface of Cn (or
more generally of any Kähler manifold) we will call the form LΣ given by the
equation (2.6) the normalized Levi form. Furthermore, we denote in this case

m(Σ) = min
X∈ξ,||X||=1

LΣ(X),

M(Σ) = max(1,−II(X, X)), X ∈ TV, ||X|| = 1,

µ(Σ) =
m(Σ)
M(Σ)

.

The quantity µ(Σ) is called the modulus of i-convexity of the hypersurface Σ.

Lemma 2.10. Suppose that for Σ ⊂ Cn we have µ(Σ) > ε. Then there exists
a positive δ = δ(ε) such that if a complex structure J on Op Σ is δ-close in
C2-metric to the standard complex structure i, then Σ is J-convex.

Proof. The condition µ(Σ) > ε ensure that there exists σ(ε) > 0 such that the
mean normal curvature is positive along any plane which no more than by an
angle σ from a complex line tangent to Σ. In a neighborhood of any point
p ∈ Σ there exists a δ-C2-small biholomorphism h : (Op p, J) → (Op p, i). It
changes the second fundamental form of Σ no more than by δ and preserves the
direction of complex tangent hyperplanes to Σ up to an error of order δ. Hence,
for δ small compared to σ the hypersurface h(Σ) is i-convex, and hence Σ is
J-convex.

A family of hypersurfaces Σt ⊂ Cn, parameterized by an open interval ∆, is
called uniformly i-convex if there exists c > 0 such that µ(Σt) > c for all t ∈ ∆.

Example 2.11. Let L ⊂ Cn be a compact totally real submanifold. Set Σt =
{x ∈ Cn; distL(x) = c}. Then for a sufficiaently small ε > 0 the family
{Σt}|t∈(0,ε) is uniformly i-convex.

Example 2.11 and Lemma 2.10 imply

Corollary 2.12. Let L ⊂ Cn and Σt = {x ∈ Cn; distL(x) = c} be as in Example
2.11. Then for J which is sufficiently C2-close to i on Op L the hypersurfaces
Σt are J-convex for t close to 0.
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2.5 Examples of J-convex functions and hyper-
surfaces

Quadratic functions. For the function

φ(z) :=
n∑

k=1

λkx2
k + µky2

k

on Cn we have
ωφ = 2

∑

k

(λk + µk)dxk ∧ dyk.

So φ is J-convex if and only if

λk + µk > 0 for all k = 1, . . . , n. (2.7)

Consider a level set Σ of φ in the case λk > 0 and µk < 0. The intersection
of Σ with any plane in the x-coordinates is a curve with positive curvature
determined by the λk. The intersection with a plane in the y-coordinates has
negative curvature determined by the yk. The condition (2.7) assures that along
any complex line these curvatures add up to a positive mean curvature.
Totally real submanifolds. A submanifold L of an almost complex manifold
(V, J) is called totally real if it has no complex tangent lines, i.e. J(TL)∩TL =
{0} at every point. This condition implies dimR L ≤ dimC V . For example, the
linear subspaces Rk := {(x1, . . . , xk, 0, . . . , 0) | xi ∈ R} ⊂ Cn are totally real for
all k = 0, . . . , n. If we have an Hermitian metric on (V, J) we can define the
distance function distL : V → R,

distL(x) := inf{dist(x, y) | y ∈ L}.

Proposition 2.13. Let L be a totally real submanifold of an almost complex
manifold (V, J). Then the squared distance function dist2L with respect to any
Hermitian metric on V is J-convex in a neighborhood of L. In particular, if
L is compact, then {distL ≤ ε} is a tubular neighborhood of L with J-convex
boundary for each sufficiently small ε > 0.

???

Proof. Let Q : TpV → R be the Hessian quadratic form of dist2L at a point
p ∈ L. Its value Q(z) equals the squared distance of z ∈ TpV from the linear
subspace TpL ⊂ TpV . Choose an orthonormal basis e1, Je1, . . . , en, Jen of TpV
such that e1, . . . , ek is a basis of TpL. In this basis,

Q
( n∑

i=1

(xiei + yiJei)
)

=
∑

j>k

x2
j +

n∑

i=1

y2
i ,

which is J-convex by Example 1. So dist2L is J-convex on L and therefore by
continuity in a neighborhood of L.
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Remark 2.14. (1) The last statement of Proposition 2.13 extends to the non-
compact case: Every properly embedded totally real submanifold of an almost
complex manifold has an arbitrarily small tubular neighborhoods with J-convex
boundary. Of course the radius of the neighborhood may go to 0 at infinity
(2) Proposition 2.13 can be generalized as follows. Let W be any compact sub-
manifold of an almost complex manifold (V, J), and suppose that a function
φ : V → R satisfies the following J-convexity condition on W : The form −ddCφ
is positive on any complex line tangent to W . Note that this condition is vacu-
ously satisfied for any function on a totally real manifold. Choose any Hermitian
metric on V . Then the function φ + λdist2W is J-convex in a neighborhood of
W for a sufficiently large positive λ. If W is non-compact (but properly em-
bedded), then we need to choose as λ not a constant but a positive function
λ : W → R which may grow at infinity.

Holomorphic line bundles. A complex line bundle π : E → V over a
complex manifold V is called holomorphic line bundle if the total space E is
a complex manifold and the bundle possesses holomorphic local trivializations.
For a Hermitian metric on E → V consider the hypersurface

Σ := {z ∈ E
∣∣∣ |z| = 1} ⊂ E.

Complex multiplication U(1) × Σ → Σ, (eiθ, z) 1→ eiθ · z provides Σ with the
structure of a U(1) principal bundle over V . Let α be the 1-form on Σ defined
by

α
( d

dθ

∣∣∣
0
eiθ · z

)
= 1, α|ξ = 0,

where ξ is the distribution of maximal complex subspaces of TΣ. The imaginary
valued 1-form iα defines the unique connection on the U(1) principal bundle
Σ → V for which all horizontal subspaces are J-invariant. Its curvature is the
imaginary valued (1,1)-form Ω on V satisfying π∗Ω = d(iα). On the other hand,
α is a defining 1-form for the hyperplane distribution ξ ⊂ TΣ, so ωΣ = dα|ξ×ξ

defines the Levi form of Σ. Thus ωΣ and the curvature form Ω are related by
the equation

iωΣ(X, Y ) = Ω(π∗X, π∗Y ) (2.8)

for X, Y ∈ ξ. The line bundle E → V is called positive (resp. negative) if
it admits a Hermitian metric such that the corresponding curvature form Ω
satisfies

i

2π
Ω(X, JX) > 0

(
resp. < 0

)

for all 0 0= X ∈ TV . Since π is holomorphic, equation (2.8) implies

Proposition 2.15. Let E → V be a holomorphic line bundle over a complex
manifold. There exists a Hermitian metric on E → V such that the hypersurface
{z ∈ E

∣∣∣ |z| = 1} is J-convex if and only if E is a negative line bundle.
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If V is compact, then the closed 2-form i
2π Ω represents the first Chern class

c1(E), [ i

2π
Ω

]
= c1(E)

(see [41], Chapter 12). Conversely, for every closed (1,1)-form i
2π Ω represent-

ing c1(E), Ω is the curvature of some Hermitian connection iα as above ([30],
Chapter 1, Section 2). So a line bundle over V is positive/negative if and only
if its first Chern class can be represented by a positive/negative (1,1)-form. If
V has complex dimension 1 we get a very simple criterion.

Corollary 2.16. Let V be a compact Riemann surface and [V ] ∈ H2(V, R)
its fundamental class. A holomorphic line bundle E → V admits a Hermitian
metric such that the hypersurface {z ∈ E

∣∣∣ |z| = 1} is J-convex if and only if
c1(E) · [V ] < 0.

For example, the corollary applies to the tangent bundle of a Riemann surface
of genus ≥ 2.

Proof. Since H2(V, R) is 1-dimensional, c1(E) · [V ] < 0 if and only if c1(E) can
be represented by a negatively oriented area form. But any negatively oriented
area form on V is a negative (1,1)-form.

Remark 2.17. If E → V is just a complex line bundle (i.e. not holomorphic),
then the total space E does not carry a natural almost complex structure.
Such a structure can be obtained by choosing a Hermitian connection on E →
V and taking the horizontal spaces as complex subspaces with the complex
multiplication induced from V via the projection. If we fix an almost complex
structure on the total space E such that the projection π is J-holomorphic, then
Proposition 2.13 remains valid.

2.6 J-convex functions and hypersurfaces in Cn

Let a hypersurface Σ ⊂ Cn is given by an implicit equation Ψ(x) = 0 with∇Ψ =
(

∂Ψ
∂z̄1

, . . . , ∂Ψ
∂z̄1

)
0= 0 on Σ. Let HC

p (T ) :=
N∑

i,j=1

∂Ψ
∂zi∂z̄j

(p)TiT̄j , T = (T1, . . . , Tn),

p ∈ Cn, be the complex Hessian form of Ψ. We begin with the following
expression of the normalized Levi form LΣ.

Lemma 2.18. The normalized Levi form of Σ can be given by an expression

LΣ(T ) =
HC

p (T )
|∇HC(p)| , p ∈ Σ, T ∈ TpΣ. (2.9)

Proof. The second fundamental form IIΣ of Σ can be written as

IIΣ(T, T ) =
Hp(T )
|∇H(p)| , p ∈ Σ, T ∈ TpΣ,
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where Hp(T ) is the real Hessian form of Ψ. By definition,Reference? or add a
computation

LΣ(T ) =
1
2

(IIΣ(T, T ) + IIΣ(iT, iT ))), T ∈ ξ.

On the other hand, HC
p (T ) = 1

2 (Hp(T ) + Hp(iT )), and (2.9) follows.

Corollary 2.19. Let Σ ⊂ Ω ⊂ Cn be a J-convex compact hypersurface and
f : Ω → Ω̃ ⊂ Cn a biholomorphism. Denote Σ̃ := f(Σ). Then there exists a
positive constant c which depends only on the C2-norm of f along Σ such that
µ(Σ̃) > cµ(Σ).

Consider the case n = 2 and denote coordinates (ζ, w) instead of (z1, z2). We
have dimC ξ = 1 and thus LΣ(T ) is independent of T ∈ §1ξ = {T ∈ ξ, |T | = 1.
The complex line ξ is generated by the vector T = 1

|∇Ψ|

(
−∂Ψ

∂w , ∂Ψ
∂ζ

)
. Hence,

L0 = L(T ) =
1

|∇Ψ|3
(
Ψζζ̄ |Ψw|2 − 2Re (Ψζw̄ΨwΨζ̄) + Ψww̄|Ψζ |2

)
.

Thus we get the following criterion for an i-convexity of a hypersurface Σ =
{Ψ = 0} ⊂ C2}:

Criterion 2.20. A hypersurface Σ = {Ψ =0 } ⊂ C2} is i-convex if and only if

Ψζζ̄ |Ψw|2 − 2Re (Ψζw̄ΨwΨζ̄) + Ψww̄|Ψζ |2 > 0.

Let ζ = s + it, w = u + iv. Suppose that a hypersurface Σ ⊂ C2 is given as a
graph

Ψ(ζ, w) := ψ(ζ, u)− v = 0.

Then

2Ψζ̄ = ψs + iψt, 4Ψζζ̄ = ψss + ψtt, 4|Ψζ |2 = ψ2
s + ψ2

t ,

2Ψw = ψu + i, 4Ψww̄ = ψuu, 4|Ψw|2 = 1 + ψ2
u,

4Ψζw̄ = ψsu − iψtu, 4ΨwΨζ̄ = (ψuψs − ψt) + i(ψs + ψuψt),

16ReΨζw̄ΨwΨζ̄ = ψsu(ψuψs − ψt) + ψtu(ψs + ψuψt),

thus we have proved

Lemma 2.21. The normalized Levi form of the hypersurface Σ = {v = ψ(s, t, u)} ⊂
C2, cooriented by the gradient of the function ψ(s, t, u)− v, is given by

L0 =
1

(1 + ψ2
s + ψ2

t ) 3
2

(
(ψss + ψtt)(1 + ψ2

u) + ψuu(ψ2
s + ψ2

t )

+ 2ψsu(ψt − ψuψs)− 2ψtu(ψs + ψuψt)
)
. (2.10)

In particular, the surface Σ is i-convex iff

(ψss + ψtt)(1 + ψ2
u) + ψuu(ψ2

s + ψ2
t ) + 2ψsu(ψt − ψuψs)− 2ψtu(ψs + ψuψt) > 0.



Chapter 3

Smoothing

3.1 J-convexity and plurisubharmonicity

A C2-function φ : U → R on an open domain U ⊂ C is i-convex if and only if
it is (strictly) subharmonic, i.e.,

∆φ =
∂2φ

∂x2
+

∂2φ

∂y2
= 4

∂φ

∂z∂z̄
> 0.

Note. By “subharmonic” we will always mean “strictly subharmonic”. Non-
strict subharmonicity will be referred to as “weak subharmonicity”. The same
applies to plurisubharmonicity discussed below.

A continuous function φ : U → R is called (strictly) subharmonic if it satisfies

∆φ ≥ h

for a positive continuous function h : U → R, where the Laplacian and the
inequality are understood in the distributional sense, i.e.,

∫

U
φ ∆δ dx dy ≥

∫

U
h δ dx dy (3.1)

for any nonnegative smooth function δ : U → R with compact support. Note
that if φ is a C2-function satisfying (3.1), then integration by parts and choice
of a sequence of functions δn converging to the Dirac measure of a point p ∈ U
shows ∆φ(p) ≥ h(p), so the two definitions agree for C2-functions.
If z = x+ iy → w = u+ iv is a biholomorphic change of coordinates on U , then

∆zδ dx dy = 2i
∂2δ

∂z∂z̄
dz ∧ dz̄ = −ddCδ = ∆wδ du dv, (3.2)

so inequality (3.1) transforms into
∫

U
φ(w)∆δ(w)du dv ≥

∫

U
h(w)δ(w)

∣∣∣
dz

dw

∣∣∣
2
du dv.

27
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This shows that subharmonicity is invariant under biholomorphic coordinate
changes and therefore can be defined for continuous functions on Riemann sur-
faces. The following lemma gives a useful criterion for subharmonicity of con-
tinuous functions.

Lemma 3.1. A continuous function φ : U → R on a domain U ⊂ C is subhar-
monic if and only if there exists a positive continuous function h : U → R such
that

φ(z) + h(z)r2 ≤ 1
2π

∫ 2π

0
φ(z + reiθ)dθ (3.3)

for all z ∈ U and r > 0 for which the disk of radius r around z in contained in
U .

Proof. In a neighborhood of a point z0 ∈ U inequality (3.3) holds with h replaced
by some constant λ > 0. Consider the function

ψ(z) := φ(z)− λ|z − z0|2.

For r > 0 sufficiently small, (3.3) is equivalent to

ψ(z0) ≤
1
2π

∫ 2π

0
ψ(z0 + reiθ)dθ.

By a standard result (see e.g. [39]), this inequality is equivalent to ∆ψ(z0) ≥ 0
in the distributional sense, and therefore to ∆φ(z0) ≥ 2λ.

Remark 3.2. The preceding proof shows: If φ in Lemma 3.1 is C2, then inequal-
ity (3.3) holds with h(z) := 1

4minD(z)∆φ, where D is the maximal disk around
z contained in U .

Now let (V, J) be an almost complex manifold. A (nonsingular) J-holomorphic
curve is a 1-dimensional complex submanifold of (V, J). Note that the restriction
of the almost complex structure J to a J-holomorphic curve is always integrable.

Lemma 3.3. A C2-function φ on an almost complex manifold (V, J) is J-convex
if and only if its restriction to every J-holomorphic curve is subharmonic.

Proof. By definition, φ is J-convex iff −ddCφ(X,JX) > 0 for all 0 0= X ∈ TxV ,
x ∈ V . Now for every such X 0= 0 there exists a J-holomorphic curve C ⊂ V
passing through x with TxC = spanR{X, JX} ([52]). By formula (3.2) above,
−ddCφ(X, JX) > 0 precisely if φ|C is subharmonic in x.

Remark 3.4. In the proof we have used the fact that the differential operator ddC

commutes with restrictions to complex submanifolds. This is true because the
exterior derivative and the composition with J both commute with restrictions
to complex submanifolds.
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Remark 3.5. Lemma 3.3 provides another proof of Corollary 12.13, i.e. that
non-degenerate critical points of a J-convex function have Morse indices ≤ n.
Indeed, p be a critical point of a J-convex function φ. Suppose ind(p) > n.
Then there exists a subspace W ⊂ TpV of dimension > n on which the Hessian
of φ is negative definite. Since W ∩ JW 0= {0}, W contains a complex line L.
Let C be a J-holomorphic curve through p tangent to L. Then φ|C attains a
local maximum at p. But this contradicts the maximum principle because φ|C
is subharmonic by Lemma 3.3.

In view of Lemma 3.3 we can speak about continuous J-convex functions on
almost complex manifolds as functions whose restrictions to all J-holomorphic
curves are subharmonic. Such functions are also called (strictly) plurisubhar-
monic. For functions on Cn, Lemma 3.1 and the proof of Lemma 3.3 show

Lemma 3.6. A continuous function φ : Cn ⊃ U → R is i-convex if and only
if its restriction to every complex line is subharmonic. This means that there
exists a positive continuous function h : U → R such that

φ(z) + h(z)|w|2 ≤ 1
2π

∫ 2π

0
φ(z + weiθ)dθ (3.4)

for all z ∈ U and w ∈ Cn for which the disk of radius |w| around z in contained
in U .

The following lemma follows from equation (3.1) via integration by parts.

Lemma 3.7. If φ is a J-convex function on an almost complex manifold (V, J),
then φ + ψ is J-convex for every sufficiently C2-small C2-function ψ : V → R.

Our interest in continuous J-convex functions is motivated by the following

Lemma 3.8. If φ and ψ are continuous J-convex functions on an almost com-
plex manifold (V, J), then max(φ, ψ) is J-convex. More generally, let (φλ)λ∈Λ be
a continuous family of continuous functions, parameterized by a compact metric
space Λ, that are uniformly J-convex in the sense that on every J-holomorphic
disk U ⊂ V condition (3.3) holds for all φλ with functions hλ depending con-
tinuously on λ. Then maxλ∈Λφλ is a continuous J-convex function.

Proof. Continuity of maxλ∈Λφλ is an easy exercise. For J-convexity we use the
criterion from Lemma 3.1. Let U ⊂ V be a J-holomorphic disk and choose a
local coordinate z on U . By hypothesis, condition (3.3) holds for all φλ with
functions hλ depending continuously on λ. Note that h(z) := minλ∈Λhλ defines
a positive continuous function on U . Set φ := maxλ∈Λφλ. At any point z ∈ U
we have φ = φλ for some λ ∈ Λ (depending on z). Now the lemma follows from

φ(z) + h(z)r2 ≤ φλ(z) + hλ(z)r2 ≤ 1
2π

∫
φλ(z + reiθ)dθ

≤ 1
2π

∫
φ(z + reiθ)dθ.
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Remark 3.9. For example, the hypotheses of Lemma 3.8 are satisfied if all the
J-convex functions φλ are C2 and their first two derivatives depend continuously
on λ. This follows immediately from the remark after Lemma 3.1.

3.2 Smoothing of J-convex functions

For integrable J , continuous J-convex functions can be approximated by smooth
ones. The following proposition was proved by Richberg [54]. We give below a
proof following [21].

Proposition 3.10. Let φ be a continuous J-convex function on a (integrable)
complex manifold (V, J). Then for every positive function h : V → R+ there
exists a smooth J-convex function ψ : V → R such that |φ(x) − ψ(x)| < h(x)
for all x ∈ V . If φ is already smooth on a neighborhood of a compact subset K,
then we can achieve ψ = φ on K.

Remark 3.11. A continuous weakly J-convex function cannot in general be ap-
proximated by smooth weakly J-convex functions, see [21] for a counterexample.
We do not know whether the proposition remains true for almost complex ma-
nifolds.

The proof is based on an explicit smoothing procedure for functions on Rm.
Pick a smooth nonnegative function ρ : Cm → R with support in the unit ball
and

∫
Rm ρ = 1. For δ > 0 set ρδ(x) := δ−mρ(x/δ). Let U ⊂ Rm be an open

subset and set
Uδ := {x ∈ U | B̄δ(x) ⊂ U}

For a continuous function φ : Rm ⊃ U → R define the mollified function φδ :
Uδ → R,

φδ(x) :=
∫

Cn

φ(x− y)ρδ(y)d2ny =
∫

Cn

φ(y)ρδ(x− y)d2ny. (3.5)

The last expression shows that the functions φδ are smooth for every δ > 0.
The first expression shows that if φ is of class Ck for some k ≥ 0, then φδ → φ
as δ → 0 uniformly on compact subsets of U .
Proposition 3.10 is an immediate consequence of the following lemma, via in-
duction over a countable coordinate covering.

Lemma 3.12. Let φ be a continuous J-convex function on a complex manifold
(V, J). Let A, B ⊂ V be compact subsets such that φ is smooth on a neighborhood
of A and B is contained in a holomorphic coordinate neighborhood. Then for
every ε > 0 and every neighborhood W of A ∪ B there exists a continuous
J-convex function ψ : V → R with the following properties.

• ψ is smooth on a neighborhood of A ∪B;

• |ψ(x)− φ(x)| < ε for all x ∈ V ;
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• ψ = φ on A and outside W .

Proof. The proof follows [21]. First suppose that φ is i-convex on an open set
U ⊂ Cn. By Lemma 3.6, there exists a positive continuous function h : U → R
such that (3.4) holds for all z ∈ U2δ and w ∈ Cn with |w| ≤ δ. Hence the
mollified function φδ satisfies

φδ(x) + hδ(x)|w|2 =
∫

Cn

(
φ(x− y) + δ(x− y)|w|2

)
ρδ(y)d2ny

≤
∫

Cn

∫ 2π

0
φ(x− y + weiθ)dθρδ(y)d2ny

=
∫ 2π

0
φδ(x + weiθ)dθ,

so φδ is i-convex on U2δ.
Now let φ : V → R be as in the proposition. Pick a holomorphic coordinate
neighborhood U and compact neighborhoods A′ ⊂ W of A and B′ ⊂ B′′ ⊂
W ∩ U of B with A ⊂ intA′ ⊂ A′ ⊂ W , such that φ is smooth on A′. By the
preceding discussion, there exists a smooth J-convex function φδ : B′′ → R with
|φδ(x)−φ(x)| < ε/2 for all x ∈ B′′. Pick smooth cutoff functions g, h : V → [0, 1]
such that g = 1 on A, g = 0 outside A′, h = 1 on B′, and h = 0 outside B′′.
Define a continuous function φ̃ : V → R,

φ̃ := φ + (1− g)h(φδ − φ).

The function φ̃ is smooth on A′∪B′, |φ̃(x)−φ(x)| < ε/2 for all x ∈ V , φ̃ = φδ on
B′ \A′, and φ̃ = φ on A and outside B′′. Since φ is C2 on A′ ∩B′′, the function
(1− g)h(φδ − φ) becomes arbitrarily C2-small on this set for δ small. Hence by
Lemma 3.7, φ̃ is J-convex on A′ ∩ B′′ for δ sufficiently small. So we can make
φ̃ J-convex on A′ ∪B′. However, φ̃ need not be J-convex on B′′ \ (A′ ∪B′).
Pick a compact neighborhood W ′ ⊂ W of A′ ∪ B′′. Without loss of generality
we may assume that ε was arbitrarily small. Then by Lemma 3.7 there exists
a continuous J-convex function ψ̃ : V → R (which differs from φ by a C2-small
function) satisfying ψ̃ = φ− ε on A∪B, ψ̃ = φ+ ε on W ′ \ (A′∪B′), and ψ̃ = φ
outside W . Now the function ψ := max(φ̃, ψ̃) has the desired properties.

Remark 3.13. The proof of Lemma 3.12 shows the following additional proper-
ties in Proposition 3.10:
(1) If φλ is a continuous family of J-convex functions depending on a parameter
λ in a compact space Λ, then the φλ can be uniformly approximated by a
continuous family of smooth J-convex functions ψλ.
(2) If φ0 ≤ φ1 then the smoothed functions also satisfy ψ0 ≤ ψ1. This holds
because the proof only uses mollification φ 1→ φδ, interpolation and taking the
maximum of two functions, all of which are monotone operations.

Lemma 3.8, the remark after it and Proposition 3.10 imply
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Corollary 3.14. The maximum of two smooth J-convex functions φ, ψ on a
complex manifold (V, J) can be C0-approximated by smooth J-convex functions.
If max(φ, ψ) is smooth on a neighborhood of a compact subset K, then we can
choose the approximating sequence to be equal to max(φ, ψ) on K.
More generally, let (φλ)λ∈Λ be a continuous family of J-convex C2-functions
whose first two derivatives depend continuously on λ in a compact metric space
Λ. Then maxλ∈Λφλ can be C0-approximated by smooth J-convex functions. If
maxλ∈Λφλ is smooth on a neighborhood of a compact subset K, then we can
choose the approximating sequence to be equal to maxλ∈Λφλ on K.

Finally, we show that we can arbitrarily prescribe a J-convex function near a
totally real submanifold.

Proposition 3.15. Let L be a totally real submanifold of a complex manifold
(V, J) and K ⊂ L a compact subset. Suppose that two smooth J-convex functions
φ, ψ coincide along L together with their differentials, i.e. φ(x) = ψ(x) and
dφ(x) = dψ(x) for all x ∈ L. Then, given any neighborhood U of K in V , there
exists a J-convex function ϑ which coincides with φ outside U and with ψ in
a smaller neighborhood U ′ ⊂ U of K. Moreover, ϑ can be chosen arbitrarily
C1-close to φ and such that ϑ agrees with φ together with its differential along
L.

The proof uses the following simple lemma. Consider an almost complex mani-
fold (V, J) equipped with a Hermitian metric. To a smooth function φ : V → R
we associate its modulus of J-convexity mφ : V → R,

mφ(x) := min{−ddCφ(v, Jv) | v ∈ TxV, |v| = 1}.

Thus φ is J-convex iff mφ > 0.

Lemma 3.16. Let φ, ψ, β : V → R be smooth functions on an almost complex
manifold (V, J) such that

|φ(x)− ψ(x)| |ddC
xβ|+ 2|dxβ| |dx(φ− ψ)| < min

(
mφ(x), mψ(x)

)

for all x ∈ V (with respect to some Hermitian metric). Then (1− β)φ + βψ is
J-convex.

Proof. Adding up

ddC(βψ) = β ddCψ + dβ ∧ dCψ + dψ ∧ dCβ + ψ ddCβ

and the corresponding equation for (1− β)φ at any point x ∈ V , we find

−ddC(
(1− β)φ + βψ

)
= −(1− β) ddCφ− βddCψ + dβ ∧ dC(φ− ψ)

+ d(φ− ψ) ∧ dCβ + (φ− ψ)ddCβ

≥ min(mφ, mψ)− 2|dβ| |d(φ− ψ)| −| φ− ψ| |ddCβ|
> 0.
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Proof of Proposition 3.15. Fix a compact neighborhood K̃ ⊂ L ∩ U of K in
L. Pick a Hermitian metric on (V, J) and consider the function dist2L, square
of the distance to L, defined on a tubular neighborhood of L. According to
Proposition 2.13, this function is J-convex. Hence

φλ := φ + λdist2L

is J-convex for any λ ≥ 0. Since φ and ψ agree up to first order along L, there
exists a λ > 0 and a compact neighborhood W ⊂ U of K̃ such that

φλ > ψ on W \ L.

For any ε > 0 we can find a δ < ε and a function α : R+ → R+ satisfying

α(r) = r for r ∈ [0, δ], α(r) = 0 for r ≥ ε, −3δ

ε
≤ α′ ≤ 1, |α′′| ≤ 3

ε
.

Set
φ̃ := φ + λα(dist2L).

Then φ̃ coincides with φ on W \Uε and with φλ on W ∩Uδ, where Uε := {distL <
ε} denotes the ε-neighborhood of L. Let us show that φ̃ is J-convex. Indeed,

ddCφ̃ = ddCφ + λα′′d(dist2L) ∧ dC(dist2L) + λα′ddC(dist2L).

On W ∩ Uε we have |d(dist2L)| ≤ Cε, where the constant C depends only on
the geometry of L ∩W . Since d(dist2L) ∧ dC(dist2L) is a quadratic function of
d(dist2L), the second term on the right hand side can be estimated by

|λα′′d(dist2L) ∧ dC(dist2L)| ≤ C1λ ·
1
ε
· ε2

for some constant C1. The third term on the right hand side is estimated by

λα′ddC(dist2L) ≥ −λ
3δ

ε
|ddC(dist2L)| ≥− C2λδ

ε

for some constant C2. Thus the modulus of J-convexity of φ̃ satisfies

mφ̃ ≥ mφ − C1λε− C2λδ/ε.

So if a := minW mφ > 0, then mφ̃ ≥ a/2 > 0 on W whenever ε and δ/ε are
sufficiently small.
Note that φ̃ is arbitrarily C1-close to φ for ε small. Fix a cutoff function β with
support in W and equal to 1 on a neighborhood W ′ ⊂ W of K̃. The function

φ̄ := (1− β)φ + βφ̃.

satisfies φ̄ = φ outside W and on L, and φ̄ > ψ on W ′ \ L. Moreover, since
the estimates mφ ≥ a and mφ̃ ≥ a/2 are independent of ε and δ, Lemma 3.16
implies that φ̄ is J-convex if ε and δ/ε are sufficiently small.
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Next pick a cutoff function γ with support in a smaller neighborhood W ′′ ⊂ W ′

of K̃ and equal to 1 near K̃. The function

φ̂ := φ̄− µγ

is J-convex for µ > 0 sufficiently small. Moreover, it satisfies

φ̂ <ψ near K̃, φ̂ >ψ on W ′\(W ′′∪L), φ̂ = φ outside W, φ̂ ≤ ψ on L.

So the function

ϑ̂ :=

{
max(ψ, φ̂) on W ′,

φ̂ outside W ′ .

coincides with ψ near K̃ and on L and with φ outside W . Let ϑ̃ be the J-
convex function obtained by smoothing ϑ̂ as described in Corollary 3.14, leaving
it unchanged near K̃ and outside W . Then ϑ̃ coincides with φ outside W and
with ψ near K̃. Moreover, since φ̂ is C1-close to φ by construction, ϑ̃ is C1-close
to φ by Corollary 3.25.
So ϑ̃ has all the desired properties except that, due to the smoothing procedure,
it may not agree with φ on L \ K̃. To remedy this, fix a cutoff function ρ with
support in U which equals 1 near K and 0 on L \ K̃ and set

ϑ := (1− ρ)φ + ρϑ̃.

By Lemma 3.16, ϑ is J-convex if we choose ϑ̃ sufficiently C1-close to φ. Since
ψ agrees with φ together with their differentials along L, the same holds for ϑ
and φ. So ϑ is the desired function.

Remark 3.17. Note that if the function φ (and hence, ψ) is regular at the points
of L then the construction of Proposition 3.15 can be performed without creating
any new critical points. Indeed, the constructed function ϑ is C1-close to φ. See
Lemma 3.27 below for a similar statement when φ has critical points along L.

The corresponding result for J-convex hypersurfaces is

Corollary 3.18. Let Σ,Σ′ be J-convex hypersurfaces in a complex manifold
(V, J) that are tangent to each other along a totally real submanifold L. Then
for any compact subset K ⊂ L and neighborhood U of K, there exists a J-convex
hypersurface Σ′′ that agrees with Σ outside U and with Σ′ near K. Moreover,
Σ′′ can be chosen C1-close to Σ and tangent to Σ along L.

Proof. Pick smooth functions φ, ψ with regular level sets Σ = φ−1(0) and Σ′ =
ψ−1(0) such that dφ = dψ along L. By Lemma 2.4, after composing φ and
ψ with the same convex function, we may assume that φ, ψ are J-convex on a
neighborhood W ⊂ U of K. Let ϑ : W → R be the J-convex function from
Proposition 2.13 which coincides with ψ near K and with φ outside a compact
subset W ′ ⊂ W . Since ϑ is C1-close to φ, it has 0 as a regular value and
Σ′′ := ϑ−1(0) is the desired J-convex hypersurface.
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We will finish this section with the following

Lemma 3.19. Let φ0, φ1 : V → R+ be two exhausting J-convex functions.
Then there exist smooth functions h0, h1 : R+ → R+ with h′0, h

′
1 → ∞ and

h′′0 , h′′1 > 0, a completely exhausting function ψ : V → R+, and a sequence of
compact domains V k, k = 1, . . . , with smooth boundaries Σk = ∂V k, such that

• V k ⊂ IntV k+1 for all k ≥ 1;

•
⋃

k V k = V ;

• Σ2j−1 are level sets of the function φ1 and Σ2j are level sets of the function
φ0 for j = 1, . . . ;

• ψ = h1 ◦ φ1 on Op
(⋃∞

j=1 Σ2j−1
)

and ψ = h0 ◦ φ0 on Op
(⋃∞

j=1 Σ2j
)
.

Proof of Lemma 3.19. We will call a diffeomorphism h : R+ → R+ an admissible
function if h′′ ≥ 0 and h′ → ∞. Take any c1 > 0, and denote V 1 := {φ1 ≤
c1},Σ1 := ∂V 1. There exists an admissible function g1 such that φ0|Σ1 <
d1 = g1(c1). Set ψ0 := φ0, ψ1 := g1 ◦ φ1. Take any c2 > d1 and denote
V 2 := {ψ0 ≤ c2},Σ2 := ∂V 2. Then V 1 ⊂ IntV 2. There exists an admissible
function g2 such that g2(x) = x for x ∈ [0, d1] and ψ1|Σ2 < d2 = g2(c2).
Set ψ2 := g2 ◦ ψ0. Continuing this process we will take c3 > d2 and denote
V 3 := {ψ1 ≤ c3},Σ3 := ∂V 3. There exists an admissible function g3 such that
g3(x) = x, x ∈ [0, d2] and ψ2|Σ3 < d3 = g3(c3). Set ψ3 := g3 ◦ ψ1, and so
on. Continuing this process, we construct two admissible functions h0, h1 and
a sequence of compact domains V k, k = 1, . . . , such that

• V k ⊂ IntV k+1 for all k ≥ 1 and
⋃

k V k = V ;

• φ1 is constant on Σj for odd j, and φ0 is constant on Σj for even j;

• ψeven = h0 ◦ φ0 = lim
j→∞

ψ2j and ψodd = h1 ◦ φ1 = lim
j→∞

ψ2j−1;

• ψ1|Σ2j−1 > ψ0|Σ2j−1 , ψ0|Σ2j > ψ1|Σ2j for all j ≥ 1.

Then smoothing the continuous plurisubharmonic function max(ψ0, ψ1) we get
the required smooth J-convex function ψ.

3.3 Critical points of J-convex functions

We wish to control the creation of new critical points under the construction
of taking the maximum of two J-convex functions and then smoothing. This is
based on the following trivial observation: A smooth function φ : M → R on
a manifold has no critical points iff there exist a vector field X and a positive
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function h with X · φ ≥ h. Multiplying by a nonnegative volume form Ω on M
with compact support, we obtain

∫

M
(X · φ)Ω ≥

∫

M
hΩ.

Using (X · φ)Ω + φLXΩ = LX(φΩ) = d(φiXΩ) and Stokes’ theorem (assuming
M is orientable over suppΩ), we can rewrite the left hand side as

∫

M
(X · φ)Ω = −

∫

M
φLXΩ.

So we have shown: A smooth function φ : M → R on a manifold has no critical
points iff there exist a vector field X and a positive function h such that

−
∫

M
φLXΩ ≥

∫

M
hΩ

for all nonnegative volume forms Ω on M with sufficiently small compact sup-
port. This criterion obviously still makes sense if φ is merely continuous. How-
ever, for technical reasons we will slightly modify it as follows.
We say that a continuous function φ : M → R satisfies X · φ ≥ h (in the
distributional sense) if around each p ∈ M there exists a coordinate chart U ⊂
Rm on which X corresponds to a constant vector field such that

−
∫

U
φLXΩ ≥ h(p)

∫

U
Ω

for all nonnegative volume forms Ω with support in U . Writing Ω = g(x)dmx
for a nonnegative function g, this is equivalent to

−
∫

U
φ(x)(X · g)(x)dmx ≥ h(p)

∫

U
g(x)dmx. (3.6)

This condition ensures that smoothing does not create new critical points:

Lemma 3.20. If a continuous function φ : Rm ⊃ U → R satisfies (3.6) for
a constant vector field X and a constant h = h(p) > 0, then each mollified
function φδ defined by equation (3.5) also satisfies (3.6) with the same X, h.

Proof. Let g be a nonnegative test function with support in U and 0 < δ <
dist(suppg, ∂U). Let y ∈ Rm with |y| < δ. Applying (3.6) to the function
x 1→ g(x+y) and using translation invariance of X, h and the Lebesgue measure
dx := dmx, we find

−
∫

U
φ(x− y)X · g(x)dx = −

∫

U
φ(x)X · g(x + y)dx

≥ h

∫

U
g(x + y)dx = h

∫

U
g(x)dx.
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Multiplying by the nonnegative function ρδ and integrating yields

−
∫

U
φδ(x)X · g(x)dx = −

∫

U

∫

Bδ

φ(x− y)ρδ(y)X · g(x)dy dx

≥ h

∫

U

∫

Bδ

g(x)ρδ(y)dy dx = h

∫

U
g(x)dx.

The next proposition shows that the condition X · φ ≥ h is preserved under
taking the maximum of functions.

Proposition 3.21. Suppose the continuous functions φ, ψ : M → R satisfy
X · φ ≥ h, X · ψ ≥ h with the same X, h. Then X ·max(φ, ψ) ≥ h.
More generally, suppose (φλ)λ∈Λ is a continuous family of functions φλ : M →
R, parametrized by a compact separable metric space Λ, such that all φλ satisfy
X · φλ ≥ h with the same X, h. Then X ·maxλ∈Λφλ ≥ h.

Proof. Let U ⊂ Rm be a coordinate chart and X, h := h(p) be as in (3.6).
After a rotation and rescaling, we may assume that X = ∂

∂x1
. Suppose first

that φ, ψ are smooth and 0 is a regular value of φ − ψ. Then θ := max(φ, ψ)
is a continuous function which is smooth outside the smooth hypersurface Σ :=
{x ∈ U | φ(x) = ψ(x)}. Define the function ∂θ

∂x1
as ∂φ(x)

∂x1
if φ(x) ≥ ψ(x) and

∂ψ(x)
∂x1

otherwise. We claim that ∂θ
∂x1

is the weak x1-derivative of θ. Indeed, for
any test function g supported in U we have (orienting Σ as the boundary of
{φ ≥ ψ})

∫

U

∂θ

∂x1
g dmx =

∫

{φ≥ψ}

∂φ

∂x1
g dmx +

∫

{φ<ψ}

∂ψ

∂x1
g dmx

=
∫

Σ
φg dx2 . . . dxm −

∫

{φ≥ψ}
φ

∂g

∂x1
dmx

−
∫

Σ
ψg dx2 . . . dxm −

∫

{φ<ψ}

∂ψ

∂x1
g dmx

= −
∫

U
θ

∂g

∂x1
dmx,

since φ = ψ on Σ. This proves the claim. By hypothesis we have ∂θ
∂x ≥ h, so

the conclusion of the lemma follows via

−
∫

U
θ

∂g

∂x1
dmx =

∫

U

∂θ

∂x1
g dmx ≥ h

∫

U
g dmx.

Next let φ, ψ : U → R be continuous functions satisfying (3.6). By Lemma 3.20,
there exist sequences φk, ψk of smooth functions, converging locally uniformly
to φ, ψ, such that X · φk ≥ h and X · ψk ≥ h for all k. Perturb the φk to
smooth functions φ̃k such that 0 is a regular value of φ̃k − ψk, φ̃k → φ locally
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uniformly, and X ·φ̃k ≥ h−1/k for all k. By the smooth case above, the function
max(φ̃k, ψk) satisfies

−
∫

U
max(φ̃k, ψk)X · g dmx ≥ (h− 1/k)

∫

U
g dmx

for any nonnegative test function g supported in U . Since max(φ̃k, ψk) →
max(φ, ψ) locally uniformly, the limit k →∞ yields the conclusion of the lemma
for two functions φ, ψ.
Finally, let (φλ)λ∈Λ be a continuous family as in the lemma. Pick a dense
sequence λ1, λ2, . . . in Λ. Set ψk := max{φλ1 , . . . , φλk} and ψ := maxλ∈Λφλ.
By the lemma for two functions and induction, the functions ψk satisfy (3.6)
with the same X, h for all k. Thus the lemma follows in the limit k →∞ if we
can show locally uniform convergence ψk → ψ.
We first prove pointwise convergence ψk → ψ. So let x ∈ U . Then ψ(x) = φλ(x)
for some λ ∈ Λ. Pick a sequence k, such that λk" → λ as 5 → ∞. Then
φλk"

(x) → φλ(x) = ψ(x) as 5 → ∞. Since φλk"
(x) ≤ ψk"(x) ≤ ψ(x), this

implies ψk"(x) → ψ(x) as 5 → ∞. Now the convergence ψk(x) → ψ(x) follows
from monotonicity of the sequence ψk(x).
So we have an increasing sequence of continuous functions ψk that converges
pointwise to a continuous limit function ψ. By a simple argument this implies
locally uniform convergence ψk → ψ: Let ε > 0 and x ∈ U be given. By
pointwise convergence there exists a k such that ψk(x) ≥ ψ(x)−ε. By continuity
of φk and ψ, there exists a δ > 0 such that |ψk(y)−ψk(x)| < ε and |ψ(y)−ψ(x)| <
ε for all y with |y − x| < δ. This implies ψk(y) ≥ ψ(y) − 3ε for all y with
|y−x| < δ. In view of monotonicity, this establishes locally uniform convergence
ψk → ψ and hence concludes the proof of the proposition.

Finally, we show that J-convex functions can be smoothed without creating
critical points.

Proposition 3.22. Let φ : V → R be a continuous J-convex function on a
complex manifold satisfying X ·φ ≥ h for a vector field X and a positive function
h : V → R. Then the J-convex smoothing ψ : V → R in Proposition 3.10 can
be constructed so that it satisfies X · ψ ≥ h̃ for any given function h̃ < h.

Proof. The function ψ is constructed from φ in Lemma 3.12 by repeated appli-
cation of the following 3 constructions:
(1) Mollification φ 1→ φδ. This operation preserves the condition X · φ ≥ h by
Lemma 3.20.
(2) Taking the maximum of two functions. This operation preserves the condi-
tion X · φ ≥ h by Proposition 3.21.
(3) Adding a C2-small function f to φ. Let k : V → R be a small positive
function such that supU (X · f)(x) ≥ −k(p) for each coordinate chart U around
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p as in condition (3.6) (for this it suffices that f is sufficiently C1-small). Then
we find

−
∫

U
f(x)(X · g)(x)dx =

∫

U
(X · f)(x)g(x)dx ≥ −k(p)

∫

U
g(x)dx,

so the function φ + f satisfies X · (φ + f) ≥ h− k. In the proof of Lemma 3.12,
this operation is applied finitely many times on each compact subset of V , so
by choosing the function k sufficiently small we can achieve that X ·ψ ≥ h̃.

Propositions 3.21 and 3.22 together imply

Corollary 3.23. If two smooth J-convex functions φ, ψ on a complex manifold
V satisfy X · φ > 0 and X · ψ > 0 for a vector field X, then the smoothing θ of
max(φ, ψ) also satisfies X · θ > 0.

Remark 3.24. Inspection of the proofs shows that Propositions 3.21 and 3.22
remain valid if all inequalities are replaced by the reverse inequalities.

Corollary 3.25. If two smooth J-convex functions φ, ψ on a complex manifold
V are C1-close, then the smoothing of max(φ, ψ) is C1-close to φ.

Proof. Let X be a vector field and h± : V → R functions such that h− ≤
X · φ, X · ψ ≤ h+. By the preceding remark, the smoothing ϑ of max(φ, ψ) can
be constructed such that h̃− ≤ X · ϑ ≤ h̃+ for any given functions h̃− < h−
and h̃+ > h+. Since X, h−, h+ were arbitrary, this proves C1-closeness of ϑ to
φ.

Finally, we apply the preceding result to smoothing of J-convex hypersurfaces.

Corollary 3.26. Let (M × R, J) be a compact complex manifold and φ, ψ :
M → R two functions whose graphs are J-convex cooriented by ∂r, where r
is the coordinate on R. Then there exists a smooth function θ : M → R with
J-convex graph which is C0-close to min(φ, ψ) and coincides with min(φ, ψ)
outside a neighborhood of the set {φ = ψ}.

Proof. For a convex increasing function f : R → R with f(0) = 0 consider the
functions

Φ(x, r) := f
(
r − φ(x)

)
, Ψ(x, r) := f

(
r − ψ(x)

)
.

For f sufficiently convex, Φ and Ψ are J-convex and satisfy ∂rΦ > 0, ∂rΨ > 0
near their zero level sets. Thus by Propositions 3.21 and 3.22 the function
max(Φ,Ψ) can be smoothed, keeping it fixed outside a neighborhood U of the
set {max(Φ,Ψ) = 0}, to a function Θ which is J-convex and satisfies ∂rΘ > 0
near its zero level set. The last condition implies that the smooth J-convex
hypersurface Θ−1(0) is the graph of a smooth function θ : M → R. Now note
that the zero level set {max(Φ,Ψ) = 0} is the graph of the function min(φ, ψ).
This implies that θ is C0-close to min(φ, ψ) and coincides with min(φ, ψ) outside
U .
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We finish this section with the following analogue of Remark 3.17

Lemma 3.27. Let L be a compact k-dimensional real submanifold of a complex
manifold (V, J), N ⊃ L be its tubular neighborhood in V with respect to some
Hermitian metric and π : N → L the normal projection. Let φ : V → R be a J-
convex function and ϕ = φ|L. Denote ϕ̃ := ϕ◦π : N → R and ψ := ϕ̃+Cdist2L,
where C > 0 is chosen sufficiently large so that the function ψ is J-convex
in N . Suppose that ϕ : L → R is a Morse function with a unique critical
point p ∈ IntL of index k′ ≤ k. Suppose that φ and ψ have along L the same
differentials, and p is also a critical point of ψ of the same index k′. Then,
given any neighborhood U of L in V , there exists a J-convex function ϑ which
coincides with φ outside U and with ψ in a smaller neighborhood U ′ ⊂ U of L
Moreover, ϑ can be chosen arbitrarily C1-close to φ and such that ϑ agrees with
φ together with its differential along L, and having the same critical points as
φ.

Proof. Let y1, . . . , yl be local coordinates in a neighborhood Ω of the critical

point p such that L ∩ Ω = {y1 = · · · = yl = 0} and dist2L = |y|2
l∑
1

y2
j . A

point u ∈ Ω can be assigned coordinates (x, y1, . . . , yl), where x = π(U) ∈ L.

Thus, we have ψ(u) = ϕ(x) + C
l∑
1

y2
j . On the other hand, the condition on the

differentials of φ and ψ implies that the function ψ can be written as

ψ(u) = ϕ(x) + Qx(y) + o(|y|2),

where Qx(y) is a quadratic form of variables (y1, . . . , yk) with the coefficients
depending on x ∈ L. Moreover, the equality of indices of the critical point p for
φ and ψ ensures that the form Qp(y) is positive definite. Consider the vector
field

Y =
1
|y|

l∑

1

yj
∂

∂yj

in Ω \ L. Then if the neighborhood Ω is chosen small enough then there exists
an ε > 0 such that

d(x,y)φ(Y ), d(x,y)ψ(Y ) > ε|y|

for all u = (x, y) ∈ Ω \ L.
Next, we use the construction of the function ϑ in Proposition 3.15. Let us
observe that this construction uses only the following operations:

a) Modifing functions ψ and φ to functions ψ̃ = ψ + α(distL) and φ̃ = φ +
β(distL);

b) smoothing the function max(ψ̃, φ̃).
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The functions α and β in a) can be chosen to have an arbitrarily small support
and such that α′′, β′′ > ε

2 . This implies that d(x,y)φ̃(Y ), d(x,y)ψ̃(Y ) > ε
2 |y| forRewrite the proof of

3.15 accordingly all u = (x, y) ∈ Ω \ L.
The operation in b) preserves the positivity of the derivative along the vector
field Y . Hence, applying Corollary 3.23 we conclude that the function ϑ has no
critical points in Ω \ L. Taking into account Remark 3.17 we conclude tat ϑ
has no critical points in the rest of the neighborhood N , provided that it was
chosen small enough.

3.4 From families of hypersurfaces to J-convex
functions

The following result shows that a continuous family of J-convex hypersurfaces
transverse to the same vector field gives rise to a smooth function with regular J-
convex level sets. This will be extremely useful for the construction of J-convex
functions with prescribed critical points.

Proposition 3.28. Let (M× [0, 1], J) be a compact complex manifold such that
M×{0} and M×{1} are J-convex cooriented by ∂r, where r is the coordinate on
[0, 1]. Suppose there exists a smooth family (Σλ)λ∈[0,1] of J-convex hypersurfaces
transverse to ∂r with Σ0 = M × {0} and Σ1 = M × {1}. Then there exists a
smooth foliation (Σ̃λ)λ∈[0,1] of M × [0, 1] by J-convex hypersurfaces transverse
to ∂r with Σ̃λ = M × {λ} for λ near 0 or 1.

Proof. Let ε > 0 be so small that the hypersurfaces M × {λ} are J-convex
for λ ≤ ε and λ ≥ 1 − ε. Set V := M × [0, 1] and U := M × (ε, 1 − ε).
Reparametrize in λ such that Σλ = M × {λ} for λ ≤ ε and λ ≥ 1− ε. After a
C2-small perturbation and decreasing ε, we may further assume that Σλ ⊂ U for
λ ∈ (ε, 1− ε). Pick a smooth family of J-convex functions φλ with regular level
sets φ−1

λ (0) = Σλ. After composing each φλ with a suitable function R → R,
we may assume that φλ > φµ for all λ <µ with either λ ≤ ε or µ ≥ 1− ε.
The continuous functions

ψλ := maxν≥λφν

are J-convex by Lemma 3.8 and, by construction, satisfy

ψλ ≥ ψµ for λ ≤ µ. (3.7)

Moreover, we have ψλ = φλ for λ ≤ ε and λ ≥ 1 − ε. By Proposition 3.21,
the ψλ satisfy ∂r · ψλ ≥ h (in the distributional sense) for a positive function
h : M × [0, 1] → R.
Next use Proposition 3.10 to approximate the ψλ by smooth J-convex functions
ψ̂λ. By Remark 3.13, the resulting family ψ̂λ is continuous in λ and still satisfies
(3.7). By Proposition 3.22, the smoothed functions satisfy ∂r · ψ̂λ ≥ h/2 > 0,
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hence the level sets Σ̂λ := ψ̂−1
λ (0) are regular and transverse to ∂r. We can

modify the smoothing construction to achieve ψ̂λ = φλ near λ = 0 and 1, still
satisfying J-convexity, transversality of the zero level to ∂r, and (3.7). Note
that as a result of the smoothing construction the functions ψ̂λ, and hence
their level sets Σ̂λ, depend continuously on the parameter λ with respect to the
C2-topology.
Since Σ̂λ is transverse to ∂r, we can write it as the graph {r = fλ(x)} of a
smooth function fλ : M → [0, 1]. By construction, the functions fλ depend
continuously on λ with respect to the C2-topology, fλ ≤ fµ for λ ≤ µ, and
fλ(x) = λ for λ ≤ ε and λ ≥ 1− ε, with some ε > 0 (possibly smaller than the
one above). Note that fµ(x)− fλ(x) ≥ µ− λ for λ ≤ µ ≤ ε and 1− ε ≤ λ ≤ µ.
Pick a function g : [0, 1] → [0, 1] satisfying g(λ) = 0 for λ ≤ ε/2 and λ ≥ 1−ε/2,
g′(λ) ≥ −1 + γ for ε/2 ≤ λ ≤ ε and 1 − ε ≤ λ ≤ 1 − ε/2, and g′(λ) ≥ γ for
ε ≤ λ ≤ 1 − ε, with some γ > 0. For g sufficiently small, the graphs of the
functions f̂λ(x) := fλ(x) + g(λ) are still J-convex, f̂λ(x) = λ for λ ≤ ε/2 and
λ ≥ 1− ε/2, and

f̂µ(x)− f̂λ(x) ≥ γ(µ− λ)

for all λ ≤ µ. Now mollify the functions f̂λ(x) in the parameter λ to

f̃λ(x) :=
∫

R
f̂λ−µ(x)ρδ(µ)dµ,

with a cutoff function ρ : R → R as in equation (3.5). Since the functions fλ−µ

are C2-close to fλ for µ ∈ supp(ρδ) and δ small, the graph of f̃λ is C2-close to
the graph of fλ and hence J-convex. Moreover, for λ′ ≥ λ the f̃λ still satisfy

f̃λ′(x) =
∫

R
f̂λ′−µ(x)ρδ(µ)dµ ≥

∫

R
f̂λ−µ(x)ρδ(µ)dµ+γ(λ′−λ) = f̃λ(x)+γ(λ′−λ).

Modify the f̃λ such that f̃λ(x) = λ for λ ≤ ε/2 and λ ≥ 1 − ε/2, and so that
their graphs are still J-convex and f̃µ(x)− f̃λ(x) ≥ γ(µ− λ) for all λ ≤ µ. The
last inequality implies that the map (x, λ) 1→

(
x, fλ(x)

)
is an embedding, thus

the graphs of f̃λ form the desired foliation Σ̃λ.



Chapter 4

Shapes for i-convex
hypersurfaces

In this chapter we introduce our main tool for the construction of J-convex
functions and use it to construct specific i-convex functions on Cn.

4.1 Shapes

Consider the map

π : Cn → R2, z 1→ (r, R) := (|x|, |y|)

for z = x + iy, x, y ∈ Rn. The image of the map π is the quadrant

Q := {(r, R) | r, R ≥ 0} ⊂ R2.

A curve C ⊂ Q defines a hypersurface ΣC := π−1(C) in Cn. We call C the
shape of ΣC . Our goal in this section is to determine conditions on C which
guarantee i-convexity of ΣC .
As a preliminary, let us compute the second fundamental form of a surface of
revolution. Consider Rk⊕Rl with coordinates (x, y) and Rk⊕R with coordinates
(x, R = |y|). To a function Φ : Rk⊕R → R we associate the surface of revolution

ΣΦ := {(x, y) ∈ Rk ⊕ Rl | Φ(x, |y|) = 0}.

We coorient ΣΦ by the gradient ∇Φ of Φ (with respect to all variables). Denote
by ΦR = ∂Φ

∂R the partial derivative.

Lemma 4.1. At every z = (x, y) ∈ ΣΦ the splitting

TzΣΦ =
(
TzΣΦ ∩ (Rk ⊕ Ry)

)
⊕

(
TzΣΦ ∩ (Rk ⊕ Ry)⊥

)

43
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is orthogonal with respect to the second fundamental form II. The second sub-
space is an eigenspace of II with eigenvalue ΦR/|∇Φ|R.

Proof. The unit normal vector to ΣΦ at z = (x, y) is

ν(z) =
1

|∇Φ| (∇xΦ,
ΦR

R
y),

where ∇xΦ denotes the gradient with respect to the x-variables. For Y⊥y we
get

Dν(z) · (0, Y ) =
1

|∇Φ| (0,
ΦR

R
Y ) + µν

for some µ ∈ R. From 〈ν(z), Dν(z) · (0, Y )〉 = 0 we deduce µ = 0, so TzΣΦ ∩
(Rk ⊕ Ry)⊥ is an eigenspace of II with eigenvalue ΦR/|∇Φ|R. From this it
follows that

II
(
(0, Y ), (X, λy)

)
= 〈Dν · (0, Y ), (X, λy)〉 = 0

for (X, λy) ∈ TzΣΦ ∩ (Rk ⊕ Ry).

Reduction to the case n = 2. Now let C ⊂ Q be a curve. At a point
z = x + iy ∈ ΣC consider the subspace Λxy ⊂ Rn generated by the vectors
x, y ∈ Rn and its complexification

ΛC
xy := Λxy + iΛxy.

Let Λ⊥ be the orthogonal complement of Λxy in Rn and ΛC
⊥ its complexification

(which is the orthogonal complement of ΛC
xy in Cn). Note that ΛC

⊥ is contained
in TzΣC and thus in the maximal complex subspace ξz. So the maximal complex
subspace splits into the orthogonal sum (with respect to the metric)

ξz = Λ̃⊕ ΛC
⊥ = Λ̃⊕ Λ⊥ ⊕ iΛ⊥,

where Λ̃ = ξz∩ΛC
xy. We claim that this splitting is orthogonal with respect to the

second fundamental form II, and Λ⊥ and iΛ⊥ are eigenspaces with eigenvalues
Φr/|∇Φ|r and ΦR/|∇Φ|R, respectively.
Indeed, ΣC can be viewed as a surface of revolution in two ways, either rotating
in the x- or the y-variables. So by Lemma 4.1, the splittings

(
ξz ∩ (Rx⊕ iRn)

)
⊕

(
ξz ∩ (Rx⊕ iRn)⊥

)
,

(
ξz ∩ (Rn ⊕ iRy)

)
⊕

(
ξz ∩ (Rn ⊕ iRy)⊥

)

are both orthogonal with respect to II and the right-hand spaces are eigenspaces.
In particular, Λ⊥ = ξz∩(Rx⊕iRn)⊥ and iΛ⊥ = ξz∩(Rn⊕iRy)⊥ are eigenspaces
orthogonal to each other with eigenvalues Φr/|∇Φ|r and ΦR/|∇Φ|R. Since ΛC

xy

is the orthogonal complement of Λ⊥ ⊕ iΛ⊥ in Cn, the claim follows.
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Now suppose that C is given near the point π(z) by the equation R = φ(r),
and the curve is cooriented by the gradient of the function Φ(r, R) = φ(r)−R.
Since |∇Φ| =

√
Φ2

r + Φ2
R =

√
1 + φ′(r)2, the eigenvalues λr on Λ⊥ and λR on

iΛ⊥ equal

λr =
Φr

|∇Φ|r =
φ′(r)

r
√

1 + φ′(r)2
,

λR =
ΦR

|∇Φ|R = − 1
φ(r)

√
1 + φ′(r)2

.

Hence by Proposition 2.9, the restriction of the normalized Levi form LΣC to
ΛC
⊥ is given by

LΣC (X) =
1

2
√

1 + φ′(r)2

(φ′(r)
r

− 1
φ(r)

)
|X|2.

Hence we have proved

Lemma 4.2. Let ΣC be the hypersurface given by the curve C = {φ(r)−R = 0},
cooriented by the gradient of φ(r) − R. Then the restriction of the Levi form
LΣC to ΛC

⊥ is positive definite if and only if

L⊥(φ) :=
φ′(r)

r
− 1

φ(r)
> 0.

In particular, if φ′(r) ≤ 0 the restriction is always negative definite.

Lemma 4.2 reduces the question about i-convexity of ΣC to positivity of L⊥(φ)
and the corresponding question about the intersection ΣC∩ΛC

xy. When dimC ΛC
xy =

1, this intersection is a curve which is trivially i-convex, hence ΣC is i-convex
if and only if L⊥(φ) > 0. The remaining case dimC ΛC

xy = 2 just means that
we have reduced the original question to the case n = 2, which we will now
consider.
The case n = 2. We denote complex coordinates in C2 by z = (ζ, w) with
ζ = s + it, w = u + iv. The hypersurface ΣC ⊂ C2 is given by the equation

√
t2 + v2 = R = φ(r) = φ(

√
s2 + u2).

We want to express the Levi form L at a point z ∈ ΣC in terms of φ. Suppose
that r, R > 0 at the point z. After a unitary transformation

ζ 1→ ζ cos α + w sinα, w 1→ −ζ sinα + w cos α

which leaves ΣC invariant we may assume t = 0 and v > 0. Then near z we can
solve the equation R = φ(r) for v,

v =
√

φ(
√

s2 + u2)2 − t2 =: ψ(s, t, u).
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According to Lemma 2.21, the normalized Levi form of the hypersurface ΣC =
{v = ψ(s, t, u)} is given by L(T ) = L0|T |2, T ∈ ξ, where

L0 =
1

(1 + ψ2
s + ψ2

t ) 3
2

(
(ψss + ψtt)(1 + ψ2

u) + ψuu(ψ2
s + ψ2

t )

+ 2ψsu(ψt − ψuψs)− 2ψtu(ψs + ψuψt)
)
. (4.1)

Note that at the point z we have t = 0 and ψ(s, 0, u) = φ(r) = φ(
√

u2 + s2).
Using this, compute the derivatives at z,

ψs =
φ′s

r
, ψss =

φ′′s2

r2
+

φ′u2

r3
, ψu =

φ′u

r
, ψuu =

φ′′u2

r2
+

φ′s2

r3
,

ψsu =
φ′′su

r2
− φ′su

r3
, ψt = 0, ψtt = − 1

φ
, ψtu = 0.

Inserting this in equation (4.1), we obtain

(r2 + s2φ′2) 3
2

r3
L0 =

(φ′′s2

r2
+

φ′u2

r3
− 1

φ

)(
1 +

φ′2u2

r2

)

+
(φ′′u2

r2
+

φ′s2

r3

)φ′2s2

r2
− 2

(φ′′su

r2
− φ′su

r3

)φ′2su

r2

=
φ′′s2

r2
+

φ′u2

r3
+

φ′3

r
− 1

φ

(
1 +

φ′2u2

r2

)
.

We say that the curve C is cooriented from above if it is cooriented by the
gradient of the function φ(r)−R. Equivalently (since t = 0 at z), the hypersur-

face ΣC is cooriented by the gradient of
√

φ(
√

s2 + u2)
2 − t2 − v, which is the

coorientation we have chosen above. The opposite coorientation will be called
coorientation from below. Lemma 4.2 and the preceding discussion yield the
following criteria for i-convexity of ΣC .

Proposition 4.3. The hypersurface ΣC = {R = φ(r)} is i-convex cooriented
from above at r > 0 if and only if φ satisfies the following two conditions:

L⊥(φ) :=
φ′(r)

r
− 1

φ(r)
> 0, (4.2)

L2(φ) :=
φ′′s2

r2
+

φ′u2

r3
+

φ′3

r
− 1

φ

(
1 +

φ′2u2

r2

)
> 0 (4.3)

for all (s, u) with s2 + u2 = r2. It is i-convex cooriented from below if and only
if the reverse inequalities hold.

Remark 4.4. Let us note that for ΣC cooriented from above and when φ′ > 0,
the maximal absolute value of the negative normal curvature of ΣC equals

M(Σ) = max{−II(T ), T ∈ TΣ, |T | = 1} = max
(

−φ′′

(1 + φ′2) 3
2
,

1
φ
√

1 + φ′2

)
.
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Hence, in that case the inequality µ(ΣC) > ε> 0 for the modulus of J-convexity
of Σc is equivalent to a system of inequalities, stronger than (4.2) and (4.3):

L⊥ε,1(φ) := ε
min(φ′′, 0)

1 + φ′2
+

φ′(r)
r

− 1
φ(r)

> 0, (4.4)

L⊥ε,2(φ) :=
φ′(r)

r
− 1 + ε

φ(r)
> 0, (4.5)

L2
ε,1(φ) := (1− ε)

φ′′s2

r2
+

φ′u2

r3
+

φ′3

r
− 1

φ

(
1 +

φ′2u2

r2

)
> 0 (4.6)

L2
ε,2(φ) :=

φ′′s2

r2
+

φ′u2

r3
+

φ′3

r
− 1

φ

(
1 +

φ′2u2

r2

)
− ε

φ
(1 + φ′2

)
> 0 (4.7)

for all (s, u) with s2 + u2 = r2.

The following corollary gives some useful sufficient conditions for i-convexity.

Corollary 4.5. (a) If φ > 0, φ′ > 0, φ′′ ≤ 0 and

φ′′ +
φ′3

r
− 1

φ
(1 + φ′2) > 0, (4.8)

then ΣC is i-convex cooriented from above.
(b) If φ > 0, φ′ ≤ 0, φ′′ ≥ 0 and

φ′′ +
φ′3

r
− 1

φ
< 0,

then ΣC is i-convex cooriented from below.

Proof. (a) If φ′ > 0 and φ′′ ≤ 0 we get

L2(φ) ≥ φ′′ +
φ′3

r
− 1

φ
(1 + φ′2).

So positivity of the right hand side implies condition (4.3). Condition (4.2) is
also a consequence of φ′′ + φ′3

r − 1
φ (1 + φ′2) > 0.

(b) If φ′ ≤ 0 and φ′′ ≥ 0 we get

L2(φ) ≤ φ′′ +
φ′3

r
− 1

φ
.

So negativity of the right hand side implies the reverse inequality (4.3). The
reverse inequality (4.2) is automatically satisfied.



48 CHAPTER 4. SHAPES FOR I-CONVEX HYPERSURFACES

Remark 4.6. Let us rewrite in the case a) the sufficient conditions (??)–(??).
The following inequality guarantees the lower bound µ(ΣC) > ε

(1 + ε)φ′′ +
φ′3

r
− 1 + ε

φ
(1 + φ′2) > 0, (4.9)

In the case φ′ > 0, φ′′ ≥ 0 the bound µ(ΣC) > ε follows from the inequalities

L⊥ε =
φ′

r
− 1 + ε

φ
> 0;

L2
ε = φ′′ +

φ′3

r
− 1 + ε

φ
(1 + φ′2) > 0. (4.10)

As a first application of Corollary 4.5 we have

Lemma 4.7. For any ε > 0 and δ ∈ ( 2
√

2ε
3 , ε) sufficiently small, the quarter

circle
φ(r) := ε−

√
δ2 − (ε− r)2, r ∈ [ε− δ, ε]

defines an i-convex hypersurface {R = φ(r)} cooriented from below.

Proof. Denote s :=
√

δ2 − (ε− r)2. We have

φ′(r) = −ε− r

s
, φ′′(r) =

δ2

s3
.

Hence,

φ′′ +
φ′3

r
− 1

φ
=

1
s3

(
δ2 − (ε− r)3

r
− s3

ε− s

)
.

Set t = ε− r. then we need to prove that

F (t) :=
t3

ε− t
+

s3

ε− s
> δ2, (4.11)

where s =
√

δ2 − t2. We have

F ′(t) = t

(
t(3ε− 2t)
(ε− t)2

− s(3ε− 2s)
(ε− s)2

)
.

The functiion F ′(t)
t has a unique zero when t = s, i.e. t = δ√

2
, negative on

[0, δ√
2
) and positive on ( δ√

2
, δ]. Hence the function F (t) has its minimum at the

point δ√
2
. We compute F ( δ√

2
) = 2δ3

2
√

2ε−δ
, and taking into account that ε < 3δ

2
√

2

we conclude that F ( δ√
2
) > δ2, which implies the inequality (4.11).

For the remainder of this chapter we will only be interested in hypersurfaces
{R = φ(r)} that are i-convex cooriented from above. We will call the cor-
responding function φ satisfying the conditions of Proposition 4.3 an i-convex
shape. The following lemma lists some elementary properties of i-convex shapes.
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Lemma 4.8 (Properties of i-convex shapes). (a) If φ is an i-convex shape then
so is φ + c for any constant c ≥ 0 (i-convexity from above is preserved under
upwards shifting).
(b) If a φ is an i-convex shape at r > 0, then the function φλ(r) := λφ(r/λ) is
an i-convex shape at λr for each λ > 0.
(c) If φ, ψ are i-convex shapes for r ≤ r0 resp. r ≥ r0 such that φ(r0) = ψ(r0)
and φ′(r0) = ψ′(r0), then the function

θ(r) :=

{
φ(r) for r ≤ r0,

ψ(r) for r ≥ r0

can be C1-perturbed to a smooth i-convex shape which agrees with θ outside a
neighborhood or r0.
(d) If φ, ψ are i-convex shapes, then the function

θ := max(φ, ψ)

can be C0-perturbed to a smooth i-convex shape which agrees with θ outside a
neighborhood or the set {φ = ψ}.

Proof. (a) If φ satisfies one of the inequalities (4.2), (4.3) and (4.8), then φ + c
satisfies the same inequality for any constant c ≥ 0.
(b) can be seen by applying the biholomorphism z 1→ λz on Cn, or from
Proposition 4.3 as follows: The function φλ has derivatives φλ(λr) = λφ(r),
φ′λ(λr) = φ′(r), φ′′λ(λr) = φ(r)/λ, and the replacement r 1→ λr, φ 1→ λφ,
φ′ 1→ φ′, φ′′ 1→ φ′′/λ leaves both conditions in Proposition 4.3 unchanged.
(c) follows from the fact that for given r, φ, φ′, the set of φ′′ such that condi-
tion (4.3) holds is convex.
(d) After C2-perturbing φ we may assume that the graphs of φ and ψ intersect
transversally. Consider an intersection point r0 such that φ(r0) = ψ(r0) and
φ′(r0) < ψ′(r0), so near r0 we have

θ(r) =

{
φ(r) for r ≤ r0,

ψ(r) for r ≥ r0
.

Pick r− < r0 < r+ with |r+ − r−| < δ small. Let χ′′ : [r−, r+] → R be a
continuous function which near r− increases steeply from χ′′(r−) = φ′′(r−) to a
constant m >> 0, near r+ decreases steeply from m to χ′′(r+) = φ′′(r+), and
such that

∫ r+

r−
χ′′(r)dr = ψ′(r+) − φ′(r−). So the function χ′(r) := φ′(r−) +

∫ r
r−

χ′′(s)ds satisfies χ′(r−) = φ′(r−) and χ′(r+) = ψ(r+). The function χ(r) :=
φ(r−) +

∫ r
r−

χ′(s)ds satisfies χ(r−) = φ(r−) and |χ(r+) − ψ(r+)| ≤ Cδ for a
constant C independent of δ. Moreover, its first and second derivatives agree
with those of φ resp. ψ at r0 resp. r+.
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It remains to show i-convexity of χ; the desired function is then obtained by
interpolating from χ to ψ to the right of r+ for small δ. Condition (4.2) holds
for χ because it holds for φ, ψ and up to error of order δ for r ∈ [r0, r+] we
have r ∼= r0, χ(r) ∼= φ(r0) = ψ(r0) and χ′(r) ∈ [φ′(r0), ψ′(r0)]. Next note that
condition (4.3) for s = 0 becomes

(
χ′

r
− 1

χ

)
(1 + χ′2) > 0,

which is satisfied in view of condition (4.2). Since χ′′(r) is uniformly bounded
from below independently of δ, there exists a constant σ > 0 independent of δ
such that χ satisfies condition (4.3) for all |s| ≤ σ. Moreover, near r− resp. r+

condition (4.3) holds for χ because it holds for φ, ψ and χ′′ is larger than φ′′

resp. ψ′′. So it remains to consider the region where χ′′ ≡ m in the case |s| ≥ σ.
In this region r, χ, χ′ are bounded independently of δ. On the other hand, since
the constant m is of order 1/δ, the term χ′′s2/r2 becomes arbitrarily large as
δ → 0, so condition (4.3) holds for δ sufficiently small.

The following lemma extends i-convex shapes to the subcritical case.

Lemma 4.9. For k < n set r :=
√

x2
1 + · · ·+ x2

n + y2
k+1 + · · ·+ y2

n and R :=
√

y2
1 + · · ·+ y2

k. Let φ(r) be an i-convex shape. Then Σ := {R = φ(r)} is an i-
convex hypersurface cooriented from above. Moreover, Σ intersects the subspace
iRn i-orthogonally.

Proof. Set r̄ :=
√

x2
1 + · · ·+ x2

n and R̄ :=
√

y2
1 + · · ·+ y2

n. By assumption, the
hypersurface Σ̄ := {R̄ = φ(r̄)} is i-convex cooriented from above. Let ψ̄(r̄, R̄)
be an increasing function of φ(r̄) − R̄ which is i-convex on a neighborhood of
Σ̄. The unitary group U(n − k) acts on the second factor of Cn = Ck ⊕ Cn−k

and the functions z 1→ ψ̄(gz), g ∈ U(n − k), form a smooth family of i-convex
functions. Therefore, by Lemma 3.8, the continuous function

ψ(z) := maxg∈U(n−k)ψ̄(gz)

is i-convex. Set z′ := (z1, . . . , zk) and z′′ := (zk+1, . . . , zn). Since φ̄ is increasing,
the function

g 1→ φ̄
(√

Re (z′)2 + Re (gz′′)2
)
−

√
Im (z′)2 + Im (gz′′)2

for fixed (z′, z′′) is maximized iff Im (gz′′) = 0, so we have ψ(z) = ψ̄(r, R). This
implies that ψ(z) = ψ̄(r, R) is smooth and i-convex, hence its level set Σ is also
i-convex.
The i-orthogonality of Σ to iRn is clear from the definition.
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4.2 Construction of special shapes

We will now construct special i-convex shapes satisfying the differential inequal-
ity in Corollary 4.5 (a). In fact, we will solve a slightly stronger differential
inequality (4.9) which ensures the lower bound for the modulus of J-convexity
for the constructed J-convex hypersurface.
One such solution with the desired properties has been constructed in [14]. The
following simplified construction was pointed out to us by M. Struwe. We will
find the function φ as a solution of Struwe’s differential equation

φ′′ +
φ′3

2r
= 0 (4.12)

with φ′ > 0 and hence φ′′ < 0. Then the inequality (4.9) with ε = 1
2 reduces to

φ′3

2r
− 3

φ
(1 + φ′2) > 0. (4.13)

Lemma 4.10. For any d, K, δ, λ > 0 satisfying K ≥ e4/d2
and 12Kδ ≤

(lnK)−3/2 there exists a solution φ : [λδ, Kλδ] → R of (4.12) with the following
properties:
(a) φ′(λδ) = +∞ and φ(λδ) ≥ λ + dλδ;
(b) φ(Kλδ) = λ + dKλδ and φ′(Kλδ) ≤ d;
(c) φ satisfies (4.13) and hence is the shape of an i-convex hypersurface coori-
ented from above.

Proof. First note that if φ satisfies equation (4.12) and inequality (4.13), then so
does the rescaled function λφ(r/λ). Thus it suffices to consider the case λ = 1.
The differential equation (4.12) is equivalent to

( 1
φ′2

)′
= −2φ′′

φ′3
=

1
r
,

thus 1/φ′2 = ln(r/δ) for some constant δ > 0, or equivalently, φ′(r) = 1/
√

ln(r/δ).
By integration, this yields a solution φ for r ≥ δ which is strictly increasing and
concave and satisfies φ′(δ) = +∞. Note that

∫ Kδ
δ φ′(r)dr = δK1 with

K1 :=
∫ K

1

du√
lnu

< ∞.

Fix the remaining free constant in φ by setting φ(Kδ) := 1 + dKδ, thus

φ(δ) = 1 + dKδ −K1δ.

Estimating the logarithm on [1, K] from below by the linear function with the
same values at the endpoints,

lnu ≥ lnK

K − 1
(u− 1),
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we obtain an upper estimate for K1:

K1 ≤
∫ K

1

du√
ln K
K−1 (u− 1)

=
√

K − 1
lnK

∫ K−1

0

du√
u

=
2(K − 1)√

lnK
. (4.14)

By hypothesis we have
√

lnK ≥ 2/d, hence K1 ≤ d(K − 1). This implies

φ(δ) ≥ 1 + dKδ − d(K − 1)δ = 1 + dδ.

Concavity of φ implies φ(r) ≥ 1 + dr for all r ∈ [δ, Kδ], and in particular
φ′(Kδ) ≤ d. So it only remains to check inequality (4.13). Denoting by ∼
equality up to a positive factor, we compute

φ′3

2r
− 3

φ
(1 + φ′2) ≥ φ′3

2r
− 3

1 + dr
(1 + φ′2)

∼ φ′3

r
(1 + dr)− 6− 6φ′2

∼ 1
r

+ d(1− ε)− 6 ln(r/δ)3/2 − 6 ln(r/δ)1/2.

The function on the right hand side is decreasing in r. So its minimum is
achieved for r = Kδ and has the value

d +
1

Kδ
− 6(lnK)3/2 − 6(lnK)1/2 >

1
Kδ

− 12(lnK)3/2 ≥ 0

by hypothesis.

For numbers λ, a, b, c, d ≥ 0 consider the following functions:

Sλ(r) =
√

λ2 + ar2 (standard function),

Qλ(r) = λ + br + cr2/2λ (quadratic function),

Lλ(r) = λ + dr (linear function).

Let us first determine in which ranges they satisfy the inequalities (4.2) and
(4.3).

Lemma 4.11. (a) The function Sλ(r) is the shape of an i-convex hypersurface
for λ ≥ 0, a > 1 and r > 0.
(b) The function Qλ(r) is the shape of an i-convex hypersurface for λ > 0, b ≥ 0,
c > 1 and r > 0.
(c) The function Qλ(r) is the shape of an i-convex hypersurface for λ > 0,
b = 4− c, 0 ≤ c ≤ 4 and 0 < r ≤ 2λ.
(d) The function Lλ(r) is the shape of an i-convex hypersurface for λ ≥ 0, d > 1
and r > 0.
(e) The function Lλ(r) is the shape of an i-convex hypersurface for λ > 0, d > 0,
r > 0 and r(1− d4) < λd3.
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Proof. First note that by Lemma 4.8 (b) we only need to prove the statements
for λ = 1. Set S := S1, Q := Q1, L := L1. We denote by ∼ equality up to
multiplication by a positive factor.
(a) This holds because R = S(r) describes a level set of the i-convex function
φ(r, R) = ar2 −R2 for a > 1.
(b) Condition (4.2) follows from

Q′(r)Q(r)− r = (b + cr)(1 + br +
cr2

2
)− r ≥ b + cr − r = b + (c− 1)r > 0,

and condition (4.3) from

L2(Q) ≥ c(r2 − u2)
r2

+
(b + cr)u2

r3
+

(b + cr)3

r
− 1− (b + cr)2u2

r2

∼ cr(r2 − u2) + (b + cr)u2 + r2(b + cr)3 − r3 − r(b + cr)2u2

= (c− 1)r3 + bu2 + r2(b + cr)3 − ru2(b + cr)

≥ (c− 1)r3 + +r2(b + cr)3 − r3(b + cr)

= (c− 1)r3 + r2(b + cr)2
(
b + (c− 1)r

)
> 0.

(c) Condition (4.2) follows as in (b) from

Q′(r)Q(r)− r ≥ b + cr − r = 4− c(1− r)− r ≥ 4− 4(1− r) = 4r − r > 0.

For condition (4.3) it suffices, by (b), to show that

A := (c− 1)r + (b + cr)2
(
b + (c− 1)r

)

= (c− 1)r +
(
4− c(1− r)

)2(4− c(1− r)− r
)

> 0.

For c > 1 this follows from (b). For c ≤ 1 we have 4 − c(1 − r) ≥ 3 and
4− c(1− r)− r ≥ 3− r, hence

A ≥ −r + 9(3− r) = 27− 10r > 0

for r ≤ 2.
(d) Condition (4.2) follows from

L′(r)L(r)− r = d(1 + dr)− r = d + (d2 − 1)r > 0,

and condition (4.3) from

L2(L) =
du2

r3
+

d3

r
− 1

1 + dr

(
1 +

d2u2

r2

)

∼ (1 + dr)du2 + d3r2(1 + dr)− r3 − d2ru2

= du2 + d3r2 + (d4 − 1)r3 > 0.
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(e) Condition (4.2) follows from r(1− d2) < d3/(1 + d2) via

L′(r)L(r)− r = d + (d2 − 1)r ≥ d− d3

1 + d2
=

d

1 + d2
> 0,

and condition (4.3) as in (d) from

L2(L) = du2 + d3r2 + (d4 − 1)r3 ≥ r2
(
d3 + (d4 − 1)r

)
> 0.

Remark 4.12. It is useful note the bounds for the modulus of convexity µΣ for
all J-convex shapes reviewed in Lemma 4.11

a) The normalized Levi form of the hyperboloid ar2 − R2 = −λ2 is equal
to L(T ) = 2a−2

(a2+a)r2+R2 |T |2 for T ∈ ξ and the minimum −M(Σ) of the
negative normal curvature is equal to − 2

(a2+a)r2+R2 . Hence µ(Σ) = a− 1.

b) Assuming c = 1 it can be deduced from the above proof that µ(Σ) ≥ c− 1.

c) TO BE CONTINUED

Lemma 4.13. (a) For λ, c > 0 and d > b > 0 the functions Qλ(r) and Lλ(r)
intersect at a unique point λrQL > 0, where rQL = 2(d− b)λ/c.
(b) For λ > 0 and a > d2 > 0 the functions Lλ(r) and Sλ(r) intersect at a
unique point λrSL > 0, where rSL = 2dλ/(a− d2).
(c) For λ, b > 0, a > c ≥ 0 and 2b2(a + c)2 < (a − c)3 the functions Sλ(r)
and Qλ(r) intersect at precisely two points λrSQ, λr′SQ satisfying 0 < rSQ <
4b/(a− c) < r′SQ. Moreover, the points rSQ and r′SQ depend smoothly on a, b, c.

Proof. (a) and (b) are simple computations, so we only prove (c). Again, by
rescaling it suffices to consider the case λ = 1. First observe that for x > 0
and µ < 1 we have

√
1 + x > 1 + µx/2 provided that 1 + x > 1 + µx + µ2x2/4,

or equivalently, x < 4(1 − µ)/µ2. Applying this to x = ar2, we find that
S(r) > 1 + µar2/2 provided that

r2 <
4(1− µ)

aµ2
. (4.15)

Hence if

1 +
µar2

2
= Q(r) = 1 + br +

cr2

2
for some r > 0 and µ < 1 satisfying (4.15), then S(r) > Q(r). Assuming µa > c,
we solve the last equation for r = 2b/(µa− c). Inequality (4.15) becomes

r2 =
4b2

(µa− c)2
<

4(1− µ)
aµ2

,
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or equivalently,
ab2µ2 < (1− µ)(µa− c)2. (4.16)

Now pick µ := (a + c)/2a. The hypothesis a > c implies µ < 1 and µa =
(a+ c)/2 > c. With µa− c = (a− c)/2 and 1−µ = (a− c)/2a, inequality (4.16)
becomes

ab2

(
a + c

2a

)2

<
a− c

2a

(
a− c

2

)2

,

or equivalently,
2b2(a + c)2 < (a− c)3.

Assume this inequality holds, so S(r+) > Q(r+) at the point

r+ =
2b

µa− c
=

4b

a− c
.

Now f(r) := Q(r)2 − S(r)2 is a polynomial of degre 4 satisfying f(0) = 0 and
f(r) → +∞ as r → ±∞. Since b > 0, we have f(r) > 0 for r > 0 close to
zero and f(r) < 0 for r < 0 close to zero, so f(r−) = 0 for some r− < 0. By
the preceding discussion we have f(r+) > 0, so f has two more zeroes rSQ, r′SQ
with 0 < rSQ < r+ < r′SQ. Since the 4 zeroes of f are distinct they are all
nondegenerate, which implies smooth dependence on the parameters a, b, c.

Now we can show

Lemma 4.14. For every a > 1 and γ > 0 there exists a 0 < d < γ and an
i-convex shape φ(r) which agrees with S(r) =

√
1 + ar2 for r ≥ γ and with

L(r) = 1 + dr for r close to 0.

Proof. Pick 1 < c < a. Pick 0 < b < 1 such that 2b2(a + c)2 < (a − c)3 and
4b < γ(a−c). By Lemma 4.13, the i-convex shapes S(r) and Q(r) = 1+br+cr2/2
intersect at a point 0 < r2 < 4b/(a − c) < γ. Now pick b < d < 1 such that
r1 := 2(d − b)/c satisfies r1 < r2 and r1 < d3/(1 − d4) . By Lemma 4.13,
the functions Q(r) and L(r) intersect at the point r1, and by Lemma 4.11 the
function L(r) is i-convex for r ≤ r1. Now the desired function is a smoothing
of the function which equals L(r) for r ≤ r1, Q(r) for r1 ≤ r ≤ r2 and S(r) for
r ≥ r2.

Combining the preceding lemma with Lemma 4.10 (for λ = 1), we obtain

Corollary 4.15. For every a > 1 and γ > 0 there exists a 0 < δ < γ and an
i-convex shape φ(r) which agrees with S(r) =

√
1 + ar2 for r ≥ γ and satisfies

φ′(δ) = +∞ and φ(δ) > 1.
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4.3 Families of special shapes

In this section we construct a family of i-convex shapes interpolating between
the function in Corollary 4.15 and the standard functions Sλ.
We begin by constructing another family of solutions to Struwe’s differential
equation (4.12).

Lemma 4.16. For any δ > 0 and d ≥ 4 there exists a solution φ : [δ, 2δ] → R
of (4.12) with the following properties:
(a) φ′(δ) = +∞ and φ(δ) ≥ dδ;
(b) φ(2δ) = 2dδ and φ′(2δ) ≤ d;
(c) φ satisfies (4.13) and hence is an i-convex shape.

Proof. The proof is similar to the proof of Lemma 4.10. By rescaling, it suffices
to consider the case δ = 1. Define the solution φ by φ′(r) := 1/

√
ln r and

φ(2) := 2d, thus

φ(1) = 2d−
∫ 2

1

du√
lnu

.

Estimating the integral as in (4.14) and using d ≥ 4, we find

φ(1) ≥ 2d− 2√
ln 2

≥ d + 4− 2√
ln 2

≥ d,

since
√

ln 2 ≥ 1/2. Concavity of φ implies φ(r) ≥ dr for all r ∈ [1, 2], and in
particular φ′(2) ≤ d. So it only remains to check inequality (4.13). Denoting by
∼ equality up to a positive factor, we compute

φ′3

2r
− 1

φ
(1 + φ′2) ≥ φ′3

2r
− 1

dr
(1 + φ′2)

∼ dφ′3 − 2− 2φ′2

∼ d− 2(ln r)3/2 − 2(ln r)1/2.

The function on the right hand side is decreasing in r. So its minimum is
achieved for r = 2 and has the value

d− 2(ln 2)3/2 − 2(ln 2)1/2 > 4− 2− 2 = 0,

since d ≥ 4 and
√

ln 2 < 1.

Remark 4.17. For φ as in Lemma 4.16 and any constant c ∈ R, the part of the
function φ+ c that lies above the linear function dr is i-convex. Indeed, the last
part of the proof applied to φ + c estimates the quantity in inequality 4.13 by
d−2(ln r1)3/2−2(ln r1)1/2, where r1 is the larger intersection point of φ+ c and
dr. Since r1 ≤ 2, this is positive.
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Extend the standard function to λ < 0 and a > 1 by

Sλ(r) :=
√

ar2 − λ2, r ≥ |λ|/
√

a.

Note that Sλ is the shape of an i-convex hypersurface because its graph is a
level set of the i-convex function φ(r, R) = ar2 −R2.
We say that a family of i-convex shapes ψλ : [δ, γ] → R+ with ψ′λ(δ) = ∞ is
smooth if their graphs {R = ψλ(r)}, extended by the vertical line below ψλ(δ),
form a smooth family of lines in the positive quadrant Q ⊂ R2.

Lemma 4.18. Let Lλ(r) = λ + dλr, 0 < r ≤ γ, 0 ≤ λ ≤ 1, be an increasing
smooth family of i-convex shapes, where λ 1→ dλ is decreasing with d0 = 8 and
0 < d1 ≤ 1. Then for any sufficiently small δ ∈ (0, γ/4) there exists a smooth
family of increasing i-convex shapes ψλ : [δ, γ] → R, −8δ ≤ λ ≤ 1, with the
following properties:
(a) ψ−8δ(r) =

√
64r2 − 64δ2 for all r ≥ δ;

(b) ψλ(r) =
√

64r2 − λ2 for −8δ ≤ λ ≤ 0 and r ≥ γ/2;
(c) ψλ(r) = Lλ(r) for 0 ≤ λ ≤ 1 and r ≥ γ/2.
(d) ψ′λ(δ) = ∞ for all λ;
(e) ψ1(δ) > 1.

Proof. (1) For each λ ∈ (0, 1], set Kλ := e4/d2
λ . Pick a smooth family of δλ > 0

such that λδλ increases with λ and

4Kλδλ ≤ (lnKλ)−3/2, Kλλδλ < γ/2.

By Lemma 4.10, there exist i-convex solutions φλ : [λδλ, Kλλδλ] → R of (4.12)
satisfying

• φ′λ(λδλ) = +∞ and φλ(λδλ) ≥ λ + dλλδλ;

• φλ(Kλλδλ) = λ + dλKλλδλ and φ′λ(Kλλδλ) ≤ dλ.

(2) From d0 = 8 and d1 < 1 we conclude K0 = e1/16 < 2 and K1 ≥ e4 > 2.
Hence there exists a 0 < λ̄ < 1 with Kλ̄ = 2. Set δ̄ := λ̄δλ̄ < γ/4. By
Lemma 4.16 (with d = 8), there exists an i-convex solution φ̄ : [δ̄, 2δ̄] → R of
(4.12) satisfying

• φ̄′(δ̄) = +∞ and φ̄(δ̄) ≥ 8δ̄;

• φ̄(2δ̄) = 16δ̄ and φ̄′(2δ̄) ≤ 8.

By Lemma 4.8 (a), the functions

φ̄λ := φ̄(r) + Lλ(2δ̄)− L0(2δ̄) ≥ φ̄(r)
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are i-convex for 0 ≤ λ ≤ λ̄ and δ̄ ≤ r ≤ 2δ̄. Note that the functions φλ̄ and φ̄λ̄

have the same value at r = 2δ̄ and derivative ∞ at r = δ̄. Since they both solve
the second order differential equation (4.12), they coincide on [δ̄, 2δ̄]. Thus the
families constructed in (1) and (2) fit together to a continuous family (φ̂λ)λ∈[0,1]

with φ̂λ = φλ : [λδλ, Kλλδλ] → R+ for λ ≥ λ̄, and φ̂λ = φ̄λ : [δ̄, 2δ̄] → R+ for
λ ≤ λ̄. Set δ̄λ := λδλ for λ ≥ λ̄ and δ̄λ := δ̄ for λ ≤ λ̄ and define φ̃λ : [δ̄λ, γ] →
R+ by

φ̃λ(r) :=

{
φ̂λ(r) for r ≤ Kλδλ,

Lλ(r) for r ≥ Kλδλ.

After smoothing, the family φ̃λ is i-convex and agrees with Lλ for r ≥ γ/2.
(3) For −8δ̄ ≤ τ ≤ 0 consider the functions φ̄τ := φ̄ + τ : [δ̄, 2δ̄] → R+. By
Remark 4.17, the portion of φ̄τ above the linear function L0 is i-convex. Thus
for 0 < δ < δ̄/2 sufficiently small, the portion of φ̄τ above the function S−8δ is
i-convex. Here Sλ(r) =

√
64r2 − λ2 is the standard function defined above with

a = 64 and λ ∈ [−8δ, 0]. For −8δ ≤ λ ≤ 0 define φ̃λ : [δ̄, γ] → R+ by

φ̃λ(r) :=

{
φ̄(r) + Sλ(2δ̄)− S0(2δ̄) for r ≤ 2δ̄,

Sλ(r) for r ≥ 2δ̄.

Since Sλ(r)−S0(r) is increasing in r for λ > 0, the condition φ̄(δ̄) ≥ 8δ̄ ensures
that φ̃λ lies above Sλ. Thus after smoothing, the family φ̃λ is i-convex for
−8δ ≤ λ ≤ 1 and agrees with Lλ (if λ ≥ 0) resp. Sλ (if λ ≤ 0) for r ≥ γ/2.
Now define ψ̃λ : [δ, γ] → R+ by

φ̃λ(r) :=

{
S−8δ(r) for r ≤ δ̄λ,

φ̃(r) for r ≥ δ̄λ.

After smoothing, the family ψ̃λ is i-convex for −8δ ≤ λ ≤ 1 and satisfies
conditions (b-d).
(4) To arrange condition (a), note that ψ̃−8δ = max(S−8δ, φ̄τ̄ ) for some τ̄ < 0.
By the discussion above, the functions max(S−8δ, φ̄τ ) are i-convex for −8δ̄ ≤
τ ≤ 0. For δ sufficiently small, we have max(S−8δ, φ̄−8δ̄) = S−8δ. After rescaling
in the parameter λ, this yields a family ψ̃λ satisfying condition (a-d).
(5) To arrange condition (e), set δt := (2 − t)δ1 + (t − 1)δ for t ∈ [1, 2] and let
φt : [δt, K1δt] → R be the i-convex shape from Lemma 4.10 with λ = 1 and δ
replaced by δt. For λ ∈ [1, 2] define ψ̃λ : [δ, γ] → R+ by

φ̃λ(r) :=






S−8δ(r) for r ≤ δλ,

φλ(r) for δλ ≤ r ≤ δ1,

L1(r) for r ≥ δ1.

For λ = 1 this matches the previous family ψ̃λ, so rescaling in λ yields the
desired family ψλ.
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The following result is a family version of Lemma 4.14.

Lemma 4.19. For any ρ > 0 there exists a constant 0 < γ < ρ and a smooth
family of increasing i-convex shapes φλ : R+ → R+, λ ∈ [0, 1], with the following
properties:
(a) φ0(r) = 8r for all r;
(b) φλ(r) = λ+dλr for r ≤ γ and all λ, where λ 1→ dλ is decreasing with d0 = 8
and 0 < d1 ≤ 1;
(c) φλ(r) =

√
64r2 + λ2 for r ≥ ρ and all λ.

Proof. Set a := 64 and c := 2. With this choice and λ ∈ (0, 1] we consider the
functions

Sλ(r) =
√

λ2 + ar2, Qb,λ(r) = λ + br + cr2/2λ, Ld,λ(r) = λ + dr

as above. Here the constants b, d will vary in the course of the proof but always
satisfy the condition

0 < b < d ≤ b + b3 < 8. (4.17)

Then the numerical condition in Lemma 4.13 (c), 2b2(64+2)2 < (64−2)3, holds
because b < 4. Hence all the numerical conditions in Lemma 4.13 are satisfied,
so the functions Sλ, Qb,λ, Ld,λ intersect at points λrQL(b, d), λrSL(d), λrSQ(b)
satisfying

rQL(b, d) =
2(d− b)

c
, rSL(d) =

2d

a− d2
, 0 < rSQ(b) <

4b

a− c
.

By condition (4.17) we have

rQL(b, d)(1− d4) ≤ rQL(b, d) ≤ b3 < d3,

so the numerical condition in Lemma 4.11 (e) is satisfied for r ≤ λrQL(b, d). It
follows that the shape functions Sλ(r) and Qb,λ(r) are i-convex for all r, and
Ld,λ(r) is i-convex for r ≤ λrQL(b, d). For each triple (b, d, λ) we consider the
function

ψb,d,λ := max(Sλ, Qb,λ, Ld,λ) = λψb,d,1(·/λ).

This function will be i-convex provided that the region where it coincides with
Ld,λ(r) is contained in the interval [0, λrQL(b, d)]. We say that ψb,d,λ is of type
(a) if rQL(b, d) ≤ rSL(d) <≤ rSQ(b);
(b) if rSQ(b) <≤ rSL(d) ≤ rQL(b, d);
(c) if rSQ(b) <≤ rQL(b, d) ≤ rSL(d);
see Figure [fig:???] (where we have droped the parameters b, d, λ). Thus the
function ψb,d,λ is i-convex for types (a) and (b), but not necessarily for type (c).
After these preparations, we now construct the family φλ in 4 steps.
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Step 1. Consider λ = 1. Pick a pair (b1, d1) satisfying (4.17) and such that

rQL(b1, d1) =
2(d1 − b1)

c
< rSQ(b1) <

4b1

a− c
< ρ.

Then the shape function ψb1,d1,λ is of type (a) and therefore i-convex for all
λ > 0, and it agrees with Sλ for r ≥ γ. Note that in particular we have
rSL(d1) < ρ.
Step 2. Fix a parameter 0 < λ∗ < ρ/8. This condition ensures that for any
pair (b, d) satisfying (4.17) we have λ∗rQL(b, d), λ∗rSQ(b) < ρ. We may assume
that b1 is Step 1 is chosen so small that b2

1 < c/(a− b2) for all b ∈ [0, b1]. Then
for any b ∈ [0, b1] such that (b, d1) satisfies (4.17) we have

rQL(b, d1) =
2(d1 − b)

c
≤ 2b3

c
<

2b

a− b2
<

2d1

a− d2
1

= rSL(d1) < ρ.

Let b∗1 ∈ (0, b1] be the solution of b∗1+(b∗1)3 = d1. We claim that for all b ∈ [b∗1, b1]
the function ψb,d1,λ∗ is of type (a) and therefore i-convex. Indeed, by Step 1
this holds for b = b1. Since rSQ(b) depends smoothly on b, if ψb,d1,λ∗ changes its
type there must exist a b ∈ [b∗1, b1] for which rSQ(b) = rSL(d1). But this implies
also rQL(b, d1) = rSL(d1), contradicting the preceding inequality.
Step 3. For b > 0 consider the function

f(b) :=
rQL(b, d)
rSL(d)

∣∣∣
d=b+b3

=
(d− b)(a− d2)

cd

∣∣∣
d=b+b3

=
b2

(
a− (b + b3)2

)

c(1 + b2)
.

A short computation shows that f(0) = 0, f(1) > 1 and f ′(b) > 0 for all
b ∈ (0, 1). Thus there exists a unique b∗2 ∈ (0, 1) with f(b∗2) = 1, i.e. rQL(b, b +
b3) = rSL(b + b3) precisely for b = b∗2. Since b∗1 < b∗2, the function ψb,b+b3,λ∗

is of type (a) and therefore i-convex for all b ∈ [b∗1, b∗2]. For b ∈ [b∗2, 1] we
have rQL(b, b + b3) ≥ rSL(b + b3), so the function ψb,b+b3,λ∗ is of type (b) and
therefore also i-convex. Combining this, we see that the function ψb,b+b3,λ∗ is
i-convex for all b ∈ [b∗1, 1]. Moreover, λ∗rSL(b + b3) < ρ for all b ∈ [b∗1, 1], so
ψb,b+b3,λ∗(r) = S∗λ(r) for r ≥ ρ.
Step 4. The previous step leads for b = 1 and d = b + b3 = 2 to the function
ψ1,2,λ∗ . For d ∈ [2, 8] define bd, λd by the conditions

bd + b3
d = d, λdrSL(d) = ρ,

so
λd =

ρ(a− d2)
2d

.

Note that b2 = 1, λ2 > λ∗, and ψ1,λ,2 is i-convex for all λ ∈ [λ∗, λ2] and agrees
with Sλ for r ≥ ρ. The same holds for the functions ψbd,d,λd for all d ∈ [2, 8].
In the limit d → 8 we find λ8 = 0 and thus the linear function

ψb8,8,0(r) = 8r.
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Now we combine the homotopies of i-convex functions ψb,d,λ in Steps 1-4: Start-
ing from (b1, d1, 1) we first decrease λ to (b1, d1, λ∗) (Step 1), then decrease b
to (b∗1, d1, λ∗) (Step 2), next increase (b, d) simultaneously do (1, 2, λ∗) (Step
3), and finally increase (b, d) and decrease λ simultaneously to (b8, 8, 0). By
construction, each function ψb,d,λ during this homotopy coincides with the cor-
responding standard function Sλ for r ≥ ρ and with the linear function Lλ for
r ≤ γ for some small γ > 0. Moreover, during the homotopy λ is non-increasing
and d is non-decreasing. Smoothen the functions ψb,d,λ and perturb the homo-
topy such that λ is strictly decreasing from 1 to 0 and d is strictly increasing
from d1 ≤ 1 to 8. The resulting homotopy, parametrized by λ ∈ [0, 1], is the
desired family φλ.

Now we can prove the main result of this chapter.

Proposition 4.20. For all 0 < ρ < ε and any sufficiently small δ ∈ (0, ρ) there
exists a smooth family of increasing i-convex shapes ψλ : [δ, ε] → R, −8δ ≤ λ ≤
1, with the following properties:
(a) ψ−8δ(r) =

√
64r2 − 64δ2 for all r ≥ δ;

(b) ψλ(r) =
√

64r2 − λ2 for r ≥ ρ and all λ;
(c) ψ′λ(δ) = ∞ for all λ;
(e) ψ1(δ) > 1.

Proof. Let (φλ)λ∈[0,1] be the family of i-convex shapes from Lemma 4.19. They Check!

agree with the standard functions
√

64r2 − λ2 for r ≥ ρ and with the linear
functions λ + dλr for r ≤ γ. Since φ0(r) = 8r, we can extend the family by
φλ(r) :=

√
64r2 − λ2 for λ < 0 and r ≥ λ/8.

Let (ψλ)λ∈[−8δ,1] be the family from Lemma 4.18 which agrees with λ + dλr for
r ≥ γ/2 and λ ∈ [0, 1], and with

√
64r2 − λ2 for r ≥ γ/2 and λ ∈ [−8δ, 0]. So

the families ψλ and φλ fit together to a family of i-convex shapes [δ, ε] with the
desired properties.

Change below here!

Define the standard i-convex function,

ψst(r, R) := 64r2 −R2 + 1.

on the handle Hε.

Proposition 4.21. For all 0 < ρ < ε and β > 0 there exists a smooth family
of i-convex functions ψt : Hε → R, t ∈ [0, 1], with the following properties:
(a) ψ0 = ψst;
(b) ψt = ψst on the set {ψst ≤ −β} and near r = 0 for all t ∈ [0, 1];
(c) ψt = ft ◦ ψst for r ≥ ρ, where ft : [−β, 1 + 64ε2] → R are strictly increasing
with f0 = 1l, ft(x) = x near x = −β, and f1(0) > 1;
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(d) all ψt have 0 as the only critical point.

Proof. Let (φλ)λ∈[0,1] be the family of i-convex shape functions from Lemma 4.19.
They agree with the linear functions λ+ dλr for r ≤ γ. Let (ψλ)λ∈[−8δ,1] be the
family from Lemma 4.18 which agrees with λ + dλr for r ≥ γ/2 and λ ∈ [0, 1].
Since φ0(r) = 8r and ψ−8δ(r) =

√
64r2 − 64δ2 we can extend the families φλ

and ψλ by Sλ(r) =
√

64r2 − λ2 for λ ∈ [−8ε, 0] resp. λ ∈ [−8ε,−8δ]. The ex-
tended families ψλ and φλ fit together to a family of i-convex shape functions
χλ : [0, ε] → R+, λ ∈ [−8ε, 1], with the following properties:
(a) χλ(r) = Sλ(r) for r ≥ ρ and all λ, as well as for λ ≤ −8δ and all r;
(b) χλ(r) = S−8δ(r) for δ ≤ r ≤ 2δ and −8δ ≤ λ ≤ 1.
It will be convenient to perform a bijective continuous change of parameters
from λ to µ = µ(λ) ∈ [0, 1 + 64ε2] defined by

µ(λ) :=

{
1 + λ2 : λ < 0,

1− λ2 : λ ≥ 0,

so Sλ(r) =
√

64r2 + 1− µ. Note that the family of hypersurfaces {R = χµ(r)},
µ ∈ [0, 1 + 64ε2], is transverse to the vector field

X =
k∑

i=1

(
xi

∂

∂xi
− yi

∂

∂yi

)
+

n∑

j=k+1

(
xj

∂

∂xj
+ yj

∂

∂yj

)
.

Hence by Proposition 3.28 we can perturb it to a foliation by i-convex hyper-
surfaces Σµ transverse to X with the following properties:

(a) Σµ = {R =
√

64r2 + 1− µ} for r ≥ ρ and all µ;
(b) Σ0 = {R =

√
64r2 − 64δ2} for δ ≤ r ≤ 2δ.

Extend the foliation Σµ to µ ∈ [−α, 0], for α ∈ (0, β) sufficiently small, such that
Σµ(r) =

√
64r2 + 1− µ for r ≥ ρ and all µ ∈ [−α, 1 + 64ε2]. Define a function

ψ : Hε → R by ψ := µ on Σµ, and ψ := −α otherwise. Pick an increasing
convex smooth function f : [−α, 1+64ε2] → R such that f(µ) = µ near µ = −α,
f(0) > 1, and f ◦ψ is i-convex on ∪µΣµ. Note that f ◦ψ = f ◦ψst on the region
{ψst ≥ −α, r ≥ ρ} and f ◦ ψ ≡ −α ≤ ψst on the region {ψst ≥ −α} \ ∪µΣµ.
Pick a constant c > maxHε(f◦ψ)−minHεψst and for t ∈ [0, 1] define ψt : Hε → R
by

ψt := max{ψst, f ◦ ψ + c(t− 1)}
on {ψst ≥ −α} and ψt := ψst on {ψst ≤ −α}. After smoothing, the functions
ψt will be i-convex and we claim that they have the desired properties. Indeed,
properties (a) and (b) are immediate from the construction. Property (c) holds
with (a smoothing of) the function ft := max{1l, f + c(t − 1)}. Property (d)
holds because ψt = ψst near 0, and away from 0 the level sets of the functions
ψst and ψ are transverse to the vector field X above, so by Corollary 3.23 taking
the maximum and smoothing does not create any new critical points.
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Chapter 5

Symplectic and Contact
Preliminaries

In this chapter we collect some relevant facts from symplectic and contact ge-
ometry. For more details see [47].

5.1 Symplectic vector spaces

A symplectic vector space (V, ω) is a (finite dimensional) vector space V with
a nondegenerate skew-symmetric bilinear form ω. Here nondegenerate means
that v 1→ ω(v, ·) defines an isomorphism V 1→ V ∗. A linear map Ψ : (V1, ω1) →
(V2, ω2) between symplectic vector spaces is called symplectic if Ψ∗ω2 ≡ ω2(Ψ·,Ψ·) =
ω1.
For any vector space U the space U⊕U∗ carries the standard symplectic structure

ωst

(
(u, u∗), (v, v∗)

)
:= v∗(u)− u∗(v).

In coordinates qi on U and dual coordinates pi on U∗, the standard symplectic
form is given by

ωst =
∑

dqi ∧ dpi.

Define the ω-orthogonal complement of a linear subspace W ⊂ V by

Wω := {v ∈ V
∣∣ ω(v, w) = 0 for all w ∈ W}.

Note that dimW + dimWω = 2n, but W ∩Wω need not be {0}. W is called

• symplectic if W ∩Wω = {0};

• isotropic if W ⊂ Wω;

65
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• coisotropic if Wω ⊂ W ;

• Lagrangian if Wω = W .

Note that dimW is even for W symplectic, dim W ≤ n for W isotropic, dimW ≥
n for W coisotropic, and dimW = n for W Lagrangian. Note also that (Wω)ω =
W , and

(
W/(W ∩Wω), ω

)
is a symplectic vector space.

Consider a subspace W of a symplectic vector space (V, ω) and set N := W∩Wω.
Choose subspaces V1 ⊂ W , V2 ⊂ Wω and V3 ⊂ (V1 ⊕ V2)ω such that

W = V1 ⊕N, Wω = N ⊕ V2, (V1 ⊕ V2)ω = N ⊕ V3.

Then the decomposition

V = V1 ⊕N ⊕ V2 ⊕ V3

induces a symplectic isomorphism

(V, ω) → (W/N,ω)⊕ (Wω/N, ω)⊕ (N ⊕N∗, ωst),

v1 + n + v2 + v3 1→
(
v1, v2, (n,−iv3ω)

)
. (5.1)

Every symplectic vector space (V, ω) of dimension 2n possesses a symplectic
basis e1, f1, . . . , en, fn, i.e. a basis satisfying

ω(ei, ej) = ω(fi, fj) = 0, ω(ei, ej) = δij .

Moreover, given a subspace W ⊂ V , the basis can be chosen such that

• W = span{e1, . . . , ek+l, f1, . . . , fk};

• Wω = span{ek+1, . . . , en, fk+l+1, . . . , fn};

• W ∩Wω = span{ek+1, . . . , ek+l}.

In particular, we get the following normal forms:

• W = span{e1, f1, . . . , ek, fk} if W is symplectic;

• W = span{e1, . . . , ek} if W is isotropic;

• W = span{e1, . . . , en, f1, . . . , fk} if W is coisotropic;

• W = span{e1, . . . , en} if W is Lagrangian.

This reduces the study of symplectic vector spaces to the standard symplectic
space (R2n, ωst =

∑
dqi ∧ dpi).

A pair (ω, J) of a symplectic form ω and a complex structure J on a vector
space V is called compatible if

gJ := ω(·, J ·)
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is an inner product (i.e. symmetric and positive definite). This is equivalent to
saying that

H(v, w) := ω(Jv, w)− iω(v, w)

defines a Hermitian metric. Therefore, we will also call a compatible pair (ω, J)
a Hermitian structure.

Lemma 5.1. (a) The space of symplectic forms compatible with a given complex
structure is nonempty and contractible.
(b) The space of complex structures compatible with a given symplectic form is
nonempty and contractible.

Proof. (a) immediately follows from the fact that the Hermitian metrics for a
given complex structure form a convex space.
(b) is a direct consequence of the following fact (see [47]): For a symplectic vector
space (V, ω) there exists a continuous map from the space of inner products to
the space of compatible complex structures which maps each induced inner
product gJ to J .
To see this fact, note that an inner product g defines an isomorphism A : V → V
via ω(·, ·) = g(A·, ·). Skew-symmetry of ω implies AT = −A. Recall that each
positive definite operator P possesses a unique positive definite square root√

P , and
√

P commutes with every operator with which P commutes. So we
can define

Jg := (AAT )−
1
2 A.

It follows that J2
g = −1l and ω(·, J ·) = g(

√
AAT ·, ·) is an inner product. Conti-

nuity of the mapping g 1→ Jg follows from continuity of the square root. Finally,
if g = gJ for some J then A = J = Jg.

Let us call a subspace W ⊂ V of a complex vector space (V, J)

• totally real if W ∩ JW = {0},

• totally coreal if W + JW = V ,

• maximally real if W ∩ JW = {0} and W + JW = V ,

• complex if JW = W .

Note that dimW ≤ n if W is totally real, dimW ≥ n if W is totally coreal, and
dimW = n if W is maximally real.
Recall that a Hermitian vector space (V, J, ω) is a complex vector space with
a J-invariant symplectic form ω. Denote by W⊥ the orthogonal complement
with respect to the metric 〈v, w〉 := ω(v, Jw). The following lemma relates the
symplectic and complex notions on a Hermitian vector space. It follows easily
from the relation Wω = (JW )⊥ = J(W⊥).
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Lemma 5.2. Let (V, J, ω) be a Hermitian vector space and W ⊂ V a subspace.
Then
(a) W isotropic ⇐⇒ JW ⊂ W⊥ =⇒ W totally real;
(b) W coisotropic ⇐⇒ W⊥ ⊂ JW =⇒ W totally coreal;
(a) W Lagrangian ⇐⇒ JW = W⊥ =⇒ W maximally real;
(c) W complex =⇒ W symplectic.

5.2 Symplectic vector bundles

The discussion of the previous section immediately carries over to vector bun-
dles. For this, let E → M be a real vector bundle of rank 2n over a manifold. A
symplectic structure on E is a smooth section ω in the bundle Λ2E∗ → M such
that each ωx ∈ Λ2E∗x is a linear symplectic form. A pair (ω, J) of a symplectic
and a complex structure on E is called compatible, or a Hermitian structure,
if ω(·, J ·) defines an inner product on E. Lemma 5.1 immediately yields the
following facts, where the spaces of sections are equipped with any reasonable
topology, e.g. the C∞loc topology:
(a) The space of compatible complex structures on a symplectic vector bundle
(E,ω) is nonempty and contractible.
(b) The space of compatible symplectic structures on a complex vector bundle
(E, J) is nonempty and contractible.
This shows that the homotopy theories of symplectic, complex and Hermitian
vector bundles are the same. In particular, obstructions to trivialization of a
symplectic vector bundle (E,ω) are measured by the Chern classes ck(E,ω) =
ck(E, J) for any compatible complex structure J .
Remark 5.3. The homotopy equivalence between symplectic, complex and Her-
mitian vector bundles can also be seen in terms of their structure groups: The
symplectic group 1

Sp(2n) := {Ψ ∈ GL(2n, R) | Ψ∗ω = ω} = {Ψ ∈ GL(2n, R) | ΨT JΨ = J}

and the general complex linear group GL(n, C) both deformation retract onto
the unitary group

U(n) = Sp(2n) ∩O(2n) = O(2n) ∩GL(n, C) = GL(n, C) ∩ Sp(2n).

We end this section with a normal form for subbundles of symplectic vector
bundles.

Proposition 5.4. Let (E,ω) be a rank 2n symplectic vector bundle and W ⊂ E
a rank 2k + l subbundle such that N := W ∩Wω has constant rank l. Then

(E,ω) ∼= (W/N,ω)⊕ (Wω/N, ω)⊕ (N ⊕N∗, ωst).
1Sp(2n) is not the “symplectic group” Sp(n) considered in Lie group theory. E.g., the

latter is compact, while our symplectic group is not.
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Proof. Pick a compatible almost complex structure J on (E,ω). Then

V1 := W ∩ JW, V2 := Wω ∩ JWω, V3 := JN

are smooth subbundles of E. Now the isomorphism 5.1 of the previous section
yields the desired decomposition.

5.3 Symplectic manifolds

A symplectic manifold (V, ω) is a manifold V with a closed nondegenerate 2-
form ω. A map f : (V1, ω1) → (V2, ω2) between symplectic manifolds is called
symplectic if f∗ω2 = ω1, and a symplectic diffeomorphism is called symplecto-
morphism. The following basic results states that every symplectic manifold
of dimension 2n is locally symplectomorphic to (R2n, ωst). In other words, ev-
ery symplectic manifold possesses a symplectic atlas, i.e. an atlas all of whose
transition maps are symplectic.

Proposition 5.5 (symplectic Darboux Theorem). Let (V, ω) be a symplectic
manifold of dimension 2n. Then every x ∈ V possesses a coordinate neighbor-
hood U and a coordinate map φ : U → U ′ ⊂ R2n such that φ∗ωst = ω.

The symplectic Darboux Theorem is a special case of the Symplectic neighbor-
hood Theorem which will be proved in the next section. Now let us discuss
some examples of symplectic manifolds.
Cotangent bundles. Let T ∗Q

π→ Q be the cotangent bundle of a manifold Q.
The 1-form

∑
pidqi is independent of coordinates qi on Q and dual coordinates

pi on T ∗q Q and thus defines the Liouville 1-form λst on T ∗Q. Intrinsically,

(λst)(q,p) · v = 〈p, T(q,p)π · v〉 for v ∈ T(q,p)T
∗Q,

where 〈 , 〉 is the pairing between T ∗q Q and TqQ. The 2-form ωst := −dλst is Sign?

clearly closed, and the coordinate expression ωst =
∑

dqi ∧ dpi shows that it is
also nondegenerate. So ωst defines the standard symplectic form on T ∗Q. The
standard form on R2n is a particular case of this construction.
Almost complex submanifolds. A pair (ω, J) of a symplectic form and an almost
complex structure on V is called compatible if ω(·, J ·) defines a Riemannian
metric. It follows that ω induces a symplectic form on every almost complex
submanifold W ⊂ V (which is compatible with J |W ).
J-convex functions. If (V, J) is an almost complex structure and φ : V → R
a J-convex function, then the 2-form ωφ = −ddCφ is symplectic. Moreover, ωφ

is compatible with J if J is integrable (see Section 2.2). In particular, every
J-convex function on a Stein manifold induces a symplectic form compatible
with J .
Kähler manifolds. A Kähler manifold is a complex manifold (V, J) with a
Kähler metric, i.e. a Hermitian metric H = g − iω on TV such that the 2-form
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ω is closed. Thus the Kähler form ω is a symplectic form compatible with J .
Note that every complex submanifold of a Kähler manifold is again Kähler.
The two basic examples of Kähler manifolds are Cn with the standard com-
plex structure and Hermitian metric, and the complex projective space CPn =
(Cn+1\0)/(C\0) with the induced complex structure and Hermitian metric (the
latter is defined by restricting the Hermitian metric of Cn+1 to the unit sphere
and dividing out the standard circle action). Passing to complex submanifolds
of Cn, we see again that Stein manifolds are Kähler. Passing to complex sub-
manifolds of CPn, we see that smooth projective varieties are Kähler. This
gives us a rich source of examples of closed symplectic manifolds.

Remark 5.6. While cotangent bundles and Kähler manifolds provide obvious
examples of symplectic manifolds, it is not obvious how to go beyond them. The
first example of a closed symplectic manifold that is not Kähler was presented by
Thurston in 1976. In 1995 Gompf [24] proved that every finitely presented group
is the fundamental group of a closed symplectic 4-manifold, in stark contrast to
the many restrictions on the fundamental groups of closed Kähler surfaces.

Problem 5.1. Show that a Riemannian metric g on a manifold Q induces a
natural almost complex structure Jg on T ∗Q, compatible with ωst, which inter-
changes the horizontal and vertical subspaces defined by the Levi-Civita con-
nection. Prove that Jg is integrable if and only if the metric g is flat.

5.4 Moser’s trick and symplectic normal forms

An (embedded or immersed) submanifold W of a symplectic manifold (V, ω)
is called symplectic (isotropic, coisotropic, Lagrangian) if TxW ⊂ TxV is sym-
plectic (isotropic, coisotropic, Lagrangian) for every x ∈ W in the sense of
Section 5.1. In this section we derive normal forms for neighborhoods of such
submanifolds.
All the normal forms can be proved by the same technique which we will refer
to as Moser’s trick. It is based on Cartan’s formula LXα = iXdα + d iXα for
a vector field X and a k-form α. Suppose we are given k-forms α0, α1 on a
manifold M , and we are looking for a diffeomorphism φ : M → M such that
φ∗α1 = α0. Moser’s trick is to construct φ as the time-1 map of a time-dependent
vector field Xt. For this, let αt be a smooth family of k-forms connecting α0

and α1, and look for a vector field Xt whose flow φt satisfies

φ∗t αt ≡ α0. (5.2)

Then the time-1 map φ = φ1 the solves our problem. Now equation (5.2) follows
by integration (provided the flow of Xt exists, e.g. if Xt has compact support)
once its linearized version

0 =
d

dt
φ∗t αt = φ∗t (α̇t + LXtαt)
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holds for every t. Inserting Cartan’s formula, this reduces the problem to the
algebraic problem of finding a vector field Xt that satisfies

α̇t + d iXtαt + iXtdαt = 0. (5.3)

Here is a first application of this method. Here, as well as thoughout the book,
by diffeotopy we denote a smooth family of diffeomorphisms φt, t ∈ [0.1], with
φ0 = 1l.

Theorem 5.7 (Moser’s Stability Theorem). Let W be a compact manifold with
(possibly empty) boundary ∂W . Let ωt, t ∈ [0, 1], be a smooth family of symplec-
tic forms on W which coincide along ∂W and such that the relative cohomology
class [ωt − ω0] ∈ H2(W, ∂W ; R) is independent of t. Then there exists a dif-
feotopy φt with φt|∂W = 1l such that φ∗t ωt = ω0.

Proof. For every t the closed 2-form ω̇t vanishes along ∂W and is trivial in
relative cohomology H2(W, ∂W ; R), so there exists a 1-form βt vanishing along
∂W such that dβt = ω̇t. The forms βt are not unique, but they can be chosen
to depend smoothly on t. This can be achieved either by local arguments in
coordinate charts (cf. [47], Theorem 3.17), or by Hodge theory as follows: Pick Adapt: Hodge theory

with boundarya Riemannian metric on the manifold V and let d∗ : Ω2(V ) → Ω1(V ) be the
L2-adjoint of d. By Hodge theory, im(d∗) = ker(d)⊥, so d is an isomorphism
from im(d∗) to the exact 2-forms. The inverse of this isomorphism provides the
particular choice for βt.
Now we can solve equation (5.3),

0 = ω̇t + d iXtωt + iXtdωt = d(βt + iXtωt)

by solving βt + iXtωt = 0, which has a unique solution Xt due to the nondegen-
eracy of ωt. Since Xt vanishes on ∂W , its flow φt exists and gives the desired
family of diffeomorphisms.

Corollary 5.8. Let V be a manifold (without boundary but not necessarily
compact). Let ωt, t ∈ [0, 1], be a smooth family of symplectic forms on V which
coincide outside a compact set and such that the cohomology class with compact
support [ωt−ω0] ∈ H2

c (V ; R) is independent of t. Then there exists a diffeotopy
φt with φt = 1l outside a compact set such that φ∗t ωt = ω0.
In particular, this applies if ωt = dλt for a smooth family of 1-forms λt which
coincide outside a compact set, and in this case there exists a smooth family of
functions ft : V → R with compact support such that

φ∗t λt − λ0 = dft

Proof. Pick a compact subset W ⊂ V with smooth boundary such that the ωt

coincide outside a compact subset W ′ ⊂ IntW and [ω̇t] = 0 ∈ H2(W, ∂W ; R).
Construct a smooth family of 1-forms βt on W as in the proof of Theorem 5.7.
Then βt vanishes along ∂W and is closed on a neighborhood of ∂W , so βt = dft
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near ∂W for a (unique) function vanishing on ∂W . After cutting off ft outside
a neighborhood of ∂W and replacing βt by βt − dft, we may assume βt = 0
near ∂W . Then the diffeomorphisms φt : W → W constructed in the proof of
Theorem 5.7 extend by the identity to the desired diffeomorphisms of V .
In the case ωt = dλt we pick βt := λ̇t. Then the defining equation for Xt

becomes λ̇t + iXtdλt = 0 and we find

d

dt
φ∗t λt = φ∗t d(iXtλt),

which integrates to

φ∗t λt − λ0 = d

(∫ t

0
iXsλsds

)
.

Our second application of Moser’s trick is the following lemma, which is the
basis of all the normal form theorems below.

Lemma 5.9. Let W be a compact submanifold of a manifold V , and let ω0, ω1

be symplectic forms on V which agree at all points of W . Then there exist
tubular neighborhoods U0, U1 of W and a diffeomorphism φ : U0 → U1 such that
φ|W = 1l and φ∗ω1 = ω0.

Proof. Set ωt := (1− t)ω0 +ω1. Since ωt ≡ ω0 along W , ωt are symplectic forms
on some tubular neighborhood U of W . By the relative de Rham Theorem,
since ω̇t = ω1−ω0 is closed and vanishes along W , there exists a of 1-form β on
U such that β = 0 along W and dβ = ω̇t on U . As in the proof of Theorem 5.7,
we solve equation (5.3) by setting β + iXtωt = 0.
To apply Moser’s trick, a little care is needed because U is noncompact, so the
flow of Xt may not exist until time 1. However, since β = 0 along W , Xt

vanishes along W . Thus there exists a tubular neighborhood U0 of W such that
the flow φt(x) of Xt exists for all x ∈ U0 and t ∈ [0, 1], and φt(U0) ⊂ U for
all t ∈ [0, 1]. Now φ1 : U0 → U1 := φ1(U0) is the desired diffeomorphism with
φ∗1ω1 = ω0.

Now we are ready for the main result of this section.

Proposition 5.10 (symplectic normal forms). Let ω0, ω1 be symplectic forms
on a manifold V and W ⊂ V a compact submanifold such that ω0|W = ω1|W .
Suppose that N := ker(ω0|W ) = ker(ω1|W ) has constant rank, and the bundles
(TWω0/N, ω0, (TWω1/N, ω1 over W are isomorphic as symplectic vector bun-
dles. Then there exist tubular neighborhoods U0, U1 of W and a diffeomorphism
φ : U0 → U1 such that φ|W = 1l and φ∗ω1 = ω0.

Proof. By Proposition 5.4,

(TV |W , ω0) ∼= (TW/N,ω0)⊕ (TWω0/N, ω0)⊕ (N ⊕N∗, ωst),
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and similarly for ω1. By the hypotheses, the right-hand sides are isomorphic for
ω0 and ω1. More precisely, there exists an isomorphism

Ψ : (TV |W , ω0) → (TV |W , ω1)

with Ψ|TW = 1l. Extend Ψ to a diffeomorphism ψ : U0 → U1 of tubu-
lar neighborhoods such that ψ|W = 1l and ψ∗ω1 = ω0 along W , and apply
Lemma 5.9.

All the normal forms are easy corollaries of this result.

Corollary 5.11 (Symplectic neighborhood Theorem). Let ω0, ω1 be symplectic
forms on a manifold V and W ⊂ V a compact submanifold such that ω0|W =
ω1|W is symplectic, and the symplectic normal bundles (TWω0 , ω0), (TWω1 , ω1)
over W are isomorphic (as symplectic vector bundles). Then there exist tubular
neighborhoods U0, U1 of W and a diffeomorphism φ : U0 → U1 such that φ|W = 1l
and φ∗ω1 = ω0.

Corollary 5.12 (Isotropic neighborhood Theorem). Let ω0, ω1 be symplectic
forms on a manifold V and W ⊂ V a compact submanifold such that ω0|W =
ω1|W = 0, and the symplectic normal bundles (TWω0/TW, ω0), (TWω1/TW, ω1)
are isomorphic (as symplectic vector bundles). Then there exist tubular neigh-
borhoods U0, U1 of W and a diffeomorphism φ : U0 → U1 such that φ|W = 1l
and φ∗ω1 = ω0.

Corollary 5.13 (Coisotropic neighborhood Theorem). Let ω0, ω1 be symplectic
forms on a manifold V and W ⊂ V a compact submanifold such that ω0|W =
ω1|W and W is coisotropic for ω0 and ω1. Then there exist tubular neighborhoods
U0, U1 of W and a diffeomorphism φ : U0 → U1 such that φ|W = 1l and φ∗ω1 =
ω0.

Corollary 5.14 (Weinstein’s Lagrangian neighborhood Theorem). Let W ⊂
(V, ω) be a compact Lagrangian submanifold of a symplectic manifold. Then
there exist tubular neighborhoods U of the zero section in T ∗W and U ′ of W
in V and a diffeomorphism φ : U → U ′ such that φ|W is the inclusion and
φ∗ω = ωst.

Proof. Since W is Lagrangian, the map v 1→ ivω defines an isomorphism from
the normal bundle TV/TW |W to T ∗W . Extend the inclusion W ⊂ V to a
diffeomorphism ψ : U → U ′ of tubular neighborhoods of the zero section in
T ∗W and of W in V . Now apply the Coisotropic neighborhood Theorem to the
zero section in T ∗W and the symplectic forms ωst and ψ∗ω.

5.5 Contact manifolds and their Legendrian sub-
manifolds

A contact structure ξ on a manifold M is a completely non-integrable tangent
hyperplane field. According to the Frobenius condition, this means that for
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every nonzero local vector field X ∈ ξ there exists a local vector field Y ∈ ξ
such that their Lie bracket satisfies [X, Y ] /∈ ξ. If α is any 1-form locally defining
ξ, i.e. ξ = kerα, this means

dα(X, Y ) = −1
2
α([X, Y ]) 0= 0.

So the restriction of the 2-form dα to ξ is nondegenerate, i.e. (ξ, dα|ξ) is a
symplectic vector bundle. This implies in particular that dim ξ is even and
dimM = 2n + 1 is odd. In terms of a local defining 1-form α, the contact
condition can also be expressed as α ∧ (dα)n 0= 0.

Remark 5.15. If dimM = 4k + 3 the sign of the volume form α ∧ (dα)2k+1 is
independent of the sign of the defining local 1-form α, so a contact structure
defines an orientation of the manifold. In particular, in these dimensions contact
structures can exist only on orientable manifolds. On the other hand, a contact
structure ξ on a manifold of dimension 4k + 1 is itself orientable.

Contact structures ξ in this book will always be cooriented, i.e., they are globally
defined by a 1-form α. In this case the symplectic structure on each of the
hyperplanes ξ is defined uniquely up to a positive conformal factor.
Given a J-convex hypersurface M (which is by definition cooriented) in an al-
most complex manifold (V, J), the field ξ of complex tangencies defines a contact
structure on M which is cooriented by Jν, where ν is a vector field transverse
to M defining the coorientation. Conversely, any cooriented contact structure
ξ arises as a field of complex tangencies on a J-convex hypersurface in an al-
most complex manifold: Just chose a complex multiplication J on ξ compatible
with the symplectic form dα in the sense that dα(·, J ·) is a (positive definite)
inner product on ξ and extend J arbitrarily to an almost complex structure on
V := M × (−ε, ε).

Remark 5.16. If dimM = 3 then J can always be chosen integrable. However,
in dimensions ≥ 5 this is not always the case, see Example ??? below.

Let (M, ξ = kerα) be a contact manifold of dimension 2n + 1. An immersion
φ : Λ → M is called isotropic if it is tangent to ξ. Then at each point x ∈ Λ we
have dφ(TxΛ) ⊂ ξφ(x) and dα|dφ(TxΛ) = d

(
α|φ(Λ)

)
(x) = 0. Hence dφ(TxL) is an

isotropic subspace in the symplectic vector space (ξx, dα). In particular,

dim Λ ≤ 1
2

dim ξ = n.

Isotropic immersions of the maximal dimension n are called Legendrian.
1-jet spaces. Let L be a manifold of dimension n. The space J1L of 1-jets
of functions on L can be canonically identified with T ∗L×R, where T ∗L is the
cotangent bundle of L. A point in J1L is a triple (q, p, z) where q is a point in
L, p is a linear form on TqL, and z ∈ R is a real number. Pick local coordinates
(q1, . . . , qn) are local coordinates on L and write covectors in T ∗L as

∑
pidqi.
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It is easy to check that the 1-form

p dq :=
n∑

i=1

pidqi

is independent of the choice of such coordinates. It is called the canonical 1-
form on T ∗L. The 2-form dp ∧ dq := d(p dq) is called the canonical sympletic
form on T ∗L. The 1-form dz − p dq defines the canonical contact structure

ξcan := ker(dz − p dq)

on J1L. A function f : L → R defines a section

q 1→ j1f(q) :=
(
q, df(q), f(q)

)

of the bundle J1L → L. Since f∗(dz − p dq) = df − df = 0, this section is a
Legendrian embedding in the contact manifold (J1L, ξ). Consider the following
diagram, where all arrows represent the obvious projections:
[to be added]
We call PLag the Lagrangian projection and Pfront the front projection. Given a
Legendrian submanifold Λ ⊂ J1L, consider its images

PLag(Λ) ⊂ T ∗L, Pfront(Λ) ⊂ L× R.

The map PLag : Λ → T ∗L is a Lagrangian immersion with respect to the
standard symplectic structure dp ∧ dq = d(p dq) on T ∗L. Indeed, the contact
hyperplanes of ξcan are transverse to the z-direction which is the kernel of the
projection PLag. Hence Λ is transverse to the z-direction as well and PLag|Λ is
an immersion. It is Lagrangian because

P ∗Lagdp ∧ dq = d(p dq|Λ) = d(dz|Λ) = 0.

Conversely, any exact Lagrangian immersion φ : Λ → T ∗L, i.e. an immersion for
which the form φ∗, dq is exact, lifts to a Legendrian immersion φ̂ : Λ → J1L. It
is given by the formula φ̂ := (φ, H), where H is a primitive of the exact 1-form
φ∗p dq so that φ̂∗(dz − p dq) = dH − φ∗p dq = 0. The lift φ̂ is unique up to a
translation along the z-axis.

Remark 5.17. More generally, a Liouville structure on an even-dimensional ma-
nifold is a 1-form α such that dα is symplectic. For example, the form p dq
is the canonical Liouville form on the cotangent bundle T ∗L. An immersion
φ : L → V into a Liouville manifold (V, α) is called exact Lagrangian if φ∗α is
exact.

Let us now turn to the front projection. The image Pfront(Λ) is called the (wave)
front of the Legendrian submanifold Λ ⊂ J1L. If the projection π|Λ : Λ → L is
nonsingular and injective, then Λ is a graph {

(
(q, α(q), f(q)

)
| q ∈ π(Λ)} over
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π(Λ) ⊂ L. The Legendre condition implies that the 1-form α is given by α = df .
So

Λ = {
(
(q, df(q), f(q)

)
| q ∈ π(Λ)}

is the graph of the 1-jet j1f of a function f : π(Λ) → R. In this case the front
Pfront(Λ) is just the graph of the function f .
In general, the front of a Legendrian submanifold Λ ⊂ J1L can be viewed as
the graph of a multivalued function. Note that since the contact hyperplanes
are transverse to the z-direction, the singular points of the projection π|Λ coin-
cide with the singular points of the projection Pfront|Λ. Hence near each of its
nonsingular points the front is indeed the graph of a function.
In general, the front can have quite complicated singularities. But when the
projection π|Λ : Λ → L has only “fold type” singularities, then the front itself
has only “cuspidal” singularities along its singular locus as shown in Figure
[fig:???].
Let us discuss this picture in more detail. Consider first the 1-dimensional case
when L = R. Then J1L = R3 with coordinates (q, p, z) and contact structure
ker(dz − p dq). Consider the curve in R3 given by the equations

q = 3p2, z = 2p3. (5.4)

This curve is Legendrian because dz = 6p2dp = p dq. Its front is given by (5.4)
viewed as parametric equations for a curve in the (q, z)-plane. This is a semicu-
bic parabola as shown in Figure [fig:???].
Generically, any singular point of a Legendrian curve in R3 looks like this. This
means that, after a C∞-small perturbation of the given curve to another Leg-
endrian curve, there exists a contactomorphism (i.e. a diffeomorphism which
preserves the contact structure) of a neighborhood of the singularity which
transforms the curve to the curve described by (5.4) (see [4], Chapter 1 §4).
If we want to construct just C1 Legendrian curves (and any C1 Legendrian
curve can be further C1-approximated by C∞ or even real analytic Legendrian
curves, see Corollary 7.25), then the following characterization of the front near
its cusp points will be convenient. Suppose that the two branches of the front
which form the cusp are given locally by the equations z = f(q) and z = g(q),
where the functions f, g : [0, ε) → R satisfy f ≤ g (see Figure [fig:???]). Then
the front lifts to a C1 Legendrian curve if and only if

f(0) = g(0), f ′(0) = g′(0),
f ′′(q) → −∞ as q → 0, g′′(q) → +∞ as q → 0.

In higher dimensions, suppose that a Legendrian submanifold Λ ⊂ J1L projects
to L with only “fold type” singularities. Then along its singular locus the front
consists of the graphs of two functions f ≤ g defined on an immersed strip
S × [0, ε). Denoting coordinates on S × [0, ε) by (s, t), the front lifts to a C1
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Legendrian submanifold if and only if

f(s, 0) = g(s, 0),
∂f

∂t
(s, 0) =

∂g

∂t
(s, 0),

∂2f

∂t2
(s, t) → −∞ as t → 0,

∂2g

∂t2
(s, t) → +∞ as t → 0.

However, in higher dimensions not all singularities are generically of fold type.
Example 5.18. Given a contact manifold (M, ξ = kerα) and a Liouville manifold
(V, β), their product M × V is a contact manifold with the contact form α⊕ β.
For example, if M = J1N and V = T ∗W with the canonical contact and
Liouville forms, then M × V = J1(N ×W ) with the canonical contact form. A
product Λ × L of a Legendrian submanifold Λ ⊂ M and an exact Lagrangian
submanifold L ⊂ V is a Legendrian submanifold of M × V . In particular,
the product of a Legendrian submanifold Λ ⊂ J1N and an exact Lagrangian
submanifold L ⊂ T ∗W is a Legendrian submanifold in J1(N ×W ).

5.6 Contact normal forms

Let (M2n+1, ξ = kerα) be a contact manifold and Λk ⊂ M , 0 ≤ k ≤ n, be
an isotropic submanifold. The following result is due to Darboux in the case
that Λ is a point (see e.g. Appendix 4 of [3]); the extension to general Λ is
straightforward and left to the reader.

Proposition 5.19 (contact Darboux Theorem). Near each point on Λ there
exist coordinates (q1, . . . , qn, p1, . . . , pn, z) ∈ R2n+1 in which α = dz −

∑
pidqi

and Λ = Rk × {0}.

To formulate a more global result, recall that the form ω = dα defines a natural
(i.e., independent of α) conformal symplectic structure on ξ. Denote the ω-
orthogonal on ξ by a superscript ω. Since Λ is isotropic, TΛ ⊂ TΛω. So the
normal bundle of Λ in M is given by

TM/TΛ = TM/ξ ⊕ ξ/(TΛ)ω ⊕ (TΛ)ω/TΛ ∼= R⊕ T ∗Λ⊕ CSN(Λ).

Here TM/ξ is trivialized by the Reeb vector field Rα, the bundle ξ/(TΛ)ω is
canonically isomorphic to TΛ via v 1→ ivω, and CSN(Λ) := (TΛ)ω/TΛ denotes
the conformal symplectic normal bundle which carries a natural conformal sym-
plectic structure induced by ω. Thus CSN(Λ) has structure group Sp(n − k),
which can be reduced to U(n− k) by choosing a compatible complex structure.
Let (M, ξM ) and (N, ξN ) be two contact manifolds. A map f : M → N is called
isocontact if f∗ξN = ξM , where f∗ξN := {v ∈ TM | df · v ∈ ξN}. Equivalently,
f maps any defining 1-form αN for ξN to a defining 1-form f∗αM for ξM . In
particular, f must be an immersion and thus dimM ≤ dimN . Moreover, df :
ξM → ξN is conformally symplectic, i.e., symplectic up to a scaling factor. We
call a monomorphism F : TM → TN isocontact if F ∗ξN = ξM and F : ξM → ξN

is conformally symplectic.
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Proposition 5.20 (Isotropic neighborhood Theorem, Contact Version [63]).
Let (M, ξM ), (N, ξN ) be contact manifolds with dimM ≤ dimN and Λ ⊂ M
an isotropic submanifold. Let f : Λ → N be an isotropic immersion covered by
an isocontact monomorphism F : TM → TN . Then there exists an isocontact
immersion g : U → N of a neighborhood U ⊂ M of Λ with g|Λ = f and dg = F
along Λ.

Remark 5.21. (a) If φ is an embedding then ψ is also an embedding on a suf-
ficiently small neighborhood. It follows that a neighborhood of a Legendrian
submanifold Λ is contactomorphic to a neighborhood of the zero section in the
1-jet space J1Λ (with its canonical contact structure).
(b) A Legendrian immersion f : Λ → (M, ξ) extends to a an isocontact immer-
sion of a neighborhood of the zero section in J1Λ.
(c) Suppose that the conformal symplectic normal bundle of an isotropic sub-
manifold Λ is the complexification of a real bundle W → Λ (i.e., the structure
group of CSN(Λ) reduces from U(n−k) to O(n−k)). Then a neighborhood of
Λ is contactomorphic to a neighborhood of the zero section in J1Λ⊕ (W ⊕W ∗)
(with its canonical contact structure, see Example 5.18). In this case (and only
in this case) the isotropic submanifold Λ extends to a Legendrian submanifold
(the total space of the bundle W ).

We will also need the following refinement of the Isotropic neighborhood The-
orem. Following Weinstein [63], let us denote by isotropic setup a quintuple
(V, ω, X,Σ,Λ), where (V, ω) is a symplectic manifold with Liouville vector field
X, Σ ⊂ V is a codimension one hypersurface transverse to X, and Λ ⊂ Σ
is a closed isotropic submanifold for the contact structure ker(iXω)|Σ. Let
(TΛ)ω/TΛ ⊂ ξ be the symplectic normal bundle over Λ.

Proposition 5.22 (Weinstein [63]). Let (Vi, ωi, Xi,Σi,Λi), i = 0, 1 be isotropic
setups. Given a diffeomorphism f : Λ0 → Λ1 covered by an isomorphism Φ of
symplectic normal bundles, there exists an isomorphism of isotropic setups

F : (U0, ω0, X0,Σ0 ∩ U0,Λ0) → (U1, ω1, X1,Σ1 ∩ U1,Λ1)

between neighborhoods Ui of Λi in Vi inducing f and Φ.

We will need a stronger form of Weinstein theorem 5.20. Not only the contactThis is redundant.
Adapt to prove

Proposition 5.22?
structure, but even the contact form can be standardized near an isotropic
submanifold.

Proposition 5.23. Let λ0, λ1 be two contact forms for the same contact struc-
ture ξ defined on a neighborhood of an isotropic submanifold Λ ⊂ V . Then
there exists a fixed along Λ contact isotopy ht : Op (Λ) → Op (Λ) such that
λ1 = h∗1λ0.

Proof. We are following here the standard Moser homotopic method. Set λt =
(1 − t)λ0 + tλ1, t ∈ [0, 1]. Then λt is a contact form for ξ for all t ∈ [0, 1].
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Differentiating the equation ht ∗ λ0 − λt, we get, using Carna’s formula for the
Lie derivative:

i(Xt)dλt + d(λt(Xt)) = µ, (5.5)

where
Xt(ht(x)) =

dht(x)
dt

and µ = λ1 = λ0.

Let Rt denotes the Reeb vector field of the form λt, i.e. λt(Rt) = 1 and
i(Rt)dλt = 0. Let us write Xt = atRt +Yt, where Yt ∈ ξ and denote bt := µ(Rt)
and α := µ|ξ. Then (5.5) is equivalent to the system

dat(Rt) = bt,

i(Yt)dλt = α− dat|ξ.
(5.6)

Let us consider a germ Σ along Λ of a hypersurface tangent to ξ along Λ. There
exists a smooth function f on Σ such that f |Λ = 0 and df |ξΛ = α|ξ|Λ . Note
that for each t the vector field Rt is transverse to Σ on Op Λ. Hence the first
of equations (5.6) has a solution at on Op Λ which satisfies an initial condition
at|Σ = f . The second equation is a non-differential non-degenerate linear system
of equation with respect to Yt and hence it has a unique solution Yt after at is
found. Note that by our choice of f the right-hand side of the second equation
vanishes along Λ, and hence Xt|Λ = (atRt + Yt)|Λ = 0. Hence the vector field
Xt can be integrated to the required isotopy ht : Op Λ → Op Λ, fixed along Λ.

All the properties discussed in this section also hold for families of isotropic
submanifolds. Moreover, any isotropic submanifold with boundary can be ex-
tended beyond the boundary to a slightly bigger isotropic submanifold of the
same dimension.
Finally, we mention that a similar homotopy argument proves Gray’s Stability
Theorem, which states that on a closed manifold all deformations of a contact
structure are diffeomorphic to the original one.

Theorem 5.24 (Gray’s Stability Theorem [27]). Let (ξt)t∈[0,1] be a smooth
homotopy of contact structures on a closed manifold M . Then there exists a
diffeotopy φt : M → M with φ∗t ξt = ξ0 for all t ∈ [0, 1].

5.7 Stabilization of Legendrian submanifolds

The goal of this section is the proof of the following

Proposition 5.25. Let Λ0 ⊂ (M2n+1, ξ = kerα) be a closed orientable Leg-
endrian submanifold and k an integer. Suppose that n > 1. Then there ex-
ists a Legendrian submanifold Λ1 ⊂ M and a Legendrian regular homotopy
Λt, t ∈ [0, 1], such that the self-intersection index of the immersion L :=
∪t∈[0,1]Λt × {t} ⊂ M × [0, 1] equals k (mod 2 if n is even).
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A local construction. The proof of Proposition 5.25 is base on a stabilization
procedure which we will now describe. Consider the front projection of a (not
necessarily closed) orientable Legendrian submanifold Λ0 ⊂ R2n+1. Suppose
that Pfront(Λ0) intersects Bn × [−1, 2] in the two oppositely oriented branches
{z = 0} and {z = 1}. Let f : Bn → (−1, 2) be a function which equals zero near
∂Bn and has no critical points on level 1. Replacing the branch {z = 0} over
Bn by {z = tf(q)} we obtain a family of Legendrian immersions Λt ⊂ R2n+1,
t ∈ [0, 1]. Note that the set {q ∈ Bn | f(q) ≥ 1} is a smooth n-manifold with
boundary. Denote by χ({f ≥ 1}) its Euler characteristic.

Lemma 5.26. The self-intersection index of the immersion L := ∪t∈[0,1]Λt ×
{t} ⊂ M × [0, 1] equals

IL = (−1)n(n−1)/2χ({f ≥ 1})

(mod 2 if n is even).

Proof. Perturb f such that all critical points above level 1 are nondegenerate
and lie on distinct levels. Self-intersections of L occur precisely when t0f has a
critical point q0 on level 1 for some t0 ∈ (0, 1). By the Morse Lemma, we find
coordinates near q0 in which q0 = 0 and f has the form

f(q) = a0 −
1
2

k∑

i=1

q2
i +

1
2

n∑

i=k+1

q2
i ,

where a0 = f(q0) = 1/t0 and k is the Morse index of q0. The p-coordinates on
the branch {z = tf(q)} of Λt near q0 are given by

pi =
∂(tf)
∂qi

=

{
−tqi i ≤ k,

+tqi i ≥ k + 1.

Thus the tangent spaces in T (R2n+1 × [0, 1]) = R2n+2 of the two intersecting
branches of L corresponding to {z = 1} and {z = t0f(q)} are given by

T1 = {p1 = · · · = pn = 0, z = 0},
T2 = {pi = −t0qi for i ≤ k, pi = +t0qi for i ≥ k + 1, z = a0t}.

Without loss of generality (because the self-intersection index does not depend
on the orientation of L) suppose that the basis (∂q1 , . . . , ∂qn , ∂t) represents the
orientation of T1. Since the two branches of Λ0 are oppositely oriented, the
orientation of T2 is then represented by the basis

(
∂q1 − t0∂p1 , . . . , ∂qn + t0∂pn ,−(∂t + a0∂z)

)
.

Hence the orientation of (T1, T2) is represented by

(∂q1 , . . . , ∂qn , ∂t,−∂p1 , . . . ,−∂pn ,−∂z),
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which equals (−1)k+n+n(n−1)/2 times the complex orientation

(∂q1 , ∂p1 , . . . , ∂qn , ∂pn , ∂z, ∂t)

of R2n+2 = Cn+1. So the local intersection index of L at a critical point q equals

IL(q) = (−1)indf (q)+n+n(n−1)/2

(mod 2 if n is even), where indf (q) is the Morse index of q.
On the other hand, for a vector field v on a compact manifold N with boundary
which is outward pointing along the boundary and has only nondegenerate ze-
roes we have Poincaré-Hopf Index Theorem holds: The sum of the indices of v
at all its zeroes equals the Euler characteristic of M (see [33]). Note that if v is
the gradient vector field of a Morse function f , then the index of v at a critical
point q of f equals (−1)indf (q). Applying the Poincaré-Hopf Index Theorem to
the gradient of the Morse function −f on the manifold {f ≥ 1} = {−f ≤ −1}
(which is outward pointing along the boundary because f has no critical point
on level 1), we obtain

χ({f ≥ 1} =
∑

q

ind∇(−f)(q) =
∑

q

(−1)ind−f (q) =
∑

q

(−1)n−indf (q)

= (−1)n(n−1)/2
∑

q

IL(q) = (−1)n(n−1)/2IL.

Proof of Proposition 5.25. Since all Legendrian submanifolds are locally isomor-
phic, a neighborhood in M of a point on Λ0 is contactomorphic to a neighbor-
hood in R2n+1 of a point on a standard cusp 3z2 = 2q2

1 . Thus the front consists
of two branches {z = ±

√
2
3q3

1} joined along the singular locus {z = q1 = 0}.
Now deform the branches to {z = ±ε} over a small ball disjoint from the sin-
gular locus, thus (after rescaling) creating two parallel branches over a ball as
in Lemma B.9. Now deform Λ0 to Λ1 as in Lemma B.9, for some function
f : Bn → (−1, 2). Then Proposition B.7 follows from Lemma B.9, provided
that we arrange χ({f ≥ 1}) = k for a given integer k if n > 1.
Thus it only remains to find for n > 1 an n-dimensional submanifold-with-
boundary N ⊂ Rn of prescribed Euler characteristic χ(N) = k (then write
N = {f ≥ 1} for a function f : N → [1, 2) without critical points on the
boundary). Let N+ be a ball in Rn, thus χ(N+) = +1. Let N− be a smooth
tubular neighborhood in Rn of a figure eight in R2, thus χ(N−) = −1 (here we
use n ≥ 2!). So we can arrange χ(N) to be any integer by taking disjoint unions
of copies of N±.

Remark 5.27. The preceding proof fails for n = 1 because a 1-dimensional
manifold with boundary always has Euler characteristic ξ ≥ 0. Therefore for
n = 1 the local construction in Lemma 5.26 allows us only to realize positive
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values of the self-intersection index IL. As explained in Appendix B, this failure
to create negative IL is unavoidable in view of Bennequin’s inequality. However,
no analog of Bennequin’s inequality exists in overtwisted contact 3-manifolds,
and we will show in Section 6.6 how to realize any value of the self-intersection
index in that case.



Chapter 6

The h-principles

6.1 Immersions and embeddings

We begin by reviewing some facts about smooth immersions and embeddings.
For a closed subset A ⊂ X of a topological space, we denote by Op A a suffi-
ciently small (but not specified) open neighborhood of A.
The h-principle for immersions. Let M,N be manifolds. A monomor-
phism F : TM → TN is a fibrewise injective bundle homomorphism cover-
ing a continuous map M → N . Any immersion f : M → N gives rise to a
monomorphism df : TM → TN . We denote by Mon(TM, TN) the space of
monomorphisms, and by Imm(M,N) the space of immersions. Given a (possi-
bly empty) closed subset A ⊂ M and an immersion h : Op A → N , we denote
by Imm(M, N ;A, h) the subspace of Imm(M, N) which consists of immersions
equal to h on Op A. Similarly, the notation Mon(TM, TN ;A, dh) stands for the
subspace of Mon(TM, TN) of monomorphisms which coincide with dh on Op A.
Extending S. Smale’s theory of immersions of spheres (see [58, 59]) M .Hirsch
proved the following h-principle (see also [32],[18]):

Theorem 6.1 (Hirsch [37]). For dimM < dimN and any immersion h :
Op A → N , the map f 1→ df defines a homotopy equivalence between the spaces
Imm(M, N ;A, h) and Mon(TM, TN ;A, dh). In particular, any monomorphism
F ∈ Mon(TM, TN ;A, dh) is homotopic to the differential df of an immer-
sion f : M → N which coincides with h on Op A. Given a homotopy Ft ∈
Mon(TM, TN ;A, dh), t ∈ [0, 1], between the differentials F0 = df0 and F1 = df1

of two immersions f0, f1 ∈ Imm(M,N ;A, h), one finds a regular homotopy
ft ∈ Imm(M,N ;A, h), t ∈ [0, 1], such that the paths Ft and dft, t ∈ [0, 1], are
homotopic with fixed ends.

For example, if M is parallelizable, i.e. TM ∼= M×Rk, the inclusion Rk ↪→ Rk+1

gives rise to a monomorphism TM = M × Rk → T (Rn) = Rn × Rn, (x, v) 1→
(0, v). Thus Hirsch’s theorem implies that every parallelizable closed manifold

83
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Mk can be immersed into Rk+1.

Immersions of half dimension. Next we describe results of Whitney [65] on
immersions of half dimension. Fix a closed connected manifold Mn of dimension
n ≥ 2 and an oriented manifold N2n of double dimension. Let f : M → N be an
immersion whose only self-intersections are transverse double points. Then if M
is orientable and n is even we assign to every double point z = f(p) = f(q) an
integer If (z) as follows. Choose an orientation of M . Set If (z) := ±1 according
to whether the orientations of df(TpM) and df(TqM) together determine the
orientation of N or not. Note that this definition depends neither on the order
of p and q (because n if even), nor on the orientation of M . Define the self-
intersection index

If :=
∑

z

If (z) ∈ Z

as the sum over all self-intersection points z. If n is odd or M non-orientable
define If ∈ Z2 as the number of self-intersection points modulo 2.

Theorem 6.2 (Whitney [65]). For a closed connected manifold Mn and an
oriented manifold N2n, n ≥ 2, the following holds.
(a) The self-intersection index is invariant under regular homotopies.
(b) The self-intersection index of a totally regular immersion f : M → N can
be changed to any given value by a local modification (which is of course not a
regular homotopy).
(c) If n ≥ 3, any immersion f : M → N is regularly homotopic to an immersion
with precisely |If | transverse double points (where |If | means 0 resp. 1 for If ∈
Z2).

Since every immersion of half dimension is regularly homotopic to an immersion
with transverse self-intersections ([64], see also [38]), Part (a) allows to define
the self-intersection index for every immersion f : M → N . Since every n-
manifold immerses into R2n, Parts (b) and (c) imply (the cases n = 1, 2 are
treated by hand)

Corollary 6.3 (Whitney Embedding Theorem [65]). Every closed n-manifold
Mn, n ≥ 1, can be embedded in R2n.

Remark 6.4. The preceding results continue to hold if M has boundary, provided
that for immersions and during regular homotopies no self-intersections occur
on the boundary.
Remark 6.5. For n = 1 Whitney [65] defines a self-intersection index If ∈ Z.
With this definition, all the preceding results continue to hold for n = 1 (note
e.g. that π1V2,1 = Z).

Isotopies. Finally, we discuss isotopies, i.e. homotopies through embeddings.
Consider a closed connected orientable k-manifold Mk and an oriented (2k+1)-
manifold N2k+1. Let ft : M → N be a regular homotopy between embeddings
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f0, f1 : M ↪→ N . Define the immersion of half dimension F : M × [0, 1] →
N × [0, 1], F (x, t) :=

(
ft(x), t

)
. Its self-intersection index I{ft} := IF is an

invariant of ft in the class of regular homotopies with fixed endpoints f0, f1.
Recall that I{ft} takes values in Z if k is odd and Z2 if k is even.

Theorem 6.6 (Whitney). If k > 1 and N is simply connected, then ft can be
deformed through regular homotopies with fixed endpoints to an isotopy if and
only if I{ft} = 0.

The proof uses the following

Lemma 6.7. Let M,N,Λ be manifolds and F : Λ ×M → N a smooth map.
If 2 dimM + dimΛ < dimN , then F can be C∞-approximated by a map F̃
such that F̃ (λ, ·) is an embedding for all λ ∈ Λ. Moreover, if F is already an
embedding on a compact subset K ⊂ Λ×M we can choose F̃ = F on K.

The case Λ = [0, 1] is due to Whitney [64].

Proof of Theorem 6.6. The argument is an adjustment of the Whitney trick [65].
Take two self-intersection points Y0 = (y0, t0), Y1 = (y1, t1) ∈ N × (0, 1) of the
immersion F : Mk × [0, 1] → N2k+1 × [0, 1] defined above. If k + 1 is even we
assume that the intersection indices of these points have opposite signs. Each
of the double points y0, y1 is the image of two distinct points x±0 , x±1 ∈ M , i.e.
we have ft0(x

±
0 ) = y0 and ft1(x

±
1 ) = y1. As k > 1, we find two embedded paths

γ± : [t0, t1] → M such that γ±(t0) = x±0 , γ±(t1) = x±1 , and γ+(t) 0= γ−(t) for all
t ∈ [t0, t1]. We claim that there exists a smooth family of paths δt : [−1, 1] → M ,
t ∈ [t0, t1], such that

• δt(±1) = γ±(t) for all t ∈ [t0, t1];

• δt0(s) = y0, δt1(s) = y1 for all s ∈ [−1, 1];

• δt is an embedding for all t ∈ (t0, t1).

Indeed, a family with the first two properties exists because N is simply con-
nected. Moreover, we can arrange that δt is an embedding for t 0= t0, t1
close to t0, t1. Now we can achieve the third property by Lemma 6.7 because
2 · 1 + 1 < 2k + 1. Define

∆ :[ t0, t1]× [−1, 1] → N × [0, 1], (t, s) 1→
(
δt(s), t

)
.

Then ∆ is an embedding on (t0, t1) × [−1, 1] and ∆(t0 × [−1, 1]) = Y0, ∆(t1 ×
[−1, 1]) = Y1. Thus ∆ serves as a Whitney disk for elimination of the double
points Y0, Y1 of the immersion F . Due to the special form of ∆, Whitney’s elim-
ination construction ([65], see also [50]) can be performed in such a way that the
modified immersion F̃ has the form F̃ (x, t) :=

(
f̃t(x), t

)
for a regular homotopy

f̃t : M → N such that the paths ft, f̃t ∈ Imm(M,N), t ∈ [0, 1], are homotopic.
Hence the repeated elimination of pairs of opposite index intersection points of
the immersion F results in the required isotopy between f0 and f1.
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6.2 The h-principle for isotropic immersions

The following h-principle was proved by Gromov in 1986 ([32], see also [18]).
Let (M, ξ) be a contact manifold of dimension 2n+1 and J a compatible almost
complex structure on ξ. Let Λ be a manifold of dimension k ≤ n and A ⊂ Λ
a closed subset. Let h : Op A → M be an isotropic immersion. We denoteA need not be a

submanifold, right? by Iso(Λ, M ;A, h) the space of isotropic immersions Λ → M which coincide
with h on Op A, and by Real(TΛ, ξ;A, dh) the space of injective totally real
homomorphisms TΛ → ξ which coincide with dh on Op A. The map f 1→ df
provides an inclusion d : Iso(Λ, M ;A, h) ↪→ Real(TΛ, ξ;A, dh).

Theorem 6.8 (Gromov’s h-principle for isotropic immersions; contact case,
see [32] and also [18]). The map d : Iso(Λ, M ;A, h) ↪→ Real(TΛ, ξ;A, dh) is
a homotopy equivalence. In particular, given F ∈ Real(TΛ, ξ;A, dh) one finds
f ∈ Iso(Λ, M ;A, h) such that df and F are homotopic in Real(TΛ, ξ;A, dh).
Moreover, f can be chosen C0-close to the map Λ → M covered by the homo-
morphism F . Given two isotropic immersions f0, f1 ∈ Iso(Λ, M ;A, h) and a
homotopy Ft ∈ Real(TΛ, ξ;A, dh), t ∈ [0, 1], connecting df0 and df1 one finds
a regular homotopy ft ∈ Iso(Λ, M ;A, h) connecting df0 and df1 such that the
paths Ft and dft, t ∈ [0, 1], are homotopic in Real(TΛ, ξ;A, dh) with fixed ends.
Moreover, the ft can be chosen C0-close to the family of maps Λ → M covered
by the homotopy Ft.

Combining the preceding theorem with Hirsch’s Immersion Theorem 6.1 yields

Corollary 6.9. Let Λ, M, A, h be as in Theorem 6.8. Suppose that f0 : Λ → M
is an immersion which coincides with the isotropic immersion h on Op A and
Ft is a family of monomorphisms TΛ → TN such that F0 = df0, Ft = dh on
Op A for all t ∈ [0, 1], and F1 ∈ Real(TΛ, TM ;A, dh). Then there exists a
regular homotopy ft : Λ → M such that

(i) f1 ∈ Iso(Λ, M ;A, h);

(ii) ft = h on Op A for all t ∈ [0, 1];

(iii) there exists a homotopy F s
t , s ∈ [0, 1], of paths in Mon(TΛ, TM ;A, dh)

such that F 0
t = dft and F 1

t = Ft for all t ∈ [0, 1], F s
0 = df0 and F s

1 ∈
Real(TΛ, ξ;A, dh) for all s ∈ [0, 1].

Proof. We first use Theorem 6.8 to construct an isotropic immersion g2 ∈
Iso(Λ, M ;A, h) and a homotopy of totally real monomorphisms Ft ∈ Real(TΛ, TM ;A, dh),
t ∈ [1, 2], such that F2 = dg2. Next we apply Hirsch’s Theorem 6.1 to get a
regular homotopy gt ∈ Imm(Λ, M ;A, h), t ∈ [0, 2], such that g0 = f0 and the
paths dgt, Ft, t ∈ [0, 2], are homotopic with fixed ends. Let

G : [0, 2]× [0, 1] → Mon(TΛ, TM ;A, dh), (t, s) 1→ Gs
t
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be this homotopy, i.e. G0
t = dgt, G1

t = Ft for all t ∈ [0, 2] and Gs
0 = df0, Gs

2 = dg2

for all s ∈ [0, 1]. The required paths are now defined by ft := g2t, t ∈ [0, 1], and

F := G ◦ φ : [0, 1]× [0, 1] → Mon(TΛ, TM ;A, dh), (t, s) 1→ F s
t ,

where φ : [0, 1] × [0, 1] → [0, 2] × [0, 1] is any homeomorphism mapping the
boundary as follows (see Figure [fig:h-isotropic]):

[0, 1]× 0 → [0, 2]× 0, [0, 1]× 1 → [0, 1]× 1,

0× [0, 1] → 0× [0, 1], 1× [0, 1] → (2× [0, 1]) ∪ ([1, 2]× 1).

For later use, let us reformulate the homotopy conditions in Theorem 6.8. Fix Adapt, maybe move to
other place.compatible complex structures JM , JN on ξM , ξN and positive transversal vector

fields vM , vN . Since Sp(2n) and Gl(n, C) both deformation retract onto U(n),
the space of totally real monomorphisms TM → TN is homotopy equivalent
to the space of monomorphisms F : TM → TN for which F (vM ) = vN and
F : (ξM , JM ) → (ξN , JN ) is complex linear. Since the spaces of compatible
complex structures and positive transverse vector fields are contractible, this
homotopy equivalence does not depend on the choice of JM , JN , vM , vN .
Here is yet another reformulation. Extend JM to an almost complex structure
on R ×M such that ηM := −JMvM has positive R-component, and similarly
for JN . Then any monomorphism F : TM → TN with F (vM ) = vN and F |ξ :
ξM → ξN complex linear extends canonically to a complex linear monomorphism
F st : T (R×M) → T (R×N) via F st(ηM ) := ηN . Conversely, if dimM < dimN
or the manifold M is open, then any complex monomorphism G : T (R×M) →
T (R×N) is homotopic in the space of complex isomorphisms to a stabilization
F st of a monomorphism F : TM → TN . Indeed, this amounts to finding a non-
vanishing homotopy between the two sections G(ηM ) and ηN of the (dimN +1)-
dimensional bundle g∗T (R×N) → M , where g : M → N is the map underlying
G. This is always possible if dimM < dimN or M is open because the only
obstruction, the relative Euler class, lives in Hdim N+1(M×[0, 1], M×{0, 1}) = 0.

6.3 The h-principle for isotropic embeddings

We will use the following general position observation.
Proof???

Lemma 6.10. Let dim Λ = k = n − q, q ≥ 0. Then any q-dimensional family
of isotropic immersions Λ → (M, ξ) can be C∞-approximated by a family of
isotropic embeddings.

In particular, if k < n then the word “immersion” in Corollary 6.9 can be
replaced by “embedding”.
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It turns out that if n > 1 then, using the stabilization trick from Section 5.7
and Whitney’s Theorem 6.6, this can be done even for k = n, i.e. one can prove
the following h-principle for isotropic embeddings rather than immersions. For
n = 1 the analogous claim is false, see Section 6.6 below.

Proposition 6.11. Let (M2n+1, ξ), n > 1, be a contact manifold with compat-Do we need this
formulation, or should

we adapt it to the
notation in this

section?

ible almost complex structure J on R×M . Let Λk, k ≤ n, be a closed manifold.
Let f0 : Λ ↪→ M be an embedding and Ft : T (R×J1Λ)|Λ → T (R×M) be a homo-
topy of real monomorphisms such that F0 = 1l× df0|Λ and F1 is complex linear.
Then there exists an isotopy of embeddings ft : Op Λ → M on an open neighbor-
hood Op Λ ⊂ J1Λ of the zero section such that f1 is an isocontact embedding, and
there exists a homotopy F s

t , s ∈ [0, 1] of paths in Mon
(
T (R×Op Λ), T (R×M)

)

such that F 0
t = 1l × dft|Λ and F 1

t = Ft for all t ∈ [0, 1], F s
0 = 1l × df0|Λ and

F s
1 is complex linear for all s ∈ [0, 1]. Moreover, we can arrange that ft(Λ) is

C0-close to f0(Λ) for all t ∈ [0, 1].

Proof. By applying Corollary 6.9 we can satisfy all the conditions of the the-
orem, except that f1 will be an immersion rather than an embedding and ft

will be a regular homotopy rather than an isotopy. Of course, it is enough to
arrange for the restriction ft|Λ to be an isotopy. We will keep the notation ft

for this restriction.
By Lemma 6.10, after a C∞-small isotropic regular homotopy, we may assume
that f1 is an isotropic embedding.
In the subcritical case k < n, a generic perturbation of ft, fixing f0 and f1, will
turn ft into a smooth isotopy (Lemma 6.7).
Consider now the Legendrian case k = n. We will deform the regular homotopy
ft to an isotopy, keeping the end f0 fixed and changing f1 via a Legendrian
isotopy. According to Whitney’s Theorem 6.6, in order to deform the path ft to
an isotopy keeping both ends fixed we need the equality I{ft} = 0. On the other
hand, according to Proposition 5.25, if n > 1 then for any Legendrian embedding
g0 there exists a Legendrian regular homotopy gt with any prescribed value of
the Whitney invariant I{gt}. Hence combining ft, t ∈ [0, 1], with an appropriate
Legendrian regular homotopy ft, t ∈ [1, 2], we obtain a regular homotopy ft,
t ∈ [0, 2], with

I{ft}t∈[0,2] = 0.

By Whitney’s Theorem 6.6, {ft} can be further deformed, keeping the ends f0

and f2 fixed, to the required isotopy.

6.4 The h-principle for totally real embeddings

Proposition 6.12. [see [32], [18]] Let (V, J) be an almost complex manifold
of dimension 2n, and f : L → V a smooth real embedding of a k-dimensional
manifold L. Suppose that there exists a homotopy Ft, t ∈ [0, 1], of monomor-
phisms such that F0 = df and F1 : TL → TV is totally real. Then there exists
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a C0-small isotopy of f to a totally real embedding g : L → V . If the embedding
f is totally real on a neighborhood Op A of a closed subset A ⊂ L, and the
homotopy Ft is fixed on Op A, then the isotopy ft can also be chosen fixed on
Op A.

6.5 Disks attached to J-convex boundary

Theorem 6.14 below, which is a combination of h-principles discussed in this
chapter, will play an important role in proving the main results of this book.
Let (V, J) be an almost complex manifold and W ⊂ V a domain with smooth
boundary ∂W . Given a k-disk D ⊂ V \ IntW with D ∩ ∂W = ∂D and which
transversely intersects ∂W , we say that D is transversely attached to W in V .
We say that D is J-orthogonally attached to W if J(TD|∂D) ⊂ T (∂W ). Note
that this implies that ∂D is tangent to the distribution ξ = T (∂W )∩ JT (∂W ).
In particular, if ∂W is J-convex then ∂D is an isotropic submanifold for the
contact structure ξ.
Remark 6.13. Note that any totally real manifold transversely attached to ∂W
along an isotropic submanifold is isotopic relative its boundary to a J-orthogonal
one through a totally real isotopy.

Theorem 6.14. Suppose that (V, J) is an almost complex manifold of dimen-
sion 2n, n > 2. Let W ⊂ V be a domain with smooth J-convex boundary and D
a k-disk, k ≤ n, transversely attached to W in V . Then there exists a C0-small
isotopy of D through transversely attached disks to a totally real disk D′ which
is J-orthogonal to ∂W .

Proof. Let us denote by f the inclusion D ↪→ V . There exists a homotopy of
monomorphisms Φt : TD → TV , t ∈ [0, 1], covering f such that Φ0 = df and
Φ1 is totally real. We can assume without a loss of generality that

(a) Φ1(T∂D) ⊂ ξ, and

(b) Φt(T∂D) ⊂ T∂W

for all t ∈ [0, 1]. Indeed, by Lemma A.1 (a) we have Argument changed,
please check!

πk−1(V C
n,k, V C

n−1,k−1) = 0 and πk(V R
2n,k, V R

2n−1,k−1) = 0

for k ≤ n, where V C
n,k and V R

n,k are the complex resp. real Stiefel manifolds
of k-frames in Cn resp. Rn. Now fix outward pointing vector fields η∂D, η∂W

along ∂D and ∂W . Then these two vanishing homotopy groups are precisely
the obstructions to achieving (a) and (b) together with the condition Φt(η∂S) =
−η∂W for all t ∈ [0, 1].

The restriction Φt|T (∂D) gives us a homotopy of monomorphisms Φ̃t : T (∂D) →
T (∂W ) covering f |∂D. Now we use Proposition 6.11 to construct an isotopy
gt : ∂D → ∂W such that
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(i) g0 = f |∂D,

(ii) g1 is isotropic, and

(iii) the path of homomorphisms dgt : T (∂D) → T (∂W ), t ∈ [0, 1] is homotopic
to Φ̃t in the class of paths of monomorphisms beginning at dg0 and ending
at a totally real homomorphism T (∂D) → ξ.

Extend the isotopy gt to an isotopy ft : D → V \ IntW of smooth embeddings
transversely attached to W such that f0 = f . According to Remark 6.13 we can
assume that the disk f1(D) is J-orthogonal to ∂W . We claim that there exists
a homotopy of monomorphisms Ψt : TD → TV , t ∈ [0, 1] such that

a) Ψ0 = df1 : TD → TV ,

b) Ψ1 is totally real, and

c) Ψt = df1 on TD|∂D.

Indeed, consider first a homotopy

Ψ̃t :=

{
df1−2t, t ∈ [0, 1

2 ];
Φ2t−1, t ∈ ( 1

2 , 1].

The homotopy Ψ̃t satisfies the above conditions a) and b), but not c). However,
in view of property (iii) above the path Ψ̃t|TD|∂D

is homotopic through paths
with fixed ends to a path of totally real monomorphisms and hence the homotopy
Φ̃t can be modified to a homotopy Ψt satisfying condition c) as well. More
explicitly, property (iii) allows us to pick a continuous family of monomorphisms
Γs

t : T (∂D) → ξ, s, t ∈ [0, 1], such that Γ0
t = Ψ̃t, Γ1

t = df1|∂D, Γs
0 = fd1|∂D, and

Γs
1 is totally real for all s ∈ [0, 1], see Figure [fig:???]. After rescaling in the unit

disk D we may assume that Ψ̃t(x) is independent of the radius for x ∈ D with
|x| ≥ 1/2. Then the desired homotopy Ψ can be defined byPlease check this!

Ψt(x) :=

{
Ψ̃t(2x), |x| ∈ [0, 1

2 ];
Γ2|x|−1

t (x), |x| ∈ ( 1
2 , 1].

It remains to apply Gromov’s h-principle for totally real embeddings 6.12. It
provides an isotopy of embeddings ft : D → V \ IntW , t ∈ [1, 2], fixed along
∂D together with its differential, such that f2 : D → V \ IntW is totally
real and J-orthogonal to ∂W . Finally, note that all the isotopies provided by
Propositions 6.11 and 6.12 can be chosen C0-small. This concludes the proof of
Theorem 6.14.

6.6 The three-dimensional case

[to be added]



Chapter 7

Some complex analysis

7.1 Some complex analysis on Stein manifolds

There exist a number of equivalent definitions of a Stein manifold. We have
already encountered two of them.
Affine definition. A complex manifold V is Stein if it admits a proper holo-
morphic embedding into some CN .

J-convex definition. A complex manifold V is Stein if it admits an exhausting
J-convex function f : V → R.

The classical definition rests on the concept of holomorphic convexity. To a
subset K ⊂ V of a complex manifold associate its holomorphically convex hull

K̂ := {x ∈ V
∣∣ |f(x)| ≤ sup

K
|f | for all holomorphic functions f : V → C}.

Call V holomorphically convex if K̂ is compact for all compact subsets K ⊂ V .

Example 7.1. Let B ⊂ CN be a closed ball around the origin. For x /∈ B the
holomorphic function f(z) := (z, x) satisfies |f(z)| ≤ |z| |x| < |x|2 = |f(x)| for
all z ∈ B. Hence B = B̂ equals its own holomorphically convex hull.
Next consider a properly embedded complex submanifold V ⊂ CN and a com-
pact subset K ⊂ V . Let B ⊂ CN be a closed ball containing K. Then
K̂ ⊂ (̂V ∩ B) ⊂ B̂ = B, where the first two holomorphically convex hulls
are taken in V and the third in CN . Since K̂ is closed in V , it is compact. This
shows that V is holomorphically convex.

Example 7.2 (Hartogs phenomenon). The Hartogs domain Ω := intB4(1) \
B4(1/2) ⊂ C2 has the holomorphically convex hull Ω̂ = intB4(1) (in particular,
Ω is not holomorphically convex). To see this, let f : Ω → C be a holomorphic
function. For fixed z ∈ C, |z| < 1, the function w 1→ f(z, w) on the annulus (or

91
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disk) Az := {w ∈ C
∣∣ 1/4− |z|2 < |w|2 < 1− |z|2} has a Laurent expansion

f(z, w) =
∞∑

k=−∞
ak(z)wk.

The coefficients ak(z) are given by

ak(z) =
1

2πi

∫

|ζ|=r

f(z, ζ)
ζk+1

dζ

for any r > 0 with 1/4 − |z|2 < r2 < 1 − |z|2. In particular, ak(z) depends
holomorphically on z with |z| < 1. Since Az is a disk for |z| > 1/2, we have
ak(z) = 0 for k < 0 and |z| > 1/2, hence by unique continuation for all z with
|z| < 1. Thus the Laurent expansion defines a holomorphic extension of f to
the ball intB4(1).

Classical definition. A complex manifold V is Stein if it has the following 3
properties:

(i) V is holomorphically convex;

(ii) for any x 0= y ∈ V there exists a holomorphic function f : V → C with
f(x) 0= f(y);

(iii) for every x ∈ V there exist holomorphic functions f1, . . . , fn : V → C
which form a holomorphic coordinate system at x.

Clearly, the affine definition implies the other two (holomorphic convexity was
shown in Example 7.1). The classical definition immediately implies that every
compact subset K ⊂ V can be holomorphically embedded into some CN . The
implication “classical =⇒ affine” is the content of

Theorem 7.3. [Remmert [55]] A Stein manifold V in the classical sense admits
a proper holomorphic embedding into some CN .

Remark 7.4. A lot of research has gone into finding the smallest N for given n =
dimC V . After intermediate work of Forster, the optimal integer N = [3n/2]+1
was finally established by Eliashberg-Gromov [17] and Schürmann [57].

The implication “J-convex =⇒ classical” was proved by Grauert in 1958:

Theorem 7.5 (Grauert [28]). A complex manifold which admits an exhausting
J-convex function is Stein in the classical sense.

In particular, Grauert’s theorem solves what was known, for domains in Cn, as
“Levi’s problem”:

Corollary 7.6. A relatively compact domain U ⊂ V in a Stein manifold V
with smooth J-convex boundary ∂U is Stein.
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Proof. By Lemma 2.4, there exists a J-convex function φ : W → (0, 2) on a
neighborhood W of ∂U in V with ∂U = φ−1(1). Let ψ : V → R be a J-
convex function with minŪψ > 0. Pick a convex increasing diffeomorphism
f : (0, 1) → (0,∞). Then a smoothing of max(f ◦ φ, ψ) : U → R is J-convex
and exhausting, so U is Stein by Grauert’s theorem.

Remark 7.7. In fact, Grauert proves in [28] the following generalization of Levi’s
problem: A relatively compact domain U ⊂ V in a complex (not necessar-
ily Stein) manifold V with smooth J-convex boundary ∂U is holomorphically
convex.

It is clear from any of the definitions that properly embedded complex subman-
ifolds of Stein manifolds are Stein. We will refer to them as Stein submanifolds.
Two fundamental results about Stein manifolds are Cartan’s Theorems A and
B. They are formulated in the language of sheaves, see [10] for the relevant
definitions and properties. Let V be a complex manifold and O the sheaf of
holomorphic functions on V . For a nonnegative integer p, let Op be the sheaf
of holomorphic maps to Cp. A sheaf F on V is called analytic if for each x ∈ V ,
Fx is a module over Ox, and the multiplication O × F → F is continuous. A
sheaf homomorphism f : F → G between analytic sheaves is called analytic if
it is a module homomorphism. An analytic sheaf F is called coherent if every
x ∈ V has a neighborhood U such that FU equals the cokernel of an analytic
sheaf homomorphism f : Op

U → Oq
U , for some nonnegative integers p, q.

Oka’s Coherence Theorem [53] states that a subsheaf F of Op is coherent if and
only if it is locally finitely generated, i.e., for every point x ∈ V there exists a
neighborhood U and finitely many sections fi of FU that generate Fy as an
Oy-module for every y ∈ U .
Example 7.8. Let W ⊂ V be a properly embedded complex submanifold of a
complex manifold V and d ≥ 0 an integer. For an open subset U ⊂ V , let IU

be the ideal of holomorphic functions on U whose d-jet vanishes at all points of
U ∩W . This defines an analytic sheaf I on V . We claim that I is coherent. To
see this, let x ∈ V . If x /∈ W we find a neighborhood U of x with U ∩W = ∅
(since W ⊂ V is closed), hence IU = OU . If x ∈ W we find a small open
polydisk U ∼= int

(
B2(1)× · · · ×B2(1)

)
⊂ V around x with complex coordinates

(z1, . . . , zn) in which W ∩ U = {z1 = · · · = zk = 0}. Then the ideal IU is
generated as an OU -module by the monomials of degree (d+1) in z1, . . . , zk, so
by Oka’s Coherence Theorem [53], I is coherent.
Remark 7.9. The coherence of the sheaf I in the preceding example can also be
proved without Oka’s theorem as follows. As above, let (z1, . . . , zn) be complex
coordinates on a polydisk U in which W ∩ U = {z1 = · · · = zk = 0}. We claim
that every f ∈ IU has a unique representation

f(z) =
∑

I

fI(z)zI ,

where the summation is over all I = (i1, . . . , ik) with i1 + · · · + ik = d + 1 and
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zI = zi1
1 . . . zik

k . The coefficient fI is a holomorphic function of z,, . . . , zn, where
1 ≤ 5 ≤ k is the largest integer with i, 0= 0.
We first prove the claim for d = 0 by induction over k. The case k = 1 is clear,
so let k > 1. The function (zk, . . . , zn) 1→ f(0, . . . , 0, zk, . . . , zn) vanishes at
zk = 0, thus (as in the case k = 1) it can be uniquely written as zkfk(zk, . . . , zn)
with a holomorphic function fk. Since the function (z1, . . . , zn) 1→ f(z1, . . . , zn)
vanishes at z1 = · · · = zk−1 = 0, by induction hypothesis it can be uniquely
written as z1f1(z1, . . . , zn)+· · ·+zk−1fk−1(zk−1, . . . , zn) with holomorphic func-
tions f1, . . . , fk−1. This proves the case d = 0. The general case d > 0 fol-
lows by induction over d: Using the case d = 0, we write f(z) uniquely as
z1f1(z1, . . . , zn) + · · ·+ zkfk(zk, . . . , zn). Now note that the functions f1, . . . , fk

must vanish to order d−1 at z1 = · · · = zk = 0 and use the induction hypothesis.
This proves the claim.
By the claim, IU is the direct sum of copies of the rings F,

U of holomorphic
functions of z,, . . . , zn for 1 ≤ 5 ≤ k. Since F,

U is isomorphic to the cokernel
of the homomorphism O,−1

U → OU , f1, . . . , f,−1 1→ z1f1 + · · · + z,−1f,−1, this
proves coherence of I.

Now we can state Cartan’s Theorems A and B. Denote by Hq(V,F) the coho-
mology with coefficients in the sheaf F . In particular, H0(V,F) is the space of
sections in F . Every subsheaf G ⊂ F induces a long exact sequence

... → Hq(V,G) → Hq(V,F) → Hq(V,F/G) → Hq+1(V,G) → . . . .

Theorem 7.10 (Cartan [10]). Let V be a Stein manifold and F a coherent
analytic sheaf on V . Then
(A) for every x ∈ V , H0(V,F) generates Fx as an Ox-module;
(B) Hq(V,F) = {0} for all q > 0.

We will only use the following two consequences of Cartan’s Theorem B.

Corollary 7.11. Let W be a Stein submanifold of a Stein manifold V . Then
every holomorphic function f : W → C extends to a holomorphic function
F : V → C. More generally, let f : U → C be a holomorphic function on a
neighborhood of W and d a nonnegative integer. Then there exists a holomorphic
function F : V → C whose d-jet coincides with that of f at points of W .

Proof. Let I be the analytic sheaf of holomorphic functions on V whose d-jet
vanishes at points of W . By the example above, I is coherent. Thus by Cartan’s
Theorem B, H1(V, I) = 0, so by the long exact sequence the homomorphism
H0(V,O) → H0(V,O/I) is surjective. Now Ox/Ix = {0} for x /∈ W , and for
x ∈ W elements of Ox/Ix are d-jets of germs of holomorphic functions along
W . So f defines a section in O/I, and we conclude that f is the restriction of
a section F in O.
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Corollary 7.12. Every Stein submanifold W of a Stein manifold V is the com-
mon zero set of a finite number (at most dimC V + 1) of holomorphic functions
fi : V → C.

Proof. The argument is given in [11]. It uses some basic properties of analytic
subvarieties, see e.g. [30]. An analytic subvariety of a complex manifold V is a
closed subset Z ⊂ V that is locally the zero set of finitely many holomorphic
functions. Z is a stratified space Z = Z0 ∪ · · · ∪ Zk, where Zi is a (non-closed)
complex submanifold of dimension i. Define the (complex) dimension of Z as
the dimension k of the top stratum. If Z ′ ⊂ Z are analytic subvarieties of the
same dimension, then Z ′ contains a connected component of the top stratum
Zk of Z.
Now let W ⊂ V be a Stein submanifold of a Stein manifold V . Pick a set
S1 ⊂ V containing one point on each connected component of V \W . Since S1

is discrete, W ∪ S1 is a Stein submanifold of V . By Corollary 7.11, there exists
a holomorphic function f1 : V → C which equals 0 on W and 1 on S1. The
zero set W1 := {f1 = 0} is an analytic subvariety of V , containing W , such that
W1 \ W has dimension ≤ n − 1, where n = dimC V . Pick a set S2 ⊂ W1 \ W
containing one point on each connected component of the top stratum of W1

that is not contained in W . Since each compact set meets only finitely many
components of W1, the set S2 is discrete, so W ∪ S2 is a Stein submanifold of
V . By Corollary 7.11, there exists a holomorphic function f2 : V → C which
equals 0 on W and 1 on S2. The zero set W2 := {f1 = f2 = 0} is an analytic
subvariety of V , containing W , such that W2 \ W has dimension ≤ n − 2.
Continuing this way, we find holomorphic functions f1, . . . , fn+1 : V → C such
that W ⊂ Wn+1 := {f1 = · · · = fn+1 = 0} and Wn+1 \W has dimension ≤ −1.
Thus Wn+1 \W = ∅ and W = {f1 = · · · = fn+1 = 0}.

7.2 Real analytic approximations

In order to holomorphically attach handles, we need to approximate smooth
objects by real analytic ones. In this section we collect the relevant results.
A function f : U → Rm on an open domain U ⊂ Rn is called real analytic if
it is locally near each point given by a convergent power series. A real analytic
manifold is a manifold with an atlas such that all transition functions are real
analytic. A submanifold is called real analytic if it is locally the transverse zero
set of a real analytic function. Real analytic bundles and sections are defined
in the obvious way.

Remark 7.13. As a special case of the Cauchy-Kowalewskaya theorem (see
e.g. [20]), the solution of an ordinary differential equation with real analytic
coefficients depends real analytically on all parameters.

Complexification. There is a natural functor, called complexification, from
the real analytic to the holomorphic category. First note that any real analytic
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function f : U → Rm, defined on an open domain U ⊂ Rn, can be uniquely
extended to a holomorphic function fC : UC → Cm on an open domain UC ⊂
Cn with UC ∩ Rn = U . A bit less obviously, any real analytic manifold M
can be complexified to a complex manifold MC which contains M as a real
analytic submanifold. This can be seen as follows (see [8] for details). Pick a
locally finite covering of M by countably many real analytic coordinate charts
φi : Rn ⊃ Ui → M . So the transition functions

φij := φ−1
j ◦ φi : Uij := φ−1

i

(
φi(Ui) ∩ φj(Uj)

)
→ Uji

are real analytic diffeomorphisms. Successively extend them to biholomorphic
maps φC

ij : UC
ij → UC

ji such that φC
ji = (φC

ij)−1. Note that UC
ii = UC

i and φC
ii = 1l.

Define MC as the quotient of the disjoint union
∐

i UC
i by the equivalence rela-

tion zi ∼ zj iff zi ∈ UC
ij and zj = φC

ij(zi) ∈ UC
ji. (This is an equivalence relation

because of the cocycle condition φC
jk ◦ φC

ij = φC
ik.) The inclusions UC

i ↪→
∐

j UC
j

induce coordinate charts UC
i ↪→ MC with biholomorphic transition functions.

Finally, this construction needs to be slightly modified to ensure that MC is
Hausdorff (see [8]).
Similarly, one sees that a real analytic map f : M → N between real analytic
manifolds extends to a holomorphic map fC : MC → NC between (sufficiently
small) complexifications. It follows that the complexification MC is unique in
the sense that if V,W are complex manifolds, containing M as real analytic and
totally real submanifolds, with dimC V = dimC W = dimR M , then some neigh-
borhoods of M in V and W are biholomorphic. A corresponding uniqueness
holds for complexifications of maps. As a real manifold, the complexification
MC is diffeomorphic to the tangent bundle TM .
Complexification has the obvious functorial properties. For example, if N ⊂ M
is a real analytic submanifold of a real analytic manifold M , then the (sufficiently
small) complexification NC is a complex submanifold of MC.
The crucial observation, due to Grauert [28], is that complexifications of real
analytic manifolds are in fact Stein.

Proposition 7.14. Let MC be the complexification of a real analytic manifold
M . Then M possesses arbitrarily small neighborhoods in MC which are Stein.

Proof. By Proposition 2.13, M possesses arbitrary small neighborhoods with
exhausting J-convex functions. By Grauert’s Theorem 7.5, these neighborhoods
are Stein.

A complexification MC which is Stein is called a Grauert tube of M . Now
the basic results about real analytic manifolds follow via complexifiction from
corresponding results about Stein manifolds.

Corollary 7.15. Every real analytic manifold admits a proper real analytic
embedding into some RN .
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Proof. By Theorem 7.3, a Grauert tube MC of M embeds properly holomor-
phically into some CN . Then restrict this embedding to M .

Corollary 7.16. Let N be a properly embedded real analytic submanifold of a
real analytic manifold M . Then every real analytic function f : N → R extends
to a real analytic function F : M → R. More generally, let f : U → R be a real
analytic function on a neighborhood of N and d a nonnegative integer. Then
there exists a real analytic function F : M → R whose d-jet coincides with that
of f at points of N .

Proof. Let MC be a Grauert tube of M . After possibly shrinking MC, we
may assume that a complexification NC of N is a properly embedded complex
submanifold of MC, and f complexifies to a holomorphic function fC on a
neighborhood of NC in MC. Corollary 7.11 provides a holomorphic function
G : MC → C whose d-jet agrees with that of fC at points of NC. Then the
restriction of the real part of G to M is the desired function F .

Corollary 7.17. Every properly embedded real analytic submanifold N of a
real analytic manifold M is the common zero set of a finite number (at most
2 dimR M + 2) of real analytic functions fi : M → R.

Proof. Complexify N to a properly embedded submanifold NC ⊂ MC of a
Grauert tube MC. By Corollary 7.12, NC is the zero set of at most n + 1
holomorphic functions Fi : MC → C, where n = dimR M . The restrictions of
Re Fi and Im Fi to M yield the desired functions fi.

Remark 7.18. H. Cartan [11] takes a slightly different route to prove Corollar-
ies 7.16 and 7.17: Define coherent analytic sheaves on real analytic manifolds
analogously to the complex analytic case. Cartan proves that for every coherent
analytic sheaf F on M , there exists a coherent analytic sheaf FC on a complex-
ification MC such that FC|M = F ⊗ C. From this he deduces the analogues of
Theorems A and B in the real analytic category, which imply the corollaries as
in the complex analytic case.

Corollary 7.15 implies that every Ck-function on a real analytic manifold M can
be Ck-approximated by real analytic functions. To state the result, equip M
with a metric and connection so that we can speak of k-th (covariant) derivatives
of functions on M and their norms.

Corollary 7.19. Let f : M → R be a Ck-function on a real analytic manifold.
Then for every compact subset K ⊂ M and ε > 0 there exists a real analytic
function g : M → R which is ε-close to f together with its first k derivaties on
K.

Proof. Embed M real analytically into some RN . Pick any Ck-function F :
RN → R which coincides with f on K. By Weierstrass’ theorem (see e.g. [22]),
F can be Ck-approximated over K by a polynomial G : RN → R. Let g be the
restriction of G to M .
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On the other hand, Corollary 7.16 shows that every real analytic function on
a properly embedded real analytic submanifold N of a real analytic manifold
M can be extended to a real analytic function on M , with prescribed normal
d-jet along N . The following result combines the approximation and extension
results.

Proposition 7.20. Let f : M → R be a Ck-function on a real analytic mani-
fold. Let N be a properly embedded real analytic submanifold, K ⊂ M a compact
subset, d a nonnegative integer and ε > 0. Suppose that f is real analytic on a
neighborhood of N . Then there exists a real analytic function F : M → R with
the following properties:

• F is ε-close to f together with its first k derivatives over K;

• the d-jet of F coincides with that of f at every point of N .

The proof is based on the following

Lemma 7.21. For every d, k ∈ N there exists a constant Cd,k such that for all
p ∈ N, D > δ > 0 and γ > 0 there exists a polynomial P : R → R with the
following properties:

• P (0) = 1 and P ′(0) = · · · = P (d)(0) = 0;

• |P (l)(x)| ≤ γ for all 0 ≤ l ≤ k and δ ≤ |x| ≤ D;

• |P (l)(x)| ≤ Cd,k/δl for all 0 ≤ l ≤ k and |x| ≤ δ.

Proof. Let k be given. Pick a Ck-function f : R → R with the following
properties:

• f(x) = 0 near x = 0;

• f(x) = 1 for |x| ≥ 1;

• |(f − 1)(l)(x)| ≤ Ck/2 for |x| ≤ 1 and 0 ≤ l ≤ k,

with a constant Ck depending only on k. For D > δ > 0 define g(x) := f(x/δ).
Then g : R → R has the following properties:

• g(x) = 0 near x = 0;

• g(x) = 1 for δ ≤ |x| ≤ D;

• |(g − 1)(l)(x)| ≤ Ck/(2δl) for |x| ≤ δ and 0 ≤ l ≤ k.

By Weierstrass’ theorem (see e.g. [22]), we find for every β > 0 a polynomial
Q : R → R satisfying

• Q(0) = 0;
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• |(Q− 1)(l)(x)| ≤ β for δ ≤ |x| ≤ D and 0 ≤ l ≤ k;

• |(Q− 1)(l)(x)| ≤ Ck/δl for |x| ≤ δ and 0 ≤ l ≤ k.

For d ∈ N consider the polynomial P (x) := Q(x)d+1 − 1. By the Leibniz rule,

(Qd+1)(l)(x) =
∑

i1+···+id+1=l

(
l

i1 . . . id+1

)
Q(i1)(x) · · ·Q(id+1)(x).

This shows P (0) = 1 and P (l)(0) = 0 for 1 ≤ l ≤ d. Now let γ > 0 be given.
For δ ≤ |x| ≤ D and 1 ≤ l ≤ k the estimates on Q yield

|(P )(l)(x)| ≤
∑

i1+···+id+1=l

(
l

i1 . . . id+1

)
βl(1 + β)d+1

= (d + 1)lβl(1 + β)d+1 ≤ (d + 1)kβ(1 + β)d+1 ≤ γ

for β sufficiently small. For δ ≤ |x| ≤ D and l = 0 we find

|P (l)(x)| = |Q(x)− 1| |1 + Q(x) + · · ·+ Qd(x)| ≤ β(2d + 1) ≤ γ

for β ≤ 1 sufficiently small. Similarly, for |x| ≤ δ and 1 ≤ l ≤ k we get

|(P )(l)(x)| ≤
∑

i1+···+id+1=l

(
l

i1 . . . id+1

)
(Ck + 1)d+1

δl
≤ (d + 1)k(Ck + 1)d+1

δl
,

and for |x| ≤ δ and l = 0,

|P (x)| ≤| Qd+1(x)|+ 1 ≤ (Ck + 1)d+1 + 1.

Hence P satisfies the required estimates with Cd,k := (d+1)k(Ck+1)d+1+1.

Proof of Proposition 7.20. By Corollary 7.17, there exist real analytic functions
φ1, . . . , φm : M → R such that N = {φ1 = · · · = φm = 0}. Then φ :=
φ2

1+· · ·+φ2
m : M → R is real analytic and N = φ−1(0). Let distN be the distance

from N with respect to some Riemannian metric on M . Since φ vanishes only to
finite order in directions transversal to N , there exists an r ∈ N such that, after
rescaling the metric, we have φ(x) ≥ distN (x)r for all x ∈ K. Set D := maxKφ.
For δ sufficiently small, W := {φ ≤ δ} is a tubular neighborhood of N over K.
For δ, γ > 0 let P : R → R be the polynomial from Lemma 7.21. The real
analytic function ψ := P ◦ φ : M → R has the following properties:

• ψ(x) = and ψ′(x) = · · · = ψ(d)(x) = 0 for x ∈ N ;

• |ψ(l)(x)| ≤ C1γ for all 0 ≤ l ≤ k and x ∈ K \W ;

• |ψ(l)(x)| ≤ C1Cd,k/δl for all 0 ≤ l ≤ k and x ∈ W ∩K,
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with a constant C1 depending only on φ (and not on δ and γ). Here and in the
following we assume M ⊂ RN and denote by ψ(l) any partial derivative of order
l.
Without loss of generality, we may increase d until d ≥ r(k + 1). By Corol-
lary 7.16, there exists a real analytic function h : M → R whose d-jet agrees
with that of f at points of N . Hence there exists a constant C2, depending only
on f and h, such that

• |(f − h)(l)(x)| ≤ C2 distN (x)d−l ≤ C2 δ(d−l)/r for all 0 ≤ l ≤ k and
x ∈ W ∩K;

• |(f − h)(l)(x)| ≤ C2 for all 0 ≤ l ≤ k and x ∈ K \W .

We can estimate the product ψ · (f − h) for 0 ≤ l ≤ k and x ∈ W ∩K by

|[ψ(f − h)](l)(x)| ≤
l∑

i=0

|(f − h)(i)(x)| |ψ(l−i)(x)|

≤
l∑

i=0

C2 δ(d−i)/r C1Cd,k

δl−i
≤ (k + 1)C1C2Cd,kδ,

since the exponent of δ satisfies (d− i)/r + i− l ≥ d/r − l ≥ 1 by the choice of
d. Similarly, for 0 ≤ l ≤ k and x ∈ K \W we obtain

|[ψ(f − h)](l)(x)| ≤ (k + 1)C1C2γ.

Now let ε > 0 be given. By Corollary 7.19, there exists a real analytic function
g : M → R with |(f − g)(l)(x)| < ε′ for all 0 ≤ l ≤ k and x ∈ K, with ε′ > 0 to
be determined later. Define the real analytic function

F := g + ψ · (h− g) : M → R.

Since ψ′(x) = · · · = ψ(d)(x) = 0 for x ∈ N , the d-jet of F agrees with that of f
at points of N . For 0 ≤ l ≤ k and x ∈ K \W we estimate

|(F − f)(l)(x)| ≤ |[(1− ψ)(g − f)](l)(x)|+ |[ψ(h− f)](l)(x)|
≤ (1 + C1γ)ε′ + (k + 1)C1C2γ. (7.1)

For 0 ≤ l ≤ k and x ∈ W ∩K we find

|(F − f)(l)(x)| ≤ |[(1− ψ)(g − f)](l)(x)|+ |[ψ(h− f)](l)(x)|

≤ C1Cd,k

δk
ε′ + (k + 1)C1C2Cd,kδ. (7.2)

Now first choose γ > 0 small enough so that the second term on the right-hand
side of (7.1) becomes < ε/2. Given γ, choose δ > 0 small enough so that the
second term on the right-hand side of (7.2) becomes < ε/2. Finally, choose
ε′ > 0 small enough so that the first terms on the right-hand sides of (7.1) and
(7.2) become < ε/2. Then F has the desired properties.
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Proposition 7.20 clearly generalizes to sections in real analytic bundles E → M .
For this, view the total space of the bundle as a real analytic manifold and note
that a map M → E that is C0-close to a section is a section. Thus we have

Theorem 7.22. Let f : M → E be a Ck-section in a real analytic fibre bundle
E → M over a real analytic manifold M . Let N ⊂ M be a properly embedded
real analytic submanifold, K ⊂ M a compact subset, d a nonnegative integer
and ε > 0. Suppose that f is real analytic on a neighborhood of N . Then there
exists a real analytic section F : M → E with the following properties:

(i) F is ε-close to f together with its first k derivatives over K;

(ii) the d-jet of F coincides with that of f at every point of N .

Example 7.23. Every Riemannian metric on a real analytic manifold can be
Ck-approximated by a real analytic metric. By Remark 7.13, the exponential
map of a real analytic metric is real analytic. Now the standard proof yields real
analytic tubular resp. collar neighborhoods of compact real analytic submani-
folds resp. boundaries. In particular, this allows us to extend any compact real
analytic manifold with boundary to a slightly larger open real analytic manifold.

Theorem 7.22 also has a version with parameters.

Corollary 7.24. Let E → M be a real analytic fibre bundle over a real analytic
manifold M , K ⊂ M a compact subset, and ε > 0. Let ft : M → E be a family
of Ck-sections depending in a Ck fashion on a parameter t in a compact real
analytic manifold T with boundary. Suppose that the ft are real analytic for
t ∈ ∂T and depend real analytically on t ∈ ∂T . Then there exists a family of
real analytic sections Ft : M → E, depending real analytically on t ∈ T , with
the following properties:

(i) Ft is ε-close to ft together with its first k derivatives over K for all t ∈ T ;

(ii) Ft = ft for t ∈ ∂T .

Proof. By Example 7.23, we can include Λ in a larger open real analytic manifold
Λ̃. Extend ft to a Ck-family f̃t over Λ̃ and view f̃t as a Ck-section in the bundle
E → Λ̃×M . Now apply Theorem 7.22 to this section, the compact set Λ×K,
and the properly embedded real analytic submanifold ∂Λ×M .

We conclude this chapter with a result on real analytic approximations of
isotropic submanifolds in contact manifolds that will be needed later. See Chap-
ter 5 for the relevant definitions.

Corollary 7.25. Let Λ be a closed isotropic Ck-submanifold (k ≥ 1) in a real
analytic closed contact manifold (M, α) (i.e., the manifold M and the 1-form α
are both real analytic). Then there exists a real analytic isotropic submanifold
Λ′ ⊂ (M, α) arbitrarily Ck-close to Λ.
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Similarly, let (Λt)t∈[0,1] be a Ck-isotopy of closed isotropic Ck-submanifolds in
(M, α) such that Λ0 and Λ1 are real analytic. Then there exists a real analytic
isotopy of real analytic isotropic submanifolds Λ′t, arbitrarily Ck-close to Λt,
with Λ′0 = Λ0 and Λ′1 = Λ1.

Proof. Let Λ̃ ⊂ M be a real analytic submanifold Ck-close to Λ, but not nec-
essarily isotropic. Then Λ = φ(Λ̃) for a Ck-diffeomorphism φ : M → M that is
Ck-close to the identity. The contact form φ∗α vanishes on Λ̃ but need not be
real analytic. Thus φ∗α induces a Ck-section in the real analytic vector bundle
T ∗M |Λ̃ → Λ̃ which vanishes on the real analytic subbundle T Λ̃ ⊂ T ∗M |Λ̃. Let
ν → Λ̃ be the normal bundle to T Λ̃ in T ∗M |Λ̃ with respect to a real analytic
metric and denote by (φ∗α)ν the induced Ck-section in ν. Let βν be a real
analytic section of ν that is Ck-close to (φ∗α)ν and extend it to a real analytic
section β of T ∗M |Λ̃ that vanishes on T Λ̃, and hence is Ck-close to φ∗α along Λ̃.
Extend β to a Ck one-form on M (still denoted by β) that is Ck-close to φ∗α.
By construction, β is real analytic along Λ̃ and β|Λ̃ = 0.
By Theorem 7.22 (with d = 0), there exists a real analytic 1-form α̃ that is Ck-
close to β and coincides with β along Λ̃. In particular, α̃|Λ̃ = 0. By construction,
α̃ is Ck-close to α. Hence αt := (1 − t)α̃ + tα is a real analytic homotopy of
real analytic contact forms. By Gray’s Stability Theorem 5.24, there exists a
diffeotopy φt : M → M and positive functions ft with φ∗t α = ftα̃. Now in
Moser’s proof of Gray’s Stability Theorem (see e.g. [9]), the φt are constructed
as solutions of an ODE whose coefficients are real analytic and Ck-small in this
case. Hence by Remark 7.13 the φt are real analytic, Ck-close to the identity,
and depend real analytically on t. It follows that Λ′ := φ1(Λ̃) is real analytic,
Ck-close to Λ, and α|Λ′ = 0.

Remark 7.26. (1) Corollary 7.25 remains valid (with essentially the same proof)
if the submanifold Λ is not closed, providing a real analytic approximation on
a compact subset K ⊂ Λ.
(2) If Λ is Legendrian, then Λ′ is Legendrian isotopic to Λ: By the Legen-
drian neighborhood theorem (Proposition 5.20), Λ′ is the graph of the 1-jet of
a function f in J1Λ, and the functions tf provide the isotopy.



Chapter 8

Recollections from Morse
theory

NEW CHAPTER
(TENTATIVE)

Throughout this chapter, V denotes a smooth manifold of dimension m.

8.1 Critical points of functions

Let φ : V → R be a smooth function p ∈ V be a critical point of φ, i.e. dpφ = 0.
The Hessian Hesspφ defines a symmetric bilinear form on TpV . The nullity of
φ at p is the dimension of ker Hesspφ := {v ∈ TpV | Hesspφ(v, w) = 0 for all
w ∈ TpV }. The Morse index at p is the maximal dimension of a subspace on
which the quadratic form v 1→ Hessp(v, v) is negative definite. The critical point
p is nondegenerate if its nullity is zero.

Lemma 8.1 (Morse Lemma [49]). Near a nondegenerate critical point p of φ
of index k there exist smooth coordinates u ∈ Rm in which φ has the form

φ(u) = φ(p)− u2
1 − · · · − u2

k + u2
k+1 · · ·+ u2

m. (8.1)

More precisely, this means that for a function φ on a neighborhood of 0 ∈ Rm

there exists a diffeomorphism g between neighborhoods of 0 such that g∗φ has
the form (8.1).

Remark 8.2. (1) If the function φ on a neighborhood of 0 ∈ Rn already satisfies
φ(x1, . . . , xk, 0, . . . , 0) = φ(p)− x2

1 − · · · − x2
k, then we can choose the diffomor-

phism g to satisfy g(x1, . . . , xk, 0, . . . , 0) = (x1, . . . , xk, 0, . . . , 0). To see this,
apply the proof of the Morse lemma in [49] to find new coordinates u1, . . . , um

near 0 in which φ(u) = φ(p)− u2
1 − · · · − u2

k + u2
k+1 · · ·+ u2

m. Inspection of the
proof shows that ui = xi on Rk × {0}.

103
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(2) The Morse lemma also holds with parameters as follows: For a compact
manifold (possibly with boundary) K let φz : V → R, z ∈ K be a smooth
family of functions with a nondegenerate critical of index k at p for all z. Then
there exists a smooth family of diffeomorphisms gz : (U, 0) → (Vz, p) from a
neighborhood U ⊂ Rm of 0 onto neighborhoods Vz ∈ V of p such that for all
z ∈ K,

φz ◦ gz(u) = φz(p)− u2
1 − · · · − u2

k + u2
k+1 · · ·+ u2

m.

The next lemma shows that near a degenerate critical point one can always split
off the nondegenerate directions.

Lemma 8.3. Near a critical point p of φ index k and nullity 5 there exist
smooth coordinates (x1, . . . , xm−k−,, y1, . . . , yk, z1, . . . , z,) ∈ Rm in which φ has
the form

φ(x, y, z) = x2
1 − · · ·+ x2

m−k−, − y2
1 · · · − y2

k + ψ(z)

with a smooth function ψ(z).

Proof. Set B := Hesspφ and n := m− 5. Identify a neighborhood of p in V with
a neighborhood of 0 in Rm = Rn ⊕ R, such that R, = kerB. Define a function
F on a neighborhood of 0 in Rm by

F (w, z) :=
∂φ

∂w
(w, z).

Since ∂F
∂w (0, 0) = ∂2φ

∂w2 (0, 0) is invertible, the zero set F−1(0) is a graph w =
w(z) over R,. After applying a diffeomorphism near 0 ∈ Rm we may assume
F−1(0) = R,. Consider the smooth family of functions φz = φ(·, z) : Rn → R,
z ∈ R, near 0. By construction, each φz has a nondegenerate critical point of
index k at w = 0. Now Lemma 8.3 follows from the parametrized Morse Lemma
in Remark 8.2

We say that a 1-parameter family φt, t ∈ (−ε, ε) of functions near p ∈ V is of
birth type if after t-dependent coordinate changes on V near p and on R it is of
the formSpell out coordinate

changes! φt(x, y, z) = |x|2 − |y|2 + z3 − tz (8.2)

for (x, y, z) ∈ Rm−k ⊗ Rk−1 ⊗ R. The family φ−t, t ∈ (−ε, ε) is said to be of
death type. The critical point of φ0 is called embryonic. Note that in a birth
type family a pair of nondegenerate critical points of indices k and k−1 appears
at t = 0 and in a death type family such a pair disappears.

Lemma 8.4. In a generic 1-parameter family of functions only birth-death type
degeneracies appear.

Proof. Using Lemma 8.3 we can reduce the lemma to the case m = 1 of 1-
parameter families of functions R → R. In this case Lemma 8.4 is just Whitney’s
theorem proved in [66].
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8.2 Zeroes of vector fields

Let X be a smooth vector field on V and p ∈ V be a zero of X. The differential
DpX : TpV → TpV induces a splitting into invariant subspaces

TpV = E+
p ⊕ E−p ⊕ E0

p ,

where E+
p (resp. E−p , E0

p) is spanned by the generalized eigenvectors to eigen-
values with positive (resp. negative, vanishing) real part. The dimension of E−p
is called the Morse index1 of X at p. Denote by Xs : V → V , s ∈ R, the flow
of X.

Theorem 8.5 (Center Manifold Theorem [1]). Let p ∈ V be a zero of a Cr+1-
vector field X, r ∈ N. Then there exist local invariant Cr+1-manifolds W±

p

tangent to E±
p and a local invariant Cr-manifold W 0

p tangent to E0
p at p. The

W±
p are unique and smooth resp. real analytic if X is.

W−
p (resp. W+

p , W 0
p ) are called the local stable (resp. unstable, center) manifold

at p. The center manifold is in general neither unique nor smooth, even if X is.
By the center manifold theorem we can choose Cr-coordinates Z = (x, y, z) ∈
E+

p ⊕ E−p ⊕ E0
p in which W±

p and W 0
p correspond to E±

p resp. Ep
0 ; in these

coordinates X is of the form

X(x, y, z) = (A+x, A−y,A0z) + O(|Z|2) (8.3)

with linear maps A+ (resp. A−, A0) all of whose eigenvalues have positive
(resp. negative, zero) real part.
A zero p is called hyperbolic if E0

p = {0}, i.e. all eigenvalues of DpX have nonzero
real part. In this case we have global stable and unstable manifolds characterized
by

W±
p = {x ∈ V | lim

s→∓∞
Xs(x) = p}.

They are injectively immersed (but not necessarily embedded) in V .
We say that a 1-parameter family Xt, t ∈ (−ε, ε) of vector fields near p ∈ V is
of birth type if in suitable coordinates (x, y, z) ∈ Rm−k ⊗ Rk−1 ⊗ R near p it is
of the form

Xt(x, y, z) =
(
A+

t x+O(|x| |Z|), A−t y+O(|y| |Z|), z2− t+O(|z2− t| |Z|)
)

(8.4)

with smooth families of linear maps A±
t all of whose eigenvalues have positive Is this right?

Smoothness?resp. negative real part. The family X−t, t ∈ (−ε, ε) is said to be of death type.
The zero of X0 is called embryonic. Note that in a birth type family a pair of
hyperbolic zeroes of indices k and k − 1 appears at t = 0 and in a death type
family such a pair disappears.

1Not to be confused with the topological index of a vector field at an isolated zero!
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Lemma 8.6. (a) A generic vector field has only hyperbolic zeroes.
(b) In a generic 1-parameter family of vector fields without nonconstant periodic
orbits only birth-death type degeneracies appear.

Proof. (a) follows from general transversality arguments.
(b) In a generic 1-parameter family of vector fields only two types of degeneracies
appear (see [4] $$32− 33): The first type corresponds to birth-death type; theProof of normal form!!!

second type corresponds to a Hopf bifurcation in which a nonconstant periodic
orbit appears or disappears at t = 0, which is excluded by the hypothesis of
(b).

Lemma 8.7. Let p be an embryonic zero of a smooth vector field X. Then

Ŵ±
p := {x ∈ V | lim

s→∓∞
Xs(x) = p}

is an injectively immersed smooth manifold with boundary W±
p .

Proof. Pick coordinates (x, y, z) on a neighborhood U of p in which X is of the
form (8.4) with t = 0. Then U ∩ Ŵ−

p = {(x, y, z) ∈ U | x = 0, z ≤ 0} is aSmoothness?

smooth submanifold with boundary U ∩W−
p = {(x, y, z) ∈ U | x = z = 0} andCheck!

the statement for Ŵ−
p follows by invariance under the flow of X. The statement

for Ŵ+
p is proved analogously.

8.3 Gradient-like vector fields

We call a smooth function φ : V → R Lyapunov function for a vector field
X, and X gradient-like for φ, if X · φ > 0 outside the zeroes of X. We call
φ : V → R strong Lyapunov function for X, and X strongly gradient-like for φ,
if X · φ ≥ δ|X|2 for some δ > 0, where |X| is the norm with respect to some
Riemannian metric on V .
The space of (strong) Lyapunov functions for a given vector field X is a convex
cone. In particular, if φ0, φ1 are (strong) Lyapunov functions for X then so is
(1− t)φ0 + tφ1 for all t ∈ [0, 1]. Note that critical points of φ are also zeroes of
a gradient-like vector field X but not necessarily vice versa.
The question of existence of a Lyapunov function for a vector field X separates
into two issues: local existence near the zero set of X, and global existence.
Assuming local existence near the zero set, Sullivan [61] gives a necessary and
sufficient criterion for the existence of a global Lyapunov function in terms of fo-
liation cycles. The simplest obstruction to a Lyapunov function is a nonconstant
periodic orbit of X.

Lemma 8.8. Let X be strongly gradient-like for φ. Then each nondegenerate
zero of X is hyperbolic and also a nondegenerate critical point of φ.
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Proof. Consider a nondegenerate zero p ∈ V of X. In coordinates Z near
p = {Z = 0} we have

X(Z) = AZ + O(|Z|2), φ(Z) = φ(p) + LZ + O(|Z|2)

with the linear map A := DpX and the linear form L := dpφ. Strong gradient-
likeness

X · φ(Z) = LAZ + O(|Z|3) ≥ δ|AZ|2 + O(|Z|3).
implies LAZ ≥ δ|AZ|2/2, which is only possible for L = 0 since A is nonde- Check!

generate. So we have

φ(Z) = φ(p) +
1
2
B(Z, Z) + O(|Z|3)

with the symmetric bilinear form B := Hesspφ. Again strong gradient-likeness

X · φ(Z) = B(Z, AZ) + O(|Z|3) ≥ δ|AZ|2 + O(|Z|3)

yields
B(v, Av) ≥ δ|Av|2/2.

Nondegeneracy of A implies nondegeneracy of B, so p is a nondegenerate critical
point of φ.
To prove hyperbolicity of p, extend A = DpX C-linearly to the complexified
tangent space TpV ⊗ C and extend B = Hesspφ to TpV ⊗ C by

B(x + iy, x′ + iy′) :=
(
B(x, x′) + B(y, y′)

)
+ i

(
B(x′y)−B(x, y′)

)
.

Thus B is C-linear in the first and C-antilinear in the second argument, B(v, w) =
B(w, v), and ReB(v,Av) ≥ δ|v|2/2. Let 0 0= v ∈ TpV ⊗ C be an eigenvector of
A to the eigenvalue 0 0= λ ∈ C, i.e. Av = λv. Then

λB(v, Av) = B(Av, Av) = B(Av, Av) = λ̄B(v, Av).

If λ were purely imaginary, this would imply B(v, Av) = −(v, Av), in contra-
diction to positivity of ReB(v, Av).

Remark 8.9. Suppose that X is the gradient of φ with respect to a positive
definite but not necessarily symmetric (2, 0) tensor field g, i.e. dφ(v) = g(X, v)
for all v ∈ TV and g(v, v) > 0 for all v 0= 0. Then X is strongly gradient-like
for φ and the zeroes of X coincide with the critical points of φ. At a zero p of
X we have Hessp(v, w) = gp(DpX · v, w), so p is a nondegenerate zero of X iff
it is a nondegenerate critical point of φ. If g is symmetric (i.e. a Riemannian
metric), then so is the bilinear form Hessp(·, DpX·) = gp(DpX·, DpX·) and all
eigenvalues of DpX are real.

Lemma 8.10. (a) Near each hyperbolic zero a vector field admits a strong
Lyapunov function.
(b) For a birth or death type family Xt near p there exists a neighborhood U of
p and a smooth family of strong Lyapunov functions φt : U → R for Xt.
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Proof. (a) Consider coordinates in which X has the form (8.3) with E0
p = {0}.

By [2] Theorem 22.3 there exist quadratic forms Q± on E±
p which are strongly

Lyapunov for the linear maps A±. Then φ(x, y) := Q+(x) + Q−(y) is a strong
Lyapunov function for X.
(b) Consider coordinates in which X has the form (8.4). Let Q±

t be a smooth
family of quadratic forms on E±

p as in (a) that are strongly Lyapunov for A±
t .

Then
φt(x, y, z) := Q+

t (x) + Q−t (y) +
1
3
z3 − tz

is a smooth family of strong Lyapunov functions for Xt.

The following result states that a Lyapunov function can be put into any pre-
scribed form near a hyperbolic or birth-death type zero.

Proposition 8.11. (a) Let X be a vector field on V with a hyperbolic or em-
bryonic zero p. Let φ : V → R be a Lyapunov function for X and φloc : U → R
a Lyapunov function on a neighborhood U of p with φ(p) = φloc(p). Then there
exists a Lyapunov function ψ : V → R which agrees with φ outside U and with
φloc near p.
(b) Let Xt, t ∈ [−ε, ε] be a smooth family of vector fields on V with a birth or
death type zero p. Let φt : V → R be a smooth family of Lyapunov functions for
Xt and φloc

t : U → R a smooth family of Lyapunov functions on a neighborhood
U of p with φt(p) = φloc

t (p) for all t. Then there exists a smooth family of
Lyapunov functions ψt : V → R, t ∈ [−ε, ε] which agrees with φt outside U and
with φloc

t near p.

Remark 8.12. (1) In case (a), φu := (1−u)φ + uψ, u ∈ [0, 1] is a smooth family
of Lyapunov functions with φ0 = φ, φu = φ outside U , and φ1 = φloc near p.
(2) By Lemma 8.10, in case (a) we can choose φloc to be strongly Lyapunov, so
ψ is strongly Lyapunov near p.
Analogous remarks apply to case (b).

The proof of Proposition 8.11 will occupy the remainder of this section. It is
based on a smooth version of the J-convex surroundings in Chapter 9 to which
we now proceed.
Consider a vector field X with a Lyapunov function φ : V → R and a hyperbolic
zero p of index k and value φ(p) = c. Pick a regular value a < c such that
D−

p := W−
p ∩ {φ ≥ a} is a smoothly embedded k-disk.

Lemma 8.13. For every neighborhood N of D−
p there exists a b > c and a

closed subset
Sm−k−1 ×Dk × [a, b] ∼= U ⊂ N \D−

p

with the following properties:

(i) φ|Sm−k−1×Dk×{t} ≥ t;
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(ii) φ|Sm−k−1×Dk×{t} = t near (Sm−k−1×∂Dk× [a, b])∪(Sm−k−1×Dk×{b});

(iii) each hypersurface Sm−k−1 ×Dk × {t} is transverse to X.

Proof. Pick b > c and a neighborhood

Σ1
∼= Sm−k−1 ×Bk

2

of S+
p := W+

p ∩ φ−1(b) in the level set φ−1(b) such that S+
p ⊂ Sm−k−1 × Bk

1 .
Denote by x the coordinate on Sm−k−1 and by (ρ, y) ∈ [0, 2] × Sk−1 polar
coordinates on Bk

2 . For c < b′ < b denote by

W1
∼= Sm−k−1 ×Bk

2 × [b′, b]

the result of flowing Σ1 by −X until it hits the level φ = b′, so that φ(x, ρ, y, τ) =
τ for τ ∈ [b′, b] and ρ is invariant under X. Denote by

W0
∼= Sm−k−1 × [1, 2]× Sk−1 × [a, b]

the result of flowing Sm−k−1 × [1, 2]× Sk−1 ⊂ Σ1 by −X until it hits the level
φ = a, so that φ(x, ρ, y, τ) = τ for τ ∈ [a, b] and ρ is invariant under X. By
choosing b > c and Σ1 sufficiently small we can ensure that

W := W0 ∪W1 ⊂ N .

Since X · ρ = 0 and X · τ > 0, any graph τ = f(ρ) in W is transverse to X.
Now set

T := ([1, 2]× [a, b]) ∪ ([0, 2]× [b′, b]) ⊂ R2

and pick a region
[0, 2]× [a, b] ∼= R ⊂ T

with the following properties:

(i) τ(ρ, t) ≥ t;

(ii) τ(ρ, t) = t near ({2} × [a, b]) ∪ ([0, 2]× {b});

(iii) each hypersurface [0, 2] × {t} is a graph τ = ft(ρ) with ft constant near
ρ = 0

(see Figure ???). Then the region

U := {(x, ρ, y, τ) ∈ W | (ρ, τ) ∈ R}

has the desired properties.

Next we prove an analogue of Lemma 8.13 for an embryonic zero. Consider a
vector field X with a Lyapunov function φ : V → R and an embryonic zero p
of index k − 1 and value φ(p) = c. Define Ŵ±

p as in Lemma 8.7. Pick a regular
value a < c such that D̂−

p := Ŵ−
p ∩{φ ≥ a} is a smoothly embedded half k-disk.



110 CHAPTER 8. RECOLLECTIONS FROM MORSE THEORY

Lemma 8.14. For every neighborhood N of D̂−
p there exists a b > c and a

closed subset
Dm−1 × [a, b] ∼= U ⊂ N \ D̂−

p

with the following properties:

(i) φ|Dm−1×{t} ≥ t;

(ii) φ|Dm−1×{t} = t near (∂Dm−1 × [a, b]) ∪ (Dm−1 × {b});

(iii) each hypersurface Dm−1 × {t} is transverse to X.

Proof. Pick b > c and a neighborhood

Σ1
∼= Bm−1

2

of the (m− k)-disk Ŝ+
p := Ŵ+

p ∩ φ−1(b) in the level set φ−1(b) such that Ŝ+
p ⊂

Bm−1
1 . Denote by (ρ, y) ∈ [0, 2] × Sm−2 polar coordinates on Bm−1

2 . For c <
b′ < b denote by

W1
∼= Bm−1

2 × [b′, b]

the result of flowing Σ1 by −X until it hits the level φ = b′, so that φ(ρ, y, τ) = τ
for τ ∈ [b′, b] and ρ is invariant under X. Denote by

W0
∼= [1, 2]× Sm−2 × [a, b]

the result of flowing [1, 2]× Sm−2 ⊂ Σ1 by −X until it hits the level φ = a, so
that φ(ρ, y, τ) = τ for τ ∈ [a, b] and ρ is invariant under X. By choosing b > c
and Σ1 sufficiently small we can ensure that

W := W0 ∪W1 ⊂ N .

Now pick R ⊂ T ⊂ R2 exactly as in the proof of Lemma 8.13. Then the region

U := {(ρ, y, τ) ∈ W | (ρ, τ) ∈ R}

has the desired properties.

The next lemma states that we can interpolate between two Lyapunov functions
near the stable manifold.

Lemma 8.15. Let X be a vector field with Lyapunov function φ and hyperbolic
(resp. embryonic) zero p. Suppose that φloc is a Lyapunov function for X near
p with φ(p) = φloc(p) = c. For suitable a < c define D−

p (resp. D̂−
p ) as above.

Then there exists a Lyapunov function χ : N → [a,∞) on a neighborhood N of
D−

p (resp. D̂−
p ) which agrees with φ near N ∩ φ−1(a) and with φloc near p.
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Proof. Pick a sufficiently small δ > 0. If p is hyperbolic X has no critical points
on the set D−

p ∩{φ ≥ a+δ}∩{φloc ≤ c−δ} and is transverse to its boundary. If p

is embryonic X has no critical points on the set D̂−
p ∩{φ ≥ a+δ}∩{φloc ≤ c−δ},

is transverse to the boundary components D̂−
p ∩ {φ = a + δ} and D̂−

p ∩ {φloc =
c− δ}, and is tangent to the boundary component D−

p ∩ {φ ≥ a + δ} ∩{ φloc ≤
c− δ}. Hence in either case we can use the flow of X to construct a Lyapunov
function χ on D−

p (resp. D̂−
p ) which agrees with φ for φ ≤ a + δ and with φloc

for φloc ≤ c − δ. Applying the same argument to a small neighborhood of D−
p

(resp. D̂−
p ) yields the desired function χ.

Proof of Proposition 8.11. We first prove part (a) for p hyperbolic. Let χ : N →
R be as in Lemma 8.15, and let

Sm−k−1 ×Dk × [a, b] ∼= U ⊂ N \D−
p

be as in Lemma 8.13. For t ∈ [a, b] set

Ut := Sm−k−1 ×Dk × {t}.

Then the function
θ : U → R, θ(x, ρ, y, t) := t

has the following properties:

(i) φ ≥ θ on U ;

(ii) φ = θ near (Sm−k−1 × ∂Dk × [a, b]) ∪ Ub;

(iii) X · θ > 0.

After replacing χ by f ◦ χ for a suitable function f with f(t) = t near t ≤ c
we may assume that supN χ < b. Pick a small δ > 0 such that supN χ <
b − δ and χ = φ on N ∩ {a ≤ φ ≤ a + δ}. Interchange level sets of θ near
Sm−k−1 × ∂Dk × [a, b] to obtain a function θ̃ for which (ii) and (iii) still hold,
but instead of (i) we have θ̃(ρ, a+ δ) > b− δ for all ρ ∈ [0, 2− δ]. This condition
ensures θ̃ ≥ χ on

U ′ := (Sm−k−1×[0, 2−δ]×Sk−1×[a+δ, b])∪(Sm−k−1×[0, 2]×Sk−1×[a, a+δ]).

Extend θ̃ to N by setting θ̃ := a on N \ U . Set

U ′′ := Sm−k−1 × [2− δ, 2]× Sk−1 × [a + δ, b]

and define ψ : V → R by

ψ :=

{
max(θ̃, χ) on N \ U ′′,

φ outside N \ U ′′.
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Since θ̃ ≥ χ on U ′ this defines a continuous function. Since χ ≥ a on N , the
function ψ agrees with χ on N \U , in particular ψ = φloc near p. According to
Proposition 3.22, a suitable smoothing of ψ will be a Lyapunov function for X State better result to

refer to!with the desired properties. This proves part (a) for p hyperbolic.
Part (a) for p embryonic is proved analogously, using Lemma 8.13 and Lemma 8.15
for the embryonic case.
Finally, we prove part (b). Let Xt, φt, φloc

t for t ∈ [−ε, ε] be as in the statement
of (b). Part (a) yields for each t a Lyapunov function for Xt which agrees with
φt outside U and with φloc

t near p. Note that for each t the constructions in
part (a) can be done smoothly for all parameters s sufficiently close to t. So
for each t ∈ [−ε, ε] we find an open subset It ⊂ [−ε, ε] and a smooth family
of Lyapunov functions ψt

s, s ∈ It, for Xs which agrees with φs outside U and
with φloc

s near p. Since finitely many of the It cover [−ε, ε], we find a partition
−ε = t0 < t1 < · · · < tN = ε and smooth families of Lyapunov functions ψi

t,
t ∈ [ti, ti−1], i = 1, . . . , N for Xt which agree with φt outside U and with φloc

t

near p. Now for each 1 ≤ i ≤ N − 1 the functions ψi
ti

and ψi+1
ti

both agree
with φti outside U and with φloc

ti
near p, so the same holds for the interpolating

functions (1 − s)ψi
ti

+ sψi+1
ti

, s ∈ [0, 1]. Concatenating the families ψi
t with

these interpolations and appropriately changing the parametrization yields the
desired family ψt and concludes the proof of Proposition 8.11.

8.4 Morse functions

8.5 Modifications of Morse functions

8.6 The h-cobordism theorem



Chapter 9

J-convex surroundings

9.1 J-convex surrounding problem

For a closed subset A of a complex manifold (V, J), consider the following
Surrounding problem. Does A possess arbitrarily small neighborhoods with
smooth J-convex boundary? In Section 2.5 we have seen that the surrounding
problem is solvable for

• totally real submanifolds;

• properly embedded complex hypersurfaces with negative normal bundle.

The main theorem of this chapter solves the surrounding problem for totally
real balls suitably attached to J-convex domains. For a hypersurface Σ in an
almost complex manifold (V, J), we say that a submanifold L with boundary
∂L ⊂ Σ is attached J-orthogonally to Σ along ∂L if, for each point p ∈ ∂L,
JTpL ⊂ TpΣ and TpL 0⊂ TpΣ. The first condition implies that ∂L is an integral
submanifold for the maximal complex tangency ξ on Σ. If Σ is J-convex and
dimR L = dimC V = n, then the second condition TpL 0⊂ TpΣ follows from the
first one because integral submanifolds of the contact structure ξ have dimension
at most n− 1.

Theorem 9.1. Let (V, J) be a complex manifold of complex dimension n and
W ⊂ V a compact domain with smooth J-convex boundary ∂W . Let ∆ ⊂
V \ intW be a a totally real k-ball attached J-orthogonally to ∂W along ∂∆.
Let V ′ ⊂ V be an open neighborhood of W ∪ ∆. Then W ∪ ∆ has a compact
neighborhood W ′ ⊂ V ′ with smooth J-convex boundary.
Moreover, if k < n and f(Dk ×Dn−k) ⊂ V \ intW is a totally real embedding
extending ∆ = f(Dk × {0}), attached J-orthogonally to ∂W along f(∂Dk ×
Dn−k), then W ′ can be chosen such that ∂W ′ intersects f(Dk × Dn−k) J-
orthogonally.

113
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Proof. We use the notation of Lemma 4.9. Thus for k ≤ n we set

r :=
√

x2
1 + · · ·+ x2

n + y2
k+1 + · · ·+ y2

n, R :=
√

y2
1 + · · ·+ y2

k,

where x1 + iy1, . . . , xn + iyn are complex coordinates in Cn. The notation D
stands for the unit k-disc {R ≤ 1, r = 0} ⊂ Cn. We denote by Hε the k-handle

{R ≤ 1 + ε, r ≤ ε} ⊂ Cn.

Let us consider a slightly bigger domain Ŵ ⊂ V ′, W ⊂ Int Ŵ , with a J-convex
boundary ∂Ŵ which J-orthogonally intersect ∆. Denote ∆̃ := ∆ \ Int W̃ . Let
us parameterize ∆ by a diffeomorphism f : Dε → ∆ such that f(D) = ∆̃. The
diffeomorphism f can be extended to a totally real embedding f̃ : Dε×Dn−k →
V ′ such that f̃ |Dε×0 = f and f̃(Dε × Dn−k) is J-orthogonal to ∂W̃ . The
embedding f̃ can be extended to a diffeomorphism F : Uε(Dε × Dn−k) → V ′

such that the 2-jet of the pull-back complex structure J̃ = f∗J coincides with the
standard complex structure i along Dε×Dn−k ⊂ Cn. In particular, for any δ > 0
there is a σ > 0 such that in Uσ(Dε×Dn−k) the complex structures i and J̃ are
δ-close in the C2-metric. Denote Σ̃ := F−1Σ̂. Using Proposition 3.15 we find for
any a > 1 a hypersurface Σ̃′ which coincides with Σ̃ outside Uσ(Dε×Dn−k), and
with the hypersurface {S(r) =

√
1 + ar2} in Uσ′(Dε ×Dn−k) for a sufficiently

small positive σ′ < σ. It can make this construction keeping the i-orthogonality
condition between Dε×Dn−k and the hypersurface Σ̃′. Using Corollary 4.15 we
can construct an i-convex hypersurface Σ′ (given by {R = ϕ(r)} for a suitable
shape ϕ) which surrounds the disk D and coincides with Σ̃′ outside Uσ′(Dε).
Note that by Lemma 4.9 the hypersurface {R = ϕ(r)}, and hence Σ′ is i-
orthogonal to Dε × Dn−k. By Remark ?? the modulus of i-convexity of Σ̃′
is bounded below by a constant independent of σ′. Hence, by Lemma ?? we
conclude that if σ is chosen small enough then Σ′ is also J̃-convex. Let W̃ ⊂ H
be the region bounded by Σ′ and containing D. Then W ′ := Ŵ ∪ F (W̃ ) is the
desired neighborhood of W ∪∆.

Corollary 9.2. Let (V, J) be a complex manifold and W ⊂ V a compact do-
main with smooth J-convex boundary ∂W . Let L ⊂ V \ intW be a totally real
compact submanifold attached J-orthogonally to ∂W along ∂L. Then W ∪L has
arbitrarily small neighborhoods with smooth J-convex boundary.

Proof. Let U ⊂ V be a given open neighborhood of W ∪ L. Pick a Morse
function φ : L → R with regular level set ∂L = φ−1(0) and critical points pi of
values 0 < φ(p1) < · · · < φ(pm) and Morse indices ki. Consider the gradient
flow of φ with respect to some Riemannian metric. The stable manifold D−(p1)
of p1 is a totally real k1-ball attached J-orthogonally to ∂W . By Theorem 9.1,
we find a compact neighborhood W1 ⊂ U of W ∪D−(p1) with smooth J-convex
boundary. Moreover, due to the last statement in Theorem 9.1, we may assume
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that L intersects ∂W1 J-orthogonally. In particular, D−(p2) is attached J-
orthogonally to W1. Now continue by induction over the critical points.

The preceding corollary extends to totally real immersions. We say that two
totally real submanifolds L1, L2 of the same dimension in an almost complex
manifold (V, J) intersect J-orthogonally at p if JTpL1 = TpL2.

Corollary 9.3. Let (V, J) be a complex manifold and W ⊂ V a compact domain
with smooth J-convex boundary ∂W . Let L ⊂ V \ intW be a totally real immer-
sion of a compact manifold, with finitely many J-orthogonal self-intersections
away from ∂L and attached J-orthogonally to ∂W along ∂L. Then W ∪ L has
arbitrarily small neighborhoods with smooth J-convex boundary.

Proof. Let U ⊂ V be a given open neighborhood of W ∪ L. Let L1, L2 be the
two local branches of L at a self-intersection point p. By J-orthogonality of the
intersection, there exist local holomorphic coordinates in which L1 ⊂ Rn and
L2 ⊂ iRn. Let B(p) ⊂ U be the image in V of a small ball around the origin in
Cn. The boundary ∂B(p) is J-convex and intersects L1 and L2 J-orthogonally.
Construct such balls around all self-intersection points p1, . . . , pm, disjoint from
each other and from ∂W . Then W ′ := W ∪ B(p1) ∪ · · · ∪ B(pm) ⊂ U has
J-convex boundary, to which the totally real submanifold L \ intW ′ is attached
J-orthogonally. Hence the result follows from Corollary 9.2.

In particular, for W = ∅ we obtain

Corollary 9.4. Let (V, J) be a complex manifold and L ⊂ V a totally real im-
mersion of a compact manifold with finitely many J-orthogonal self-intersections.
Then L has arbitrarily small neighborhoods with smooth J-convex boundary.

Remark 9.5. An alternative proof of the last corollary combines surroundings
of totally real embeddings (Proposition 2.13) with the surroundings near the
double points provided by Lemma 4.7 below.

9.2 J-convex surroundings and extensions

Lemma 9.6. Let A be a closed subset of a complex manifold (V, J). If the
surrounding problem is solvable for A, then given a bounded J-convex function
φ on a neighborhood of A, A possess arbitrarily small neighborhoods U with
smooth J-convex functions ψ such that ψ = φ near A and ∂U is a regular level
set of ψ.

Proof. By hypothesis, A possesses arbitrarily small neighborhoods U with smooth
J-convex boundary. Let c < infA φ and C > supA φ. By Lemma 2.4, there ex-
ists a J-convex surjective function φ̃ : W → [c, C + 1] on a neighborhood W of
∂U such that ∂U = φ̃−1(C) is a regular level set. A smoothing of max(φ, φ̃) is
the desired function ψ.
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The main theorem of this chapter allows us to extend J-convex functions over
handles with control over the critical points.

Theorem 9.7. Let (V, J) be a complex manifold of complex dimension n and
W ⊂ V a compact domain. Let ∆ ⊂ V \ intW be an embedded totally real
k-ball attached J-orthogonally to ∂W along ∂∆. Let φ : W → R be a J-convex
function with regular level set ∂W = φ−1(a) which is extended to a function on
∆ such that φ >a on int∆. Then given any open neighborhood Ṽ ⊂ V of W ∪∆
and b > max∆φ, there exists a compact neighborhood W̃ ⊂ Ṽ of W ∪∆ and a
J-convex function ψ : W̃ → R with the following properties:
(a) ψ = φ on W ′ := {φ ≤ a′} for some a′ < a;
(b) ψ−1(b) is a regular level set that coincides with φ−1(a) outside a neighborhood
U ⊂ V \W ′ of ∂∆;
(c) ψ = f ◦ φ on W \ U for a smooth function f : R → R;
(d) there exists an isotopy ht : ∆′ → ∆′ (on an extension ∆′ of ∆ up to ∂W ′)
such that ht = 1l on ∆′ \ U , h0 = 1l, and h∗1φ = ψ;
(e) the critical points of ψ agree with the critical points of φ|∆ and have positive
definite Hessian transversely to ∆.

The following is the key result for the proof of the Theorem 9.7.

Proposition 9.8. Let H be a standard k-handle and φ : U → R an i-convex
function on a neighborhood of S such that φ|S ≡ a and dφ = −2dR along S.
Extend φ to a function D ∪ U → R such that φ >a on intD. Let Ũ be a
neighborhood of S in U and b > maxDφ. Then there exists a neighborhood
W ⊂ H of {φ ≤ a}∪D and an i-convex function ψ : W → R with the following
properties:
(a) ψ = φ on {φ ≤ a′} for some a′ < a;
(b) ψ−1(b) is a regular level set that coincides with φ−1(a) outside Ũ ;
(c) ψ = f ◦ φ on {φ ≤ a} \ Ũ for a smooth function f : R → R;
(d) there exists an isotopy ht : D1+ε → D1+ε such that ht = 1l outside D1+ε∩Ũ ,
h0 = 1l, and h∗1φ = ψ;
(e) the critical points of ψ agree with the critical points of φ|D and have positive
definite Hessian transversely to D.

Proof. Fix A > 1. By hypothesis, φ coincides together with its differential
along S = {r = 0, R = 1} with the i-convex function Ar2 − R2 + 1 + a. By
Proposition 3.15, there exists an i-convex function φ̃ : U → R, C1-close to φ,
with φ̃ = φ outside Ũ and φ̃ = Ar2 − R2 + 1 + a near S. Since φ̃ and φ are
C1-close and have no critical points on (sufficiently small) Ũ , there exists and
isotopy ht : D1+ε → D1+ε such that ht = 1l outside D1+ε ∩ Ũ , h0 = 1l, and
h∗1φ = φ̃.
Extend φ̃ to an open neighborhood W̃ of U ∪ D by φ̃|D + Ar2 outside U .
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This function will be i-convex for A sufficiently large. Choose W̃ so small that
supW̃ φ̃ <b .

By construction, the level set φ̃−1(a) agrees with the hypersurface {R =
√

1 + Ar2}
on r ≤ γ for some γ > 0. By Corollary 4.15 and Lemma 4.9, there exists an
i-convex hypersurface Σ ⊂ W̃ (given by {R = ϕ(r)} for a suitable shape ϕ)
which surrounds the disk D and coincides with φ̃−1(a) along r = γ.

Choose a tubular neighborhood Σ̃[ − 1, 1] of Σ = Σ{̃0} in W̃ such that the
hypersurfaces Σt := Σ{̃t} are i-convex, and outside Ũ they coincide with level
surfaces of the function φ. By Lemma 2.4, there exists an i-convex function
ζ : Σ̃[− 1, 1] → R with level sets Σt such that ζ|Σ0 = b and ζΣ−1 = b′ < infW̃ φ̃.
Extend ζ to the domain bounded by Σ−1 as the constant b′ and set

ψ̃ := max(φ̃, ζ)

on the domain W := {ζ ≤ b} ⊂ W̃ bounded by Σ. Note that ψ̃ = φ̃ in the
region {ζ = b′} bounded by Σ−1, hence ψ̃ is strictly i-convex (although the
constant function b′ is not) and ψ̃ = φ̃ near D. In particular, the critical points
of ψ̃ on {ζ = b′} agree with the critical points of φ|D and have positive definite
Hessian transversely to D. On the other hand, ψ̃ = ζ near Σ, and in particular
Σ = ψ̃−1(b).
Observe that on W \ Ũ we have ψ̃ = f ◦ φ̃ for a continuous convex function
f̃ : R → R which is smooth except at one point (where ζ = φ̃) and satisfies
f̃(x) = x for x ≤ a′ with some a′ < a. Let f be a smooth convex function which
agrees with f̃ for x ≤ a′ and x ≥ a. We can replace ψ̃ on {φ̃ ≤ a} \ Ũ by the
smooth function f ◦ φ̃, without changing it near D1+ε and keeping it i-convex.
Let us denote the resulting function by ψ̂. Finally, we smoothen the function
ψ̂, without changing it on {φ̃ ≤ a} \ Ũ and near D1+ε, to the desired i-convex
function ψ.
It only remains to verify that the smoothing processes do not create new critical
points. For the step from ψ̃ to ψ̂ this is obvious. For the smoothing from ψ̂ to
ψ, after shrinking Ũ and W̃ , we may assume that it takes place in the region
where 0 < r < γ and φ̃(x, y) = φ̃D1+ε(x1, . . . , xk) + Ar2. In this region we have
∇r · φ̃ > 0. Since ∇r is also transverse to the hypersurface Σ = {R2−Ar2 = 1},
hence to each of the nearby hypersurfaces Σt, it satisfies ∇r · ζ > 0 whenever
ζ > b′. Now it follows from Propositions 3.21 and 3.22 that the smoothing of
max(ζ, φ̃) does not create new critical points.

Proof of Theorem 9.7. After a small perturbation near ∂∆, we may assume that
φ is real analytic near ∂∆. Let ν∆ be the unique vector field tangent to ∆ along
∂∆ with ν∆ · φ = −2. Thus ν∆ is real analytic. By Lemma ??, there exists
a holomorphic embedding F : Hε ↪→ V with F (D) = ∆ whose differential
along S maps ν to ν∆ and T (∂−H)|S to T (∂W ). The i-convex function F ∗φ :
U∪D → R, with U a neighborhood of S, satisfies φ|S ≡ a and dφ = −2dR along
S. Let ψ̃ : H ⊃ W̃ → R be the i-convex function provided by Proposition 9.8.
Property (c) allows us to extend F∗ψ̃ by f ◦φ to a J-convex function ψ on W ′ :=
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W ∪ F (W̃ ). The properties of ψ in Theorem 9.7 follow from the corresponding
properties in Proposition 9.8.

9.3 Surrounding by level-sets of a given J-convex
function

Theorem 9.9. Let φ : V → R be a J-convex function. Suppose that for a
critical point p of φ and a real a the stable manifold of p intersects φ ≥ a
along a disc ∆. Then for any neighborhood U of {φ ≤ a} ∪ ∆ there exists
diffeomorphisms g : V → V and h : R → R such that

• the function ψ = h ◦ φ ◦ g is J-convex;

• g|V \ U preserves the level sets of φ;

• h|(−∞,a) = Id;

• there exists a′ > a such that the level set {ψ = a′} surrounds {φ ≤ a} ∪∆
and is contained in U .

TO BE CONTINUED



Chapter 10

Modifications of J-convex
Morse functions

In this chapter we show how to modify critical points of J-convex Morse func-
tions. This parallels the h-cobordism theory for ordinary Morse functions. Thus
we wish to do the following modifications:

• moving the attaching spheres by isotopies;

• changing the order of critical levels;

• creation and cancellation of critical points;

• handle slides.

10.1 Moving the attaching spheres by isotopies

For a function φ : V → R we will use the notations

V b := φ−1(b), V [a,b] := φ−1([a, b]).

The goal in this section is to prove the following result.

Proposition 10.1. Consider a complex manifold (V, J) and a proper J-convex
function φ : V → R without critical values in the interval [a, b]. Let Λ ⊂ V b

be an isotropic submanifold and L ⊂ V its image under the flow of −∇φφ. Let
(Λt)t∈[0,1] be an isotropic isotopy of Λ0 := L ∩ V a in V a.
Then, after composing φ with a sufficiently convex increasing function f :
[a, b] → R, there exists a diffeotopy ht : V → V with the following properties for
all t ∈ [0, 1]:
(i) ht = 1l outside V [a,b];
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(ii) φt := φ ◦ ht is J-convex;
(iii) the image Lt of Λ under the flow of −∇φtφt intersects V a in Λt.

Remark 10.2. The corresponding result for ordinary functions φ is very easy:
It just states that one can realize a smooth isotopy of spheres Λt descending
spheres for a homotopy of gradient-like vector fields, keeping the function φ
fixed. In contrast, Proposition 10.1 is more subtle because the gradient vector
fields ∇φtφt are determined by the functions φt themselves.

The proof requires some preparation. The following lemma is the main technical
ingredient.

Lemma 10.3. Let Σ be a J-convex hypersurface in a complex manifold (V, J)
and X⊥ a vector field near Σ with JX⊥ ∈ TΣ. Let Λ ⊂ Σ be an isotropic
submanifold and X be a vector field along Λ that is transverse to Σ. Suppose
that Σ,Λ, X⊥ are real analytic. Then for any compact subset K ⊂ Λ thereRemove assumption

“real analytic”? exists a J-convex hypersurface Σ′ with the following properties:
(i) K ⊂ Σ′ and ξ ⊂ TΣ′ along K;
(ii) Σ′ is transverse to X⊥ and Σ′ = Σ outside a neighborhood of K;
(iii) JX(x) ∈ TxΣ′ for all x ∈ K.

Proof. Let n = dimC V and k − 1 = dim Λ. We will only carry out the proof in
the Legendrian case k = n, the case k < n being analogous but notationally more
involved. Note that the case k < n formally follows from the Legendrian case
provided that the symplectic normal bundle (TΛ)ω/TΛ of Λ in the maximal
complex tangency ξ ⊂ TΣ is trivial. Indeed, in this case a neighborhood of
Λ (after shrinking it) is isomorphic to a neighborhood of the zero section in
J1Λ ⊕ Cn−k by a real analytic contactomorphism (see Chapter5). So we can
extend Λ to a real analytic Legendrian submanifold Λ̃ ∼= Λ× Rn−k ⊂ Σ and X
to a vector field X̃ along Λ̃.
After possibly changing its sign, we may assume that X⊥ is opposite to the
coorientation of Σ. The flow of X⊥ extends Λ (after shrinking Λ) to a real
analytic submanifold Λ× [−1, 1] ⊂ V . Thus a neighborhood of Λ in V is biholo-
morphic to a neighborhood of Λ⊕ 0 in ΛC⊕C. Here ΛC is the complexification
of Λ and X⊥ generates the real line 0 ⊕ iR. This implies that TΣ = TΛC ⊕ R
with complex tangency ξ = TΛC along Λ. Denote coordinates on ΛC ⊕ C by
(z, w) = (x, y, u + iv), where y are coordinates on Λ and x coordinates in the
fibres of ΛC. In these coordinates, Σ can be written near Λ as the graph

Σ = {v = φ(x, y, u)}

of a function φ with φ(0, y, 0) = 0 and dφ(0, y, 0) = 0. The choice of X⊥

implies that Σ is J-convex cooriented from above. We will find Σ′ as the graph
Σ′ = {v = φ̃(x, y, u)} of a function φ̃ with φ̃ = φ outside a neighborhood of
K ⊕ 0 in ΛC ⊕ R. The condition K ⊂ Σ′ and ξ ⊂ TΣ along K are equivalent
to φ̃(0, y, 0) = 0 and dzφ̃(0, y, 0) = 0 for y ∈ K. After rescaling and possibly
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changing its sign, we can write the given vector field X as X = ∂v− τ(y)∂u +Y
with Y tangent to ΛC and τ some given function on Λ. Then JX ∈ TΣ′ along
K is equivalent to φ̃u(0, y, 0) = τ(y) for y ∈ K.
Let Q := dist2Λ be the squared distance (with respect to some Hermitian metric)
from the zero section in ΛC. By Lemma 2.13, Q is a J-convex function. Note
that the hypersurface {v = Q(x, y)} is tangent to Σ along Λ. Its Levi form at
points of Λ is given by −ddC(

Q(x, y) − v
)
|ξ=TΛC = −ddCQ, so {v = Q(x, y)}

is J-convex along Λ cooriented from above. Thus by Corollary 3.18, we can
modify Σ near K, preserving J-convexity and the condition Λ ⊂ Σ, such that
Σ = {v = Q(x, y)} near K.
Now let a function τ(y) be given as above. Our task is to find a smooth function
φ̃ with J-convex graph such that

φ̃(0, y, 0) = 0, dzφ̃(0, y, 0) = 0, φ̃u(0, y, 0) = τ(y)

for y ∈ K and φ̃(x, y, u) = Q(x, y) outside a neighborhood of K.
Pick a function g(y, u) on Λ ⊕ R with g(y, 0) = 0 and gu(y, 0) = τ(y) for all
y ∈ K, and such that g(y, u) < −1 outside K ′ × [−1, 1] for some compact
neighborhood K ′ of K in Λ. For any ε > 0 let gε(y, u) := εg(y, u/ε). These
functions satisfy gε(y, 0) = 0, dzgε(y, 0) = 0 and gε

u(y, 0) = τ(y) for all y ∈ K,
and gε(y, u) < −ε outside K ′ × [−ε, ε]. Moreover, we have

|gε(y, u)| ≤ C0max(|u|, ε), |gε
y|, |gε

yy| ≤ C0ε, |gε
u|, |gε

yu| ≤ C0, |gε
uu| ≤ C0/ε

for (y, u) ∈ K ′× [−ε, ε] with a constant C0 not depending on ε. For 0 < a ≤ 1/2
and ε > 0 consider the function

ψ(x, y, u) := aQ(x, y) + gε(y, u).

Our desired function φ̃ will be a smoothing of

ψ̃ := max(Q− ε, ψ).

Let us first determine the region where ψ < Q− ε, or equivalently,

gε(y, u) + ε < (1− a)Q(x, y). (10.1)

For |u| > ε or y /∈ K ′ this inequality holds because the left hand side is negative
and the right hand side is nonnegative. Moreover, 1− a ≥ 1/2 implies

gε(y, u) + ε ≤ (C0 + 1)ε ≤ 2(C0 + 1)ε(1− a),

so inequality (10.1) holds if Q(x, y) > C1ε with the constant C1 := 2(C0 + 1)
not depending on ε and a. So we have ψ ≤ Q− ε outside the compact region

W ′ := {(x, y, u) | y ∈ K ′, |u| ≤ ε, Q(x, y) ≤ C1ε}.

On the other hand, in the region

W := {(x, y, u) | y ∈ K ′, Q(x, y) + C0|u| ≤ ε}
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we have the converse estimate

gε(y, u) + ε ≥ εβ(y)− C0|u|β(y) ≥ Q(x, y) ≥ (1− a)Q(x, y).

Hence ψ ≥ Q− ε on the neighborhood W of K.
We will show below that for a and ε sufficiently small the graph of ψ is J-convex
on W ′. Assuming this for the moment, note that the graph of Q− ε is also J-
convex. Thus by Corollary 3.26, we can C0-approximate ψ̃ by a smooth function
ψ with J-convex graph which agrees with ψ on W and Q− ε outside W ′. (Note
that in Corollary 3.26 the minimum appears rather than the maximum because
the graphs are cooriented from below rather than above). Now on any fixed
(i.e. independent of a, ε) compact neighborhood U of K ′, the function Q − ε
C2-approaches Q as ε → 0. Hence for small ε we can modify Σ̃ outside W ′ so
that it agrees with Σ outside U . This yields the desired hypersurface Σ′.
It remains to prove J-convexity of the hypersurface {v = ψ(z, u)} over W ′ for
small a and ε. For this, cover K ′ by finitely many holomorphic coordinate
charts in which Λ corresponds to iRn−1. Choose ε so small that the coordi-
nate charts cover the region {(x, y) | y ∈ K ′, Q(x, y) ≤ C1ε}. According to
Lemma ??, in each such coordinate chart a sufficient condition for J-convexity
of the hypersurface {v = ψ(z, u)} is given by

Lmin(ψ) := Hmin
ψ − 2|ψuu| |dzψ|2 − 4|dzψu| |dzψ|(1 + |ψu|) > 0.

By the J-convexity of the function Q, we have Hmin
Q ≥ γ for some constant

γ > 0. Moreover, |Qz| ≤ C|x| and all derivatives of Q involving a u-derivative
vanish. Here and in the following C denotes a generic constant that depends on
C0, C1, γ but not on a, ε. The estimates for gε yield

Hmin
ψ ≥ γa− Cε, |ψz| ≤ Ca|x|+ Cε, |ψu|, |ψzu| ≤ C, |ψuu| ≤ C/ε

for (y, u) ∈ K ′ × [−ε, ε]. It follows that

Lmin(ψ) ≥ γa− Cε− Ca|x| − Ca2|x|2/ε.

Now on W ′ we have γ|x|2 ≤ Q(x, y) ≤ C1ε, and hence

Lmin(ψ) ≥ γa− Cε− Ca
√

ε− Ca2.

Choosing ε ≤ a2, we obtain

Lmin(ψ) ≥ γa− Ca2,

which is positive for a > 0 sufficiently small. This proves J-convexity of the
hypersurface {v = ψ(z, u)} and hence the lemma.

Lemma 10.4. Let φ be a proper J-convex function on the complex manifold V
without critical values in [a, b]. Let L ⊂ V [a,b] be a totally real submanifold that
intersects each level set J-orthogonally. Suppose that φ and L are real analytic.
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Then there exists a J-convex function ψ, C1-close to φ, such that ψ = φ on L
and ∇ψψ is tangent to L.

Moreover, if ∇φφ is already tangent to L near V [a,a′] ∪V [b′,b] for some [a′, b′] ⊂
(a, b), then we can choose ψ = φ on V [a,a′] ∪ V [b′,b].

Proof. Let X be the unique vector field tangent to L, orthogonal to the inter-
section of L with level sets of φ, with dφ(X) ≡ 1. Then X is real analytic and
JX is tangent to the level sets of φ. The flow of X defines a real analytic diffeo-
morphism Λ× i[a, b] ∼= L, where Λ := L ∩ V a. This diffeomorphism extends to
a biholomorphic identification of a neighborhood of L in V with ΛC ×C, where
ΛC is the complexification of Λ. Denote coordinates on ΛC by z and on C by
u+ iv. Under this identification L corresponds to Λ× i[a, b], and X = ∂v, φ = v
along L. Since the level sets of φ are J-orthogonal to L, they are tangent to
TΛC ⊕ R along L.
Define the function

ψ(z, u, v) := v + Q(z) +
1
2
f(v)u2

on ΛC × C, where Q := dist2Λ for some Hermitian metric on ΛC and f is a
positive function. We compute

dψ = dv + dQ + f(v)u du +
1
2
f ′(v)u2dv,

dCψ = du + dQ ◦ JΛC − f(v)u dv +
1
2
f ′(v)u2du,

ωψ = −ddCψ = ωQ + f(v)du ∧ dv along L.

In particular, ψ is J-convex and dψ = dv = dφ along L. Hence by Proposi-
tion 3.15, ψ can be extended to a J-convex function on V which is C1-close to φ
and agrees with φ outside a neighborhood of L. The gradient of ψ is determined
by the equation

ωψ(∇ψψ, Y ) = −dCψ(Y )

for all Y ∈ TV . Now dCψ = du along L implies ∇ψψ = f(v)∂v along L, so ∇ψψ
is tangent to L.
Finally, suppose that ∇φφ is already tangent to L near V [a,a′] ∪ V [b′,b]. Pick a
cutoff function β : V → [0, 1] which equals 0 outside V [a′,b′] and 1 where ∇φφ
is not tangent to L. Construct ψ as above and set

θ := (1− β)φ + βψ.

This function agrees with φ on V [a,a′]∪V [b′,b], and by Lemma 3.16 , θ is J-convex
for ψ sufficiently C1-close to φ.
Consider a point x with 0 < β(x) < 1. By construction, we have φ(x) = ψ(x)
and dφ(x) = dψ(x). Moreover, since ∇φφ(x) is tangent to L, the vector fields
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X, ∇φφ and ∇ψψ are parallel along L. By appropriate choice of the function f
in the construction of ψ, we can therefore arrange ∇φφ = ∇ψψ along L. Since
φ and ψ agree to first order, we have

ωθ = (1− β)ωφ + βωψ

at the point x. Hence for any Y ∈ TxV ,

ωθ(∇θθ, Y ) = −dCθ(Y )

= −(1− β)dCφ− βdCψ

= (1− β)ωφ(∇φφ, Y ) + βωψ(∇ψψ, Y )
= (1− β)ωφ(∇φφ, Y ) + βωψ(∇φφ, Y )
= ωθ(∇φφ, Y ).

This shows ∇θθ = ∇φφ along L. In particular, ∇θθ is tangent to L, so θ is the
desired function.

Next we will prove a special case of Proposition 10.1.

Lemma 10.5. Proposition 10.1 holds provided that the Λt are sufficiently C2-
close to Λ0.

Include complete proof!

Proof. (sketch) We will construct the ht C2-close to the identity. Then the φt

will be C2-close to φ and hence automatically J-convex. So we only have to
show that by C2-small variations of φ we can arrange L to meet V a in any
Legendrian embedding C2-close to Λ0.
Consider a variation φε := φ + εψ of φ in the direction of a function ψ with a
small parameter ε. The new gradient field will be of the form

∇φεφε = ∇φφ + εY + O(ε2).

For any function f let ωf := −ddCf . If this is nondegenerate the gradient ∇fg
of another function is determined by the equation

ωf (∇fg, v) = −dg(Jv)

for all v ∈ TV . Using this, we find

ωφε(∇φεφε, v) = −dφε(Jv)
= −dφ(Jv)− εdψ(Jv)
= ωφ(∇φφ, v) + εωφ(∇φψ, v).

On the other hand, we have

ωφε(∇φεφε, v) = ωφ(∇φφ, v) + εωφ(Y, v) + εωψ(∇φφ, v) + O(ε2).
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Comparing the linear terms in ε, we find

i(Y−∇φψ)ωφ = i∇φφddCψ.

This equation uniquely determines Y = ∇φψ + Y ′ with iY ′ωφ = i∇φφddCψ. As
in the proof of Proposition 2.13, consider (in the Lagrangian case) local complex
coordinates (x, y) near Λ0 in which L = {y = 0} and ∇φφ = ∂x1 . Take ψ to
vanish on L, so ψ is only a function of x. Then Y ′ is a vector field in the
x-coordinates, i.e. tangent to L. By varying the derivative of ψ along L we can
arrange for ∇φψ any vector field in the y-coordinates, i.e. transverse to L. Now
the result follows from the implicit function theorem.

Proof of Proposition 10.1. Step 1. We first prove the proposition under the
hypothesis that φ and the isotopy Λt are real analytic.
Let Σ := V a. The flow of the real analytic vector field ∇φ/|∇φ| defines a real
analytic diffeomorphism

Σ× [a, b] ∼= V [a,b].

Under this identification, φ corresponds to the function (x, r) 1→ r, ∇φ/|∇φ| to
the vector field ∂r, L to Λ× [a, b], and Λt to Λt × {a}. In view of Lemma 12.9,
Λt × {r} is isotropic for all r ∈ [a, b].
Pick a C2-function g : [a, b] → [0, 1] which is real analytic on an interval [a′, b′] ⊂
(a, b) and equals 1 on [a, a′] and 0 on [b′, b]. For t ∈ [0, 1] define

Lt :=
⋃

r∈[a,b]

Λtg(r) × {r} ⊂ Σ× [a, b].

This is a totally ral submanifold, real analytic on Σ × [a′, b′], which intersects
each level set Σ× {r} in the isotropic submanifold

Λt,r := Λtg(r) × {r}.

Let Xt,r be the unique vector field tangent to Lt along Λt,r with dr(Xr,t) = 1.
In particular, Xt,r is transverse to the level sets Σ×{r}. Hence by Lemma 10.3
there exist J-convex hypersurfaces Σt,r transverse to ∂r such that Λt,r ⊂ Σt,r,
the contact structure ξr is contained in TΣt,r along Λt,r, and JXt,r ∈ TΣt,r.
Note that the last two conditions say that Lt intersects Σt,r J-orthogonally for
all r. Moreover, we may choose Σt,r = Σ× {r} for r outside [a′, b′].
Proof!

By construction, the Σt,r for fixed t and varying r form a foliation near Lt. Thus
by Proposition 3.28, we can modify the Σt,r to a J-convex foliation, keeping
them fixed near Lt and for r outside [a′, b′]. Let ψt be the function which
equals r on the new hypersurfaces Σ̃r,t. Pick a sufficiently convex increasing
function f : R → R such that f ◦ ψt is J-convex for all t ∈ [0, 1]. Now we apply
Lemma 10.4 to the functions f ◦ψt and the totally real submanifolds Lt over the
set {r ∈ [a′, b′]}. We find J-convex functions φt, C1-close to f ◦ψt and agreeing
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with f ◦ ψt on Lt and for r outside [a′, b′], such that ∇φtφt is tangent to Lt.
Thus Lt is the image of Λt,b = Λ0 × {b} = Λ under the flow of −∇φtφt, and
by construction Lt intersects Σ× {a} in Λt,a = Λt × {a}. This proves property
(iii).
By construction, φt agrees with f ◦ φ for r outside [a′, b′]. Moreover, since
L0 = L, we can arrange φ0 = f ◦ φ. It remains to find an isotopy ht such that
φt = f ◦ φ ◦ ht. Define diffeomorphisms gt : V [a,b] → V [a,b] on the level φ−1(r)
by following the flow of −∇φφ down to V a and then the flow of ∇φtφt up to
the level φ−1

t (r). Then g0 = 1l and φt = f ◦ φ ◦ ht. Moreover, gt = 1l on V [a,a′]

and

gt : V [b′,b] ∼= Σ× [b′, b] → Σ× [b′, b], (x, r) 1→
(
γt(x), r

)

with γt := gt|V b′ . Define ht on the level φ−1(r) as gtρ(r) with a smooth function
ρ : [a, b] → [0, 1] which equals 1 on [a, b′] and 0 near b. Then ht = 1l near b and
ht is the desired isotopy.
Step 2. It remains to remove the hypothesis that φ and the isotopy Λt are real
analytic.
Let φ,Λ,Λt be as in the proposition. Pick an interval [a′, b′] ⊂ (a, b). Let ψ be
C2-close to φ (hence J-convex), real analytic on ψ−1([a′, b′]), with ψ = φ near
∂V [a,b]. Denote by Λ̃t ⊂ ψ−1(a′) the image of Λt under the flow of ∇ψψ. By
Corollary 7.25, we can C1-approximate Λ̃t by a real analytic isotropic isotopy
Λ′t in ψ−1(a′).
The image of Λ under the flow of −∇ψψ intersects ψ−1(a′) in an isotropic
submanifold Λa′ that is C1-close to Λ′0. So by Lemma 10.5, we can modify
ψ inside the region ψ−1([b′, b]) to achieve Λa′ = Λ′0. Similarly, again using
Lemma 10.5, for every t ∈ [0, 1] we can perturb ψ inside the region ψ−1([a, a′])
to ψt such that the image of Λ′t under the flow of −∇ψtψt intersects ψ−1(a) in
Λt.
Denote by Λb′ ⊂ ψ−1(b′) the image of Λ under the flow of −∇ψψ. Now apply
Step 1 to the restriction of ψ to ψ−1([a′, b′]) and the isotropic submanifolds
Λb′ ,Λ′t. Denote the resulting J-convex functions on ψ−1([a′, b′]) by φt and ex-
tend them to V [a,b] via ψ on ψ−1([b′, b]) and ψt on ψ−1([a, a′]). By construction,
these extensions are J-convex, coincide with φ for t = 0 and near ∂V [a,b] and sat-
isfy property (iii). Now the same argument as in Step 1 provides the diffeotopy
ht with φt = φ ◦ ht. This concludes the proof of Proposition 10.1.

10.2 Changing the order of critical levels

In this section we consider the following situation. Let φ be a J-convex function
on an n-dimensional complex manifold V . Let q be a nondegenerate critical
point of φ of index k ≤ n with φ(q) = b. Let a < b and suppose that the stable
manifold W−

q does not meet any critical points of value ≥ a. Define the stable
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disk and sphere
D−

q := W−
q ∩ {φ ≥ a}, S1

q := ∂D−
q .

Let a′, b′ be given with a′ < a < b < b′. The following result states that we can
move the level a above the critical level b by a J-convex deformation.

Proposition 10.6. There exists a homotopy of J-convex functions φt such
that φ0 = φ and φt = ft ◦ φ outside a neighborhood U ⊂ V [a′,b′] of D−

q , where
ft : R → R are increasing convex smooth functions with f0 = 1l, ft(x) = x for
x ≤ a′, and f1(a) > b. Moreover, all φt have q as a nondegenerate index k
critical point of value b and no other critical points in U .

The following lemma reduces the statement of Proposition 10.6 to a model
function on the standard handle Hε = Dk

1+ε ×D2n−k
ε ⊂ Cn. Here zj = xj + iyj

are complex coordinates such that (y1, . . . , yk) are coordinates on Dk
1+ε and

(x1, . . . , xn, yk+1, . . . , yn) on D2n−k
ε . As in Lemma 4.9, introduce the functions

r :=
√

x2
1 + · · ·+ x2

n + y2
k+1 + · · ·+ y2

n, R :=
√

y2
1 + · · ·+ y2

k.

Lemma 10.7. Under the hypothesis of Proposition 10.6 and for any constant
A > B := b − a, after a C1-small J-convex deformation of φ, fixed outside a
neighborhood of D−

q and keeping q as the only critical point (preserving nonde-
generacy and its value), the following holds: There exists a neighborhood of D−

q

biholomorphic to the standard handle Hε in which D−
q corresponds to the disk

D = Dk
1 ⊂ Dk

1+ε and φ to the standard function

ψst(r, R) = Ar2 −BR2 + b.

Proof. By the Morse lemma, for δ > 0 small there exists an embedding f :
Dk

δ → D−
q onto a neighborhood of q such that f∗φ(R) = b − BR2. Using

gradient-like vector fields, this extends to a diffeomorphism f : D → D−
q with

f∗φ(R) = b − BR2. Let f̃ : D ↪→ V be a real analytic embedding C2-close to
f . Extend f̃ to a holomorphic embedding F : Hε ↪→ V . Then F ∗φ|D = f̃∗φ is
C2-close to the function R 1→ b − BR2. Moreover, since the level sets of φ are
J-orthogonal to D−

q , the level sets of F ∗φ are C1-close to being i-orthogonal to
D. Hence we find φ̃, C2-close to φ (thus J-convex) and equal to φ outside a
neighborhood of D−

q , such that F ∗φ̃|D(R) = b−BR2 and the level sets of F ∗φ̃
are i-orthogonal to D.
Now consider on Hε the function

ψst(r, R) := Ar2 −BR2 + b,

which is i-convex for A > B. The conditions on F ∗φ̃ above show that F ∗φ̃
agrees with ψst together with its derivative along D. Hence by Proposition 3.15,
after a C1-small J-convex deformation supported near D we may assume that
F ∗φ̃ = ψst near D. Since the stable and unstable manifolds of 0 with respect
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to F ∗φ̃ and ψst coincide, the critical point 0 remains nondegenerate during this
deformation. C1-closeness ensures that no new critical points are generated.
Now shrink ε such that F ∗φ̃ = ψ on Hε and the lemma is proved.

Proof of Proposition 10.6. We may assume without loss of generality a = 0 and
b = 1; the general case then follows by composing all functions with the affine
function x 1→ (b− a)x + a. After applying the deformation in Lemma 10.7 with
B = 1 and A = 64, we may further assume that there exists a neighborhood U
of D−

q biholomorphic to the standard handle Hε in which D−
q corresponds to

the disk D = Dk
1 ⊂ Dk

1+ε and φ to the standard function

ψst(r, R) = 64r2 −R2 + 1.

Let ψt : Hε → R, t ∈ [0, 1], be the family of i-convex functions from Propo-
sition 4.21 with β < −a′ and any ρ ∈ (0, ε). The ψt can be extended to
smooth functions φt : V → R by φt := ft ◦ φ outside U ∼= Hε, where the func-
tions ft : [−β, 1 + 64ε2] → R from Proposition 4.21 are extended to functions
ft : R → R with ft(x) = x for x ≤ −β and sufficiently convex for x ≥ 1 + 64ε2

such that ft ◦ φ is i-convex. Now the properties of the φt follow from the corre-
sponding properties of ψt and ft.

10.3 Creation and cancellation of critical points

10.3.1 Main propositions

In this section we describe creation and cancellation of critical points of J-convex
functions. We begin by recalling the relevant concepts from Morse theory.
A local model for the creation of a pair of critical points is given by the family
of functions

ψt(x) = x3
1 − tx1 −

k∑

i=2

x2
i +

n∑

i=k+1

x2
i

for x ∈ Rn and t ∈ [−1, 1]. Note that ψt has no critical points for t < 0, two
nondegenerate critical points (±

√
t/3, 0, . . . , 0) of indices k, k− 1 for t > 0, and

a unique degenerate critical point at the origin for t = 0. Replacing ψt by ψ−t

gives a local model for cancellation of a pair of critical points. We call a critical
point p of a function φ an embryo critical point if in a neighborhood of p the
function is equivalent to the model function ψ0 in the sense that φ = f ◦ ψ0 ◦ g
for diffeomorphisms f, g.
As before, W denotes a compact cobordism with boundary ∂W = ∂+W =∂−W
and all functions on W will be assumed to have ∂±W as regular level sets. A
family of functions φt : W → R and gradient-like vector fields Xt is called a
cancellation (resp. creation) family if there is a t0 ∈ (0, 1) such that for t > t0
(resp. t < t0) the function φt has no critical points, for t > t0 (resp. t > t0) it
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has exactly two critical points of index k and k − 1, k = 1, . . . , n transversely
connected by exactly one trajectory of Xt, and for t = t0 it has a unique
embryo critical point. For J-convex functions we always assume in addition
that Xt = ∇gtφt, where gt is the metric defined by the function φt (see Section
?? above). A deformation of functions φt : W → R, t ∈ [0, 1], is called weakly With our restructuring

it is not clear where to
refer with this

supported in U ⊂ W if there exists an isotopy ht : R → R such that on W \ U
we have φt = ht ◦ φ0.
The goal of this section is to prove the following Propositions 10.8 and 10.9.

Proposition 10.8. Let (W, J, φ) be a Stein cobordism, where the J-convex func-
tion φ has no critical points. Then given any point p ∈ IntW and an integer
k = 1, . . . , n, there is a creation family φt of J-convex functions, weakly sup-
ported in Op p, such that φ0 = φ and φ1 has a pair of critical points of index k
and k − 1.

Note that in the usual Morse theory an analog of Proposition 10.8 is rather
trivial: using an appropriate cut-off construction any local creation family can be
implanted into a globally defined family, see Subsection 10.3.2 below. However,
in the context of J-convex functions this scheme does not seem to work. In
fact, we do not know whether the statement remains true if one drop the word
“weakly” and tries to construct a locally supported creation family.

Proposition 10.9. Let (W, J, φ) be an elementary Stein cobordism of type II.
In other words, the J-convex function φ has exactly two critical points p, q of
index k and k − 1, respectively, which are transversely connected by a unique
gradient trajectory. Denote a− := φ|∂−W , b := φ(q), c := φ(p). Choose a regular
value a ∈ (a−, b). Let ∆ be the closure of the stable disc of the critical point p
in {φ ≥ a}. Then there exists a cancellation family φt : W → R, t ∈ [0, 1], of
J-convex functions, weakly supported in Op ∆, such that φ0 = φ and φ1 has no
critical points.

10.3.2 Recollections from Morse theory

We first recall some facts from the h-cobordism theory for ordinary Morse func-
tions. The basic reference in [50]. Move all this in

separate section?
Let φ : W → R be a Morse function and X a gradient-like vector field. For a
critical point p of φ denote by D±

p its stable resp. unstable manifold.

Lemma 10.10. D±
p are smooth submanifolds. If φ and X are real analytic then

so are D±
p . Reference for real

analyticity?

Consider a cobordism W with a Morse function φ : W → R which is constant
on ∂±W . Suppose φ has precisely two critical points p, q of index k and k − 1,
respectively, which are transversely connected by a unique trajectory of some
gradient-like vector field X. Denote a− := φ|∂−W , b := φ(q), c := φ(p). Choose
a regular value a ∈ (a−, b). Let ∆ be the closure of the stable disc of the critical
point p in {φ ≥ a}.
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Lemma 10.11. ∆ is a smoothly embedded half-disk with upper boundary ∂+∆ =
D−

q ∩ {φ ≥ a} and lower boundary ∂−∆ =∆ ∩ {φ = a}. If φ and X are real
analytic then so are ∆ and ∂±∆.

Proof.To be added.

10.3.3 Carving one J-convex function with another one

Let φ : U → R be J-convex function on an open set U and Σ = {φ = a} be aMaybe move to Section
3.3

REWRITTEN
regular level set. Let us denote by U− and U+ the domains {φ ≤ a} and {φ ≥ a},
respectively. Let ψ : Ω → [c−, c+] be another J-convex function defined on a
compact subdomain Ω ⊂ U with boundary ∂Ω = ∂+Ω ∪ ∂−Ω ∪ ∂vΩ such that
ψ|∂±Ω = c± and ∂+Ω∪ ∂vω ⊂ intU+. For a small ε > 0 let us denote by Ωε the
domain {c− + ε ≤ ψ ≤ c+ − ε} ⊂ Ω, and by Uε

− the domain {φ ≤ a− ε} ⊂ U−.
By composing φ, ψ with increasing weakly convex diffeomorphisms g, h : R → R
we can arrange that the functions φ̃ = g ◦ φ and ψ̃ = h ◦ ψ satisfy the following
conditions:

• ψ̃ > φ̃ on Uε
− ∩ Ωε;

• φ̃ > ψ̃ on (U+ ∩ Ω) ∪ ∂−Ω.

To see this, first compose ψ with h such that h(c−) < minΩφ and h(c− + ε) >

maxΩεφ, thus ψ̃ > φ on Ωε and ψ̃ < φ on ∂−Ω. Then compose φ with g such
that g(x) = x for x ≤ a−ε and g(a) > maxU+∩Ωψ̃, thus φ̃ > ψ̃ on (U+∩Ω)∪∂−Ω
and ψ̃ > φ̃ on Uε

− ∩ Ωε.

Take the function max(φ̃, ψ̃) and apply to it the smoothing procedure from Sec-
tion 3.2. This operation we will call the carving with ψ of the level set Σ of
the function φ. The resulting function will be denoted by mψ(φ,Σ). Though
there are numerous ambiguities in the definition of this operation it is impor-
tant that it can be done for families of functions smoothly dependent on the
parameters, that ε can be chosen arbitrarily small and the smoothing can be
chosen sufficiently close to max(φ̃, ψ̃) in the sense of Corollary 3.8. In particu-
larly, everywhere below where we use the notation mψ(φt,Σ) we assume that ε
is chosen sufficiently small and the approximation is good enough.

10.3.4 The notation and special shapes

Let Rk = Rk−1 × R be the space with coordinates (x1, . . . , xk), Dt, t > 0,To be rewritten below
here.

denotes the disc {
k∑
1

x2
j ≤ t2} of radius t, and we write D instead of D1. We will

also use the notation Dt(p) for the disc of radius t centered at a point p ∈ Rk.
We further denote by D− the lower half disc D ∩ {xk ≤ 0}, and set ∂+D− =
D− ∩ {xk = 0} and ∂−D− = ∂D ∩D−, so that we have ∂D− = ∂−D− ∪ ∂+D−.



10.3. CREATION AND CANCELLATION OF CRITICAL POINTS 131

Viewing Rk as a coordinate subspace of Cn with complex coordinates (x1 +
iy1, . . . , xn + iyn) we will consider the splitting Cn = Rk×R2n−k, and will write
z ∈ Cn as z = (x, u), where x = (x1, . . . , xk), u = (xk+1, . . . , xn, y1, . . . , yn). We
will also denote x′ := (x1, . . . , xk−1). Let us set

ρ = ||x′|| =

√√√√
k−1∑

1

x2
j , R = ||x|| =

√√√√
k∑

1

x2
j , r = ||u|| =

√√√√
n∑

k+1

x2
j +

∑

1

y2
l .

We will also introduce the vector fields

→
x =

k∑

1

xj
∂

∂xj
,
→
u =

n∑

k+1

xj
∂

∂xj
+

n∑

1

yj
∂

∂yj
,

so that R = ||→x ||, r = ||→u ||.
Given a compact subset K ⊂ Cn and σ > 0 we will denote by Uσ(K) its open
metric σ-neighborhood in Cn. If K is a subset of Rk then we denote

Bσ(K) := K × {r ≤ σ} ⊂ Rk × R2n−k = Cn.

In Corollary 4.15 we constructed shapes φa
γ,δ(r) for a > 0 and sufficiently small

γ, δ > 0, which define i-convex hypersurfaces Ca
γ,δ = {R = φa

γ,δ(r)} ⊂ Cn sur-
rounding the disc D. We can choose the family smoothly depending on param-
eters a, γ, δ. The i-convex hypersurface Ca

γ,δ satisfies the following conditions
Insert a in the notation
in Corollary 4.15

a) Ca
γ,δ \ Uγ(D) = {R2 − ar2 = 1} \ Uγ(D);

b) Ca
γ,δ ∩Bδ(D1−γ) = {r = δ} ∩Bδ(D1−γ).

10.3.5 Proof of Proposition 10.9

Assuming that the disc ∆ in the Proposition 10.9 and the function φ|∂+∆ are real
analytic, we can parameterize ∆ by a real analytic diffeomorphism α : D− → ∆
so that we have α(∂−D−) = ∂−∆ =∆ ∩ ∂−W , while α(∂+D−) = ∂+∆ is the
stable disc of the critical point q. We also may assume that

(i) φ ◦ α|∂+D− = −kρ2 + b, where k = b− a;

(ii) dα
(→
R |∂−D−

)
= −2k∇φ|∂−∆.

The embedding α : D− → ∆ ↪→ W extends to a biholomorphism A between a
neighborhood U = Uσ(D−) for some σ > 0 and a neighborhood Op ∆ ⊂ W .
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Let ψ = φ ◦ A : U → R be the pull-back of the function φ to U . The second
condition above means that ∇φ|∂−D− = −∇(kR2)|∂−D− .
We will construct the cancellation family of i-convex functions ψt for the func-
tion ψ0 = ψ which is weakly supported in U . Then the deformation ψt ◦ A−1

extends to the required cancellation deformation φt on W .
A family of i-convex ψt : U → R, t ∈ [0, 1], will be called admissible if the
following two conditions are satisfied:

Stab. The intersection Rk ∩ U , and the disc ∆− are invariant with respect to
the gradient flow of all functions ψt, t ∈ [0, 1];

Loc. The deformation ψt is weakly supported in U .

We will call an admissible deformation preliminary if the critical points of φt

remain fixed (but may change the critical values).

The required cancellation deformation will be constructed by concatenating sev-
eral admissible deformations. All the deformations which we construct below
will be preliminary, except the last one which will be of cancellation type. To
simplify the notation we will denote all the deformations by ψt, and parameter-
ize them sometimes by t ∈ [0, 1], and sometimes by different intervals, assuming
that at any given moment the function ψ is the function constructed as the
result of the previous step. We will also use the notation β for the restriction
of the current function ψ to Rk ∩ U .
Let us recall that ψ|∂−D− = a. The critical values ψ(q) and ψ(p) may change
during the deformation but we will nevertheless always denote them by b and c.
Step 1. Normalization near D− and critical points.

Lemma 10.12. For any A > 0 there exists a preliminary deformation ψt such
that the function ψ1 has the form β(x) + Ar2 near D− for some A > 0, and

β(x) = −kR2 + b near ∂−D and on ∂+D−,

where k = b− a.

We will choose A = 64k.

Proof. Thanks to the condition ∇φ|∂−D− = ∇(kR2)|∂−D− we can apply Propo-
sition 3.15 to modify β = ψ|Rk∩U to ensure the conditions for β. Next, we can
apply 3.15 again along D− to satisfy the first condition.

Let us now restrict ψ to a smaller neighborhood Uσ(D−) such that in this
neighborhood ψ = β(x) + Ar2, and in Uσ(∂−D−) we have β(x) = −R2 + c0.
We will keep the notation U = U(σ) for this smaller neighborhood. All further
deformations will be chosen admissible for that smaller neighborhood.
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Step 2. Construction of special surroundings. Choose

R′ = 1− σ

2
, R′′ = 1− σ

4
.

For t ∈ [R′, 1] let us denote by Σt the level set of the function ψ which contains
the hemisphere St = {||x|| = t}. Denote by D′, D′′, D′′ ⊂ D′ ⊂ D the discs of
radius R′, R′′, respectively, and set D′

− = D− ∩ {R ≤ R′} = D′ ∩ {xk ≤ 0}. We
will use the notation Σ,Σ′,Σ′′ instead of Σt for t = 1, R′, R′′, respectively.

Next, we will construct a special family of i-convex hypersurfaces Σ̃t, t ∈ [R′, 1],
as follows. Choose a smooth family of i-convex hypersurfaces C64

γ,δ = {R =
φ64

δ,γ(r)} introduced above Section 10.3.4, and consider a 1-parametric family
C64

δ(t),γ(t), t ∈ [R′, 1] where the decreasing functions δ(t), γ(t) are chosen in such
a way that the following conditions are satisfied

• δ(R′), γ(R′) < σ
2 ;

• the hypersurfaces Σ̃t = tC64
γ(t),δ(t), t ∈ [R′, 1], define a smooth foliation of

the domain Ω bounded by Σ̃′ = Σ̃R′ and Σ̃ == Σ̃1, where tC64
δ(t),γ(t) its

image of C64
δ(t),γ(t) under the homothety z 1→ tz;

• δ(1), γ(1) < ε, where ε > 0 is determined below in the Lemma 10.15.

We denote by Nt the domain in U bounded by Σ̃t and will write Σ̃′ and N ′

instead of Σ̃R′ and NR′ Note that Σ̃t \ Uγ(t)(D) = Σt \ Uγ(t)(D).

Step 3. Second preliminary deformation.

Lemma 10.13. There exists a preliminary deformation ψt, t ∈ [0, 1], such that

a) There exists d > a0 and η > 0 such that the level set A = {ψ1 = d}∩Uσ
2
(D−)

is contained in N ′ \ Uη(D) and A ∩ (U \ Uσ
2
(D−)) coincides with Σ′′;

b) the angle between the gradient vector field ∇ψ1 and the vector field −→u is
> π

4 in B \ Rk, where B = {ψ1 ≤ d} ∩ U is the domain bounded in U by
the level set A;

c) the angle between the gradient vector field ∇ψ1 and the cone spanned by the
vector fields −→u and

→
x is > π

4 in (B ∩ Uσ(∂−D−)) \ Rk;

d) the deformation is weakly supported in N ′ \ (Uσ
8
(Σ).

Proof. Let us first observe that the function ψ satisfies the conditions b) and c)
in a stronger form:

b’) dψ(
→
u) > 0 in U \ Rk;
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c’) dψ(
→
x) < 0 in Uσ(∂−D−) \ Rk,

which inplies that the angle in question is > π
2 . Let us first use Lemma 3.15

and adjust ψ via a C1-small preliminary deformation to make it equal to k(ρ2−
64R2 − 64x2

k) in Uε(∂+D−) for a sufficiently small ε < σ
2 . This can be done

preserving the above conditions b’) and c’). Next, we apply Proposition 4.20
near the (k − 1)-disk ∂+D− and construct a preliminary deformation ψt, t ∈
[0, 1], which is weakly supported in Uε(∂+D−), such that one of its level sets
surrounds ∂+D−, i.e. there exists a regular value d1 ∈ (ψ1(q), ψ1(p)) such that
A1 \ Uε(∂+D−) = Σt \ Uε(∂+D−) for t ∈ (R′, 1), where A1 = {ψ1 = d1}. In
addition we can ensure that the properties b’) and c’) still holds for ψ1. Let us
denote B1 := {ψ1 ≤ d1}.
Before further adjusting the function ψ we will rename, following our notational
convention, the constructed function ψ1 back to ψ. Note that D = D− \ IntB1

is the stable disc of the critical point p in {ψ ≥ d1}. The function ψ|D has a
unique non-degenerate maximum at p, and hence it is equivalent to the func-
tion c − AR2 on the unit disc D ⊂ Rk ⊂ Cn for some A > 0, where c = ψ(p).
After a posible C∞-small adjustement we can assume that the conjugating dif-
feomorphism D → D, which we again denote by α, is real analytic, and hence
extends to a biholomorphism α̂ : Op D → OpD. Let us denote by

→
x1 and

→
u1

the images of the vector fields
→
x and

→
u under the diffeomorphism α̂. Note that

→
u1 =

→
u + o(r) and

→
x1 = µ

→
x +

→
τ +o(r), where µ ≥ 0 and

→
τ is tangent to the

spheres St.
We can modify the function ψ̃ = ψ ◦ α̃ to have the form c − AR2 + 64Ar2 in
Uθ(D) for a sufficiently small θ > 0. The necessary perturbation is C1-small,
and hence we can ensure that the angle between ∇ψ̃ and the cones generated
by

→
x1 and

→
u1 is bounded below by π

4 . Apply now Proposition 4.20 to get a
deformation ψ̃t weakly supported in U θ

2
(D) such that the level level set Ã1 of

the function ψ̃1 which coincides with A1 outside U θ
2
(D) corresponds to a regular

value d̃1 > ψ̃1(0) and surrounds D, i.e.
(
Â1 ∩ U θ

2
(D)

)
∩ D = ∅. The special

function constructed in 4.20 has the property that dψ̃1(
→
x) < 0, dψ̃1(

→
u) > 0 and

dψ(
→
τ ) = 0. Hence for a sufficiently small θ we conclude that the angle between

∇ψ̃ and the cones generated by
→
x1 and

→
u1 is bounded below by π

4 . Replanting
the constructed deformation ψ̃t back to OpD via the biholomorphism α̃ we get
the deformation ψt with the required properties.

Step 4. Elimination along the stable disc. Let us choose η > 0 be the
number defined in Lemma 10.13. We will also assume that η < σ

8 . Then we have
s Uη(D−) ⊂ B. The following statement is the standard cancellation lemma in
Morse theory (see [?], Lemma ???).

Lemma 10.14. For any positive θ there exists a cancellation deformation βt :
D ∩ {xk < η} → R with β0 = β which is supported in D′′′ ∩ {xk < η}.
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Let us choose C > 0 such that the function βt(x) + Cr2 is i-convex in Bη(D ∩
{xk < η}) for all t ∈ [0, 1].

Lemma 10.15. There exists ε < η and a preliminary deformation ψt which is
supported in Bη(D∩{xk ≤ θ}), such that ψ1 satisfies conditions b)-c) of Lemma
10.13 and, in addition, ψ1 = β(x) + Cr2 in Bε(D ∩ {xk ≤ θ}).

Proof. Apply Proposition 3.15 along the disc D−.

Step 5. Elimination of critical points.

Let Ψ be an i-convex function on the domain Ω bounded by Σ̃′ and Σ̃ which has
Σ̃t, t ∈ [R′, 1], as its level sets. Let Ψt denotes the restriction of the function
Ψ to the domain Ωt bounded by Σ̃′ and Σ̃t, t ∈ [R′, 1]. Let us apply the
defined above carving operation and consider the family of i-convex functions
ψt = mΨt(ψ, A), t ∈ (R′, 1]. This family has the following properties.

Lemma 10.16. (i) ψt = ψ for t > R′′;

(ii) ψt is weakly supported in U ;

(iii) ψt have no critical pointts for all t ∈ [R′, 1].

(iv) ψ1|Uη(D−) = WeΨ(β(x) + Cr2, A), where the function Ψ̃ = Ψ1|Uη(D−) has
the form h(r), r ∈ [δ(1), η].

Note that the first three properties just say that ψt is a preliminary deformation
of the function ψ.

Proof. The property (i) follows from the fact that B ∩ Ωt = ∅ if t > R′′,
while (ii) follows from the compactness of the intersection Ω∩B. The property
(iii) follows from Proposition 3.21 taking into account properties b) and c) of
Lemma 10.13. Finally (iv) is a corollary of the inequality γ(t), δ(t) < ε and the
properties of special shapes.

Before continuing, we again rename, following our notation convention the func-
tion ψ1 into ψ. Let us define ψt|Uη(D−) = meΨ(βt + Cr2), where βt, t ∈ [0, 1]
is the cancellation deformation from Lemma 10.14. This deformation is weakly
supported in Uη(D−), and hence can be extended to the whole U as the required
cancellation deformation for the function ψ : U → R.
This completes the proof of Proposition 10.9.

10.3.6 Proof of Proposition 10.8

Take a point p ∈ U Assuming that φ is real analytic near p, we can choose
holomorphic coordinates in Op p, such that
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• the point p has coordinates (−1, 0, . . . , 0);

• ∇φ(p) = ∂
∂x1

and ∇ψ|U∩Rk is tangent to Rk.

Using Proposition 3.15 we can modify the function φ in a ball U = Uσ(p) for a
positive σ < 1

2 to make it equal

1
2

(
(x1 +

3
2
)2 +

k∑

2

x2
j + Cr2

)
+ c− 1

8
,

c = ψ(p), where the constant C > 0 satisfies the following condition. Pick a
θ ∈ (0, σ2

8 ) and choose any creation type deformation βt : Dθ(p) → R, t ∈ [0, 1],
supported in IntDθ(p) which creates two critical points of index k and k − 1,

where β0(x) = φ̂|Dθ(p) = 1
2

(
(x1 + 3

2 )2 +
k∑
2

x2
j

)
. Then we choose the constant

C > 0 such that the function φt(x, u) = βt(x) + Cr2 is i-convex f in the domain
Gθ = {(x, u) ∈ U ;x ∈ Dθ(p)}. Let us denote by St, t ∈ [1 − 2θ, 1 + 2θ]
the level set of the function φ : U = Uσ(p) → R which contains the point
pt = (−t, 0, . . . , 0), and by Tt the domain {z ∈ U ;φ(z) ≤ φ(pt)} bounded by St.
Consider a family of i-convex surfaces Σt = tC1

γ(t),δ(t) ⊂ Cn, t ∈ [1− 2θ, 1 +2θ],
where the decreasing functions γ(t), δ(t) are chosen in such a way that surfaces
Ct form a smooth foliation of the domain Ω bounded by Σ1−2θ and Σ1+2θ,
and γ(1 + 2θ), δ(1 + 2θ) = θ′ < θ. Consider a i-convex function Ψ : Ω → R
such that the hypersurfaces Σt serve as the level sets for Ψ. Denote by Ωt,
t ∈ (1− 2θ, 1 + 2θ] the domain bounded by Σ1−2θ and Σt. Denote Ψt := Ψ|Ωt .
We have Ω1+2θ = Ω and Ψ1+2θ = Ψ.

Remark 10.17. Note that in view of property b) of special shapes Caγ, δ we
have Σ1+2θ ∩ Gθ = {r = θ′} ∩ Gθ and the restriction ψ1+2θ of the function
Ψ1+2θ to Gθ has cylinders {r = δ(t)}∩Gθ for t ∈ [1− θ, 1 + 2θ] as its level sets.

Consider a family of functions Φt = mΨt(φ, S1+θ), t ∈ (1− 2θ, 1 + 2θ].

Lemma 10.18. The family φt, t ∈ [1− θ, 1 + 2θ], has the following properties.

(i) φt = φ for t < 1− θ;

(ii) the deformation Φt is weakly supported in Uσ
2
(p)

(iii) φt has no critical points for all t.

(iv) φ1|Gθ = mψ1+2θ (φ|Gθ , S1−θ ∩Gθ).

Proof. For t < 1 − θ we have Ωt ∩ T1−θ = ∅ which implies 1). On the other
hand, we have Ω1+2θ ∩ T1−θ ⊂ Uσ

2
(p), which implies 2). Both functions have

positive derivatives along the vector field
→
x − →

u , and hence Proposition 3.21
implies 3). Finally, 4) follows from Remark 10.17.
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Before constructing the next and final step of the deformation we rename the
function φ1+2σ back into φ. According to 10.18.4) we have φ|Gθ = mψ1+2θ (φ|Gθ , S1−θ∩
Gθ). Let us define φt on Gθ for t ∈ [0, 1] as follows. Let φ̃t(x, u) = βt(x) + Cr2

be the creation family considered above. Then we set

φt := mψ1+2θ (φ̃|Gθ , S1−θ ∩Gθ).

This deformation is weakly compactly supported in Gθ, and hence can be ex-
tended to U as equal to the function φ (possibly, rescaled in the target) on U\Gθ.
It remains to notice that the functions φt are non-singular in the complement of
the disc Dθ(p). Indeed, both functions, ψ̃t = βt + cr2 and ψ1+2θ have a positive
derivative along the vector field

→
u on Gθ ∩Ω, and hence the claim follows from

Proposition 3.21 implies 3). This completes the proof of Proposition 10.8.
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Chapter 11

Proof of the existence
theorems

Move this chapter?

11.1 Existence of Stein structures on cobordisms

A cobordism is a compact oriented manifold W with oriented boundary ∂W =
∂+W = ∂−W , where the orientation agrees with the boundary orientation for
∂+W and is opposite to it for ∂−W . We allow one or both of ∂±W to be emtpy.
A Morse cobordism (W, φ) is a cobordism W with a Morse function φ : W → R
having ∂±W = φ−1(c±) as regular level sets.

Theorem 11.1. Let (W, φ) be a Morse cobordism of dimension 2n with ∂±W =
φ−1(c±). Let J an integrable complex structure on W such that ∂−W is real
analytic and φ is J-convex near ∂−W . Suppose that n > 2 and all critical points
of φ have index ≤ n. Then there exist

• a diffeotopy ht : W → W with h0 = 1l and ht = 1l near ∂W ;

• a homotopy of convex increasing functions gt : R → R with g0 = 1l and
gt = 1l near (−∞, c−];

• a homotopy of regular values ct of φt := gt ◦ φ ◦ h−1
t with c0 = c+;

such that ∂+W1 is real analytic and φ1|W1 is J-convex, where Wt := φ−1
t

(
[c−, ct]).

Remark 11.2. Note that the conclusions of Theorem 11.1 imply that φt has no
critical points with values in [ct, c+].

For the proof we will decompose a cobordism into elementary ones: We call a
Morse cobordism (W, φ) elementary if φ admits a gradient-like vector field X

139
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such that no two critical points of φ are connected by an X-trajectory. An
admissible partition of a Morse cobordism (W, φ) with φ−1(∂±W ) = c± is a
finite sequence c− = c0 < c1 < · · · < cN = c+ of regular values of φ such
that each subcobordism Wk = φ−1([ck−1, ck]), k = 1, . . . , N is elementary. The
following lemma is proved e.g. in [50].

Lemma 11.3. Every Morse cobordism admits an admissible partition.

Proposition 11.4. Theorem 11.1 holds for an elementary Morse cobordism.

Proof. Let (W, φ, J) be as in Theorem 11.1 and X a gradient-like vector field
such that no two critical points of φ are connected by an X-trajectory.
If φ has no critical points set ht := 1l, gt := 1l and let ct be a decreasing homotopy
from c0 = c+ to c1 > c0 such that φ is J-convex on φ−1([c−, c1]).
Otherwise consider a critical point p. Since its stable disk D−

p meets no other
critical points, it meets the J-convex hypersurface ∂−W transversely along a
sphere S−p . Moreover, n > 2 and dimD−

p ≤ n. Thus by Theorem 6.14 there
exists a C0-small homotopy of disks Dt transversely attached to ∂−W with
D0 = D−

p and such that D1 is totally real and J-orthogonal to ∂−W . Moreover,
by Theorem 7.22 and Corollary 7.25 we may assume that D1 is real analytic.
Let gt : W → W be a diffeotopy with g0 = 1l, gt = 1l near ∂+W and Dt =
gt(D−

p ). Since the Dt are transversely attached to ∂−W , we can choose the
gt to preserve levels of φ on φ−1([c−, d−]) for some small d− > c−. Define
a new diffeotopy ht : W → W by ht := gt on {φ ≥ d−} and ht := gβ(c)t

on φ−1(c), c ∈ [c−, d−], where β : [c−, d−] → [0, 1] is a smooth increasing
function with β = 0 near c− and β = 1 near d−. Thus ht = 1l near ∂−W and
ψt := φ ◦ h−1

t = φ ◦ g−1
t . It follows that the vector field Xt := gt∗X is gradient-

like for ψt and the stable disk of the critical point ht(p) of ψt with respect to
Xt equals Dt. (Note, however, that Xt 0= ht∗X).
Consider a slightly smaller disk D̃1 := D1 ∩ {φ ≥ c̃−} for a small c̃− > c−.
Since D̃1 is real analytic and totally real, it has a neighborhood biholomorphic
to a standard k-handle Hε ⊂ Cn such that D̃1 corresponds to the unit disk
D ⊂ iRk. In view of Proposition 3.15, we can C1-perturb ψ1 near ∂D to a
J-convex function φ̃ which corresponds to the standard function ψst near ∂D.
To be continued...

Proof of Theorem 11.1. Let (W, φ, J) be as in Theorem 11.1. By Lemma 11.3
(W, φ) admits an admissible partition c− = c0 < c1 < · · · < cN = c+. We
will prove by induction on i that the statement of the theorem holds for W i :=
φ−1([c0, ci]). For i = 0 (with c0 moved slightly above c−) this is trivially true.
Now suppose that the statement of the theorem holds for W i. Let hi

t, g
i
t, c

i
t

be the corresponding homotopies so that ∂+W i
1 is real analytic and φi

1|W i
1

is
J-convex, where φi

t = gi
t ◦ φ ◦ (hi

t)−1 and W i
t = (φi

t)−1([c−, ci
t]).



11.1. EXISTENCE OF STEIN STRUCTURES ON COBORDISMS 141

Since φi
t = gi

t ◦ φ near ∂+W i, we can extend φi
1 to a function φ̃i+1 : W i+1 → R

by

φ̃i+1 :=

{
φi

1 on W i

gi
1 ◦ φ on W i+1 \W i.

Since φi
1 has no critical points in W i \W i

1, the Morse cobordism

(W̃ i+1 := W i+1 \W i
1, φ̃

i+1)

is elementary, see Figure [fig]. Since ∂−W̃ i+1 = ∂+W i
1 is real analytic and Fig!!!

φ̃i+1 is J-convex near ∂−W̃ i+1 = ∂+W i
1, we can apply Proposition 11.4 to

this cobordism. Let h̃i+1
t , g̃i+1

t , c̃i+1
t be the corresponding homotopies so that

∂+W̃ i+1
1 is real analytic and φ̃i+1

1 |W̃ i+1
1

is J-convex, where φ̃i+1
t = g̃i+1

t ◦ φ ◦
(h̃i+1

t )−1 and W̃ i+1
t = (φ̃i+1

t )−1
(
[ci

1, c̃
i+1
t ]).

We extend hi
t and h̃i+1

t to diffeotopies of W i+1 via the identity on W i+1 \ W i

resp. W i
1 and define homotopies on W i+1 by

hi+1
t :=

{
hi

2t for 0 ≤ t ≤ 1/2,

h̃i+1
2t−1 ◦ hi

1 for 1/2 ≤ t ≤ 1,

gi+1
t :=

{
gi
2t for 0 ≤ t ≤ 1/2,

g̃i+1
2t−1 ◦ gi

1 for 1/2 ≤ t ≤ 1,

ci+1
t :=

{
gi
2t(ci+1 for 0 ≤ t ≤ 1/2,

c̃i+1
2t−1 ◦ hi

1 for 1/2 ≤ t ≤ 1.

Note that ci+1
t is continuous at t = 1/2 because c̃i+1

0 = φ̃i+1(∂+W̃ i+1) =
gi
1(ci+1). The corresponding homotopies φi+1

t := gi+1
t ◦φ◦(hi+1

t )−1 and W i+1
t =

(φi+1
t )−1

(
[c−, ci+1

t ]) are given by

φi+1
t =

{
gi
2t ◦ φ ◦ (hi

2t)−1 for 0 ≤ t ≤ 1/2,

g̃i+1
2t−1 ◦ φ̃i+1 ◦ (h̃i+1

2t−1)−1 for 1/2 ≤ t ≤ 1,

W i+1
t =

{
W i+1 for 0 ≤ t ≤ 1/2,

W i
1 ∪ W̃ i+1

2t−1 for 1/2 ≤ t ≤ 1.

In particular, we see that φi+1
t has regular value ci+1

t . Moreover, φi+1
1 is given

by

φi+1
1 =

{
φi

1 on W i
1,

φ̃i+1
1 on W̃ i+1

and therefore J-convex. Hence the homotopies hi+1
t , gi+1

t , ci+1
t have the desired

properties and Theorem 11.1 is proved.

The following version of Theorem 11.1 for open manifolds was first pointed out
by R. Gompf [26].
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Theorem 11.5. Let (V, J) be an open complex manifold of complex dimension
n and φ : V → R an exhausting Morse function. Suppose that n > 2 and all
critical points of φ have index ≤ n. Then there exist

• a diffeotopy ht : W → W with h0 = 1l;

• a homotopy of convex increasing functions gt : R → R with g0 = 1l and
gt = 1l near (−∞,minφ];

• a homotopy of smooth embeddings ft : V ↪→ V with f0 = 1l;

such that g1 ◦ φ ◦ h−1
1 is f∗1 J-convex.

Proof. To be done.

To be rewritten: Proof of the existence results (abstract, in ambient
manifold, with holo function as in Forstneric).

11.2 Handles in the holomorphic category

For the purposes of this section, let us slightly modify the definition of an
attaching map. Let W be a manifold with boundary and extend it to a slightly
larger manifold W̃ . An attaching map is an embedding F : H ⊃ U ↪→ W̃ such
that F (S) ⊂ ∂W and the differential dF along S maps ∂−H|S to ∂W and the
outward pointing vector field η to an inward pointing vector field ηF . Then for
ε > 0 small let

W ∪F H := W =H/H ∩ F−1(W ) > x ∼ F (x) ∈ W ∩ F (H)

Note that F−1(∂W ) is a graph over ∂−H near S, so W ∪F H describes indeed
the attaching of a handle for ε small.
Remark 11.6. The following facts are seen as in the previous section.
(1) If J, JH are almost complex structures on W, H and dF is complex linear
along S, then W ∪F H carries a natural homotopy class of almost complex
structures J ∪F H that agree with J on W and with JH along D.
(2) An isotopy of attaching maps Ft, induces a canonical family of diffeomor-
phisms φt : W ∪F0 H → W ∪Ft H. Moreover, if the differentials dFt are complex
linear along S for almost complex structures J, Jt on W, H, then φ∗t (J ∪Ft Jt) is
a continuous homotopy of almost complex structures on W ∪F0 H.
(3) If J is an (integrable) complex structure on W and the attaching map
F : (U, i) → (W̃ , J) is holomorphic, then W ∪F H carries a natural (integrable)
complex structure. We will consider below the case that ∂W is J-convex. Since
∂−H is Levi-flat for the complex structure i, the attaching map cannot map
∂−H to ∂W in that case. This explains our modified definition of “attaching
map”.
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Lemma 11.7. Let (W, J) be a complex manifold with real analytic J-convex
boundary. Let F0 : Hε ⊃ Uε ↪→ W̃ be an attaching map such that dF0 :
(TH|S , i) → (TW, J) is complex linear. Then (after shrinking ε) there exists a
family of attaching maps Ft : Uε ↪→ W̃ , t ∈ [0, 1], C∞-close to F0, such that F1

is holomorphic and
dFt : (TH|S , i) → (TW, J)

is complex linear for all t ∈ [0, 1].

Proof. Without further mention, we will shrink ε whenever necessary. Moreover,
all homotopies will be chosen C∞-close to the original data.
As J integrable and ∂W is real analytic and J-convex, the maximal tangency ξ
on ∂W is a real analytic contact structure. Set Pε := ∂Dk

1 ×Dn−k
ε and consider

the Legendrian embdding g0 := (F0)|Pε : Pε ↪→ ∂W . By Corollary 7.24 and the
remark following it, there exists a Legendrian isotopy gt : Pε ↪→ ∂W such that
g1 is real analytic.
By hypothesis, dF0 maps the vector field v along S to a vector field v0 on
∂W transverse to ξ. By Theorem 7.22, there exists a family vt of transverse
vector fields on ∂W such that v1 is real analytic. Set ηt := Jvt. Again by
Theorem 7.22, we can extend g1 to a real analytic embedding f1 : (Vε :=
Dk

1+ε \ intDk
1 ) ×Dn−k

ε → W̃ with df1 · η = η1. Connect f0 := (F0)|Vε to f1 by
a smooth isotopy of totally real embeddings ft : Vε → W̃ with dft · η = ηt.
Complexify the (totally real) differentials dft along S to complex linear isomor-
phisms dCft : (TH|S , i) → (TW |ft(S), J). Complexify the totally real embed-
ding f1 : Vε = Uε ∩ Rn ↪→ W̃ to a holomorphic embedding F1 : Uε ↪→ W̃ . Note
that dF0 = dCf0 and dF1 = dCf1 along S. Connect F0 to F1 by an isotopy of
smooth embeddings Ft : Uε ↪→ W̃ with dFt = dCft along S. By construction,
dFt = dCft maps T (∂−H)|S to T (∂W ) and η to the inward pointing vector field
ηt. Thus the Ft are attaching maps with dFt : (TH|S , i) → (TW, J) complex
linear for all t ∈ [0, 1].

Proposition 11.8. Let (W, J) be a compact almost complex manifold of complex
dimension n > 2 with boundary ∂W = ∂−W ∪ ∂+W (we allow ∂−W = ∅).
Suppose W carries a function which is constant on the boundary components
and has a unique critical point of index k ≤ n. Suppose that near ∂−W , J is
integrable and ∂−W is J-convex.
Then there exists an integrable complex structure J̃ on W such that J̃ = J near
∂−W and J̃ ∼ J rel ∂−W .

Proof. Let W ′ ⊂ W be a collar neighborhood of ∂−W = ∂−W ′ with real
analytic J-conxev boundary ∂+W ′. By Morse theory [50], there exists an em-
bedding f : H ↪→ W of a k-handle, with attaching map f0 := f |U : U ↪→ W ′,
such that W smoothly deformation retracts onto a smoothing of W ′ ∪ f(H).
Let J0 := f∗J on H. By Proposition [prop:ac-attaching???] and Lemma 11.7, Reference?

there exists a family of almost complex structures Jt on H and an isotopy
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of attaching maps ft : U ↪→ W̃ ′ such that J1 = i, f1 is holomorphic, and
dft : (TH|S , Jt) → (TW |ft(S), J) is a complex isomorphism for all t. By Lemma
[lem:ac-homotopy???], this gives rise to a homotopy of almost complex struc-Reference?

tures J ′t on W ′ ∪ f(H), fixed near ∂−W , such that J ′0 = J and J̃1 =: J ′ is
integrable.
It only remains to extend J ′ to all of W . For this, let W̃ ⊂ W ′∪f(H) be a tubu-
lar neighborhood of W ′ ∪ f(D). Let gt : W̃ ↪→ W be an isotopy of embeddings
such gt = 1l near W ′ ∪ f(D), g0 is the inclusion, and g1 is a diffeomorphism.
Now J̃ := g1∗J ′ is an integrable complex structure on W which coincides with
J ′ on W ′. Moreover, J̃t := g1∗g∗t J ′ provides a homotopy rel W ′ from J̃0 = J̃ to
J̃1 = J ′. Since J ′ was homotopic rel ∂−W to J , this concludes the proof.

11.3 Extension of Stein structures over handles

Theorem 11.9. Let (W, J) be a compact almost complex manifold of complex
dimension n > 2 with boundary ∂W = ∂−W ∪ ∂+W (we allow ∂−W = ∅). Let
φ : W → [a, b] be a function with ∂−W = φ−1(a), ∂+W = φ−1(b) and a unique
critical point in W of index k ≤ n. Suppose that near ∂−W , J is integrable and
φ is J-convex.
Then there exists an integrable complex structure J̃ on W such that J̃ = J near
∂−W , J̃ ∼ J rel ∂−W , and φ is J̃-convex.

Proof. Let ∂−W×[0, 1] be a collar neighborhood of ∂−W = ∂−W×{0} on which
J is integrable and φ is J-convex with level sets ∂−W×{t}. Let φ′ be C2-close to
φ, real analytic near ∂−W ×{1/2}, with φ′ = φ outside ∂−W × [1/4, 3/4]. Then
φ′ is J-convex and φ′ = f∗φ for a diffeomorphism f isotopic to the identity rel
W \∂−W×[1/4, 3/4]. Thus it suffices to prove the theorem for φ′ and J ′ := f∗J .
Denoting φ′, J ′ again by φ, J , we may hence assume that φ is real analytic near
a level set φ−1(a′), a′ > a, and J-convex on W ′ := φ−1([a, a′]).
By Proposition 11.8, J is homotopic rel ∂−W to an integrable complex structure
J ′. Perturb the gradient vector field ∇gφφ, fixed near ∂+W , to a C1-close vector
field X. Then X is gradient-like for φ and has a nondegenerate zero at the
critical point p of φ. Let ∆ ⊂ W \ intW ′ be the stable disk of p for X. Then
∆ is totally real and real analytic. Moreover, since X = ∇gφφ near ∂+W ′, ∆ is
attached J ′-orthogonally to ∂+W ′ along ∂∆.
By Theorem 9.7, there exists a surjective J ′-convex function ψ : W̃ → [a, b] on
a neighborhood W̃ of W ′ ∪∆ with ψ = φ on W ′ and a unique index k critical
point at p. Moreover, there exists an isotopy ht : ∆ → ∆, fixed near ∂∆ and p,
with h0 = 1l and h∗1φ = ψ. Now we argue as in the proof of Proposition 11.8.
Extend ht to an isotopy of embeddings h̃t : W̃ ↪→ W such that h̃t|W ′ = 1l,
h̃t|∆ = ht, h̃0 is the inclusion, and h̃1 is a diffeomorphism. Then the Morse
functions h̃∗1φ, ψ : W̃ → [a, b] coincide on W ′∪∆. By Lemma 13.8, there exists a
diffeotopy gt : W̃ → W̃ , fixed on W ′∪∆, with g∗1 h̃∗1φ = ψ. Hence the embeddings
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ft := h̃t ◦ gt satisfy: f0 is the inclusion, ft|W ′ = 1l, and f1 is a diffeomorphism
with f1∗ψ = φ. Now J̃ := f1∗J ′ is an integrable complex structure on W , which
coincides with J ′ on W ′, such that φ is J̃-convex. Moreover, Jt := f1∗f∗t J ′

provides a homotopy rel W ′ from J0 = J̃ to J1 = J ′. Since J ′ was homotopic
rel ∂−W to J , this concludes the proof of Theorem 11.9

Now we are ready to prove the existence theorem for Stein structures stated in
the introduction.

Theorem 11.10 (Eliashberg [14]). Let V 2n be an open smooth manifold of di-
mension 2n > 4 with an almost complex structure J and an exhausting Morse
function φ without critical points of index > n. Then V admits a Stein struc-
ture. More precisely, J is homotopic through almost complex structures to an
integrable complex structure J̃ such that φ is J̃-convex.

Proof. Let c1 < c2 < . . . be the critical levels of φ (possibly infinitely many).
For simplicity, suppose that each critical level ck carries a single critical point
pk; the obvious modifications for several critical points on one level are left to
the reader. Let dk be regular levels with

c1 < d1 < c2 < d2 < . . .

and set Vk := {φ ≤ dk}. We will inductively construct almost complex struc-
tures Jk, k ∈ N, and homotopies J t

k, t ∈ [0, 1], on V with the following proper-
ties:

• Jk|Vk is integrable and φ|Vk is Jk-convex;

• J0
k = Jk−1, J1

k = Jk, and J t
k|Vk−1 = Jk−1 for all t ∈ [0, 1].

Here we have set J0 := J and V0 := ∅. The case k = 1 follows directly from
Theorem 11.9 with ∂−W = ∅. For the induction step, supppose that Jk−1

and J t
k−1 have already been constructed. After replacing dk−1 by a slightly

higher level in the preceding step, we may assume that Jk−1 is integrable on
a neighborhood of Vk−1. Applying Theorem 11.9 to W := Vk \ intVk−1 and
the almost complex structure Jk−1, we find a homotopy of almost complex
structures J̃ t

k on Vk such that J̃ t
k|Vk−1 = Jk−1 for all t, J̃0

k = Jk−1, J̃k = J̃1
k is

integrable, and φ|Vk is J̃k-convex. Let ∂Vk × [0, 1] be a collar neighborhood of
∂Vk

∼= ∂Vk × {0} in V \ intVk and extend J̃ t
k to V by

J t
k :=






J̃ t
k on Vk,

J̃ t(1−s)
k on ∂Vk × {s},

Jk−1 on V \ (Vk ∪ ∂Vk × [0, 1]).

This proves the induction step.
Now let sequences Jk, J t

k as above be given. Since Jk|Vk−1 = Jk−1, the Jk fit
together to an integrable complex structure J̃ on V with J̃ |Vk = Jk, and it
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follows that φ is J̃-convex. Define a homotopy of almost complex structures J t,
t ∈ [0, 1], on V as the concatenation of the homotopies J t

k, k ∈ N, carried out
over the successively shorter time intervals [1− 21−k, 1− 2−k]. Continuity of J t

for t < 1 follows from J1
k−1 = J0

k . Continuity at t = 1 holds because J t|Vk = Jk

for all t ≥ 1− 2−k, so near every point J t becomes independent of t for t close
to 1. In particular, we have J1 = J̃ and J0 = J0

1 = J0 = J . This concludes the
proof of Theorem 11.10.

Proposition 11.11. Let J0 and J1 are two Stein cobordism structures on a
manifold W with boundary ∂W = ∂−W ∪ W+, where the complex structures
J0 and J1 share the same concave and convex parts of the boundary, ∂−W and
∂+W . Suppose that there exist Jk-convex functions φk, k = 0, 1, such that the
following conditions are satisfied:

(i) φ0 = φ1 = φ on Op (∂−W );

(ii) the functions φ0 and φ1 have a unique and common critical point p, and
the stable manifolds of p for the gradient vector fields X0 = Xφ0,J0 and
X1 = Xφ1,J1 coincide;

(iii) J0 and J1 coincide on Op (∂−W ∪D), where D is a common stable ma-
nifold for the gradient vector fields X0 and X1.

(iv) the functions φ0 and φ1 are equivalent: there exist a diffeomorphism and
g : W → W which is fixed on Op (∂−W ) and leaves D invariant, and a
diffeomorophism h : R → R such that φ1 = h ◦ φ0 ◦ g.

Then there exists a homotopy of Stein cobordism structures Jt on W and a
family of Jt-convex functions φt : W → R such that

• Jt = J0 on Op (∂−W ∪D), t ∈ [0, 1];

• the stable disk of p for gradient fields Xt = XJt,φt coincides with D for all
t ∈ [0, 1].

• φt = ht ◦ φ0 ◦ gt for isotopies gt : W → W fixed on W ′ and ht : R → R as
in item (iv) above.

Proof. TO BE ADDED
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Chapter 12

Weinstein structures

12.1 Convex symplectic manifolds

We review in this section some notions introduced in [16].
Let (V, ω) be an exact symplectic manifold of dimension n. A primitive λ such
that dλ = ω is called a Liouville form on V . The vector field X that is ω-dual to
λ, i.e. such that iXω = λ, is called Liouville vector field. Note that the equation
dλ = ω is equivalent to LXω = ω. If X integrates to a flow Xt : V → V then
(Xt)∗ω = etω, i.e. the Liouville field X is (symplectically) expanding, while −X
is contracting. By a Liouville manifold we will mean a triple (V, ω, X) where X
is an expanding vector field for ω. Note that

iXλ = 0, iXdλ = λ, LXλ = λ, (12.1)

so the flow of X also expands the Liouville form, (Xt)∗λ = etλ. A map ψ :
(V0, ω0, X0) → (V1, ω1, X1) between Liouville manifolds with Liouville forms λi

is called exact symplectic if ψ∗λ1 − λ0 is exact.
A Liouville manifold (V, ω, X) is called (symplectically) convex if the expanding
vector field X is complete and there exists an exhaustion V =

⋃∞
k=1 V k by

compact domains V k ⊂ V with smooth boundaries along which X is outward
pointing (so the V k are invariant under the contracting flow X−t, t > 0).1 The
set

Core(V, ω,X) :=
∞⋃

k=1

⋂

t>0

X−t(Vk)

is independent of the choice of the exhausting sequence of compact sets Vk and
is called the core of the convex Liouville manifold (V, ω, X). We have

1This notion of symplectic convexity is slightly more restrictive than one given in [16].
However, the authors do not know any examples of symplectic manifolds that are convex in
one sense but not the other.

149
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Lemma 12.1. Int Core(V, ω,X) = ∅.

Proof. For each compact set V k we have

Volume
(
X−t(Vk)

)
= e−t 1

n!

∫

Vk

ωn −→
t→∞

0 ,

and hence Volume
(⋂

t>0 X−t(Vk)
)

= 0 for all k ∈ N.

We say that a convex Liouville manifold (V, ω, X) has cylindrical end if X has
no zeros outside a compact set. In this case, let Ω ⊂ V be a compact domain
with smooth boundary Σ = ∂Ω along which X is outward pointing and such
that X has no zeros outside Ω (e.g. Ω = V k for large k). Then V \ Int Ω, splits
as Σ × [0,∞) and the Liouville form λ = iXω can be written as et(α), where
t ∈ R is the parameter of the flow and α := λ|Σ. The form α is contact, and thus
(V \ Int Ω, ω) can be identified with the positive half of the symplectization of
the contact manifold (Σ, ξ = kerα). In fact, the whole symplectization of (Σ, ξ)
sits in V as

⋃
t∈R Xt(Σ) and this embedding is canonical in the sense that the

image is independent of the choice of Σ: Its complement V \
⋃

t∈R Xt(Σ) equals
the core Core(V, ω,X) defined above. The Liouville manifold (V, ω, X) defines
the contact manifold (Σ, ξ) canonically. We will write (Σ, ξ) = ∂(V,X) and call
it the ideal contact boundary of the Liouville manifold (X, ω) with cylindrical
end.
We do not know whether the ideal boundary depends on the choice of the Li-
ouville field X which satisfies the cylindrical end property. The answer depends
on the following open problem:Equivalent?

Problem 12.1. Does symplectomorphism of symplectizations imply contacto-
morphism of contact manifolds?

Note that all known invariants of contact manifolds (e.g contact homology and
other SFT-invariants) depend only on their symplectizations (since symplec-
tomorphism of the symplectizations yields symplectic cobordisms both ways
whose composition is homotopic to product cobordism). and hence cannotIs this correct? Don’t

we need exactness? distinguish contact manifolds with the same symplectization.
Contact manifolds which arise as ideal boundaries of Liouville symplectic ma-
nifolds with cylindrical end are called strongly symplectically fillable.Reference? Not used

so far.

12.2 Deformations of convex sympletic structures

A homotopy (V, ωs, Xs), s ∈ [0, 1], of convex Liouville manifolds is called an
elementary homotopy of compact type if there exists a smooth family of exhaus-
tions V =

⋃∞
k=1 V k

s by compact domains V k
s ⊂ V with smooth boundaries along

which Xs is outward pointing. A homotopy (V, ωs, Xs), s ∈ [0, 1], is called of
compact type if it is a composition of finitely many elementary homotopies of
compact type.
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Proposition 12.2. Let (V, ωs, Xs), s ∈ [0, 1], be a compact type homotopy of
convex Liouville manifolds with Liouville forms λs. Then there exists a dif-
feotopy hs : V → V such that λ0 − h∗sλs is exact for all s ∈ [0, 1].

Proof. It suffices to consider the case of an elementary homotopy (V, ωs, Xs).
Denote by Σk

s the boundary ∂V k
s , by λs the Liouville form dual to Xs, and by ξk

s

the contact structure induced on Σk
s by the contact form λs|Σk

s
, s ∈ [0, 1], k ∈ N.

By Gray’s Stability Theorem 5.24 there are families of contactomorphisms

ψk
s : (Σk

0 , ξk
0 ) → (Σk

s , ξk
s ),

so that (ψk
s )∗λs = efk

s λ0 for a smooth family of functions fk
s : Σk

0 → R. (We
denote the restriction of λs to the various hypersurfaces by the same letter).
For c ∈ R set Σk,c

s := Xc
s(Σk

s) and define the diffeomorphisms

ψk,c
s := Xc

s ◦ ψk
s ◦X−c

0 : Σk,c
0 → Σk,c

s .

By equation (12.1) we have (ψk,c
s )∗λs = efk

s ◦X
−c
0 λ0. For a sequence of real

numbers dk (which will be determined later) set

Σ̃k
s := Σk,dk

s , ψ̃k
s := ψk,dk

s , Ṽ k
s := Xdk

s (V k
s ), f̃k

s := fk
s ◦X−dk

0 ◦ (ψ̃k
s )−1.

A short computation using equation (12.1) shows that the map Ψk
s := X

− efk
s

s ◦
ψ̃k

s : Σ̃k
0 → V satisfies (Ψk

s)∗λs = λ0 and hence canonically extends to a map,
still denoted by Ψk

s : Op Σ̃k
0 → Op (X− efk

s
s Σ̃k

s), which maps trajectories of X0 to
trajectories of Xs and satisfies (Ψk

s)∗λs = λ0.
Now we choose the constants dk such that for each s ∈ [0, 1] the hypersurfaces
Σ̃k

s , k ∈ N, are mutually disjoint and the hypersurfaces X
− efk

s
s (Σ̃k

s), k ∈ N, are
mutually disjoint. We achieve the first condition by choosing the dk nondecreas-
ing. The second condition holds if we have

minx

(
dk − f̃k

s (x)
)
≥ maxx

(
dk−1 − f̃k−1

s (x)
)

for all s ∈ [0, 1] and k ≥ 2. So we can achieve both conditions by defining the
dk inductively by d1 := 0 and

dk := dk−1 + max
{
0,max

s,x
fk

s (x)−min
s,x

fk−1
s (x)

}
.

These conditions ensure that the Ψk
s induce a diffeomorphism

Ψs : Op

( ∞⋃

k=1

Σ̃k
0

)
→ Op

( ∞⋃

k=1

X
− efk

s
s Σ̃k

0

)

satisfying Ψ∗sλs = λ0. Let us extend Ψs anyhow to a diffeomorphism Ψs : V →
V . Now we apply Corollary 5.8 to each of the open domains Int Ṽ k+1

0 \ Ṽ k
0
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and the family of exact symplectic forms Ψ∗sωs = d(Ψ∗sλs whose primitives are
s-independent near the boundary Σ̃k+1

0 ∪ Σ̃k
0 . This yields a family of diffeo-

morphisms φs : V → V which are the identity on Op
(⋃∞

k=1 Σ̃k
0

)
and such

that the composition hs := Ψs ◦ φs is the required exact symplectomorphism
(V, ω0, X0) → (V, ωs, Xs).

In particular, Proposition 12.2 implies

Corollary 12.3. A family (V, ωs, Xs) of Liouville manifolds with cylindrical
ends consists of exactly symplectomorphic manifolds if the closure

⋃
s∈[0,1] Core(V, ωs,Xs)

of the union of their cores is compact.

12.3 Weinstein manifolds

A Weinstein manifold (V, ω, X, φ) is a symplectic manifold (V, ω) with a com-
plete Liouville field X which is gradient-like for an exhausting Morse function
φ : V → R. The triple (ω,X, φ) is called a Weinstein structure on V .

Remark 12.4. (1) Any Weinstein manifold (V, ω, X, φ) induces a convex Liouville
manifold (V, ω, X). However, not every convex Liouville manifold arises from a
Weinstein manifold, see [46, 23].
(2) Later on, in deformations of Weinstein structures we will also allow φ and X
to have death-birth (or cusp) singularities; in this section we restrict ourselves
to the Morse case.

A Weinstein domain (W, ω,X, φ) is a compact symplectic manifold (W, ω) with
boundary ∂W with a Liouville vector field X which is outward pointing along the
boundary and gradient-like for a Morse function φ : W → R which is constant
on the boundary. Thus any Weinstein manifold (V, ω, X, φ) can be exhausted
by Weinstein domains Wk = {φ ≤ dk}, where dk ↗∞ is a sequence of regular
values of the function φ.
A Weinstein manifold (V, ω, X, φ) is said to be of finite type if X has only finitely
many critical points. Note that by attaching a cylindrical end any Weinstein
domain (W, ω,X, φ) can be completed to a finite type Weinstein manifold, called
its completion and denoted by Compl(W, ω,X, φ). Conversely, any finite type
Weinstein manifold can be obtained by attaching a cylindrical end to a Weinstein
domain. The contact manifolds which appear as ideal boundaries of finite type
Weinstein manifolds, or equivalently as boundaries of Weinstein domains, are
called Weinstein fillable. In view of Theorem [???], this is equivalent to beingReference?

Stein fillable.
An important example of a Weinstein structure is provided by the cotangent
bundle V = T ∗Q of a closed manifold Q with the standard symplectic form
ω = dλ, λ = pdq. To define a Weinstein structure, take any Riemannian
metric on Q and a Morse function f : Q → R. Note that the Hamiltonian
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vector field XF of the function F (q, p) := 〈p,∇f(q)〉 (or in a more invariant
notation F = λ(∇f)) coincides with ∇f along the zero-section of T ∗Q. Thus
the vector field X := p ∂

∂p + XF is Liouville and gradient-like for the Morse
function φ(q, p) := 1

2 |p|
2 + f(q) if f is small enough.

Exercise 12.5. Find explicitly a Weinstein structure on T ∗Q if Q is not com-
pact and describe its ideal contact boundary.

The product of two Weinstein manifolds (V1, ω1, X1, φ1) and (V2, ω2, X2, φ2) has
a canonical Weinstein structure (V1×V2, ω1⊕ω2, X1⊕X2, φ1⊕φ2). In particular,
the product

(V, ω, X, φ)×
(

R2k,
∑

dxi ∧ dxi,
1
2

∑ (
xi

∂

∂xi
+ yi

∂

∂yi

)
,
∑ (

x2
i + y2

i

))

is called the k-stabilization of the Weinstein manifold (V, ω, X, φ).

Recall from Section 5.1 that a subspace W of a symplectic vector space (V, ω)
(and similarly for manifolds) is called isotropic resp. coisotropic if W ⊂ Wω

resp. Wω ⊂ W , where Wω denotes the ω-orthogonal complement.

Proposition 12.6. Let (V, ω) be a symplectic manifold with an expanding vector
field X, and let p be a hyperbolic zero of X. Then
(a) the stable manifold W−(p) is isotropic, and
(b) the unstable manifold W+(p) is coisotropic.

Proof. Let φt : V → V be the flow of X. Abbreviate W+ := W+(p) and
W− := W−(p), so TpV = TpW+ ⊕ TpW−. All eigenvalues of the linearization
of X at p have negative real part on TpW− and positive real part on TpW+. It
follows that the differential Tpφt : TxV → Tφt(x)V satisfies

lim
t→∞

Txφt(v) = 0 for x ∈ W−, v ∈ TxW−,

lim
t→−∞

Txφt(v) = 0 for x ∈ W+, v ∈ TpW
+.

(a) Let x ∈ W− and v, w ∈ TxW−. Since φt(x) → p as t → ∞, the preceding
discussion shows

etω(v, w) = (φ∗t ω)(v, w) = ωφt(x)(Txφt · v, Txφt · w) → 0

as t →∞. This implies ω(v, w) = 0.
(b) Let x ∈ W+ and v ∈ (TxW+)ω ⊂ TxV . Suppose v /∈ TxW+. Take a
sequence tk → −∞ and let xk := φtk(x). Pick λk > 0 such that vk := λkTxφtk ·v
has norm 1 with respect to some metric on V . Note that vk ∈ (TxkW+)ω for
all k. Pass to a subsequence so that vk → v∞ ∈ TpV . Since Txφtk contracts
the component of v tangent to W+ and expands the transverse component, we Reference:

lambda-lemma?
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find 0 0= v∞ ∈ TpW−.
We claim that v∞ ∈ (TpW+)ω. Otherwise, there would exist a w∞ ∈ TpW+

with ω(v∞, w∞) 0= 0. But then ω(vk, wk) 0= 0 for k large and some wk ∈ TxkW+,
contradicting vk ∈ (TxkW+)ω. Hence v∞ is ω-orthogonal to TpW+. Since
TpW− is isotropic by part (a), v∞ is also ω-orthogonal to TpW−. But this
contradicts the nondegeneracy of ω because TpV = TpW+ ⊕ TpW−.

Corollary 12.7. Let (V, ω) be a symplectic manifold of dimension 2n with an
expanding vector field X, and let p be a hyperbolic zero of X. Then the stable
manifold satisfies dimW−(p) ≤ n.

Remark 12.8. In view of Lemma 8.8, Proposition 12.6 and Corollary 12.7 apply
in particular to a zero p of the expanding vector field X in a Weinstein manifold
(V, ω, X, φ). Thus its core, which is the union of all stable manifolds, consists of
isotropic manifolds. Under suitable technical assumptions (X Morse-Smale and
(X, φ) standard near critical points), the core is in fact an isotropic embedded
CW complex, see [6].

Note that in a Weinstein manifold (V, ω, X, φ) any regular level set Σc := φ−1(c)
carries a canonical contact structure ξc defined by the contact form αc :=
(iXω)|Σc .

Lemma 12.9. Let (V, ω, X, φ) be a Weinstein manifold.
(a) If c is a regular value of φ then for any critical point p ∈ V with φ(p) > c
the intersection W−(p) ∩ Σc is isotropic in the contact sense, i.e. it is tangent
to ξc.
(b) Suppose φ has no critical values in [a, b]. Let Λa ⊂ Σa = φ−1(a) be an
isotropic submanifold. Then the image of Λa under the flow of X intersects Σb

in an isotropic submanifold Λb.

Proof. (a) Since X is tangent to W−(p) and W−(p) is isotropic by Propo-
sition 12.6 and Lemma 8.8, the Liouville form λ = iXω satisfies λ|W−(p) =
(iXω)|W−(p) = 0.

(b) Let f > 0 be the function such that LfXφ ≡ 1 on φ−1([a, b]). Denote by ψt

the flow of fX, thus Λb = ψb−a(Λa). By equation (12.1) the 1-form λ = iXω
satisfies LXλ = λ, hence LfXλ = fλ, so the flow ψt only rescales λ and the
lemma follows.

Lemma 12.9 shows that every Weinstein structure on V provides a handlebody
decomposition of V where cells are attached along isotropic (in the contact
senss) spheres. The core disks of the handles are isotropic in the symplectic
sense. We will discuss this handlebody decomposition picture with more details
in Chapter 13 below.New lemma

Lemma 12.10. Let W = (W, ω,X, φ) be a Weinstein cobordism structure such
that φ has no critical points. Denote by ξt, t ∈ [m = minφ, M = maxφ], the



12.4. WEINSTEIN STRUCTURE OF A STEIN MANIFOLD 155

induced contact structure on the level set Vt = {φ = t}. Let g : ((Vm, ξm) →
(VMξM ) be the holonomy contactomorphism along X. and hs : (Vm, ξm) →
(Vm, ξm), s ∈ [0, 1], h0 = Id, be any contact diffeotopy. Then there exists a
family of Weinstein structures Ws = (W, ωs, Xs, φ),W0 = W, such that Ws

coincides with W near ∂W , and the holonomy map gs : Vm → VM along Xs is
equal to g ◦ hs, s ∈ [0, 1].

12.4 Weinstein structure of a Stein manifold

Proposition 12.11. [(see EliGro91] Let (V, J) be a Stein manifold and φ : V →
R a completely exhausting (see Section 2.3 above) J-convex Morse function.
Then

(ωφ := −dCφ, Xφ := ∇φφ, φ)

is a Weinstein structure on V . The symplectic manifold (V, ωφ) is independent,
up to symplectomorphism isotopic to the identity, of the choice of completely
exhausting J-convex Morse function φ.

Proof. By definition of J-convexity, ωφ := −ddCφ is a symplectic form, i.e., a
closed nondegenerate 2-form. Denote Xφ := ∇φ the gradient of φ taken with
respect to the metric 〈X, Y 〉 := ωφ(X, JY ). Then Xφ is Liouville. Indeed, for
any Y ∈ TV we have

dCφ(Y ) = 〈∇φ, JY 〉 = −ωφ(∇φ, Y ) = −iXφωφ(Y ).

Hence
iXφωφ = −dCφ, LXφωφ = ωφ.

To prove the second part of the proposition consider two completely exhaust-
ing J-convex functions φ0, φ1 : V → R+. Using Lemma 3.19 we find smooth
functions h0, h1 : R+ → R+ with h′0, h

′
1 → ∞ and h′′0 , h′′1 > 0, a completely

exhausting function ψ : V → R+, and a sequence of compact domains V k,
k = 1, . . . , with smooth boundaries Σk = ∂V k, such that

• V k ⊂ IntV k+1 for all k ≥ 1;

•
⋃

k V k = V ;

• Σ2j−1 are level sets of the function φ1 and Σ2j are level sets of the function
φ0 for j = 1, . . . ;

• ψ = h1 ◦ φ1 on Op
(⋃∞

j=1 Σ2j−1
)

and ψ = h0 ◦ φ0 on Op
(⋃∞

j=1 Σ2j
)
.

Let us construct now a compact type homotopy between the Weinstein struc-
tures (ωφ0 , Xφ0 , φ0) and (ωφ1 , Xφ1 , φ1) on V . Then Proposition 12.2 will imply
that the symplectic manifolds (V, ωφ0) and (V, ωφ1) are symplectomorphic via a
diffeomorphism isotopic to the identity.
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The required compact type homotopy can now be be constructed as a compo-
sition of four elementary compact type homotopies. First, note that for any
function h : R+ → R+ such that h′ → ∞ and h′′ > 0 the linear combination
hs(x) = (1−s)x+sh(x) has the same properties for any s ∈ (0, 1], and hence the
Weinstein structures which correspond to the family of completely exhausting
J-convex functions hs

i ◦φi provide elementary compact type homotopies between
the Weinstein structures (ωφi , Xφi , φi) and (ωhi◦φi , Xhi◦φi , hi ◦ φi), i = 0, 1. On
the other hand, for each i = 0, 1 the family φs

i = (1 − t)hi ◦ φi + tψ, s ∈ [0, 1],
consists of exhausting J-convex functions which concide near boundaries of an
exhausting sequence of compact domains. In view of Proposition 2.7 (by choos-
ing the hi sufficiently convex) we can also assume that these functions are com-
pletely exhausting. Hence the Weinstein structures which they generate provide
elementary homotopies between (ωhi◦φi , Xhi◦φi , hi ◦ φi) and (ωψ, Xψ, ψ).

Note that the contact structure ξc defined on a regular level set Σc = φ−1(c) by
the form dφC|Σc is formed in this case by the distribution of complex tangent
hyperplanes to the J-convex hypersurface Σc.

Remark 12.12. Let (V, J) be any almost complex manifold which admits an
exhausting J-convex Morse function φ : V → R. Then even if the symplectic
form ωφ = −ddCφ is not compatible with J one still gets a Weinstein structure
(V, ωφ, Xφ, φ), similar to the one defined in Proposition 12.11. The only differ-
ence in this case is that the Liouville vector field Xφ should be defined directly
as ωφ-dual to −dCφ, i.e. by

−dCφ = iXφωφ.

Applying both sides to a tangent vector JZ we find

dφ(Z) = ωφ(Xφ, JZ),

so Xφ is gradient-like for φ with respect to the positive definite (but in general
non-symmetric) (2, 0) tensor field gφ := ωφ(·, J ·). Completeness of Xφ can be
achieved similarly to the integrable case.

Proposition 12.11, Remark 12.12 and Corollary 12.7 imply

Corollary 12.13. The indices of critical points of any J-convex Morse function
on a 2n-dimensional almost complex manifold are ≤ n.

12.5 Weinstein structures near critical points

In this section we prove that a Weinstein structure can be arbitrarily altered
near a hyperbolic or birth-death type critical point. The precise formulation is
given in the following two propositions.
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Proposition 12.14. Let p be a hyperbolic critical point of φ0 in a Weinstein
manifold (V, ω, X0, φ0). Let (ω, Xloc, φloc) be a Weinstein structure on a neigh-
borhood Vloc of p such that p is a hyperbolic critical point of φloc of value
φloc(p) = φ0(p) and index indp(φloc) = indp(φ0). Then there exists a homo-
topy of Weinstein structures (ω,Xt, φt) on V such that (Xt, φt) = (X0, φ0)
outside Vloc, Xt has a unique hyperbolic zero at p in Vloc for all t ∈ [0, 1], and
(X1, φ1) = (Xloc, φloc) near p.

Proposition 12.15. State and prove analogue for birth-death case.

We first prove Proposition 12.14 in the special case that Xloc = X0 and φ0 is a
strong Lyapunov function.

Lemma 12.16. Let p be a hyperbolic critical point of φ in a Weinstein manifold
(V, ω, X0, φ) such that X0 ·φ ≥ δ|X0|2 for some δ > 0. Let Xloc be a vector field
on a neighborhood Vloc of p with a hyperbolic zero at p such that LXlocω = ω
and Xloc · φ ≥ δ|Xloc|2. Then there exists a homotopy of strong Weinstein Define strong

Weinstein structure.structures (ω,Xt, φ) on V such that Xt = X0 outside Vloc, Xt has a unique
hyperbolic zero at p in Vloc for all t ∈ [0, 1], and X1 = Xloc near p.

Proof. Pick local coordinates {Z} near p = {Z = 0}. Hyperbolicity of X0

implies |X0(Z)| ≥ γ|Z| for some γ > 0, and similarly for Xloc. So the function φ
satisfies dφ(Z) ≤ c|Z| and X0 ·φ(Z) ≥ δ|X0(Z)|2 ≥ β|Z|2 for positive constants
c and β = γδ, and similarly Xloc · φ(Z) ≥ β|Z|2. It follows that the vector
fields X̄t := X0 + t(Xloc + X0) satisfy LX̄t

ω = ω and X̄t · φ(Z) ≥ β|Z|2 for all
t ∈ [0, 1]. Cut the interval [0, 1] into 0 = t0 < t1 < · · · < tN = 1 such that

|X̄ti+1(Z)− X̄ti(Z)| ≤ α|Z|

for all i, with an arbitrarily small constant α = α(c, β) to be chosen later. Thus
by induction over i it suffices to prove the statement under the assumption

|Xloc(Z)−X0(Z)| ≤ α|Z|.

The 1-form λ := i(X0−Xloc)ω is closed. So there exists a unique function H
with H(0) = 0 and dH = λ, i.e. X0 − Xloc = −XH , where XH denotes the
Hamiltonian vector field of H. Pick ε > 0 and a cutoff function g : [0, ε] → [0, 1]
with g ≡ 1 near 0, g ≡ 0 near ε, and |g′| ≤ 2/ε. Define

f(Z) := g(|Z|2), Ht := tfH, Xt := X0 + XHt .
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The vector fields Xt satisfy Xt = X0 for |Z|2 ≥ ε and X1 = Xloc near p. Since

|H(Z)| = |
∫ 1

0

d

ds
H(sZ)ds|

≤
∫ 1

0
|Z| |dH(sZ)|ds

≤
∫ 1

0
|Z| |Xloc(sZ)−X0(sZ)|ds

≤ α

2
|Z|2,

we can estimate for |Z|2 ≤ ε and α ≤ β
4c :

Xt · φ = (X0 + tfXH) · φ + tHXf · φ
≥ β|Z|2 − t|H(Z)| |df(Z)| |dφ(Z)|

≥ β|Z|2 − α

2
|Z|2 4

ε
|Z| c|Z|

≥ (β − 2cα)|Z|2

≥ β

2
|Z|2.

This shows that Xt is strongly gradient-like for φ and has a hyperbolic zero at
p for all t, so Lemma 12.16 is proved.

Next we discuss linear Liouville vector fields.

Lemma 12.17. The space of hyperbolic linear Liouville vector fields on a sym-
plectic vector space (V, ω) with fixed unstable and stable subspaces E± is path
connected.

Proof. Recall that E− is isotropic, E+ is coisotropic and V = E−⊕E+. Hence
we can identify (V, ω) with (Cn, ωst) with coordinates zj = xj + iyj such thatExplain this?

E− corresponds to Rk spanned by x = (x1, . . . , xk) and E+ corresponds to
R2n−k spanned by y = (y1, . . . , yk) and z = (zk+1, . . . , zn). Now consider a
hyperbolic linear Liouville vector field X on (Cn, ωst) with unstable and stable
subspaces E±. As the flow of X is conformally symplectic and preserves E± it
preserves the splitting Cn = Rk⊕iRk⊕Cn−k, thus X is of the form X(x, y, z) =
(Ax,−By, Cz) for matrices A, B,C all of whose eigenvalues have positive real
parts. Now note that the spectrum σ(M) of a matrix M satisfies for a, t ∈ R

σ
(
(1− t)M + ta1l

)
= (1− t)σ(M) + ta,

so if all eigenvalues of M have positive real part the same holds for (1−t)M+ta1l
for any a > 0 and t ∈ [0, 1]. Hence the linear Liouville vector fields

Xt := (1− t)X + tXst, Xst(x, y, z) = (2x,−y,
1
2
z)
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are hyperbolic with unstable and stable subspaces E± for all t ∈ [0, 1]. This
shows that any X can be connected to the standard field Xst and thus the
lemma.

Proof of Proposition 12.14. Let (V, ω, X0, φ0), p and (Xloc, φloc) be as in Propo-
sition 12.14. In view of Proposition 8.11 we may assume without loss of gener-
ality that φ0 and φloc are strong Lyapunov functions for X0 resp. Xloc. We will
modify (X0, φ0) near p in 3 steps. Let us call a homotopy (Yt, φt) admissible
if (ω,Xt, φt) is a Weinstein structure, (Xt, φt) = (X0, φ0) outside Vloc, and Xt

has a unique hyperbolic zero at p in Vloc for all t ∈ [0, 1].
Step 1: There exists an admissible homotopy (Xt, φt) such that the unstable
(resp. stable) subspace E±

p (X1) of X1 at p agrees with the unstable (resp. stable)
subspace E±

p (Xloc) of Xloc.
To see this, pick a homotopy of symplectomorphisms ft such that f0 = 1l,
ft = 1l outside Vloc, and the differential dpf1 maps E±

p (Xloc) to E±
p (X1). Then

Xt := f∗t X0 has the desired properties. After applying Step 1 and changing
notation, we may thus assume that E±

p (Xloc) = E±
p (X0) =: E±

p . Fix Darboux
coordinates {Z} near p and denote by Y lin

0 and φquad
0 the linear resp. quadratic

parts in the Taylor expansion near p.
Step 2: There exists an admissible homotopy (Yt, φt) such that Y1 = Y lin

0 and
φ1 = φquad

0 .
The linear resp. quadratic parts satisfy

LXlin
0

ω = ω, X lin
0 · φ0(Z) ≥ δ|Z|2, X lin

0 · φquad
0 (Z) ≥ δ|Z|2

for some δ > 0. Therefore we may first apply Lemma 12.16 to homotope X0 to
X lin

0 (fixing φ0) and then Proposition 8.11 to homotope φ0 to φquad
0 (fixing X lin

0 ).
After applying Step 1 to (X0, φ0) and in the converse direction to (Xloc, φloc)
we may thus assume that X0, Xloc are linear and φ0, φloc are quadratic in the
same Darboux coordinates {Z} near p.
Step 3: There exists an admissible homotopy (Xt, φt) with (X1, φ1) = (Xloc, φloc)
near p.
By Lemma 12.17 there exists a homotopy of hyperbolic linear Liouville vector
fields X̄t near p from X̄0 = X0 to X̄1 = Xloc. By ??? there exists a homotopy of
strong quadratic Lyapunov functions φ̄t for X̄t near p from φ̄0 = φ0 to φ̄1 = φloc.
Since the strong Lyapunov property is stable under C2-small perturbations,
there exists a partition 0 = t0 < t1 < · · · < tN = 1 such that for all i the
following hold:

• φ̄ti is a strong Lyapunov function for X̄t for all t ∈ [ti, ti+1];

• φ̄t is a strong Lyapunov function for X̄ti+1 for all t ∈ [ti, ti+1].

Therefore we can inductively for each i apply Lemma 12.16 to homotope X̄ti

to X̄ti+1 (fixing φ̄ti) and then Proposition 8.11 to homotope φ̄ti to φ̄ti+1 (fixing
X̄ti+1). This concludes the proof of Proposition 12.14.
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12.6 Weinstein normal forms

Section to be
rewritten.

Proposition 12.18. Let Wj = (ωj , Xj , φ) j = 0, 1, be two Weinstein cobordism
structures on the manifold W with boundary ∂W = ∂+W∪∂−W , which share the
same Lyapunov function φ. Suppose that W0 and W1 coincide on Op (∂W−),
that φ has a unique critical point p ∈ W , and that the stable discs Dj of p
for vector fields Xj, j = 0, 1, coincide: D0 = D1 = D.Then the Weinstein
structures W0 and W1 are strongly homotopic via a homotopy which is fixed on
Op (∂−W ) and leaves invariant the stable disc D.

Proof. TO BE ADDED

Remark 12.19. An analog of Proposition 12.18 holds also for Stein domains.
See Proposition 11.11 below.

By Proposition 5.20, near an isotropic submanifold in a level set of a Weinstein
manifold (V, ω, X, φ) we can put (ω, X) and one level set of φ into normal form.
However, even in a neighborhood of a point there is no hope to find a normal
form for the whole structure (ω,X, φ) since rescaling φ yields non-equivalent
local data. The following results describe normal forms for Weinstein structures
up to homotopy.
Recall that the core of a Weinstein manifolds is the union of all stable manifolds
of critical points.

Proposition 12.20. Let ∆ be the core of a Weinstein manifold (V0, ω0, X0, φ0).
Let (ωloc, Xloc, φloc) be a Weinstein structure on a neighborhood Vloc of ∆ such
that φloc has the same critical points as φ0 of the same values and Xloc is
tangent to ∆. Then there exists a homotopy of Weinstein structures (ωt, Xt, φt)
on V such that (ωt, Xt, φt) = (ω0, X0, φ0) outside Vloc for all t ∈ [0, 1] and
(ω1, X1, φ1) = (ωloc, Xloc, φloc) near ∆.
If (ωloc, Xloc, φloc) = (ω0, X0, φ0) on a neighborhood of a closed subset A ⊂ ∆,
then we can achieve that (ωt, Xt, φt) = (ω0, X0, φ0) near A for all t ∈ [0, 1].

Corollary 12.21. Let (ωi, Xi, φi), i = 0, 1, be Weinstein structures on V having
the same critical points of corresponding values and indices and the same core.
Then (ω0, X0, φ0) and (ω1, X1, φ1) are Weinstein homotopic.

Proof. By Proposition 12.20, after a Weinstein homotopy of (ω0, X0, φ0) we may
assume that (ω0, X0, φ0) and (ω1, X1, φ1) agree on a neighborhood U of their
common core ∆. By Lemma [???], after shrinking U we may assume that ∂U is
transverse to X0. Now for i = 0, 1 the flow of Xi defines a Weinstein homotopyReference? Make more

precise! from (U, ωi, Xi, φi) to (V, ωi, Xi, φi).

Proof of Proposition 12.20. To be done.



Chapter 13

Weinstein handlebodies

13.1 Handles in the smooth category

For integers 0 ≤ k ≤ m and a number ε > 0 consider the m-dimensional k-
handle

H := Hk
ε := Dk

1+ε ×Dm−k
ε ,

where Dk
r denotes the closed k-disk of radius r. We will use the following

notations (see Figure [fig:handle]):

• the core disk D := Dk
1 × {0} and the core sphere S := ∂D;

• the lower boundary ∂−H := ∂Dk
1 ×Dm−k

ε ;

• the upper boundary ∂+H := Dk
1 × ∂Dm−k

ε ;

• the normal bundle ν := T (∂−H)|S = S × Rm−k to S in ∂−H;

• the outward normal vector field η along S ⊂ D;

• the attaching region U := H \Dk
1 ×Dm−k

ε .

We are not fixing the “width” ε of the handle and allow us to choose it as small
as it is convenient.
Now let W be a compact m-manifold with boundary ∂W . An attaching map
for a k-handle is an embedding f : ∂−H ↪→ ∂W . Extend f to an embedding
F : (U,U ∩ ∂−H) ↪→ (W, ∂W ) by mapping η to an inward pointing vector field
along ∂W . Then we can attach a k-handle to W by the map f to get a manifold

W ∪f H := W =H/H/x∼F (x)∈W .

Different extensions F give rise to manifolds that are canonically diffeomorphic,
i.e., related by a diffeomorphism that is unique up to isotopy. Moreover, the

161
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diffeomorphism can be chose to be the identity on a shrinking of W , i.e., the
complement of a tubular neighborhood of ∂W .

Remark 13.1. Note that the boundary of W ∪f H has a corner along f(∂Dk
1 ×

∂Dm−k
ε ). But this corner can be smoothed in a canonical way as follows

(cf. Chapter 4): Introduce the norms

R :=
√

x2
1 + · · ·+ x2

k and r :=
√

x2
k+1 + · · ·+ x2

m.

Pick a concave curve γ in the first quadrant of the (r, R)-plane as in Figure
[fig:corner] which equals the curve R ≡ 1 near (ε, 1) and r ≡ δ near (δ, 0) for
some 0 < δ < ε. Denote by Hγ ⊂ H the region bounded by the hypersurface
{(r, R) ∈ γ} and containing the core disk. Then W ∪f Hγ is a smooth manifold
with boundary which is easily seen to be independent of the curve γ, up to
canonical diffeomorphism fixed on a shrinking of W . Therefore, we will suppress
γ from the notation and denote the resulting smooth manifold with boundary
again by W ∪f H.
In particular, this argument shows independence of the “width” ε.

Remark 13.2. The boundary of W ∪f H is obtained from ∂W by surgery of
index k, i.e., by cutting out a copy of ∂Dk ×Dm−k and gluing in Dk × ∂Dm−k

along the common boundary ∂Dk × ∂Dm−k. The manifold (W ∪f H) \ W ′,
where W ′ ⊂ W is the complement of a tubular neighborhood of ∂W , provides
a canonical cobordism between ∂W and ∂(W ∪f H). This cobordism carries a
Morse function which is constant on the boundaries and has a unique critical
point of index k in the center of the handle, see [50] and Section 13.2 below.

Remark 13.3. By the tubular neighborhood theorem (see [42]), the attaching
map f : ∂−H ↪→ W is uniquely determined, up to isotopy, by the following two
data:

(i) the embedding f |S : S ∼= Sk−1 ↪→ ∂W (the attaching sphere);

(ii) the trivialization df : ν ∼= S × Rm−k → νf of the normal bundle to f in
∂W (the normal framing).

Lemma 13.4. An isotopy of attaching maps ft : ∂−H ↪→ ∂W , t ∈ [0, 1],
induces a canonical family of diffeomorphisms φt : W ∪f0 H → W ∪ft H.

Proof. By the isotopy extension theorem (see [42]), (after possibly shrinking ε)
there exists a diffeotopy ψt : ∂W → ∂W such that ft = ψt ◦ f0. Let ∂W ×
[−1, 0] be a collar neighborhood of ∂W ∼= ∂W × {0} and define for each t a
diffeomorphism

Ψt : ∂W × [−t, 0] → ∂W × [−t, 0], (x, τ) 1→
(
ψτ+t(x), τ

)
.

Then Ψt fits together with the identity on W \ (∂W × [−t, 0]) and H to a
diffeomorphism φt : W ∪f0 H → W ∪ft H, see Figure [fig:???].
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Example 13.5. In general, the diffeomorphism type of WfH depends on the
normal framing. It also generally depends on the particular parametrization
f : S → f(S) of the embedded sphere f(S) ⊂ ∂W . For example, attaching an
m-handle to the m-ball Dm via a diffeomorphism f : Sm−1 → Sm−1 yields a
manifold Dm ∪f H that is easily seen to be homeomorphic to Sm. However,
it is in general not diffeomorphic to Sm. Indeed, by Lemma 13.4, f 1→ Dm ∪f

H defines a map from isotopy classes of diffeomorphisms of Sm−1 to smooth
structures on Sm (up to diffeomorphism). This map is known to be surjective
for all m 0= 4 (see [42]; the remaining case m = 4 amounts to the 4-dimensional
smooth Poincaré conjecture). For example, all the 28 smooth structures on S7

arise in this way.

Morse theory. For a function φ : V → R on a manifold and c < d we
introduce the following self-explanatory notations:

V c := φ−1(c), V ≤c := φ−1
(
(−∞, c]

)
, V [c,d] := φ−1([c, d]) etc.

The main result of Morse theory can now be formulated as follows (see [50]):

Proposition 13.6. Let φ : V → R be a proper function on a manifold such
that V [a,b] contains a unique nondegenerate critical point p on level c ∈ (a, b).
Then V ≤b is obtained from V ≤a by attaching a k-handle, where k = ind(p).

Since every (paracompact) manifold admits an exhausting Morse function with
distinct critical levels (i.e., every level contains at most one critical point)
(see [50]), this implies

Corollary 13.7. Every manifold is obtained from a ball by successive attaching
of at most countably many handles.

We will later need the following lemma about equivalence of Morse functions.

Lemma 13.8. Let Wn ⊂ V n be compact manifolds with boundary and ∆ ⊂
V \W be an embedded k-disk transversely attached to W along its boundary. Let
φ, ψ : V → R be two Morse functions with a unique index k critical point p ∈ ∆
and regular level sets ∂W = φ−1(a) = ψ−1(a) and ∂V = φ−1(b) = ψ−1(b),
a < b. Suppose that φ = ψ on W ∪ ∆ and their restrictions to ∆ have a
nondegenerate maximum at p. Then there exists a diffeomorphism f : V → V
with f |W∪∆ = 1l, isotopic to 1l rel W ∪∆, such that f∗ψ = φ.

Proof. By the Morse lemma, there exists an orientation preserving diffeomor-
phism g : U → U ′ between neighborhoods of p such that g∗ψ = φ. Moreover, we
may assume the g = 1l on U ∩∆. (To see this, first find coordinates x1, . . . , xk

on ∆ near p in which φ(x) = c− x2
1 − · · · − x2

k and extend them to coordinates
x1, . . . , xn for V near p. Then apply the proof of the Morse lemma in [49] to find
new coordinates u1, . . . , un near p in which φ(u) = c−u2

1−· · ·−u2
k+u2

k+1 · · ·+u2
n.

Inspection of the proof shows that ui = xi on ∆. Pick corresponding coordinates
vi for ψ and define g by ui → vi.) After shrinking U, U ′, we can extend g to a
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diffeomorphism g : B → B of a ball B containing U, U ′ such that g = 1l near ∂B
and g is isotopic to 1l rel ∂B. Extend g to a diffeomorphism g : W ∪N → W ∪N ,
where N is a neighborhood of ∆ ∪ B in V , such that g = 1l outside B. Using
the flow of a gradient-like vector field for ψ on N \ U ′, we can modify g by an
isotopy fixed on W ∪∆∪U to a diffeomorphism h : W ∪N → W ∪N ′ satisfying
h∗ψ = φ. Now pick a gradient-like vector field X for φ on N \ U , tangent to
∂N , and set X ′ := h∗X on N ′ \ U ′. Extend X to a gradient-like vector field
on V \ (W ∪ U) and normalize it such that X · φ = 1, similarly for X ′. Denote
the flows of X, X ′ by γt, γ′t. For x ∈ V \ (W ∪ U), let t(x) < 0 be the unique
time for which γt(x)(x) ∈ ∂W . Now define f : V → V by f := h on W ∪ U and
f(x) := γ′−t(x) ◦ γt(x)(x) on V \ (W ∪ U).

13.2 The standard Weinstein handle

We will be interested only in attaching handles of index k ≤ n and view the
handle H = Hk

ε = Dk
1+ε ×D2n−k

ε as canonically embedded in Cn as the bidiskI have exchanged x
and y.

{
k∑

j=1

x2
j +

n∑

j=k+1

|zj |2 ≤ ε2,
k∑

j=1

y2
j ≤ (1 + ε)2, }, (13.1)

where zi = xj + iyj , j = 1, . . . , n, are the complex coordinates in Cn. In
particular, the handle H carries the standard complex structure i, as well as the
standard symplectic structure ωst =

∑
dxj ∧ dyj .

The symplectic form ωst on H admits a hyperbolic Liouville field

Xst :=
k∑

j=1

(
2xj

∂

∂xj
− yj

∂

∂yj

)
+

1
2

n∑

j=k+1

(
xj

∂

∂xj
+ yj

∂

∂yj

)
, (13.2)

which is gradient-like for the function

φst(z) := 1 +
k∑

j=1

x2
j +

n∑

j=k+1

|zj |2 −
k∑

j=1

y2
j .

More generally, Xst is gradient-like for a function on H of the form ψ(u, v) with

u :=
k∑

j=1

x2
j +

n∑

j=k+1

|zj |2, v :=
k∑

j=1

y2
j

provided that

∂ψ

∂u
(u, v) > 0,

∂ψ

∂v
(u, v) < 0 for all 0 ≤ u ≤ ε2, 0 ≤ v ≤ (1 + ε)2. (13.3)

Note that ψst(u, v) = 1 + u− v satisfies these conditions. The following lemma
describes some more general functions satisfying these conditions, which will be
needed in constructions below.
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Lemma 13.9. For any ε > 0 and 0 < δ < 1 + ε2 there exists a smooth family
of functions ψt(u, v) on Hk

ε with the following properties:
(a) ψt satisfies conditions (13.3) (hence is gradient-like for Xst) for all t ∈ [0, 1];
(b) ψ0 = ψst and ψt = ψst in a neighborhood of the set {ψst ≤ 0} ∪{ u = ε2}.
(c) ψ1 < δ in a neighborhood of the core disk D.

Proof. This is pretty clear from Figure [fig:W-shape], but here is an explicit
construction. Pick any smooth function f : [1− (1 + ε)2, 1 + ε2] → R with the
following properties:

• f ′(s) > 0 and f(s) ≤ s for all s;

• f(s) = s for s ≤ 0;

• f(s) < δ for all s.

Pick 0 < a < b < ε2 and a smooth non-decreasing function ρ : [0, ε2] → [0, 1]
with ρ = 0 of [0, 1] and ρ = 1 on [b, ε2]. Let

g(u, s) := f(s) + ρ(u)
(
s− f(s)

)
.

and define

ψ1(u, v) := g
(
u, ψst(u, v)

)
, ψt := (1− t)ψst + tψ1.

Let us verify the conditions in the lemma.
(a) The hypotheses on f and ρ imply ∂g

∂u = ρ′(u)
(
s − f(s)

)
≥ 0 and ∂g

∂s =
f ′(s) + ρ(u)

(
1− f ′(s)

)
> 0, and we find

∂ψ1

∂u
=

∂g

∂u
+

∂g

∂s

∂ψst

∂u
> 0,

∂ψ1

∂v
=

∂g

∂s

∂ψst

∂v
< 0.

Hence ψ1, and therefore also ψt, satisfies conditions (13.3).
(b) Clearly ψ0 = ψst. For s ≤ 0 we have g(u, s) = s, which shows ψt(u, v) =
ψst(u, v) whenever ψst(u, v) ≤ 0. For u ≥ b we have g(u, s) = s and therefore
ψt(u, v) = ψst(u, v).
(c) For u ≤ a we have g(u, s) = f(s) and therefore ψ1(u, v) = f

(
ψst(u, v)

)
< δ

by the choice of f .

Remark 13.10. Lemma 13.9 can be seen as a warm-up for the much more so-
phisticated study of shapes for i-convex functions on the handle in Chapter 4.

13.3 Weinstein handlebodies

Let us denote by ξ− := ker(λst|∂−H) the contact structure defined on ∂−H by To be rephrased.
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the Liouville form λst = i(Xst)ωst. Note that the bundle ξ−|S canonically splits
as (TS⊗C)⊕εn−k, where εn−k is a trivial (n−k)-dimensional complex bundle.
We will denote by σS the isomorphism

TS ⊗ C⊕ εn−k → ξ−|S.

We need some notation. Suppose we are given a real k-dimensional bundle
E, a complex n-dimensional bundle F , n ≥ k, and an injective totally real
homomorphism φ : E → F . Then φ canonically extends to an injective complex
homomorphism φ⊗ C : E ⊗ C → F . If n > k and φ⊗ C extends to a fiberwise
complex isomorphism Φ : (E ⊗ C)⊕ εn−k → F then Φ is called a saturation of
φ. When n = k the saturation is unique.
Now let (V, ω, X, φ) be a Weinstein manifold, p a critical point of index k of
the function φ, and a < b = φ(p) a regular value of φ. Denote W := {φ ≤ a}.
Suppose that the stable manifold of p intersects V \ IntW along a disk D.
By Proposition 12.6 the disk D is isotropic in (V, ω), and by Lemma 12.9 the
attaching sphere S = ∂D is isotropic in (∂W, ξ). Thus the inclusion TS ↪→
ξ extends canonically to an injective complex homomorphism TS ⊗ C → ξ,
while the inclusion TD ↪→ TV extends to an injective complex homomorphism
TD ⊗ C → TV . There exists a homotopically unique complex trivialization of
the normal bundle to TS ⊗ C in ξ which extends to D as a trivialization of
the normal bundle to TD ⊗ C in TV . This trivialization provides a canonical
isomorphism ΦD : TS ⊗C⊕ εn−k → ξ|S . We will call ΦD canonical saturationI’d rather speak of the

“complex (or
symplectic) normal

framing”

of the inclusion TS ↪→ ξ.
The following result (at least the existence part) has been proved in [63].

Proposition 13.11 (Weinstein [63]). Let (W, ω,X, φ) be a 2n-dimensional We-Simplify formulation!

instein domain with boundary ∂W and ξ = ker(λ|∂W ) the contact structure on
∂W defined by the Liouville for λ = iXω. Let h : S → ∂W be an isotropic em-
bedding of the (k−1)-sphere S covered by a saturation Φ : TS⊗C⊕εn−k → ξ of
the differential dh : TS → ξ. Then there exists a Weinstein domain (W̃ , ω̃, X̃, φ̃)
such that W ⊂ Int W̃ , and

(i) (ω̃, X̃, φ̃)|W = (ω,X, φ);

(ii) the function φ̃|fW\Int W has a unique critical point p of index k.

(iii) the stable disk D of the critical point p is attached to ∂W along the sphere
h(S), and the canonical saturation ΦD coincides with Φ.

Given any two Weinstein extensions (W0, ω0, X0, φ0) and (W1, ω1, X1, φ1) of
(W, ω,X, φ) satisfying properties (i)-(iii), there exists a diffeomorphism g :
W0 → W1 fixed on W such that (ω0, X0, φ0) and the pull-back structure (g∗ω1, g∗X1, g∗φ1)
are homotopic in the class of Weinstein structures satisfying conditions (i)-(iii).
In particular, the completions Compl(W0, ω0, X0, φ0) and Compl(W1, ω1, X1, φ1)
are symplectomorphic via a symplectomorphism fixed on W .
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We say that the Weinstein domain (W̃ , ω̃, X̃, φ̃) is obtained from (W, ω,X, φ)
by attaching a handle of index k along an isotropic sphere h : S → ∂W with a
saturation homomorphism Φ.

Proof. Extend the Weinstein structure (ω,X, φ) to a slighly larger manifold
W ′ ⊃ W . After adding a constant to φ we may assume that φ|∂W = −1.
Let (H,ωst, Xst, φst) be the standard Weinstein handle of index k. By Proposi-
tion 5.22 there exists an isomorphism of isotropic setups

F : (U, ωst, Xst, φ
−1
st (−1) ∩ U, S) → (U ′, ω, X1, ∂W ∩ U ′, h(S))

between neighborhoods of S in H and h(S) in W ′ inducing h and Φ. Thus
(ω, X) and (ωst, Xst) fit together to a Liouville structure (ω̃, X̃) on W ′ ∪F H.
Moreover, the level set {ψst = −1} corresponds via F to the level set {ψ = −1}.
Thus after perturbing ψ on W ′ \W , keeping it transverse to X, we may assume
that the level sets {ψ = t}, t ∈ [−1,−1 + δ] correspond via F to level sets
{ψst = g(t)} for some δ > 0 and diffeomorphism g : [0, δ] → [0, δ′]. Now let ψ̃ be
the function on W ′ ∪F H which equals g−1 ◦ψ on W ′ and the function ψ1 from
Lemma 13.9 on H. Then (W̃ := {ψ̃ ≤ δ}, ω̃, X̃, φ̃) has the desired properties.
For uniqueness, pull back (ω1, X1, φ1) by any diffeomorphism g : W0 → W1

fixed on W and mapping the critical point and stable disk of φ0 to those of φ1.
Compose g∗φ1 with a homotopy of functions R → R to arrange the same values
at the critical point and apply Corollary ??.

Remark 13.12. Note that Proposition 13.11 implies that even in the case Rephrase, overlaps
with Corollary ??of infinitely many handles the handlebody description determines the sym-

plectomorphism type of Weinstein manifold. Indeed, it follows that given 2
manifolds (V1, ω1, X1, φ1) and (V1, ω2, X2, φ2)) with the same handlebody de-
scription, there is a symplectomorphism of a neighborhood U1 of the core K1

of the first manifold onto a neighborhood U2 of the core K2 of the second.
Moreover, the neighborhoods can b chosen i such a way that their boundaries
are transversal to the Liouville fields X1 and X2 respectively. On the other
hand,

⋃
t

Xt
1(U1) = V1 and

⋃
t

Xt
2(U2) = V2, and hence the symplectomorphism

U1 → U2 can be extended to a symplectomorphism V1 → V2 by matching the
corresponding trajectories of the Liouville fields.

Theorem 13.13. Suppose that a 2n-dimensional almost complex manifold (V, J)
admits an exhausting Morse function φ with only critical points of index ≤ n.
Then there exists a Weinstein structure (ω,X, φ) (with the same φ!) on V such
that J is homotopic to an almost complex structure compatible with ω.

Proof. Let φ : V → R+ be an exhausting Morse function with critical points Still to be corrected.

of index ≤ n. The critical values of φ are discrete. Let us order them: c0 =
0 < c1 < c2 . . . , introduce intermediate regular values dk = ck−1 + ck−ck−1

2 ,
k = 1, . . . , and set Wk := {φ ≤ dk},Σk := ∂Wk, k = 1, . . . . Note that there are
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only finitely many critical point on each critical level. We are going to construct
the Weinstein structure inductively on Wk.
W1 is a disjoint union of finitely many balls. We choose on each of them a
Weinstein structure which consists of the standard symplectic structure of the

unit ball in the standard symplectic (R2n,
n∑
1

dxk∧dyk), the radial Liouville field

X =
1
2

(
n∑

1

xk
∂

∂xk
+ yk

∂

∂yk

)
,

and the function φ, which can be assumed to be equal d1

(
k∑
1

x2
k + y2

k

)
on each

of the balls. We can deform J on V so it becomes compatible with the chosen
symplectic form on W1.
Let us assume that we already constructed the required Weinstein structure
(ω,X, φ) on Wl for some l ≥ 1, so that J |Wl is compatible with the Weinstein
structure on Wl. The standard Morse theory tells us that Wl+1 can be obtained
from Wl by a simultaneous attaching of several handles of index ≤ n. Without
a loss of generality we can assume that there is just one handle.
Let p be the corresponding critical point of the function φ, and ∆ the intersection
of its stable manifold (formed by the trajectories of X converging to p) with
V \IntWl. Then ∆ is a disk of dimension k = ind p, transversely attached to Wl

in Wl+1 ⊂ V . By Theorem 6.14 there exists an isotopy of ∆ in Wl+1\IntWl into
a totally real disk ∆′ which is J-orthogonally attached to Wl along an isotropic
submanifold of ∂Wl.
By Proposition 13.11 we can extend the Liuoville structure from Wl to a Lioville
structure (ω′, X ′, φ′) on a domain W ′

l+1 ⊂ Op (Wl ∪∆′ ⊂ Wl+1, so that W ′
l+1

is obtained from Wl by attaching a handle of index k with the core disk ∆′

using the canonical saturation of the attaching map provided by the totally real
disk ∆′. In particular the almost complex structure on W ′

l+1 can be deformed
to become compatible with ω′′. Now observe that by construction there is an
isotopy αt : W ′

l+1 → V , t ∈ [0, 1], such that α0 is the inclusion W ′
l+1 ↪→ V ,

α1(W ′
l+1) = Wl+1 and αt|Op Wl = Id. Moreover, one can arrange that the

function φ′◦h differs from φ by a reparameterization of the image, i.e. φ = β◦φ′
for a diffeomorphism β : R+ → R+. The push-forward almost complex structure
(α1)∗J extends in the same homotopy class to V . Hence, (α1)∗ω′, (α1)∗X ′, φ) is
the required extension of the Weinstein structure (ω,X, φ, φ) from Wl to Wl+1.
If the function φ has finitely many critical points then to complete the proof it
remains to attach a cylindrical end to WN where cN−1 is the last critical level. If

there are infinitely many point that the resulted structure on V = W∞ =
∞⋃
1

Wl

is automatically Weinstein provided that the Liouville vector field X is complete.
However, this can be easily achieved by an appropriate rescaling of ω and X in
the neighborhood of all regular levels ∂Wl = {φ = dl}, l = 1, . . . ,∞.
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13.4 Subcritical Weinstein manifolds

A 2n-dimensional Weinstein manifold (V, ω) is called subcritical if it admits a
Weinstein structure (X, φ) such that all critical points of the function φ have
index < n. More precisely, it is called k-subcritical, k ≥ 1 if all critical points
of φ have index ≤ n− k.

Theorem 13.14 (Cieliebak [13]). Let (V, ω, X, φ) be a k-subcritical 2n-dimesional
Weinstein manifold. Then (V, ω) is symplectomorphic to the k-stabilization of
a Weinstein manifold (V ′, ω′, X ′, φ′) of dimension 2(n− k).

The proof requires some preparation. Note that if k < n, then the standard 2n- Still to be proofread.

dimensional handle H(e) of index k contains the standard (2n− 2)-dimensional
handle H ′(ε) = H(ε) ∩ Cn−1. The contact structure ξ−n on ∂−H canonically
splits as ξ−n−1 ⊕ ε1, where ξ−n−1 is the canonical contact structure on ∂−H ′. In
the next section we will need the following

Lemma 13.15. Let (W, ω,X, φ) be a Weinstein domain of dimension 2n, and
W ′ a codimension 2 submanifold which is invariant with respect to X, and
such that the restriction (ω|W ′ , X|W ′ , φ|W ′) defines on W ′ a Weinstein domain
structure. Suppose that the normal bundle to W ′ in W is trivial. Let h :
S → ∂W ′ be an isotropic embedding together with a saturation homomorphism
Φ′ : TS ⊗ C ⊕ Cn−k−1 → ξ′. then one can simultaneously attach the handle
H ′ to W ′ using h and Φ′, and the handle H to W using h and Φ = φ′ ⊕ Id :
TS ⊗ C ⊕ Cn−k−1 ⊕ ε1 → ξ|∂W ′ = ξ′ ⊕ ε1 to get a pair a Weinstein domains
(W̃ = W ∪

h,Φ
H, ω̃, X̃, φ̃) and (W̃ ′ = W ′ ∪

h,Φ
H ′, ω̃′, X̃, φ̃′) such that

• (W̃ ′, ∂W̃ ′) ⊂ (W̃ , ∂̃W ), X̃ ′ is tangent to W̃ ′;

• (ω̃′, X̃ ′, φ̃′) = (ω̃, X̃, φ̃)|fW ′ , and

• the normal bundle to W̃ ′ in W̃ is trivial.

We will also need the following

Lemma 13.16. Suppose that (M, ξ) be a (2n+1)-dimensional contact manifold
and (N, ζ) its codimension 2 contact submanifold with a trivial normal bundle.
Let S be a k-dimensional manifold, k < n, f : S → V an isotropic embedding
and Φ : E = TS ⊗ C ⊕ εn−k → ξ a saturation of its differential df : TS → ξ.
Suppose that there exists a homotopy ft : S → M, t ∈ [0, 1], which begins with
f1 = f and ends at a map f1 : S → N . Then there exists an isotropic isotopy
gt : S → M and a family Φt of saturation of dft, t ∈ [0, 1], such that

• g0 = f ;

• g1(S) ⊂ N ;

• gt is C0-close to ft.
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• the restriction of Φ1 to E1 = TS ⊗ C⊕ εn−k−1 ⊂ E = TS ⊗ C⊕ εn−k is
a saturation of the homomorphism dg1 : S → ζ.

Proof. By assumption, there is a splitting µ : ζ ⊕ ε1 → ξ|N , where ε1 is a
trivial complex bundle. Denote by ν the vector field µ(e) where e generates ε1.
Consider a homotopy Ψt : TS⊗C⊕εn−k → ξ of complex homomorphisms which
covers the homotopy ft, t ∈ [0, 1], and begins with Ψ0 = Φ. We can assume
that Ψ1(en−k) = ν, where en−k is the generator of the second summand in
the decomposition εn−k = εn−k−1 ⊕ ε1. Indeed, the obstructions to do that
lie in the groups πj(S2n−1), j ≤ k < n, which are trivial for any n > 1.
Hence, we can further adjust Φt to ensure that Ψ1|E1 is a saturation of a totally
real homomorphism ψ : TS → ζ. Now we apply Gromov’s h-principle for
isotropic immersions 6.8 to C0-approximate the map f1 : S → N by an isotropic
immersion f̃1 : S → N , whose differential df̃1 : TS → ζ is homotopic to ψ
through totally real homomorphisms TS → ζ. Note that the homotopy of
complex homomorphisms Ψt can be modified into Ψ̃t : E → ξ so that it ends
at a saturation Ψ̃1 : TS → ξ of the homomorphism df̃1 such that Ψ̃1(E1) ⊂ ζ.
Next, we apply again Theorem 6.8 and construct an isotropic regular homotopy
gt, t ∈ [0, 1], connecting g0 = f with g1 = f̃1, together with a family Φt : E → ξ
of saturations of dgt such that the paths Ψ̃t and Φt, t ∈ [0, 1], are homotopic
with fixed ends. It remains to note that by dimensional reasons (see Lemma
6.10) we can assume that gt is an isotopy, rather than a regular homotopy.

Proof of Theorem 13.14. It is sufficient to consider the case k = 1. As in the
proof of Theorem 13.13 let c0 < c1 . . . be the critical levels of the function φ,
d1 < . . . intermediate regular values: c1 < d1 < c1 < d2 < . . . and Wl =
{φ ≤ dl}, l = 1, . . . . We will construct the required Weinstein manifold V ′ ⊂ V
inductively by successively adjusting the handlebody decomposition of V . On
each step we will change the Weinstein domain structure on Wk by Weinstein
homotopy, and change the attaching map by contact isotopies of ∂Wk. As it is
explained above this will not affect the symplectomorphism type of the resulted
Weinstein manifold.
Up to Weinstein homotopy we can assume that W1 is a round ball in Cn = R2n

with the standard symplectic structure and the radial Liouville field. We set
W ′

1 := W1 ∪ Cn−1. Suppose we already deformed a Weinstein domain struc-
ture on Wl, so that for the resulted Liouville structure (ω̃, X̃, φ̃ there exists a
codimension 2 submanifold with boundary (W ′

l , ∂W ′
l ) ⊂ (Wl, ∂Wl) such that

a) X̃ is tangent to W ′
l ;

b) the function φ̃ has no critical points outside W ′
l ;

c) the normal bundle to W ′
l in Wl is trivial.

We will consider the case when there is only 1 critical point on the level dl+1.
The general case differs only in the notation. Then the Weinstein domain Wl+1
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can be obtained from Wl by attaching a handle H of index k with an isotropic
embedding h : S → ∂Wl of the core (k − 1)-dimensional sphere S ⊂ H with a
saturation homomorphism Φ : TS⊗C⊕Cn−k → ξ, where ξ denotes the contact
structure on the boundary of the Weinstein domain (Wl, ω̃, X̃, φ̃). According to
Lemma 13.16 we can adjust the attaching map via an isotropic isotopy (which
is the same as via ambient contact isotopy) to ensure that h(S) ⊂ ∂W ′

l and that
the saturation Φ restricted to E1 = TS ⊗ C ⊕ εn−k−1 ⊂ E = TS ⊗ C ⊕ εn−k

is a saturation of the homomorphism dh : S → ξ′, where ξ′ = ξ ∩ (∂W ′
l ) is the

induced contact structure on ∂W ′
l . Then using Lemma 13.15 we can simultane-

ously attach index k handles to Wl and to W ′
l . The resulted Weinstein structure

on (Wl ∪
h,Φ

H) coincides up to Weinstein homotopy with (Wl+1, ω,Xl+1, φ) and

we keep this notation for it. The Weinstein domain W ′
l+1 = W ′

l ∪
h,Φ|E1

H ′ is

embedded in Wl+1 in such a way that all the above properties a)-c) are satis-
fied. This gives a simultaneous handlebody description of Weinstein manifolds
(V ′ω′) of dimension 2n − 2, and of 2n-dimensional manifolds V, ω. Note that
this handlebody decomposition of (V, ω) coincides with the decomposition of
the stabilization (V ′×R2, ω′⊕ωst), and hence, according to Propositions 13.11,
12.2 and Remark 13.12 the manifolds (V, ω) and (V ′ × R2, ω′ ⊕ ωst) are sym-
plectomorphic.

The following theorem is a slight modification of a result from [16].

Theorem 13.17. Let (V1, ω1, X1, φ1) and (V2, ω2, X2, φ2) be two subcritical We-
insten manifolds. Suppose there exists a homotopy equivalence h : V1 → V2

covered by a homomorphism Φ : TV1 → TV2 such that Φ∗ω2 = ω1. Then h is
homotopic to a symplectomorphism f : (V1, ω1) → (V2, ω2).

Proof???

13.5 Morse-Smale theory for Weinstein struc-
tures

Lemma 13.18. Let (V, ω, X, φ) be a Weinstein structure. Let a be a regular
value of φ, and p a critical point with φ(p) = b > a. Suppose that all the
trajectories of the vector field −X emanating from p hit the level set Σa = {φ =
a}, i.e the intersection of the stable manifold of p with {φ ≥ a} is a disk D with
boundary S = ∂D ⊂ Σa.

(i) Then for any c ∈ (a, b] there is another Lyapunov Morse function φ̃ for X

such that φ̃(p) = b, while all other critical values of φ̃ and φ coincide.
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(ii) Given any contact isotopy ht : Σa → Σa, t ∈ [0, 1], there is family of
Weinstein structures (ωt, Xt, φ) such that the stable manifold of the point
p for Xt intersects Σa along ht(S), t ∈ [0, 1].

(iii) Let q be another critical point of index ind q = ind p− 1 such that φ(q) =
c < a and the intersection of the unstable manifold of p with {φ ≤ a}
is a disk ∆ with boundary Σ = ∂∆ ⊂ Σa. Suppose that S and Σ inter-
sect transversely at 1 point. Then (V, ω) admits a Weinstein structure
(X̃, φ̃) such that Crit(φ̃) = Crit(φ) \ {p, q}, where we denote by Crit(φ̃)
and Crit(φ) the sets of critical points of the functions φ̃ and φ.

Proof. The first statements have been proved in [12].To be continued...



Chapter 14

From Weinstein to Stein

14.1 Stein structures on Weinstein manifolds

Two Weinstein cobordisms or manifolds

W = (W, ω,X, φ) and W̃′ = (W̃ , ω̃, X̃, φ̃)

are called coarsely equivalent if there exists a diffeomorphism h : W → W̃ such
that

(i) φ̃ ◦ h = g ◦ φ for a diffeomorphism g : R → R;

(ii) h∗λ̃ = g1λ + g2dφ, where λ, λ̃ are Liouville forms of W and W̃, g1, g2 are
C∞-functions on W such that g1 > 0 and near critical points of φ, have
g1 = 1 and g2 = 0. In other words h preserves the Liouville structure (i.e.
ω and X) near critical points of φ and induces contactomorphism between
the corresponding level sets of functions φ and φ̃.

The diffeomorphism h is called in this case a coarse equivalence between W and
W̃. If both Weinstein structures are given on the same smooth manifold W
then we will always require the equivalence h to be diffeotopic to the identity.

Lemma 14.1. If W and W̃ are Weinstein manifolds then any coarse equivalence
between W and W̃ is isotopic to a symplectomorphism. In the cobordism case the
map h viewed as an embedding to the completion 〈W̃ 〉 is isotopic to a symplectic
embedding onto a domain with starshaped boundaries.

By a small adjustment of a Weinstein cobordism W we will mean a combination
of the following operations:

(i) C∞-small deformation;

173
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(ii) C1-small deformation near critical points of functions φ.

The following theorem is a ramification of Proposition 11.4.

Theorem 14.2. Let W = (W, ω,X, φ) be a Weinstein cobordism or manifold.
Suppose the induced contact structure on ∂−W admits a compatible integrable
CR-structure J . Then J extends to an integrable complex structure on W such
that (J, α ◦ φ) is a Stein cobordism structure on W and W(J, φ) is coarsely
equivalent to W′ which is obtained from W by a small adjustment. Here α is a
diffeomorphism R → R.

Remark 14.3. If n = dim W = 2 then any sufficiently smooth CR-structure on
∂−W is integrable, see [?] . In the real analytic case the claim is straightforward.check the reference

If n > 2 then according to a theorem of Grauert (??) any integrable CR-manifold
symplectically fillable, while not every contact manifold is.Research this

A Weinstein cobordism W = (W, ω,X, φ) is called elementary if φ is a Morse
function whose critical points are not connected by X-trajectories.Possibly move this up

somewhere in the
Weinstein chapter

Proof of Proposition 14.2. Suppose first that the cobordism W is elementary.
We can assume that the stable discs D1, . . . , DK of all critical points q1, . . . , qK

are real analytic. The complex structure J given on U1 = Op ∂−W ∪
K⋃
1
Op (qi)

extends to U2 = Op
(

K⋃
1

Di

)
in a unique way compatible with the real analytic

structure of the discs. There exists a J-convex function φ̃ : U1 ∪ U2 → R which

coincides with φ on U1 ∪
K⋃
1

Di and has ∇φ̃ = X along
K⋃
1

Di. According to ??

the Weinstein structure W(J, φ̃) given on U1 ∪U2 extends to W to a Weinstein
structure W̃ equivalent to W.
Next, we apply the Surrounding Lemma ?? and find a J-convex function φ̂ on
U1 ∪ U2, which coincides with h ◦ φφ̃ on Op ∂(U1 ∪ U2), coincides with φ̃ on

Op
K⋃
1

Di, and such that there exists c > m = φ̂|∂−W for which

K⋃

1

Op (qi) ⊂ Wc = {m ≤ φ̂ ≤ c} ⊂ U1 ∪ U2.

There exists a diffeomorphism g : W → Wc = {m ≤ φ̂ ≤ c} which is an
equivalence between the Weinstein structure W̃ on W and W(J, φ̂) on Wc. Then
the induced complex structure J ′ = g∗J and the induced g∗J-convex function
φ′ = φ̂ ◦ g on W define the required Stein cobordism structure on W such that
W(J ′, φ′) is equivalent to W.
When the cobordism W is not necessarily elementary, let us take an admissible
partition m = c0 < c1 < · · · < CN = M such that the induced cobordism
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structures on Wk = {ck−1 ≤ φ ≤ ck}, k = 1, . . . , N , are elementary. Next,
we consequently extend the Stein cobordism structures to W1, . . . ,WN in such
a way that on each of Wk the Weinstein structure and Stein structure are
equivalent. Though the equivalences hk do not necessarily match into a global
coarse equivalence, we can modify them on Ui = {ci ≤ φ ≤ c+

i ci + ε}, i =
1, . . . , N − 1, for any sufficiently small ε > 0 to get a global coarse equivalence
h : W → W .

Theorem 14.4. Let W = (V, ω, X, φ) be a Weinstein manifold structure which
is Stein near critical points of φ. Then there exists a Stein complex structure
J on V and a diffeomorphism α : R → R such that the function φ̃ = α ◦ φ is
J-convex, and the Weinstein structures W and W(J, φ̃) are coarsely equivalent.

14.2 Constructing Stein homotopies

While the notion of homotopy of Weinstein or Stein cobordism structures is self-
explanatory, the notion of homotopy of Stein or Weinstein manifold structures
needs some clarification.
Slightly rephrasing a similar definition given in Section 12.2 in a more general
context of convex Liouville manifolds, we call a family of Weinstein structures
(V, ωt, Xt, φt), or Stein structures (V, Jt, φt), t ∈ [0, 1] a simple homotopy if there
exists a family of functions c1 < c2 < . . . on the interval [0, 1] such that for each
t ∈ [0, 1], ci(t) is a regular value of the function φt and

⋃
k
{φt ≤ ck(t)} = V .

A homotopy between two Weinstein structures is, by definition, a composition
of finitely many simple homotopies. For any two exhausting J-convex functions
φ0, φ1 : V → R there exists a homotopy connecting (J, φ0) and (J, φ1) (see
Section 12.4), and hence existence of a Stein homotopy connecting (J0, φ0) and
(J1, φ1) depends only on the Stein complex structures J0, J1 and not on the
functions φ0, φ1.

Two Weinstein homotopies Wt = (W, ωt, Xt, φt) and W̃t = (W̃t, ω̃t, X̃t, φ̃t) are
called coarsely equivalent if there exists a diffeotopy ht : W → W̃ of coarse
equivalences between the structures Wt and W̃t.
By a small adjustment of a Weinstein homotopy Wt we will mean a combination
of the following operations:

(i) C∞-small deformation;

(ii) C1-small deformation near critical points of functions φt;

(iii) reparameterization t 1→ α(t), where α : [0, 1] → [0, 1] is a non-decreasing
C∞-function.
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In the remaining part of this chapter we prove the following two theorems.

Theorem 14.5. Let Wt = (W, ωt, Xt, φt) be a Weinstein homotopy such that
W0 = W(J, φ0) for a Stein structure (J, φ0) on W . Then after, possibly, a
small adjustment of the homotopy Wt, there exists a homotopy of J-convex
functions ψt such that ψ0 = φ0 and the homotopies Wt and W(J, ψt) are coarsely
equivalent.

The above theorem applies both, to the manifold and cobordism cases.

Theorem 14.6. Let (J0, φ0) and (J1, φ1) be two Stein manifold structures on
the same manifold V , and W0 = W(J0, φ0) and W1 = W(J1, φ1) are the cor-
responding Weinstein structures. Suppose there exists a Weinstein homotopy
Wt connecting W0 and W1. Then after, possibly, a small adjustment of the
homotopy Wt, there exists a homotopy of Stein structures (Jt, φt) such that the
homotopies W(Jt, φt) and Wt are coarsely equivalent.

For the cobordism case Theorem 14.6 needs to be modified.

Theorem 14.7. Let (J0, φ0) and (J1, φ1) be two Stein cobordism structures on
the same manifold W , and W0 = W(J0, φ0) and W1 = W(J1, φ1) are the corre-
sponding Weinstein structures. Suppose there exists a homotopy Wt connecting
W0 and W1, such that the induced homotopies ξt of contact structures on ∂−W
can be covered by a homotopy of integrable CR-structures. Then there exists a
homotopy of Stein structures (Jt, φt) such that the homotopies W(Jt, φt) and
Wt are coarsely equivalent.

Clearly, Theorem 14.6 follows from Theorem 14.6 Indeed, it is clearly sufficient
to prove 14.6 for simple homotopies, while the latter case follows from 14.6
inductively applied to cobordisms {ck−1 ≤ φt ≤ ck}, k = 1, . . . .

14.3 Special coarse equivalence of cobordisms
and homotopies

For the purposes of this chapter let us first slightly expand the notion of an
elementary Weinstein cobordism. We say, that a Weinstein cobordism W =
(W, ω,X, φ) is elementary of type II if either W contains a unique critical point
which is of embryo type (see Section ?? above), or φ has exactly two critical
points transversely (define!!) connected by a unique X-trajectory.
Elementary cobordisms introduced above in Section 14.1 will be called of type I
if we need to distinguish them.
A coarse equivalence between two elementary cobordisms of type II is required
by definition to be a Liouville symplectomorphism in a neighborhood of the
unique X-trajectory connecting the critical points of φ.
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A coarse equivalence h : W → W̃ between two elementary Weinstein cobordisms
W = (W, ω,X, φ) and W̃ = (W̃ , ω̃, X̃, φ̃) is called special if h sends trajectories
of X to trajectories of X̃.

Lemma 14.8. Any coarse equivalence h : W → W̃ between two elementary
Weinstein cobordisms which near the critical points is a Liouvile diffeomorphism
is isotopic to a special one through coarse equivalences.

Proof. First, extend the diffeomorphism h from the neighborhoods of critical
points in the case of type I, or from the neighborhood of the unique trajec-
tory connecting critical points in the case of type II, to neighborhoods of stable
and unstable manifolds of critical points of φ. In particular, this defines a
new contactomorphism h1 between neighborhoods of unstable spheres in ∂−W

and ∂−W̃ in the case of type I, and between neighborhoods of unstable hemi-
spheres in ∂−W and ∂−W̃ in the case of type II (see Section ?? above). This
contactomorphism is contactly isotopic to h, and hence can be extended to a
globally defined contactomorphism h1 : ∂−W → ∂−W̃ . Then h1 uniquely ex-
tends trajectory-wise to the rest of W by a diffeomorphism preserving level sets
of the functions φ and φ̃. Clearly, the constructed special coarse equivalence h1

is isotopic to h through coarse equivalences.

An admissible partition of a Weinstein cobordism W = (W, ω,X, φ) is a finite
sequence m = c0 < c1 < · · · < cN = M of regular values of φ, where we denote
φ|∂−W = m, φ|∂+W = M , such that each subcobordism Wk = {ck−1 ≤ φ ≤ ck},
k = 1, . . . , N , is elementary.
One similarly defines an admissible partition of a Weinstein manifold, with the
only difference that ci, i = 0, 1, . . . , form an increasing infinite sequence of
regular values of φ converging to ∞.
Lemma 11.3 implies that

Lemma 14.9. Any generic Weinstein cobordism admits an admissible partition
into elementary cobordisms of type I.

Let m = c0 < c1 < · · · < cN = M be an admissible partition of a Weinstein
cobordism W. Suppose that ε, 0 < ε < min

1≤k≤N
|ck+1 − ck|, is chosen in such a

way that all values in the intervals [ck, ck + ε], k = 0, . . . , N − 1, are regular.
Let us denote c+

k := ck + ε for k = 0, . . . , N − 1. We further denote

Wk := {ck−1 ≤ φ ≤ ck}, W ε
k := {c+

k−1 ≤ φ ≤ ck}

for k = 1, . . . , N and Uk := {ck ≤ φ ≤ c+
k } for k = 0, . . . , N − 1.

Given two arbitrary Weinstein cobordisms

W = (W, ω,X, φ) and W̃ = (W̃ , ω̃, X̃, φ̃)
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and an admissible partition P : m = c0 < c1 < · · · < cN = M for W, we call a
coarse equivalence h : W → W̃ special and compatible with the partition P if
there exists an ε > 0 such that

(i) φ has no critical points in Uk = {ck ≤ φ ≤ c+
k }, k = 0 . . . , N − 1;

(ii) h|W ε
k

is a special equivalence between the elementary Weinstein cobor-
disms Wε

k and W̃ε
k, where we denote by Wε

k and W̃ε
k the restrictions of

the Weinstein structures W to W ε
k , and W̃ to W̃ ε

k = h(W ε), k = 1, . . . , N .
respectively;

(iii) for each k = 1, . . . , N the diffeomorphism h maps stable manifolds of
critical points of φ in Wk to the stable manifolds of the corresponding
critical points of φ̃ in W̃k.

maybe better to
require preserving

X-trajectories along
stable manifolds

Remark 14.10. If a special coarse equivalence is compatible with some partition,
then it is also compatible with any finer partition.

Lemma 14.11. Let h0 : W → W̃ be a coarse equivalence between two Weinstein
structures W and W̃. Then given any partition P admissible for W, there
exists a homotopy Wt, t ∈ [0, 1], W0 = W, of Weinstein structures on W , and
diffeotopy ht : W → W̃ of coarse equivalences Wt → W̃, such that h1 is a
special coarse equivalence compatible with the partition P. Moreover, if W has
the form W(J, φ) for a Stein cobordism structure (J, φ) on W and the Weinstein
cobordism W is Stein near critical points, then the homotopy Wt can be chosen
in the form Wt = W(J, φt).

Proof. We first apply Lemma 14.8 and construct the isotopy ht :
N⋃
1

W ε
k →

N⋃
1

W̃ ε
k

to make it special on each elementary cobordism W ε
k . This isotopy extends to

N−1⋃
0

Uk as isotopy of coarse equivalences.

The only remaining thing to fix is the condition (iii) of the definition of special
coarse equivalences. In the Weinstein case we can use Lemma 12.10 to deform
the Liouville structure on each Uk, k = 1, . . . , N−1, so that the diffeomorphism
h1|Uk would preserve the trajectories of the Liouvile fields. In the Stein case,
one can use Proposition 10.1 to deform the function φ|Uk to make h1 preserving
the stable manifolds of critical points in Wk+1.

The extension of the notion of special coarse equivalence to Weinstein manifolds,
and an analog of Lemma 14.11 are straightforward.

A family Wt = (W, ωt, Xt, φt), t ∈ [0, 1], of Weinstein cobordisms is called an
elementary homotopy of type I, IIb and IId, respectively, if
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Type I. Wt is an elementary cobordism for all t ∈ [0, 1];

Type IIb. (birth) there is t0 ∈ (0, 1) such that for t < t0 the function φt has
no critical points, for t < t0 has exactly two critical points of index j and
j + 1, j = 0, . . . , n − 1, connected by exactly one X-trajectory, and for
t = t0 has a unique embryo critical point;

Type IId. (death) there is t0 ∈ (0, 1) such that for t > t0 the function φt has
no critical points, for t > t0 has exactly two critical points of index j and
j + 1, j = 0, . . . , n − 1, connected by exactly one X-trajectory, and for
t = t0 has a unique embryo critical point.

Let Wt = (W, ωt, Xt, φt), t ∈ [0, 1], be an elementary homotopy of type I. Let
us order critical points c1, . . . , cK ∈ W of φ0 and denote by c1(t), . . . , ck(t)
the corresponding critical points of φt, t ∈ [0, 1]. Denote αj(t) := φt(cj(t)),
t ∈ [0, 1], j = 1, . . . ,K. The ordered set of fuctions (α1, . . . , αK : [0, 1] → R
is called the profile of the elementary homotopy Wt. Two profiles (α1, . . . , αK)
and (α̃1, . . . , α̃K) are called equivalent if there is a diffeomorphism [0, 1]× R →
[0, 1]×R which sends the graphs of functions α1, . . . , αK to graphs of functions
α̃1, . . . , α̃K .

Lemma 14.12. Let Wt and W̃t, t ∈ [0, 1], be two elementary homotopies of
type I which have equivalent profiles. Denote by ξt and ξ̃t the contact struc-
tures induced by W and W̃ on ∂−W and ∂−W̃ . Let h0 : W → W be a coarse
equivalence between elementary cobordisms W0 and W̃0, ft be a Weinstein iso-
morphism between Wt and W̃t defined on a neighborhood of critical points of
φt, and gt : ∂−W → ∂−W̃ be a contact isotopy (∂−W, ξt) → (∂−W̃ , ξ̃t) such that
g0 = h|∂−W . Then there exists a coarse equivalence ht : W → W between the
homotopies Wt and W̃t, t ∈ [0, 1], such that h0 = h, ht|∂−W = gt and ht = ft

near critical points of φt.

Lemma 14.13. Let Wt and W̃t, t ∈ [0, 1], be two elementary homotopies of
the same type IIb or IId. Denote by ξt and ξ̃t the contact structures induced by
W and W̃ on ∂−W and ∂−W̃ . Suppose that both homotopies share the same
death-birth moment t0 ∈ [0, 1] and denote by σ the interval (t0, 1] in the case
IIb, and [0, t0) in the case IId. Let us also consider a slightly bigger interval
σ′ = [t0−ε, 1] or [0, t0 +ε] in the cases IIb and IId, respectively. For t ∈ σ let us
denote by γt the unique Xt-trajectory connecting critical point of the function φt,
and let the notation γ̃t have the same meaning for φ̃t. We extend the notation
γt γ̃t to σ′ ⊃ σ choosing any continuous paths t 1→ W and t 1→ W̃ such that γt0

and γ̃t0 are embryo points. Let h0 : W → W be a coarse equivalence between
elementary cobordisms W0 and W̃0, gt : ∂−W → ∂−W̃ be a contact isotopy
(∂−W, ξt) → (∂−W̃ , ξ̃t) such that g0 = h|∂−W , and ft be a family of Wenstein
isomorphisms Op Γt → Op Γ̃t, t ∈ σ′. Then there exists a coarse equivalence
ht : W → W between the homotopies Wt and W̃t, t ∈ [0, 1], such that h0 = h,
ht|∂−W = gt, and ht = ft on Op γt for t ∈ σ′.
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An admissible partition of the homotopy Wt, t ∈ [0, 1], is a sequence 0 =
t0 < t1 < · · · < tp = 1 of parameter values, and for each k = 1, . . . , p a
finite sequence of functions m(t) = ck

0(t) < ck
1(t) < · · · < ck

Nk
(t) = M(t),

t ∈ [tk−1, tk], where we denote m(t) := φt|∂−W , M(t) := φt|∂W+ , such that
ck
j , j = 0, . . . , Nk(t) are regular values of φt and the restriction of the homotopy

Wt to each Wk(t) = {ck−1(t) ≤ φ ≤ ck(t)}, k = 1, . . . , Nk, t ∈ [tk−1, tk], is
elementary.
A standard general position argument implies that

Lemma 14.14. Any generic homotopy Wt, t ∈ [0, 1], of Weinstein cobordism
structures on W admits an admissible partition.

Proposition 14.15. Let (J0, φ0) and (J1, φ1) be two elementary Stein cobor-
dism structures on W . Suppose that there exist

– an isotopic to the identity equivalence h : W → W between the corresponding
Weinstein cobordism structures W(J0, φ0) and W(J1, φ1) and

– a homotopy J̃t of J-convex CR-structures on ∂−W connecting J0|∂−W and
h∗J |∂−W .

Then there exists

• a homotopy of integrable complex structures (Jt), t ∈ [0, 1], on W which
connects J0 and J1 and coincides with J̃t on ∂−W ;

• a diffeotopy ht : W → W , t ∈ [0, 1], connecting the identity with h;

• a diffeotopy gt : R → R,

such that for each t ∈ [0, 1], the function φt = gt ◦ φ ◦ ht is Jt-convex and the
diffeomorphism ht is an equivalence between W(J0, φ0) and W(Jt, φt).

Remark 14.16. As it is explained above in ??? the second condition in the
formulation of the lemma is automatically satisfied in the case n = 2.

Proof. To simplify the notation we consider the case when φ0 and φ1 have unique
critical points. The general case is similar.
We can assume that J0 and J1 have the same underlying real analytic structures.
Indeed, all real analytic structures compatible with a given smooth structure
are isotopic. We can also assume that the homotopy J̃t is real analytic and thus
extends to a homotopy of integrable complex structures on a neighborhood
U ⊃ ∂−W , all compatible with the fixed real analytic structure. Let us define a
family φt of J̃t convex functions without critical points on Op ∂−W ⊂ U which
are constant on ∂−W . Then there exist diffeotopies ht, gt such that φt = gt◦φ◦ht

on Op ∂−W . Let D0 and D1 denote stable discs of critical points p0 and p1 of
the functions φ0 and φ1.
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Let us consider first the case when D0 and D1 are real analytic and the index
of the critical points is maximal, i.e. equal to n = dimC W . By assumption,
there exists an isotopy Dt, t ∈ [0, 1], between D0 and D1 such that Dt is totally
real in U and J̃t orthogonally attached to ∂−W . According to ?? one can make
this isotopy real analytic. We claim that the family of complex structures J̃t on
Op ∂−W extends as a family of integrable complex structures to Op Dt which
for t = 0, 1 coincide with the given complex structures J0 and J1.
Indeed, let us parameterize discs Dt by real analytic embeddings γt : Dn → W .
We can assume that pt = γt(0) for t = 0, 1. Let us denote At := γ−1

t (Dt ∩ U).
Consider the complex manifold W̃t = (U, J̃) ∪

x∈AC
t∼γC

t (x)∈U
((Dn)C, i), where we

denote by Y C a Cn-neighborhood of a subset Y ⊂ Rn ⊂ Cn, and by γC
t the

complexification of the real analytic embedding γt. We will keep the notation J̃t

for the complex structure on W̃t. For all t the inclusion D∪U ↪→ W extends to a
smooth embedding Γt : W̃t → W onto U ∪Op Dt, and hence we can identify W̃t

with Op (∂−W∪Dt). On the other hand, for t = 0, 1 the real analytic totally real
embeddings γ0, γ1 extend canonically to biholomorphic embeddings of (Dn)C →
W , and hence the embeddings Γt can be chosen biholomorphic for t = 0, 1
and thus we can view (W̃0, J̃0) and (W̃1, J̃1) as holomorphic (codimension 0)
submaniifolds of (W, J0) and (W, J1), respectively.

Now use Theorem 9.7 to find a family of J̃t-convex functions φ̃t on W̃t such that
for each t ∈ [0, 1] the function φ̃t

• extends φt from Op ∂−W ,

• has a critical point of index k with Dt as its stable disc and

• has one of its regular values surround ∂−W ∪Dt.

We will denote by Ŵt the domain in W̃t bounded by that level. Moreover, using
Proposition 4.20 we can arrange that for t = 0, 1 the function φ̃t coincides with This is a bad reference.

One needs to separate
an appropriate
statement as a
theorem in Section 5.

φt outside a bigger neighborhood of ∂−W ∪Dt which is compactly supported in
W̃t. In the latter case we will keep the notation φ̃t for thus constructed function
on the whole W .
Consider a family of isotopies gt,s : W → W , t, s ∈ [0, 1], such that

• gt,s is the identity on Op (∂−W ∪Dt for all t, s ∈ [0, 1];

• gt,0 is the identity map W → W , and gt,1(W ) = Ŵt for all t ∈ [0, 1];

Define a family of Stein cobordism structures (Ju, φu) on W , u ∈ [0, 1], as follows

(Ju, φu) =






(g∗0,3uJ0, φ̃0 ◦ g0,3u), u ∈ [0, 1
3 ];

(g∗3u−1,1J̃3u−1, φ̃3u−1 ◦ g3u−1,1), u ∈ ( 1
3 , 2

3 ];
(g∗1,3−3uJ1, φ̃1 ◦ g1,3−3u), u ∈ ( 2

3 , 1].
(14.1)
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The constructed homotopy W(Ju, φu) is in the class of Weinstein structures
coarsely equivalent to W(J0, φ0). This concludes the proof of Proposition 14.15
for the case k = n and when the discs D0 and D1 are real analytic.
If the discs D0 and D1 are not really analytic, let us C2-approximate the pa-
rameterizing maps γt, t = 0, 1, by real analytic totally real embeddings γ′t which
have the same 2-jet at 0 as γt. There exist J-convex functions φ′t, t ∈ [0, 1],
C2-close to φt which have pt as critical points, and D′

t = γ′t(Dn) as their stable
discs. This can be done keeping the condition that the functions φ0 and φ1It would be good to

have a reference for
this in Section 2.

are equivalent near critical points via a local biholomorphism. Applying the
above construction to the functions φ′0 and φ′1 we construct a family of Stein
cobordisms (Ju, φ′u), u ∈ [0, 1]. In particularly, the construction ensures exis-
tence of a family of local biholomorphisms hu between a neighborhood G of the
critical point p0 and neighborhoods Gu of the critical points of the function φ′u
which sends the function φ′0 to φ′u. Consider a J0-convex function φ′′0 , C2-close
to φ′0 on W (and hence to φ0) which coincide with φ′0 outside G and with φ0

on a smaller neighborhood of p0, and construct a modified family of functions
φ′′u which are equal to φ′u outside hu(G) and equal to φ′′0 ◦ hu on hU (G). Using
criterion 14.12 the Weinstein cobordisms W(Ju, φ′′u) are all equivalent. On the
other hand, the linear interpolation φ′′0,t between φ0 and φ′′0 (resp. (resp. φ′′1,t

between between φ′′1 and φ1) consists of J-convex functions equal to φ0 near
p0 (resp. φ1 near p1), and Hence, we can again apply the criterion 14.12 to
conclude that the Weinstein cobordisms W(J0, φ′′0,u) as well as W(J1, φ1,u) are
all coarsely equivalent. Thus, concatenating the homotopies (J0, φ”0,u), (Ju, φ′′u)
and (J1, φ1,u) we get the required homotopy between Stein cobordisms (J0, φ0)
and (J1, φ1).
If k < n we can first use the canonical framing of stable discs to extend D0

and D1 to totally real embeddings of Dk ×Dn−k
ε for a sufficiently small ε > 0.

Then the above proof works without any changes if replace D0 and D1 by these
extended embeddings.

14.4 From Weinstein to Stein homotopies

Theorem 14.6 is a corollary of the following

Proposition 14.17. Let Wt = (ωt, Xt, φt), t ∈ [0, 1], be a homotopy of We-
instein cobordism structures on W . Let (J, ψ), t ∈ [0, 1], be a Stein cobordism
structure on W . Suppose there exists a course equivalence h : W → W between
W0 and W(J, ψ). Let ξt and ζ be the contact structures induced, respectively,
by Wt and W(J, ψ) on ∂−W , and gt : ∂−W → ∂−W be an isotopy such that
g0 = h|∂−W and (gt)∗ξt = ζ, t ∈ [0, 1]. Then after, possibly, a small adjustment
of the homotopy Wt, there exists a family of J-convex functions ψt : W → R
and a coarse equivalence ht : W → W between the homotopies Wt and W(J, ψt)
such that h0 = h and ht|∂−W = gt, t ∈ [0, 1].
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Proof. First, we make a small adjustment of Wt to ensure that it satisfies the
genericity conditions needed for applications of Lemma 14.14. Consider an
admissible partition

0 = t0 < t1 < · · · < tp = 1; m(t) = ck
0(t) < ck

1(t) < · · · < ck
Nk

(t) = M(t),

t ∈ [tk−1, tk], k = 1, . . . , p, of the homotopy Wt. We will assume that the parti-
tion points ti are chosen sufficiently closely surrounding every point t for which
the function φt has an embryo (death-birth) point so that every for elementary
cobordism of type II the Weinstein structure is Stein near the the trajectory
connecting critical points. Besides, without a loss of generality we can assume
that all the hypersurfaces Σk

j = {φt = ck
j (t)} are independent of t. Let us make

the next small adjustment to make the homotopy Wt constant near each ti,
i = 0. . . . , p.
We will inductively extend the homotopy ψt and ht to intervals ∆i = [ti−1, ti], i =
1, . . . , p and for each ∆i we will do the construction inductively over elementary
cobordisms W i

j bounded by ∂−W = Σi
j−1 and ∂+W = Σi

j . Suppose that ψt

and ht are already constructed for t ≤ ti−1. Using Lemma 14.11 we can arrange
that hti−1 is a special coarse equivalence compatile l with the partition of W
into elementary cobordisms W i

j , j = 1, . . . , Nj . We will also assume that for
t ∈ ∆i the families ht and ψt are already constructed on

⋃
j≤k−1

W i
j . Denote

gt := ht|Σi
k−1

. To simplify the notation we will assume that the interval ∆i is
[0, 1], denote h := hti−1 , and write W instead of W i

k.
We will consider separately cases when it is of type I,IIb and IId.

Type I. First make a small adjustment of Wt, so that near critical points of φt

Wt coincides with W(J, ψ = ψ0) for all t ∈ ∆. Consider the profile (α1, . . . , αK)
of the homotopy Wt. Using Proposition 10.6 we can construct a family of J-
convex functions ψt on W which has an equivalent profile. Then, according
to Lemma 14.12 the homotopies Wt and W(J, ψt) are coaresely equivalent, and
there exists a coarse equivalence ht : W → W such that h0 = h and ht|∂−W = gt.

Type IIb. In this case the function ψ = ψ0 has no critical points. The function
φt has no critical points, for t ∈ (t0, 1] it has two critical points, pt and qt of index
k and k − 1, respectively, so that we have φt(pt) > φt(qt), and for t0 ∈ (0, 1)
the function φt0 has an embryo type singularity p ∈ W . As in Lemma 14.13
we denote by γt the unique Xt-trajectory connecting pt and qt, t ∈ (t0, 1] and
for t ∈ [t0 − ε, t0 we choose any continuous path t 1→ γt ∈ IntW such that γt0

is the embryo point. Let us use Proposition 10.8 to construct a creation family
of J-convex functions ψt : W → R with ψ0 = ψ such that the birth moment is
t0. Moreover, we can arrange that ψt has the same critical points pt, qt as the
function φt, and that γt serves as the unique gradient trajectory of ψt connecting
the critical points. Next, we use Lemma ?? to make a small adjustment of Wt

to make it isomorphic to W(J, ψt) on Op γt, t ∈ [t0 − ε, 1]. It remains to apply
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Lemma 14.13 to construct the required coarse equivalence ht : W → Wbetween
Wt and W(J, ψt), t ∈ [0, 1].

Type IId. The proof is similar to the case IIb using Proposition 10.9 instead
of Proposition 10.8.

Proposition 14.18. Let (J0, φ0) and (J1, φ1) be two Stein cobordism structures
on a manifold W . Suppose there exists a family Wt, t ∈ [0, 1], of Weinstein
cobordisms connecting W0 = W(J0, φ0) and W1 = W(J1, φ1). Then (J0, φ0)
and (J1, φ1) can be connected by a family (Jt, φt), t ∈ [0, 1] of Stein cobordisms
such that, after a possible small adjustment of Wt, the homotopies Wt and
W(Jt, φt), t ∈ [0, 1] are coarsely equivalent.

Proof. Let us first use Proposition 14.17 to construct a homotopy of Stein cobor-
disms (J0, φ′t), t ∈ [0, 1] such that φ′0 = φ0 and such that (after a possible small
adjustment of Wt) the homotopies W(J0, φ′t) and Wt are coarsely equivalent.
Next, we will use Proposition 14.15 to construct a homotopy (Jt, ψt), t ∈ [0, 1],
connecting (J0, φ′1) and (J1, φ1) in the class of cobordisms coarsely equivalent to
(J1, φ1). To do that let us subdivide the cobordism (W, J1, φ1) into elementary
cobordisms: W = W1 ∪ · · · ∪WN . Using Proposition 14.15 we can construct
the required family (Jt, ψt) on W1, such that W(W1, Jt, ψt) is equivalent to
W(W1, J1, φ1). Next, we inductively extend the homotopy to W2, . . . WN . As it
was pointed out above in Remark 14.10(iii) equivalent of elementary cobordisms
do not necessarily can be glued together into coarsely equivalent cobordisms,
because the condition (v) in the definition of coarse equivalence need not to
be necessarily satisfied. However, as it is explained in this remark one can use
Lemma 10.4 to change the family ψt in a small neighborhoods Uk of ∂−Wk,
k = 1, . . . , N in order to satisfy this conditon as well. Thus for the constructed
homotopy (Jt, ψt) the corresponding Weinstein homotopy W(W, Jt, ψt) is in the
class of Weinstein cobordisms coarsely equivalent to W(W, J1, φ1).

Proof of Theorem 14.7. According to the definition of homotopy of Weinstein
structures there is a finite partition 0 = t0 < t1 < · · · < tN = 1 such that for
each interval ∆k = [tk−1, tk], k = 1, . . . , N , there exists a sequence of continuous
functions c1

k(t) < · · · < c2
k(t) < . . . , t ∈ ∆k, such that all ck

j (t) are regular values
for φt for all t ∈ ∆k and

⋃
j
{φt ≤ cj(t)} = V . Without a loss of generality we

can assume that all the functions cj
i (t) are constant on ∆i. Indeed, there exists

an isotopy gt : V → V , t ∈ ∆1, such that gi
0 = Id and gi

t({φ0 = cj
1(0)}) = {φt =

cj
1(t)} for all j = 1, . . . . Pulling back the Weinstein structure Wt by gt makes

the functions cj
1 contant. Continuing this process for j = 2, . . . , N we make all

functions cj
i (t) , i = 1, . . . , N , j = 1, . . . , constant.
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First, apply consequently Proposition 14.17 to the homotopy Wt, t ∈ ∆1, re-
stricted to W1 = {φ0 ≤ c1

1}, W2 = {c1
1 ≤ φ0 ≤ c2

1}, . . . to construct a family of
J0-convex functions ψt : V → R such that the homotopies W(V, J, ψt) and Wt,
t ∈ ∆1 are coarsely equivalent. Next, repeat the construction for extending the
family ψt to ∆2, . . . ,∆N .
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Chapter 15

Subcritical Stein and
Weinstein structures

15.1 Morse cobordisms

Let W be a smooth oriented cobordism between ∂−M and ∂+M , φ : W →
[m, M ] be a Morse function such that φ|∂−W = m, φ|∂+W = M , and X is a
gradient vector field of φ for some Riemannian metric g on W . We will call
the triple(W, X, φ) a Morse cobordism. Any Weinstein cobordism W has an
underlying Morse cobordism MW.
Mimicking the defined above notions of (coarse) equivalence of Weinstein cobor-
disms and Weinstein homotopy.

Proposition 15.1. Let Mt = (W,Xt, φt) be a homotopy of Morse cobordisms,
such that M0 = MW for a a 2n-dimensional Weinstein cobordism W. Suppose
that for all t ∈ [0, 1] the function φt has no critical points of index ≥ n. Then
there exists a Weinstein homotopy Wt with W0 = W for which Mt and Wt are
coarsely equivalent.
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Part IV

Additional topics

189





Chapter 16

Stein manifolds of complex
dimension two
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Chapter 17

Weinstein structures and
Lefschetz fibrations
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Chapter 18

Stein manifolds in
symplectic topology
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Appendix A

Immersions and
embeddings

Some homotopy groups. Here we collect some results on homotopy groups
that will be used in this book. For 1 ≤ k ≤ n denote by Vn,k the Stiefel manifold
of orthonormal k-frames in Rn, and by Gn,k the Grassmannian of k-dimensional
subspaces in Rn. The obvious projection p : Gn,k → Vn,k defines a fibration

O(k) → Vn,k → Gn,k

with fibre the orthogonal group O(n). For 5 <k ≤ n the map Vn,k → V,,k that
forgets the last k − 5 vectors defines a fibration

Vn−,,k−, → Vn,k → Vn,,.

Here an explicit inclusion Vn−,,k−, ↪→ Vn,k is given by adding to a (k− 5)-frame
in Rn−, × {0} ⊂ Rn the last 5 standard basis vectors. Note that Vn,n

∼= O(n)
and Vn,1

∼= Sn−1. Thus the preceding fibration includes the following special
cases:

Vn−1,k−1 → Vn,k → Sn−1, (A.1)
O(n− k) → O(n) → Vn,k, (A.2)

O(n− 1) → O(n) → Sn−1. (A.3)

Of course, the preceding discussion carries over to the complex case: Just re-
place everywhere Vn,k by the complex Siefel manifold V C

n,k, Gn,k by the complex
Grassmannian GC

n,k, O(n) by the unitary group U(n), and Sn−1 by S2n−1.

Lemma A.1. (a) The map πiVn−1,k−1 → πiVn,k induced by the inclusion is
an isomorphism for i < n − 2 and surjective for i = n − 2. Similarly, the
map πiV C

n−1,k−1 → πiV C
n,k is an isomorphism for i < 2n − 2 and surjective for

i = 2n− 2.
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(b) Vn,k is (n− k − 1)-connected and V C
n,k is (2n− 2k)-connected.

(c) For n ≥ k + 2, the group πkVn,n−k equals Z if k is even or k = 1, and Z2 if
k > 1 is odd.

Proof. Part (a) follows directly from the long exact sequence of the fibration (A.1)
because Sn−1 is n− 2-connected. For Part (b), let i < n−k. Then it follows by
induction from Part (a) that πiVn,k = πiVn−k+1,1 = πiSn−k = 0. The complex
cases are analogous.
For part (c), let n ≥ k + 2 and k ≥ 2 (the case k = 1 is trivial). Then it follows
by induction from part (a) that πkVn,n−k = πkVk+2,2. Now observe that an
element of Vk+2,2 is a unit vector in Rk+2 and a second unit vector orthogonal
to the first one. Thus Vk+2,2 equals the tangent sphere bundle of Sk+1 and the
fibration (A.1)

Vk+1,1
∼= Sk → Vk+2,2 → Sk+1

describes this bundle. Now for an oriented sphere bundle Sk → E → B, the
boundary map πk+1B → πkSk ∼= Z in the long exact sequence is given by
evaluation of the Euler class e(E) ∈ Hk+1(B) (this follows directly from the
definition of the obstruction cocycle representing the Euler class in [60]). Thus
the fibration above yields an exact sequence

πk+1S
k+1 ∼= Z ·χ(Sk+1)−→ πkSk ∼= Z → πkVk+2,2 → 0,

where the first map is multiplication with the Euler characteristic of Sk+1. Since
χ(Sk+1) is 0 for k even and 2 for k odd, it follows that πkVn,n−k = πkVk+2,2

equals Z for k even and Z2 for k odd.

In particular, setting k = n in Lemma A.1 (a) we find

Corollary A.2. The map πiO(n − 1) → πiO(n) induced by the inclusion is
an isomorphism for i < n − 2 and surjective for i = n − 2. Similarly, the
map πiU(n− 1) → πiU(n) is an isomorphism for i < 2n− 2 and surjective for
i = 2n− 2.

Define the stable homotopy groups πiO := πiO(n) for i < n − 1 and πiU :=
πiU(n) for i < 2n (this is independent of n by the preceding corollary). These
groups are determined by the celebrated

Theorem A.3 (Bott Periodicity Theorem [7]). (a) The stable homotopy group
πiU equals 0 if i is even and Z if i is odd.
(b) The stable homotopy group πiO equals Z2 if i ≡ 0 or 1 (mod 8), Z if i ≡ 3
or 7 (mod 8), and 0 otherwise.

The h-principle for immersions. Fix integers 1 ≤ k < n. Let f : Dk → Rn

be an immersion of the closed k-disk into Rn with f(x) = (x, 0) near ∂Dk.
Its differential yields a fibrewise injective bundle homomorphism df : T (Dk) =
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Dk×Rk → Rn. Taking the images of the standard basis vectors e1, . . . , ek ∈ Rk,
this can be viewed as a map df : Dk → Vn,k to the Stiefel manifold of k-frames
in Rn satisfying df(x) = (e1, . . . , ek) =: v0 for x ∈ ∂Dk. Thus df : (Dk, ∂Dk) →
(Vn,k, v0) represents an element

Ω(f) := [df ] ∈ πkVn,k = πk(Vn,k, v0)

which we call the Smale invariant of f . Clearly Ω(f) is invariant under regular
homotopies of f fixed near ∂Dk. The following is the simplest version of the
h-principle for immersions, proved by Smale first for k = 2 [58] and then in
general.

Theorem A.4 (Smale [59]). For k < n, Ω defines a bijection between regular
homotopy classes of immersions f : Dk → Rn with f(x) = (x, 0) near ∂Dk and
πkVn,k.

Although we will only use this version, let us mention some generalizations.
Smale [59] extended the result to immersions of spheres as follows. Fix base
points x0 ∈ Vk(Sk) in the frame bundle of Sk and y0 ∈ Rn × Vn,k and call an
immersion f : Sk → Rn based if df(x0) = y0. Consider two based immersions
f, g : Sk → Rn. After a small perturbation, we may assume that dg agrees
with df in a neighborhood of x0. Cutting out this neighborhood, we obtain
maps df, dg : Dk → Vn,k that agree on ∂Dk. The continuous map Sk →
Vn,k that equals df on the upper and dg on the lower hemisphere represents
a homotopy class Ω(f, g) ∈ πkVn,k. Clearly Ω(f, g) depends only on the based
regular homotopy classes of f and g. We call Ω(f, g) the relative Smale invariant
of f and g.

Theorem A.5 (Smale [59]). Fix a based immersion f : Sk → Rn, k < n.
Then g 1→ Ω(f, g) defines a bijection between based regular homotopy classes of
immersions g : Sk → Rn and πkVn,k.

Remark A.6. The theorem holds for non-based immersions provided that π1Vn,k

acts trivially on πkVn,k. E.g., this is the case if n > k + 1 (because then
π1Vn,k = 0) or if k = 2 and n = 3 (because π2V3,2 = 0). The latter case gives
the famous “sphere eversion” [58]: The standard sphere S2 ⊂ R3 can be turned
inside out by a regular homotopy.

Immersions of half dimension. Observe that πnV2n,n equals Z for n even
and Z2 for n > 1 odd, which suggests that for immersions of half dimension
the isomorphism of Theorem A.5 may correspond to the self-intersection index.
This is indeed the case:

Theorem A.7 (Smale [59]). The self-intersection index defines a bijection be-
tween regular homotopy classes of immersions Sn → R2n (or Dn → R2n stan-
dard near ∂D) to Z (for n even) resp. Z2 (for n > 1 odd).

We will reproduce below the short proof of this theorem from [59]. It is based on
some results by Lashof and Smale [44]. Let Mk be a closed oriented connected
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k-manifold, k ≥ 1. To an immersion f : Mk → R2k we can assign, besides
its self-intersection index, several other invariants. Denote by νf the oriented
normal bundle of f and by χ(νf ) ∈ Z its Euler characteristic (i.e., its Euler class
evaluated on the fundamental class of M). We have a map S(νf ) → S2k−1,
(x, v) 1→ v from the normal sphere bundle of f to the unit sphere in R2k. Its
mapping degree dν(f) ∈ Z is called the normal degree of f . Similarly, the map
SM → S2k−1, (x, v) 1→ dxf · v from the tangent sphere bundle of M gives rise
to the tangential degree dτ (f) ∈ Z. Of course, the Euler characteristic of the
tangent bundle TM is just the usual Euler characteristic χ(M) of M . Finally, f
induces the tangential map Tf : M → G2k,k, x 1→ df(TxM) to the Grassmannian
of oriented k-planes in R2k. Clearly, the numbers χ(νf ), dν(f), dτ (f) and the
homotopy class of Tf are invariant under regular homotopies.

Theorem A.8 (Lashof and Smale [44]). For an immersion f : Mk → R2k,
k ≥ 1, of a closed oriented connected manifold the following holds:
(a) dτ (f) = −χ(νf ).
(b) dν(f) = χ(M).
(c) If k is even then dτ (f) = 2If .
(d) Let f, g : Mk → R2k be two immersions, k ≥ 2, satisfying χ(νf ) = χ(νg) if k
is even. Then the tangential maps induce the same map T ∗f = T ∗g : H∗(G2k,k) →
H∗(M) on integral cohomology.

Remark A.9. Statements (b) and (d) have generalizations to immersions Mk →
Rn not of half dimension in terms of integral Stiefel-Whitney classes, see [44].

Proof of Theorem A.7. By Theorem 6.2, If attains every possible value. So it
remains to show that If = Ig for two immersions f, g : Sk → R2k implies that
f and g are regularly homotopic.
If k > 1 is odd, by Theorem A.5 regular homotopy classes are in one-to-one
correspondence to πkV2k,k = Z2. Since I is surjective onto Z2, it must be
bijective.
For k even consider the commutative diagram

πk(Sk)
Tf#,Tg#−−−−−−→ πk(G2k,k)

p#←−−−− πk(V2k,k)
Mh0

Mh1

Mh2

Hk(Sk)
Tf∗,Tg∗−−−−−→ Hk(G2k,k) p∗←−−−− Hk(V2k,k),

where p : V2k,k → G2k,k is the projection, Tf , Tg : Sk → G2k,k are the tangential
maps, and h0, h1, h2 are the Hurewicz maps. By definition of Ω and the tan-
gential map we have p#Ω(f, g) = (Tf#−Tg#)[Sk]. Now suppose If = Ig. Then
χ(νf ) = χ(νg) by Theorem A.8 (a) and (c), hence T ∗f = T ∗g by Theorem A.8
(d), and therefore Tf∗ = Tg∗ on homology. By the diagram, this implies

0 = (Tf∗ − Tg∗)h0[Sk] = h1(Tf# − Tg#)[Sk] = h1p#Ω(f, g) = p∗h2Ω(f, g).
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Now V2k,k is (k − 1)-connected (Lemma A.1), so h2 is an isomorphism by the
Hurewicz theorem. As p∗ is also injective ([44]), it follows that Ω(f, g) = 0. But
then f and g are regularly homotopic by Theorem A.5.

Now consider a family of immersions ft : Dn−1 → R2n−1, t ∈ [0, 1], with
ft(x) = (x, 0) for (x, t) near ∂(Dn−1 × [0, 1]). It induces an immersion

F : Dn−1 × [0, 1] → R2n, (x, t) 1→
(
ft(x), t

)

with F (x, t) = (x, t, 0) for (x, t) near ∂(Dn−1 × [0, 1]). Let IF be its self-
intersection index.
On the other hand, let βt : Dn−1×Rn → R2n−1 be a family of normal framings
for ft, i.e. dft ⊕ βt : Dn−1 × R2n−1 → R2n−1 is a fibrewise orthogonal isomor-
phism, with βt(x)v = (0, v) for (x, t) near ∂Dn−1 × [0, 1] ∪ Dn−1 ∪ {0}. The
restriction β1 : Dn−1 × Rn → {0} × Rn ⊂ R2n−1 equals fibrewise the identity
for x near ∂Dn−1 and thus represents an element [β1] ∈ πn−1O(n). Its image
in πn−1O(2n− 1) is represented by df1 ⊕ β1, which is homotopic via dft ⊕ βt to
the constant map df0 ⊕ β0. So

[β1] ∈ K := ker[πn−1O(n) → πn−1O,

where we have used that πn−1O(2n− 1) equals the stable group πn−1O.

Proposition A.10. The element [β1] ∈ K depends only on the self-intersection
index IF and the map IF 1→ [β1] is surjective onto K.

Proof. In view of Theorem A.4, Theorem A.7 and Remark 6.5, we may replace
IF by the element Ω(F ) ∈ πnV2n,n represented by F . The fibrewise injective
differentials dft : Dn−1 × Rn−1 → R2n−1 define a map df : Dn−1 × [0, 1] →
V2n−1,n−1 which represents an element Ω(f) ∈ πnV2n−1,n−1. Since

dF =
(

dft
∂ft

∂t
0 1

)

is homotopic to dft ⊕ 1 through fibrewise injective maps, Ω(f) maps to ±Ω(F )
under the natural map πnV2n−1,n−1 → πnV2n,n. Since this map is an isomor-
phism by Lemma A.1, we may replace Ω(F ) by Ω(f).
Now consider the fibre bundle

O(n) ∼= Vn,n → O(2n− 1) ∼= V2n−1,2n−1 → V2n−1,n−1

(a special case of (A.1)). We are given a map df : Dn−1 × [0, 1] → V2n−1,n−1

which equals the basepoint v0 := (e1, . . . , en−1) near ∂(Dn−1 × [0, 1]), and a
lift df ⊕ β : Dn−1 × [0, 1] → V2n−1,2n−1 which equals the basepoint w0 :=
(e1, . . . , e2n−1) near ∂Dn−1 × [0, 1] ∪Dn−1 × {0}. Hence [β1] = ∂Ω(f) by defi-
nition of the boundary map in the homotopy exact sequence

πnV2n−1,n−1
∂→ πn−1O(n)

i#→ πn−1O(2n− 1).
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This proves that [β1] depends only on Ω(f), and the map Ω(f) 1→ [β1] is sur-
jective because ∂ is surjective onto K = ker(i#).

Remark A.11. In Proposition A.10, the self-intersection index IF takes values
in Z if n is even or n = 1 and Z2 if n > 1 is odd. The kernel K is isomorphic
to Z for n even, 0 for n = 1, 3, 7, and Z2 for n 0= 1, 3, 7 odd (this is essentially
proved in [60], see Appendix 5 of [42]).

Isotopies of embeddings. Finally, we briefly discuss isotopies, i.e. homo-
topies through embeddings.

Theorem A.12 (Haefliger [36]). Let Mk, Nn be manifolds of dimensions k,
n, M closed, such that M is q-connected and N is (q − 1)-connected for some
q ≥ 0. Suppose that n ≥ 2k + 2− q and 2q < k + 1. Then any two embeddings
M ↪→ N are isotopic.

The case q = 0 is due to Whitney [64]. In the case q = 1 we obtain

Corollary A.13. For k > 1 any two embeddings Mk ↪→ N2k+1 of a closed
connected k-manifold into a simply connected (2k +1)-manifold are isotopic. In
particular, this holds for embeddings Sk ↪→ R2k+1 with k > 1.

Remark A.14. (1) The relative Smale invariant gives no obstruction to regular
homotopies of maps Sk → R2k+1 because it takes values in πkV2k+1,k = 0
(Lemma A.1).
(2) Corollary A.13 fails for k = 1: There are many non-isotopic knots S1 ↪→ R3.



Appendix B

The Thurston-Bennequin
invariant

The rotation invariant. Let (M, ξ) be a contact manifold and choose a
compatible almost complex structure J on ξ. Given an isotropic immersion f :
Λ → (M, ξ), the space df(TpΛ), p ∈ Λ, is isotropic in (ξf(p), dα) and thus totally
real in (ξf(p), J). Hence dpf : TpΛ → ξf(p) extends to a complex monomorphism
dpf ⊗ C : TpΛ⊗ C → ξf(p) defined by

dpf ⊗ C(X + iY ) := dpf ·X + Jdpf · Y.

The homotopy class of df⊗C in the space of complex monomorphisms TΛ⊗C →
ξ is invariant under isotropic regular homotopies of f . We call it the rotation
invariant of f and denote it by r(f).
The following h-principle states that the rotation invariant is the only invariant
of isotropic immersions. It was proved by Gromov in 1971 ([31], see also [32],
[18]).

Theorem B.1 (h-principle for isotropic immersions and embeddings). Let
(M2n+1, ξ) be a contact manifold and Λk a manifold, k ≤ n.
(a) The rotation invariant defines a homotopy equivalence from isotropic im-
mersions Λ → M to complex monomorphisms TΛ⊗ C → ξ.
(b) For every continuous map f : Λ → M there exists a C0-small homotopy ft to
an isotropic embedding f1. If f is an embedding ft can be chosen to be a smooth
isotopy. If f is an isotropic immersion ft can be chosen to be a C∞-small
isotropic regular homotopy.
(c) In the subcritical case k < n, the rotation invariant defines a homotopy
equivalence from isotropic embeddings Λ → M to complex monomorphisms
TΛ ⊗ C → ξ covering embeddings. Moreover, an isotropic regular homotopy
ft : Λ → M between isotropic embeddings f0, f1 can be deformed, through C∞-
close isotropic regular homotopies with fixed ends, to an isotropic isotopy.

203



204 APPENDIX B. THE THURSTON-BENNEQUIN INVARIANT

The rotation invariant for Legendrian spheres in R2n+1. Given a Leg-
endrian immersion f : Sn → (R2n+1, ξ0), its Lagrangian projection PLag ◦ f :
Sn → R2n is a Lagrangian immersion with respect to the standard symplectic
form dp∧dq on R2n. Since the Lagrangian projection maps each contact hyper-
plane isomorphically onto R2n, the standard complex structure i on R2n = Cn

induces via this projection a compatible almost complex structure J on ξ. The
class of df ⊗ C in the space of complex isomorphisms TSn ⊗ C → (ξ, J) can
thus be identified with the class of d(PLag ◦ f) ⊗ C in the space of complex
isomorphisms TSn ⊗ C → Cn. Picking Hermitian metrics on TSn ⊗ C and
Cn, we can reduce the space of complex isomorphisms to the space of unitary
isomorphisms U(TSn ⊗ C, Cn). On this space the group of continuous maps
Sn → U(n) acts freely and transitively by pointwise composition, so the com-
plex isomorphisms associated to two Legendrian immersions f, g : Sn → R2n+1

differ by a map Sn → U(n). We call the homotopy class of this map the relative
rotation invariant

r(f, g) ∈ πnU(n) =

{
Z n odd ,

0 n even .

Remark B.2. The rotation invariant r(f, g) of two Legendrian immersions f, g :
Sn → R2n+1 is related to their Smale invariant Ω(f, g) by

Ω(f, g) = in#r(f, g),

where in : U(n) ↪→ V2n,n is the natural inclusion (viewing the columns of a
unitary matrix as a real n-frame).
Remark B.3. For n = 1 the rotation number r(f) is just the winding number
(i.e., the degree of the Gauss map) of the immersion PLag ◦ f : S1 → R2.
It can also easily be computed from the front projection Pfront ◦ f which is
generically the oriented graph of a multivalued function with transverse self-
intersections and a finite number of standard cusps (see Figure [fig:???]). The
cusps correspond to vertical points of the Lagrangian projection, i.e., points
where PLag ◦ f is parallel to the p-axis. Thus the winding number of PLag ◦ f
is given by

r(f) =
1
2

(
#(up− cusps)−#(down− cusps)

)

(see Figure [fig:???]).

The Thurston-Bennequin invariant. Legendrian embeddings possess an
additional invariant, the Thurston-Bennequin invariant. It was defined by Ben-
nequin [5] in dimension 3 and generalized to higher dimensions by Tabach-
nikov [62].
Let Λn ⊂ (M2n+1, ξ = kerα) be a closed orientable Legendrian submanifold.
Suppose first that the homology class [Λ] ∈ Hn(M) is trivial. Push Λ slightly
in the direction of the Reeb vector field to a submanifold Λ′ disjoint from Λ and
define the Thurston-Bennequin invariant as the linking number of Λ and Λ′,

tb(Λ) := lk(Λ,Λ′).
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Here the linking number is defined as the algebraic intersection number Z · Λ′
of Λ′ with an (n + 1)-chain Z satisfying ∂Z = Λ. (For the independence of
the choice of Z, suppose that Z̃ is another (n + 1)-chain with ∂Z̃ = Λ. Then
the difference between the intersection numbers equals the intersection number
of Λ′ with the (n + 1)-cycle Z − Z̃. But the intersection number Λ′ · (Z − Z̃)
depends only on the homology classes [Z − Z̃] ∈ Hn+1(M) and [Λ′] ∈ Hn(M),
so it vanishes because [Λ′] = [Λ] = 0.)
Remark B.4. If the orientation of Λ is reversed, then the orientation of the (n+
1)-chain Z is also reversed. So the Thurston-Bennequin invariant is independent
of the orientation of Λ. If Λ is not orientable we can still define the Thurston-
Bennequin invariant as an integer mod 2.

If Λ0, Λ1 are two disjoint (not necessarily homologically trivial) Legendrian
submanifolds in (M, ξ) with [Λ0] = [Λ1] ∈ Hn(M) we can define the relative
Thurston-Bennequin invariant

tb(Λ0,Λ1) := lk(Λ0 − Λ1,Λ′0 − Λ′1),

where Λ′i is obtained by pushing Λi in the direction of the Reeb vector field.
The Thurston-Bennequin invariant for Legendrian embeddings in R2n+1.
Consider a closed orientable Legendrian submanifold Λ ⊂ R2n+1 such that the
Lagrangian projection PLag(Λ) has only transverse self-intersections (this can
always be arranged by a generic perturbation).
Pick an orientation of Λ. To each self-intersection point c of PLag(Λ) we assign
a number I(c) = ±1 as follows. Let a, b be the points on Λ with PLag(a) =
PLag(b) = c and z-coordinates z(a) > z(b). Set I(c) := +1 if the orientation
of PLag(TaΛ) ⊕ PLag(TbΛ) (in this order!) agrees with the complex orientation
of Cn, and I(c) := −1 if not (Note that this definition does not depend on the
chosen orientation of Λ). Then

tb(Λ) =
∑

c

I(c), (B.1)

where the sum is taken over all self-intersection points of the Lagrangian pro-
jection of Λ. To prove this formula, pick the (n + 1)-chain Z ⊂ R2n+1 to be
the cone over Λ through a point with very large negative z-coordinate and push
Λ slightly upwards in z-direction to an embedded submanifold Λ′. Then the
intersections of Z with Λ′ are in 1-1 correspondence with the ’undercrossings’ of
Λ, i.e. with the double points of PLag(Λ), and the sign of an intersection equals
the number I(c) of the corresponding double point c.

Lemma B.5. Let Λ ⊂ R2n+1 be a closed orientable Legendrian submanifold.
Then
(a) The parity of tb(Λ) equals the self-intersection index of PLag(Λ) mod 2 (and
is therefore determined by the rotation invariant r(Λ)).
(b) If n is even,

tb(Λ) =
(−1)n/2

2
χ(Λ).
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Proof. Part (a) follows immediately from formula (B.1). For (b) note that if n
is even the index I(c) of a double point of PLag(Λ) does not depend on the order
of the preimages a, b and their sum tb(Λ) =

∑
c I(c) equals the self-intersection

index If of the immersion f = PLag : Λ → Cn. Now by Theorem A.8, If =
− 1

2χ(νf ), where χ(νf ) is the Euler characteristic of the normal bundle of f .
Since f is Lagrangian, its normal bundle is isomorphic to its tangent bundle
TΛ. However, the orientation on the normal bundle induced by the complex
orientation of Cn differes from the orientation of TL by the sign (−1)n(n−1)/2 =
(−1)n/2 (recall that n is even). Thus χ(νf ) = (−1)n/2χ(Λ) and (b) follows.

Remark B.6. For n = 1 the Thurston-Bennequin invariant can also be computed
from the front projection as

tb(Λ) = #(left− over− crossings)−#(right− over− crossings)− 1
2
#(cusps).

This formula is easily derived by computing the rotation number of ∂z with
respect to the normal framing coming from a Seifert surface (see e.g. [19]).

Stabilization. The following refinement of Proposition 5.25 describes how the
Thurston-Bennequin invariant can be changed by suitable Legendrian regular
homotopies.

Proposition B.7. Let Λ0 ⊂ (M2n+1, ξ = kerα) be a closed orientable Leg-
endrian submanifold and k an integer. Suppose n > 1. Then the Legendrian
submanifold Λ1 ⊂ M and Legendrian regular homotopy Λt constructed in Propo-
sition 5.25 have the following additional properties:
(a) Λ1 coincides with Λ0 outside a small ball and is smoothly isotopic to Λ0.
(b) The relative Thurston-Bennequin invariant equals

tb(Λ1,Λ0) =

{
0 if n is even,
−2k if n > 1 is odd.

Note that Part (b) is consistent with Lemma B.5.
We will later need the following consequence of Proposition B.7 for Legendrian
spheres. Let the Legendrian immersions Λt be parametrized by ft : Sn → M .
A compatible almost complex structure J on ξ and the Reeb vector field Rα

induce normal framings Jdft⊕Rα : Sn×Rn+1 ∼= TSn⊕R → TM along ft. Let
f̃t : Λ ↪→ M be the smooth isotopy provided by (a). Let β0 : Sn ×Rn+1 → TM
be any normal framing and extend it to normal framings βt along f̃t. We can
write Jdf0⊕Rα = β0g0 and Jdf1⊕Rα = β1g1 for unique elements g0, g1 : Sn →
O(n + 1).

Corollary B.8. We have [g1] − [g0] ∈ Kn = ker[πnO(n + 1) → πnO]. For
n > 1, using the construction in Proposition B.7 we can arrange for [g1]− [g0]
to be any given element in Kn.
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Proof. Consider the loop of immersions following ft from and then f̃t backwards.
Define a path of normal framings along this loop as follows: Follow Jdft ⊕ Rα

from Jdf0 ⊕ Rα = β0g0 to Jdf1 ⊕ Rα = β1g1 and then βtg1 backwards to
β0g1 = (β0g0)(g−1

0 g1). Note that we can arrange for all the data to be fixed
outside a ball. So we can apply Proposition A.10 to this situation. It follows
that [g−1

0 g1] = [g1]− [g0] ∈ Kn can be made equal to any given element in Kn by
choosing the self-intersection index IL appropriately. But by Proposition B.7,
IL can be arbitrarily prescribed for n > 1 (as an integer if n is odd and mod 2
if n is even).

Arguing as in the proof of Proposition 5.25, Proposition B.7 follows from the
following refinement of Lemma 5.26.

Lemma B.9. The family of Legendrian immersions Λt ⊂ R2n+1, t ∈ [0, 1],
constructed in Lemma 5.26 has the following additional properties:
(a) Λ1 is smoothly isotopic to Λ0 by an isotopy that is fixed outside the branch
{z = 0} of Λ0.
(b) The relative Thurston-Bennequin invariant equals

tb(Λ1,Λ0) =

{
0 if n is even,
−2(−1)n(n−1)/2χ({f ≥ 1}) if n is odd.

Proof. Part (a) follows from Corollary A.13.
For (b), perturb f as in the proof of Lemma 5.26. Then the Thurston-Bennequin
invariant tb(t) := tb(Λt,Λ0) changes precisely when t0f has a critical point q0

on level 1 for some t0 ∈ (0, 1). Let I(q0) be the oriented intersection number
of the branches {z = 1} and {z = t0f(q)} at q0 (in this order). I(q0) is the
contribution of q0 to tb(t) for t < t0 because then the branch {z = 1} passes
over {z = tf(q)}, compare formula (B.1). For t > t0 the branch {z = 1} passes
under {z = tf(q)}, so the contribution of q0 to tb(t) equals the intersection
number in the opposite order, which is (−1)nI(q0). Hence the change of tb(t)
at t0 equals

∆tb(t0) =

{
0 n even.
−2I(q0) n odd.

This proves tb(Λ1,Λ0) = 0 if n is even. To compute I(q0) for n odd, pick
coordinates near q0 as in (c). Then the tangent spaces in R2n of the Lagrangian
projections of the branches {z = 1} and {z = t0f(q)} are given by

τ1 = {p1 = · · · = pn = 0},
τ2 = {pi = −t0qi for i ≤ k, pi = +t0qi for i ≥ k + 1}.

Again suppose that the basis (∂q1 , . . . , ∂qn) represents the orientation of τ1.
Since the two branches of Λ0 are oppositely oriented, the orientation of τ2 is
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then represented by the basis

−(∂q1 − t0∂p1 , . . . , ∂qn + t0∂pn).

Hence the orientation of (τ1, τ2) is represented by

−(∂q1 , . . . , ∂qn ,−∂p1 , . . . ,+∂pn),

which equals (−1)k+1+n(n−1)/2 times the complex orientation (∂q1 , ∂p1 , . . . , ∂qn , ∂pn)
of R2n = Cn. So

I(q0) = (−1)indf (q0)+1+n(n−1)/2 = IL(q0)

if n is odd, where IL(q0) is the local intersection index of L from (c). Summing
over all critical points above level 1 and using (c), we find for n odd:

tb(Λ1,Λ0) = −2IL = −2(−1)n(n−1)/2χ({f ≥ 1}).

The 3-dimensional case. The preceding proof fails for n = 1 because
1-dimensional manifold with boundary always has Euler characteristic ξ ≥ 0.
Therefore for n = 1 the local construction in Lemma B.9. allows us only to
decrease the Thurston-Bennequin invariant by multiples of 2. This failure to
increase the Thurston-Bennequin invariant is unavoidable in view of

Theorem B.10 (Bennequin’s inequality [5]). Every embedded Legendrian curve
Λ ⊂ R3 satisfies

tb(Λ) + |r(Λ)| ≤ χ(Σ),

where Σ is an embedded surface (Seifert surface) bounded by Λ in R3.

However, no analog of Bennequin’s inequality exists in overtwisted contact ma-
nifolds, and one can change the invariant tb arbitrarily.
[To be continued...]
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