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Chapter 1

Introduction

To be rewritten.

A Stein manifold is a properly embedded complex submanifold of some C.
Hence Stein manifolds are necessarily noncompact, and properly embedded com-
plex submanifolds of Stein manifolds are again Stein. Stein manifolds arise, e.g.,
from closed complex projective manifolds X ¢ CPY: If H ¢ CP" is any hy-
perplane, then X \ H is Stein.

Using this construction, it is not hard to see that every closed Riemann surface
with at least one point removed is Stein. In fact, as we will see below, any open
Riemann surface is Stein. Already this example shows that the class of Stein
manifolds is much larger than the class of affine algebraic manifolds.

Stein manifolds can also be described intrinsically. The most important for us
characterization id due to Grauert (see [28]). Let (V,J) be a complex manifold,
where J denotes the complex multiplication on tangent spaces. A smooth func-
tion ¢ : V — R is called ezhausting if it is proper (i.e., preimages of compact
sets are compact) and bounded from below. To a function ¢ we can associate
the 1-form d®¢ := d¢ o J and the 2-form

we = —dd®¢.

The function is called J-convex or strictly plurisubharmonic if wy(v, Jv) > 0
for every nonzero tangent vector v. This is equivalent to saying that wgy is a
symplectic (i.e., closed and nondegenerate) form compatible with J.

Since the function ¢s;(2) := |2|? on C¥ is exhausting and i-convex with respect
to the standard complex structure i on CV, every Stein manifold admits an
exhausting J-convex function (namely the restriction of ¢g;). The following
theorem asserts that the converse is also true.

Theorem 1.1 (Grauert [28]). A complez manifold which admits an exhausting
J-convex function is Stein.



8 CHAPTER 1. INTRODUCTION

J-convexity is an open property, and hence the exhausting J-convex function in
Grauert’s theorem can assumed to be Morse, i.e. having non-degenerate critical
points.

We now turn to one of the main problems addressed in this book: Given a
smooth manifold V2" of real dimension 2n, when does it admit a Stein structure?
Clearly, a necessary condition is the existence of an almost complex structure J,
i.e., an endomorphism of the tangent bundle with J? = —1L.

A second necessary condition arises from the following property of J-convex
functions (see Chapter 2): If p is a nondegenerate critical point of a J-convex
function on a complex manifold of real dimension 2n, then its Morse index
satisfies ind(p) < m. Since J-convexity is a C?-open condition, every .J-convex
function can be perturbed to a J-convex Morse function. In particular, every
Stein manifold (V2",J) admits an exhausting Morse function with ind(p) < n
at all critical points. By Morse theory, this implies that V has a handlebody
decomposition using only handles of index at most n. The following theorem
asserts that these two necessary conditions are also sufficient in real dimension
2n > 4.

Theorem 1.2 (Eliashberg [14]). Let V2" be an open smooth manifold of di-
mension 2n > 4 with an almost complex structure J and an exhausting Morse
function ¢ without critical points of index > n.

(i) Then V admits a Stein structure. More precisely, J is homotopic through
almost complex structures to an integrable complex structure J such that
¢ s J-convex.

(i) If in addition J is integrable, then there exists an isotopy hy : V. — V,
with hg = Id such ¢ o hy is J-convez, and, in particular, ha(V) C V is
Stein with the induced complex structure J.

More precisely, as we explain in this book, existence of a Stein structure on a
given smooth manifold is equivalent to existence of a certain symplectic geo-
metric analogue of it, which we call Weinstein structure. We will show that
without any dimensional constraints, a Weinstein structure can be upgraded to
a Stein one, while the situation with the existence of Weinstein structure is is
drastically different in dimension 4. For instance, S? x R? does not admit any
Stein (and Weinstein). complex structure (see [LiMa]). However, Theorem 1.2
has the following topological analogue.

Theorem 1.3 (Gompf [25]). Let V4 be an oriented open topological 4-manifold
which admits a (possibly infinite) handlebody decomposition without handles of
index > 2. Then V is homeomorphic to a Stein surface. Moreover, any ho-
motopy class of almost complex structures on V is induced by an orientation
preserving homeomorphism from a Stein surface.

One could ask whether the above h-principle type results can be expanded
to prove an analogues of Smale’s h-cobordism theorem of J-convex functions,



as well as its parametric versions in the spirit of pseudoisotopy theory. In
particular,

(i) Suppose a Stein manifold (V,J) is diffeomorphic to R*", and which is J-
convez at infinity. Does it admit an erhausting J-convex function with
only one critical point, the minimum?

(i) Suppose po,p1 : V :— R be two exhausting Morse functions which are
Jo— and Ji-convex, respectively for two Stein structures Jy and Ji on
V' Suppose that oo and w1 have no critical points at infinity and can be
connected by a path ¢y, t € [0,1] of smooth functions without critical points
of index > n, and without critical points outside a compact subset of V.
Is there a homotopy (Ji, @), t € [0,1], such that p; is Jy-convez, and all
functions ¢, t € [0,1] have no critical points outside a compact set?

As it was shown recently P. Seidel and I. Smith, [56] and M. McLean, [48], the
answer to Question (i) is negative. On the other hand, the answer is positive
in dimension 4, see [15]. We will provide in this book some partial answers to
Question (ii), which in general is widely open.

This book is organized as follows. In Chapters 2 and 3 we explore basic prop-
erties of J-convex functions and hypersurfaces. Chapter 4 we construct special
hypersurfaces that play a crucial role in extending J-convex functions over han-
dles. The next two chapters contain background material which is standard but
sometimes not easy to find in the literature. In Section 7.2 we derive a general
result on real analytic approximations from standard results in complex analysis.
Chapter 5 collects some facts about smooth embeddings and immersions, and
more specifically Legendrian and isotropic embeddings in contact manifolds. In
Chapter 11 we describe the attaching of handles in the almost complex and in
the holomorphic category, and how to pass from one to the other. Theorem 1.2
is proved at the end of this chapter.

The last two chapters contain results whose proofs have not appeared in the lit-
erature. The main result of Chapter ?? reduces the deformation theory of Stein
structures to the deformation theory of Weinstein structures. In Chapter 15 we
show that in the subcritical case this deformation theory reduces to pure Morse
theory, which leads to a version of the h-cobordism theorem for Stein manifolds.
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Chapter 2

J-convex functions and
hypersurfaces

2.1 Linear algebra

A complex vector space (V,J) is a real vector space V of dimension 2n with
an endomorphism J satisfying J? = —1. A Hermitian form on (V,J) is an R-
bilinear map H : V x V' — C which is C-linear in the first variable and satisfies

H(X,Y)=H(Y,X). If H is, moreover, positive definite it is called Hermitian
metric. We can write a Hermitian form H uniquely as

H=g9—iw,

where g is a symmetric and w a skew-symmetric bilinear form on the real vector
space V. The forms g and w determine each other:

9(X,Y) =w(X,JY), w(X,Y)=g(JX,Y)

for X, Y € V. Moreover, the forms w and g are invariant under J, which can
be equivalently expressed by the equation

w(JX,Y)+w(X,JY)=0.

Conversely, given a skew-symmetric J-invariant form w, we can uniquely recon-
struct the corresponding Hermitian form H:

H(X,Y) = w(X,JY) — iw(X,Y). (2.1)

For example, consider the complex vector space (C", i) with coordinates z; =
T1+ Y1, .., 2n = Ty + 1Y, It carries the standard Hermitian metric

(v,w) := Zvjwj = (v,w) — iwo (v, w),

13
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where (-,-) is the Euclidean metric and wy = Zj dz; A dy; the standard sym-
plectic form on C™.

2.2 J-convex functions

An almost complex structure on a smooth manifold V of real dimension 2n is
an automorphism J : TV — TV satisfying J? = —1 on each fiber. The pair
(V,J) is called almost complex manifold. It is called complex manifold if J is
integrable, i.e. J is induced by complex coordinates on V. By the theorem of
Newlander and Nirenberg [51], a (sufficiently smooth) almost complex structure
J is integrable if and only if its Nijenhuis tensor

N(X,Y):=[JX,JY] = [X,Y] = J[X,JY] - JJX,Y], X,YeTV,

vanishes identically.

In the following let (V, J) be an almost complex manifold. To a smooth function
¢ : V — R we associate the 2-form

wy == —dd"¢,
where the differential operator d® is defined by
dCH(X) = dg(JX)

for X € TV.! The form wge is in general not J-invariant. However, it is J-
invariant if J is integrable. To see this, consider the complex vector space
(C™,4). Given a function ¢ : C* — R, define the complex valued (1, 1)-form

2

- "9 -

1,7=1
Using the identities
deOi:ide, deOi:—idfj
we compute
o9 . 00  0¢ 09
dC = ; afzjdzj oi+ a—gjdzj 01 = j za—zjdzj — Z(‘Téjdzj’

Zj

dd®¢ = —2i )" 9 ez,
0g 82287 ! J

ISometimes it will be important for us to to reflect in the notation dependence of the
operator d© and the form wg on J. In this case we will write d’ and w ¢ instead of d® and

we
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Hence -
we = 21009 (2.2)
and the i-invariance of wg follows from the invariance of 00¢.
A function ¢ is called J-conver? if wys (X, JX) > 0 for all nonzero tangent vectors
X. If wy is J-invariant it defines by (2.1) a unique Hermitian form
H¢ =9¢ — iW¢,
and ¢ is J-convex iff the Hermitian form Hy is positive definite.

From (2.2) we can derive a simple expression for the form H, associated to a
¢

function ¢ : C* — R in terms of the matrix a;; := 575=. For v,w € C" we
i0%j
have
w¢(v, w) =20 Z aidei A de (’U, ’LU) =2 Z [£27] (Uﬂf)j - U)i’L_)j)
ij ij
= 22’Z(aijviwj — dijf)iwj) = —4Im Zaijviwj s
ij ij
hence
Hy(v,w) =4 —— ;W 2.3
¢7(U w) ijZ: aziazj vaj ( )

Ezample 2.1. The function ¢(z) := 3, |zj|? on C™ is i-convex with respect to
the standard complex structure ¢. The corresponding form H, equals 4( , ),
where (, ) is the standard Hermitian metric on C™.

2.3 The Levi form of a hypersurface

Let ¥ be a smooth (real) hypersurface in an almost complex manifold (V,.J).
Each tangent space 1,5 C T,V, p € 3, contains a unique maximal complex
subspace &, C T}, which is given by

& =TSN JT,Y.

Suppose that X is cooriented by a transverse vector field v to X in V' such that
Jv is tangent to X. The hyperplane field £ can be defined by a Pfaffian equation
{a = 0}, where the sign of the 1-form « is fixed by the condition «(Jv) > 0.
The 2-form

Wy, = da|£

is then defined uniquely up to multiplication by a positive function. As in the
previous section we may ask whether wy; is J-invariant. The following lemma
gives a necessary and sufficient condition in terms of the Nijenhuis tensor.

2Throughout this book, by convexity and J-convexity we will always mean strict convexity
and J-convexity. Non-strict (J-)convexity will be referred to as weak (J-)convexity.
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Lemma 2.2. The form wx, is J-invariant for a hypersurface 3 if and only if
Nlexe takes values in §. The form ws, is J-invariant for every hypersurface 3
if and only if for all X, Y € TV, N(X,Y) lies in the complex plane spanned by
X and Y. In particular, this is the case if J is integrable or if V has complex
dimension 2.

Proof. Let ¥ C V be a hypersurface and « a defining 1-form for £. Extend «
to a neighborhood of ¥ such that a(v) = 0. For X, Y € £ we have [X,Y] € T
and therefore J[X,Y] = av + Z for some a € R and Z € £. This shows that

a(J[X,Y]) =0

for all X,Y € £. Applying this to various combinations of X, Y, JX and JY
we obtain

a(N(X, Y)) = a([JX,JY]) — a([X,Y]),

a(JN(X, Y)) = a([X, JY]) + a([J X, Y]).
The form wy, is given by
ws(X,Y) = %(X a(¥) ~ Y - a(X) —a([X,]) = —%a([X, YY),

Inserting this in the formulae above yields

7%Q<N(X, Y)) = wE(JX, JY) - WE(Xa Y)a

1
—§a<JN(X, Y)) = we(X,JY) +ws(JX,Y).
Hence the J-invariance of wy, is equivalent to
a(N(X, Y)) = a(JN(X, Y)) =0,

ie. N(X,Y) e for all X,Y € . This proves the first statement and the ’if” in
the second statement. For the ’only if’ it suffices to note that if N(X,Y") does
not lie in the complex plane spanned by X and Y for some X,Y € TV, then
we find a hypersurface ¥ such that X,Y € £ and N(X,Y) ¢ €. O

Remark 2.3. Given any hypersurface ¥, and any almost complex structure J it
is always possible to find another almost complex structure J such that §; =
§7 =&, and the form dag for a 1-form « defining §, is J-invariant. Moreover, if
¢ is non-integrable. i.e. if da|¢ is non-degenerate, the space of almost complex

sructures J with these properties is contractible. See discussion of this in Section
7?7 below.
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A hypersurface X is called Levi-flat if wy, = 0. This is exactly the Frobenius
integrability condition for the hyperplane field £ on ¥. Hence, on a Levi-flat
hypersurface € integrates to a real codimension 1 holomorphic foliation.

It is called J-convex (or strictly pseudoconvez) if ws (X, JX) > 0 for all nonzero
X €&. If wy is J-invariant it defines a Hermitian form Ly on £ by the formula

Le(X,Y) = ws(X, JY) —iws(X,Y)

for X,Y € £ The Hermitian form Ly is called the Levi form of the (coori-
ented) hypersurface 3. We will use the notation Ly (X) for the quadratic form
Ly (X, X). Note that ¥ is Levi-flat iff Ly, = 0, and J-convex iff Ly is positive
definite. We will sometimes also refer to ws; as the Levi form.

As pointed out above, the Levi form is defined uniquely up to multiplication
by a positive function. Hence, in the computation of Ly we will sometimes use
the notation = instead of =, indicating that some positive coeflicients could be
dropped in the computation.

If the hypersurface X is given by an equation {¢ = 0} for a function ¢ : V. — R,
then we can choose a = —d®¢ as the 1-form defining ¢ (with the coorientation
of ¥ given by d¢). Thus the Levi form can be defined as

ws(X,Y) = —dd®¢(X,Y).

This shows that regular level sets of a J-convex function ¢ are J-convex (being
cooriented by d¢). It turns out that the converse is also almost true (similarly
to the situation for convex functions and hypersurfaces).

Lemma 2.4. Let ¢ : V — R be a smooth function on an almost complex
manifold without critical points such that all its level sets are compact and J-
convexr. Then there exists a conver increasing function f : R — R such that the
composition f o ¢ is J-convez.

Proof. Consider a regular level set ¥ of ¢. For a function f: R — R we have

d°(fo¢)=fopd"s,
~dd“(fod)=—f"opdpNd“¢ — [’ o ¢ dd"s.

By the J-convexity of ¥, the term —f’ o ¢ dd®¢ is positive definite on the
maximal complex subspace £ C X if f* > 0. The form wphi|y has the rank
= dimg V — 1, and hence there exists a unique vector field X € TV which
satisfies the conditions i(X)(wg|y) = 0 and dd®¢(X) = 1. Tt is sufficient for
us to ensure the inequality wo(X, JX) > 0. We have —d¢ A d¢(X, JX) = 1,
and by compactness of the level sets,

Wrop(X, JX) = —dd“(f o §)(X,JX) > f"op—hoo flo¢

for some smooth function i : R — (0,00). Now solve the differential equation
1"(y) = h(y)f'(y) with initial condition f’(yo) > 0. The solution exists for all
y € R and satisfies f' > 0, so f o ¢ is J-convex. O
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Remark 2.5. The proof of the preceding lemma also shows: If ¢ : V — R is
J-convex, then f o ¢ is J-convex for any function f : R — R with f’ > 0 and
f// 2 O

A vector field is called complete if its flow exists for all forward and backward
times. For a J-convex function ¢, let V¢ be the gradient of ¢ with respect to
the metric gy = we(-, J-). In general, V4¢ need not be complete:

Ezample 2.6. The function ¢(z) := /1 + |z|? on C satisfies
0%¢ 0 z

1
0202 0z T+ \JTF ]

s0 gg = 4(1 4 |2|)73/2(, ), where (, ) is the standard metric. In particular, ¢
is i-convex. Its gradient is determined from

rdr+ydy 4

VITRE  JiTP

d¢ = <V¢'¢’ '>a

thus Vo = %(x% + ya%). A gradient line v(t) with |y(0)| = 1 is given by

~(t) = h(t)y(0), where h(t) satisfies b’ = %h. This shows that y(¢) tends to
infinity in finite time, hence the gradient field V4¢ is not complete.

However, the gradient field V4¢ can always be made complete by composing ¢
with a sufficiently convex function:

Proposition 2.7. Let ¢ : V — [a,00) be an exhausting J-convex function on
an almost complex manifold. Then for any diffeomorphism f : [a,00) — [b, 00)
such that f” >0 and lim,_.« f'(y) = oo, the function f o ¢ is J-conver and its
gradient vector field is complete.

Proof. The function ¢ := f o ¢ satisfies
dd“ = f"opdp Nd ¢+ f'od dd .

In particular, 3 is J-convex if f' > 0 and f” > 0. The metric associated to v is
given by

9u(X,Y) = =dd“¢(X, JY)
= +f"0¢ [dp(X)dp(Y) + d°¢(X)d“p(Y)] + f' 0 ¢ go(X,Y).
Let us compute the gradient V1. We will find it in the form
Vyth = AVyo

for a function A : V' — R. The gradient is determined by

9y (Vy),Y) = dyp(Y) = f 0 ¢ dp(Y)
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for any vector Y € TV. Using dp(Vp) = go(Ved, Ved) = |Vs¢|? and
d°¢(Vs9) = g4(Vo, JV4¢) = 0, we compute the left hand side as

gu(Vyh,Y)
= M0 6 [d0(T50)d0(Y) + d°9(Vd)d"6(Y )] + [ © 6 94(V 0. Y) }
= MJ" 00 [VadPdo(Y) + f 0 6 dp(Y)}.

Comparing with the right side, we find

A: flo0
o VeglP+ fog
Since ¢ is proper, we only need to check completeness of the gradient flow for

positive times. Consider an unbounded gradient trajectory +: [0,T) — V, i.e.,
a solution of

Y1) = Voolu(v),  lmo(r(1) = oo.

Here T' can be finite or 400. The function ¢ maps the image of v diffeomorphi-
cally onto some interval [¢,00). It pushes forward the vector field V¢ (which
is tangent to the image of ) to the vector field

6u(Vs) = h(y)a%,

where ¢ and y are the coordinates on [0,T") and [¢, o), respectively, and

h(y) = [Vol® (67 (y)) > 0.
Similarly, ¢ pushes forward V1 = AV4¢ to the vector field
o flyhly) 9 _
o0~ P+ Fwoy W

Hence completeness of the vector field V1 on the trajectory vy is equivalent to

the completeness of the vector field v on [¢,00). An integral curve of v satisfies

% = v(y), or equivalently,

M y)hy) + ' (y)
=T ) ¢

Thus completeness of the vector field v is equivalent to

S o TR GV T

¢ (V) = X (671 (y)) h(y)

f(y)h(y) f'() h(y)
The first integral on the right hand side is equal to fcoo d(ln f! (y)), so it diverges
if and only if lim, o f'(y) = oo. O

We will call an exhausting J-convex function completely exhausting if its gradient
vector field V4¢ is complete.
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2.4 J-convexity and geometric convexity

Next we investigate the relation between i-convexity and geometric convexity.
Consider C* = C"! x R x R with coordinates (21,...,2,_1,u+iv). Let ¥ C C"
be a hypersurface which is given as a graph {u = f(z,v)} for some smooth
function f : C"~! x R — R. Assume that f(0,0) = 0 and df(0,0) = 0. Every
hypersurface in a complex manifold can be locally written in this form.

The Taylor polynomial of second order of f around (0,0) can be written as

Taof(z,v) = Zaijziéj + 2Re Zbijzizj +vl(z, 2) + cv?, (2.4)

.7 .3

where [ is some linear function of z and z, and a;; = %(0,0). Let X be
i0Zj

cooriented by the gradient of the function f(z,v) — u. Then the 2-form wys at
the point 0 is given on X,Y € {; = C* ! by

ws(X,Y) = 2000f(X,Y) =20y a;;dz; Adz;(X,Y)
1)

= —4Im (AX,Y),

where A is the complex (n — 1) X (n — 1) matrix with entries a;;. Hence the
Levi form at 0 is
Ly = 4(A-, ).

If the function f is (strictly) convex, then
TQf(Z, O) + Tgf(iz, 0) =2 Z Qij2iZ5 > 0
ij
for all z # 0, so the Levi form is positive definite. This shows that convexity of

> implies i-convexity. The converse is not true, see the examples below. It is
true, however, locally after a biholomorphic change of coordinates.

Proposition 2.8 (R.Narasimhan). A hypersurface ¥ C C™ is i-convex if and
only if it can be made (strictly) convex in a neighborhood of each of its points
by a biholomorphic change of coordinates.

Proof. The "if’ follows from the discussion above and the invariance of J-convexity
under biholomorphic maps. For the converse write ¥ in local coordinates as a

graph {u = f(z,v)} as above and consider its second Taylor polynomial (2.4).

Let w = u+ iv, and perform in a neighborhood of 0 the holomorphic change of
coordinates W 1= w — 2 Zij bijziz;. Then

U= Zaijziéj + ﬁl(z, 2) + cb? + 0(3)
After another local change of coordinates w’ := w — M0?, A € R, we have

' =a+\v')?*+0(3) = Z aijziZ; +v'1(2,2) + (c+ X)) + O(3).
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For X sufficiently large the quadratic form on the right hand side is positive
definite, so the hypersurface ¥ is convex in the coordinates (z,w’). O

Consider for a moment a cooriented hypersurface in R™ with the Euclidean
metric (, ). Its second fundamental form

II1:TY xTY - R

can be defined as follows. For X € T,X let v : (—¢,e) — X be a curve with
~v(0) = z and 4(0) = X. Then

II(XvX) = 7«?(0)7”%

where v is the unit normal vector to ¥ in x defining the coorientation. The
matrix representing the second fundamental form equals the differential of the
Gauss map which associates to every point its unit normal vector. Our sign
convention is chosen in such a way that the unit sphere in R" has positive
principal curvatures if it is cooriented by the outward pointing normal vector
field. The mean curvature along a k-dimensional subspace S C T, Y is defined

as
k
ZH(%%‘)
i=1

for some orthonormal basis vy,...,v; of S. If ¥ is given as a graph {z, =
f(x1,...,2n_1)} with f(0) = 0 and df(0) = 0, then for X € R"™! we can
choose the curve

T =

A1) = (1X, £(1X))

in 3. Taking the second derivative we obtain

82
1x,x) = Y o, (25
ij Lt

if ¥ is cooriented by the gradient of the function f — x,. This leads to the
following geometric characterization of i-convexity:

Proposition 2.9. The Levi form of a cooriented hypersurface > C C™ with
respect to the standard complex structure © is given at a point z € ¥ by

Ls(X) = % (H(X, X) + II(iX, iX)) (2.6)

for X € T,X. Thus X is i-convex if and only if at every point z € ¥ the mean
curvature along any complex line in T, is positive.

Proof. Write ¥ locally as a graph {u = f(z,v)} with f(0,0) = 0 and df(0,0) =
0, and such that the gradient of f — u defines the coorientation of ¥. Consider
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the second Taylor polynomial (2.4) of f in (0,0). In view of (2.5), the mean
curvature along the complex line generated by X € C"! is given by

% (H(X, X) + 11(iX, z'X)) - %(T2 FXO) + 1 f(iX))
= Zainin = LE(X,X),

ij
and the proposition follows. O

As we already mentioned above the Levi form Ly, is invariantly defined only up
to multiplication by a positive function. However, for a hypersurface of C™ (or
more generally of any Kéhler manifold) we will call the form Ly, given by the
equation (2.6) the normalized Levi form. Furthermore, we denote in this case

m(s) = min  Ln(X),

M(X) =max(1,-I1I(X, X)), X eTV,||X|| =1,
_ m(%)

wx) = m

The quantity p(X) is called the modulus of i-convezity of the hypersurface X.

Lemma 2.10. Suppose that for ¥ C C™ we have u(X) > . Then there exists
a positive § = 6(g) such that if a complex structure J on OpX is §-close in
C?-metric to the standard complex structure i, then ¥ is J-convez.

Proof. The condition p(X) > € ensure that there exists o(g) > 0 such that the
mean normal curvature is positive along any plane which no more than by an
angle ¢ from a complex line tangent to ¥. In a neighborhood of any point
p € X there exists a §-C2-small biholomorphism h : (Opp,J) — (Opp,i). It
changes the second fundamental form of ¥ no more than by § and preserves the
direction of complex tangent hyperplanes to ¥ up to an error of order §. Hence,
for 0 small compared to o the hypersurface h(X) is i-convex, and hence ¥ is
J-convex. U

A family of hypersurfaces ¥; C C", parameterized by an open interval A, is
called uniformly i-convex if there exists ¢ > 0 such that u(X;) > c for all t € A.

Example 2.11. Let L C C™ be a compact totally real submanifold. Set ¥, =
{x € C™;disty(z) = ¢}. Then for a sufficiaently small ¢ > 0 the family
{Zt}ie(0,e) is uniformly i-convex.

Example 2.11 and Lemma 2.10 imply

Corollary 2.12. Let L C C" and ¥, = {x € C™;disty(z) = ¢} be as in Example
2.11. Then for J which is sufficiently C?-close to i on Op L the hypersurfaces
>+ are J-convex for t close to 0.
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2.5 Examples of J-convex functions and hyper-
surfaces

Quadratic functions. For the function

o(z) = Z AZh + LY

k=1

on C" we have
we =2 Z()\k + pg)dzi A dyy.
k
So ¢ is J-convex if and only if

A+ pr>0forallk=1,...,n. (2.7)

Consider a level set ¥ of ¢ in the case Ay > 0 and pi < 0. The intersection
of ¥ with any plane in the z-coordinates is a curve with positive curvature
determined by the A\;. The intersection with a plane in the y-coordinates has
negative curvature determined by the yi. The condition (2.7) assures that along
any complex line these curvatures add up to a positive mean curvature.

Totally real submanifolds. A submanifold L of an almost complex manifold
(V, J) is called totally real if it has no complex tangent lines, i.e. J(TL)NTL =
{0} at every point. This condition implies dimg L < dim¢ V. For example, the
linear subspaces R¥ := {(z1,...,2,0,...,0) | z; € R} C C" are totally real for
all k = 0,...,n. If we have an Hermitian metric on (V,J) we can define the
distance function disty, : V — R,

disty(z) := inf{dist(xz,y) | y € L}.

Proposition 2.13. Let L be a totally real submanifold of an almost complex
manifold (V,J). Then the squared distance function dist3 with respect to any
Hermitian metric on V is J-convex in a neighborhood of L. In particular, if
L is compact, then {dist;, < €} is a tubular neighborhood of L with J-convex
boundary for each sufficiently small € > 0.

777

Proof. Let @ : T,V — R be the Hessian quadratic form of dist2 at a point
p € L. Its value Q(z) equals the squared distance of z € T,V from the linear

subspace T),L C 1,,V. Choose an orthonormal basis e;, Jeq, ..., e,, Je, of T,V
such that e;, ..., ey is a basis of T, L. In this basis,
QDo twier +yTen)) = 3 a3+ 3wk,
i=1 >k i=1

which is J-convex by Example 1. So dist% is J-convex on L and therefore by
continuity in a neighborhood of L. O
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Remark 2.14. (1) The last statement of Proposition 2.13 extends to the non-
compact case: Fvery properly embedded totally real submanifold of an almost
complex manifold has an arbitrarily small tubular neighborhoods with J-convex
boundary. Of course the radius of the neighborhood may go to 0 at infinity

(2) Proposition 2.13 can be generalized as follows. Let W be any compact sub-
manifold of an almost complex manifold (V,.J), and suppose that a function
¢ : V — R satisfies the following J-convexity condition on W: The form —dd®¢
is positive on any complez line tangent to W. Note that this condition is vacu-
ously satisfied for any function on a totally real manifold. Choose any Hermitian
metric on V. Then the function ¢ + /\dist%/v is J-convex in a neighborhood of
W for a sufficiently large positive A. If W is non-compact (but properly em-
bedded), then we need to choose as A not a constant but a positive function
A: W — R which may grow at infinity.

Holomorphic line bundles. A complex line bundle 7 : E — V over a
complex manifold V is called holomorphic line bundle if the total space E is
a complex manifold and the bundle possesses holomorphic local trivializations.
For a Hermitian metric on £ — V consider the hypersurface

E::{ZGE‘M:I}CE.

Complex multiplication U(1) x ¥ — %, (%, 2) + € - z provides ¥ with the
structure of a U(1) principal bundle over V. Let « be the 1-form on ¥ defined
by

a(%‘oew . z) =1, alg =0,

where £ is the distribution of maximal complex subspaces of T'X. The imaginary
valued 1-form i« defines the unique connection on the U(1) principal bundle
Y. — V for which all horizontal subspaces are J-invariant. Its curvature is the
imaginary valued (1,1)-form Q on V satisfying 7*Q = d(i«). On the other hand,
« is a defining 1-form for the hyperplane distribution £ C T'E, so wy = daexe
defines the Levi form of ¥. Thus wy, and the curvature form 2 are related by
the equation

iwn(X,Y) = Q(m X, m,Y) (2.8)

for X, Y € & The line bundle E — V is called positive (resp. negative) if
it admits a Hermitian metric such that the corresponding curvature form €
satisfies

5= Q(X,JX) > 0 (resp. <0)
for all 0 # X € TV. Since 7 is holomorphic, equation (2.8) implies

Proposition 2.15. Let E — V be a holomorphic line bundle over a complex
manifold. There exists a Hermitian metric on E — V such that the hypersurface

{z€FE ‘ |z| = 1} is J-convex if and only if E is a negative line bundle.



2.6. J-CONVEX ... INCVN 25

If V is compact, then the closed 2-form ﬁQ represents the first Chern class
C1(E), )

i

{277 Q} = (k)

(see [41], Chapter 12). Conversely, for every closed (1,1)-form ﬁﬂ represent-
ing ¢1(E), Q is the curvature of some Hermitian connection i as above ([30],
Chapter 1, Section 2). So a line bundle over V is positive/negative if and only
if its first Chern class can be represented by a positive/negative (1,1)-form. If
V has complex dimension 1 we get a very simple criterion.

Corollary 2.16. Let V be a compact Riemann surface and [V] € Hy(V,R)
its fundamental class. A holomorphic line bundle E — V admits a Hermitian

metric such that the hypersurface {z € E | |z| = 1} is J-convex if and only if
C1(E) . [V] < 0.

For example, the corollary applies to the tangent bundle of a Riemann surface
of genus > 2.

Proof. Since H?(V,R) is 1-dimensional, ¢;(E) - [V] < 0 if and only if ¢; (E) can
be represented by a negatively oriented area form. But any negatively oriented
area form on V is a negative (1,1)-form. O

Remark 2.17. If E — V is just a complex line bundle (i.e. not holomorphic),
then the total space F does not carry a natural almost complex structure.
Such a structure can be obtained by choosing a Hermitian connection on £ —
V and taking the horizontal spaces as complex subspaces with the complex
multiplication induced from V via the projection. If we fix an almost complex
structure on the total space E such that the projection 7 is J-holomorphic, then
Proposition 2.13 remains valid.

2.6 J-convex functions and hypersurfaces in C"

Let a hypersurface ¥ C C" is given by an implicit equation ¥(z) = 0 with V¥ =
N _
(glg&) £0on %, Let HE(T) := oV _(ZNTT;, T = (Th,...,T,),

02;0%;
ij=1 """

p € C", be the complex Hessian form of W. We begin with the following
expression of the normalized Levi form Ly.

Lemma 2.18. The normalized Levi form of ¥ can be given by an expression

L(T):M ex, Tel,n (2.9)
& RO P '

Proof. The second fundamental form s, of ¥ can be written as

H,(T
IIs(T,T) = IV;}((;)I’ peX, TeT,y,



Reference? or add a
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where Hp(T) is the real Hessian form of . By definition,
1
Ly(T) = 5 (Is(T,T) + I (iT,iT)), T €&

On the other hand, HE(T) = 1(Hy(T) + H,(iT)), and (2.9) follows. O

Corollary 2.19. Let ¥ C Q C C" be a J-convex compact hypersurface and
f:Q — QcCC” a biholomorphism. Denote ¥ := f(X). Then there exists a
positive constant ¢ which depends only on the C?-norm of f along ¥ such that

p(x) > cp(X).

Consider the case n = 2 and denote coordinates (¢, w) instead of (z1,22). We
have dim¢ & = 1 and thus Lx(T) is independent of T' € §:& = {T € £, |T| = 1.

The complex line ¢ is generated by the vector T = <= (—g—g, %—%’

a7 . Hence,

1

(WeelWul? = 2Re (WeoWuWe) + o | W)

Thus we get the following criterion for an i-convexity of a hypersurface ¥ =
{¥ =0} CcC?}:

Criterion 2.20. A hypersurface ¥ = {¥ =0} C C2} is i-convex if and only if

U e[ Wo|? = 2Re (Wep Wy ) + Wy |Ue]? > 0.

Let ¢ = s+ it, w = u + iv. Suppose that a hypersurface ¥ C C? is given as a
graph
U(¢,w) = () — v =0,
Then
20 =hs +ithy,  AVer =+ P,  A|UP =92+ 97,
2V, =y +i, AV = Py, 4T, [2 =1+ 92,
AVep = Ysu — Wi, 4\1!10\1!5 = (wuwa - wt) + Z(ws =+ ¢u¢t>a
16ReV eV Ve = Ysu(Puths — ¥1) + Yru (Vs + Yuthe),

thus we have proved

Lemma 2.21. The normalized Levi form of the hypersurface ¥ = {v = (s, t,u)} C
C2, cooriented by the gradient of the function 1 (s,t,u) — v, is given by

1

Lo = ss 1 3 wu 3 2
0 (1+w§+w?)%((¢.+¢tt)( + ) + Yuu (Vs +107)
+ 20 (Pt — Yuths) — 200 (Vs + Yuthy)). (2.10)

In particular, the surface ¥ is i-convex iff

(1/153 + ¢tt>(]— + wi) + ¢uu(1/f§ + 'l/}tz) + 2wsu(wt - Tlhﬂbs) - 21/}tu(¢s + T/Juflpt) > 0.



Chapter 3

Smoothing

3.1 J-convexity and plurisubharmonicity

A C?-function ¢ : U — R on an open domain U C C is i-convex if and only if
it is (strictly) subharmonic, i.e.,
0? 0? 0
no=20,09_4 00
or oy? 020z
Note. By “subharmonic” we will always mean “strictly subharmonic”. Non-
strict subharmonicity will be referred to as “weak subharmonicity”. The same
applies to plurisubharmonicity discussed below.

> 0.

A continuous function ¢ : U — R is called (strictly) subharmonic if it satisfies
Ap>h

for a positive continuous function A : U — R, where the Laplacian and the
inequality are understood in the distributional sense, i.e.,

/(i)Aédwdyz/hédmdy (3.1)
U U

for any nonnegative smooth function § : U — R with compact support. Note
that if ¢ is a C?-function satisfying (3.1), then integration by parts and choice
of a sequence of functions §,, converging to the Dirac measure of a point p € U
shows Aé(p) > h(p), so the two definitions agree for C?-functions.

If z = x 41y — w = u+1v is a biholomorphic change of coordinates on U, then

2

0%6
A0 dxdy =2i
@ dy = 2ig—

so inequality (3.1) transforms into

/¢> )AS(w dudv>/h ’dudv

dz Adz = —dd®§ = A6 dudv, (3.2)
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This shows that subharmonicity is invariant under biholomorphic coordinate
changes and therefore can be defined for continuous functions on Riemann sur-
faces. The following lemma gives a useful criterion for subharmonicity of con-
tinuous functions.

Lemma 3.1. A continuous function ¢ : U — R on a domain U C C is subhar-
monic if and only if there exists a positive continuous function h : U — R such

that
27

6(2) + h(2)r? < % [ otz 4 reyap (3.3)

for all z € U and r > 0 for which the disk of radius r around z in contained in
U.

Proof. In aneighborhood of a point zg € U inequality (3.3) holds with h replaced
by some constant A > 0. Consider the function

() = ¢(2) — Az — 2™,
For r > 0 sufficiently small, (3.3) is equivalent to

2m

¥(20) V(2o + re?)db.

Si
21 0

By a standard result (see e.g. [39]), this inequality is equivalent to A(zp) > 0
in the distributional sense, and therefore to A¢(zg) > 2.

O

Remark 3.2. The preceding proof shows: If ¢ in Lemma 3.1 is C?, then inequal-
ity (3.3) holds with h(z) := tminp,)A¢, where D is the maximal disk around
z contained in U.

Now let (V,J) be an almost complex manifold. A (nonsingular) J-holomorphic
curve is a 1-dimensional complex submanifold of (V, .J). Note that the restriction
of the almost complex structure J to a J-holomorphic curve is always integrable.

Lemma 3.3. A C?-function ¢ on an almost complex manifold (V, J) is J-convex
if and only if its restriction to every J-holomorphic curve is subharmonic.

Proof. By definition, ¢ is J-convex iff —dd®¢(X,JX) >0 for all 0 £ X € T,,V,
x € V. Now for every such X # 0 there exists a J-holomorphic curve C C V
passing through z with 7,C = spang{X, JX} ([52]). By formula (3.2) above,
—dd®¢(X, JX) > 0 precisely if ¢|c is subharmonic in z. O

Remark 3.4. In the proof we have used the fact that the differential operator dd®
commutes with restrictions to complex submanifolds. This is true because the
exterior derivative and the composition with J both commute with restrictions
to complex submanifolds.
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Remark 3.5. Lemma 3.3 provides another proof of Corollary 12.13, i.e. that
non-degenerate critical points of a J-convex function have Morse indices < n.
Indeed, p be a critical point of a J-convex function ¢. Suppose ind(p) > n.
Then there exists a subspace W C T,V of dimension > n on which the Hessian
of ¢ is negative definite. Since W N JW # {0}, W contains a complex line L.
Let C be a J-holomorphic curve through p tangent to L. Then ¢|c attains a
local maximum at p. But this contradicts the maximum principle because ¢|¢
is subharmonic by Lemma 3.3.

In view of Lemma 3.3 we can speak about continuous J-convex functions on
almost complex manifolds as functions whose restrictions to all J-holomorphic
curves are subharmonic. Such functions are also called (strictly) plurisubhar-
monic. For functions on C”, Lemma 3.1 and the proof of Lemma 3.3 show

Lemma 3.6. A continuous function ¢ : C"™ D U — R is i-convex if and only
if its restriction to every complex line is subharmonic. This means that there
exists a positive continuous function h : U — R such that

1 27 .
() + h(2)|w|* < Py o(z + we®)do (3.4)
0
forall z € U and w € C™ for which the disk of radius |w| around z in contained
mU.

The following lemma follows from equation (3.1) via integration by parts.

Lemma 3.7. If ¢ is a J-convex function on an almost complex manifold (V, J),
then ¢ + 1 is J-convex for every sufficiently C%-small C?-function ¢ : V — R.

Our interest in continuous J-convex functions is motivated by the following

Lemma 3.8. If ¢ and ¥ are continuous J-convex functions on an almost com-
plex manifold (V, J), then max(¢, ) is J-convex. More generally, let (¢)ren be
a continuous family of continuous functions, parameterized by a compact metric
space A, that are uniformly J-convex in the sense that on every J-holomorphic
disk U C 'V condition (3.3) holds for all ¢ with functions hy depending con-
tinuously on A. Then maxyca@y s a continuous J-convex function.

Proof. Continuity of maxyea¢y is an easy exercise. For J-convexity we use the
criterion from Lemma 3.1. Let U C V be a J-holomorphic disk and choose a
local coordinate z on U. By hypothesis, condition (3.3) holds for all ¢, with
functions h) depending continuously on A. Note that h(z) := minyecahy defines
a positive continuous function on U. Set ¢ := maxyca¢pn. At any point z € U
we have ¢ = ¢, for some A € A (depending on z). Now the lemma follows from

$(2) + h(2)r* < da(2) + ha(2)r® < %/Q\(z +re?)do

< S /(Z)(Z + ret?)de.
2
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Remark 3.9. For example, the hypotheses of Lemma 3.8 are satisfied if all the
J-convex functions ¢ are C? and their first two derivatives depend continuously
on A. This follows immediately from the remark after Lemma 3.1.

3.2 Smoothing of J-convex functions

For integrable J, continuous J-convex functions can be approximated by smooth
ones. The following proposition was proved by Richberg [54]. We give below a
proof following [21].

Proposition 3.10. Let ¢ be a continuous J-convex function on a (integrable)
complex manifold (V,J). Then for every positive function h : V. — R, there
exists a smooth J-convex function ¢ : V. — R such that |¢p(x) — p(x)] < h(x)
for all x € V. If ¢ is already smooth on a neighborhood of a compact subset K,
then we can achieve ¥ = ¢ on K.

Remark 3.11. A continuous weakly J-convex function cannot in general be ap-
proximated by smooth weakly J-convex functions, see [21] for a counterexample.
We do not know whether the proposition remains true for almost complex ma-
nifolds.

The proof is based on an explicit smoothing procedure for functions on R™.
Pick a smooth nonnegative function p : C™ — R with support in the unit ball
and [g,, p = 1. For § > 0 set ps(x) := 6"™p(x/d). Let U C R™ be an open
subset and set

Us:={z € U| Bs(z) Cc U}

For a continuous function ¢ : R™ D U — R define the mollified function ¢s :
Us — R,

gs(x) = . oz —y)ps(y)d™™y = . o(y)ps(x —y)d*"y. (3.5)

The last expression shows that the functions ¢s are smooth for every § > 0.
The first expression shows that if ¢ is of class C* for some k > 0, then ¢5 — ¢
as 0 — 0 uniformly on compact subsets of U.

Proposition 3.10 is an immediate consequence of the following lemma, via in-
duction over a countable coordinate covering.

Lemma 3.12. Let ¢ be a continuous J-convex function on a complexr manifold
(V,J). Let A, B C V be compact subsets such that ¢ is smooth on a neighborhood
of A and B is contained in a holomorphic coordinate neighborhood. Then for
every € > 0 and every neighborhood W of A U B there exists a continuous
J-convex function 1 : V — R with the following properties.

e 1 is smooth on a neighborhood of AU B;
o [Y(z)— ¢(z)| <e forallzeV;
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o i =¢ on A and outside W.

Proof. The proof follows [21]. First suppose that ¢ is i-convex on an open set
U C C". By Lemma 3.6, there exists a positive continuous function h: U — R
such that (3.4) holds for all z € Uys and w € C" with |w| < §. Hence the
mollified function ¢; satisfies

0s() + ha(@)ul® = [ (oo~ 9) + 8z~ y)lul) os(r)y
C’n
27
</ /O ¢z — y + we')dbps(y)d*"y
27
= bs(x + we')db,
0

SO ¢g is t-convex on Uss.

Now let ¢ : V — R be as in the proposition. Pick a holomorphic coordinate
neighborhood U and compact neighborhoods A’ € W of A and B’ ¢ B” C
W NU of Bwith ACintA’ C A’ C W, such that ¢ is smooth on A’. By the
preceding discussion, there exists a smooth J-convex function ¢s : B” — R with
|ps(x)—¢(z)| < e/2forall z € B”. Pick smooth cutoff functions g,h : V' — [0, 1]
such that ¢ = 1 on A, g = 0 outside A’, h = 1 on B’, and h = 0 outside B”.
Define a continuous function ¢ : V — R,

¢ = ¢+ (1—g)h(ds — ¢).

The function ¢ is smooth on A’UB’, |p(z) —d(z)| < e/2forallz € V, ¢ = ¢5 on
B'\ A’, and ® = ¢ on A and outside B”. Since ¢ is C2 on A’ N B”, the function
(1 — g)h(¢s — @) becomes arbitrarily C2-small on this set for § small. Hence by
Lemma 3.7, ¢ is J-convex on A’ N B” for § sufficiently small. So we can make
¢ J-convex on A’ U B'. However, ¢ need not be J-convex on B” \ (A’ U B’).

Pick a compact neighborhood W’ € W of A’ U B”. Without loss of generality
we may assume that € was arbitrarily small. Then by Lemma 3.7 there exists
a continuous J-convex function QL : V — R (which differs from ¢ by a C’Q—gmall
function) satisfying ©» = ¢ —c on AUB, ¢ = ¢p+con W\ (A UB’), and ¢ = ¢
outside W. Now the function v := max(qg, 1/:) has the desired properties. O

Remark 3.13. The proof of Lemma 3.12 shows the following additional proper-
ties in Proposition 3.10:

(1) If ¢ is a continuous family of J-convex functions depending on a parameter
A in a compact space A, then the ¢, can be uniformly approximated by a
continuous family of smooth J-convex functions .

(2) If ¢9 < ¢1 then the smoothed functions also satisfy 19 < 1. This holds
because the proof only uses mollification ¢ — ¢s, interpolation and taking the
maximum of two functions, all of which are monotone operations.

Lemma 3.8, the remark after it and Proposition 3.10 imply
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Corollary 3.14. The mazimum of two smooth J-convex functions ¢, ¥ on a
complex manifold (V,J) can be C°-approzimated by smooth J-conver functions.
If max(¢, ) is smooth on a neighborhood of a compact subset K, then we can
choose the approximating sequence to be equal to max(p, ) on K.

More generally, let (px)ren be a continuous family of J-convex C?-functions
whose first two derivatives depend continuously on A in a compact metric space
A. Then maxyeady can be C°-approzimated by smooth J-convex functions. If
maxyepa @y s smooth on a neighborhood of a compact subset K, then we can
choose the approximating sequence to be equal to maxycpapy on K.

Finally, we show that we can arbitrarily prescribe a J-convex function near a
totally real submanifold.

Proposition 3.15. Let L be a totally real submanifold of a complex manifold
(V,J) and K C L a compact subset. Suppose that two smooth J-convez functions
@, ¥ coincide along L together with their differentials, i.e. ¢(x) = (x) and
dg(x) = dy(zx) for all x € L. Then, given any neighborhood U of K in V, there
exists a J-convex function ¥ which coincides with ¢ outside U and with ¢ in
a smaller neighborhood U' C U of K. Moreover, ¥ can be chosen arbitrarily
C'-close to ¢ and such that ¥ agrees with ¢ together with its differential along
L.

The proof uses the following simple lemma. Consider an almost complex mani-
fold (V, J) equipped with a Hermitian metric. To a smooth function ¢ : V' — R
we associate its modulus of J-convexity mgy : V — R,

mg(x) := min{—dd ¢ (v, Jv) | v € T, V, |v] = 1}.
Thus ¢ is J-convex iff my > 0.

Lemma 3.16. Let ¢,¢,0:V — R be smooth functions on an almost complex
manifold (V, J) such that

|6(2) = ()| |ddg 5| + 2|dsB] |de (¢ — 9)| < min(mg(z), my(z))
for all x € V' (with respect to some Hermitian metric). Then (1 — )¢ + B is

J-convex.

Proof. Adding up
dd®(B) = BddY + dB A d°¢ + dip A d°B + 1 dd"
and the corresponding equation for (1 — )¢ at any point x € V', we find
—dd((1 = B)¢ + Bu) = —(1 = B)dd“¢ — Bdd“¢ + dB N d"(¢ — )
+d(¢— ) NdB+ (—)dd"p

> min(my, my) — 2|dB| |[d(¢ — )| —| ¢ — Y| Idd%\
> 0.
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Proof of Proposition 3.15. Fix a compact neighborhood K ¢ LN U of K in
L. Pick a Hermitian metric on (V,.J) and consider the function dist?, square
of the distance to L, defined on a tubular neighborhood of L. According to
Proposition 2.13, this function is J-convex. Hence

Px == ¢ + Adist?

is J-convex for any A > 0. Since ¢ and 9 agree up to first order along L, there
exists a A > 0 and a compact neighborhood W C U of K such that

¢x > on W\ L.
For any € > 0 we can find a § < ¢ and a function a : Ry — R satisfying
36 !/ 2 3
a(ry=rforrel0,d], a(r)=0forr>e, —?ga <1, |« |§g
Set 3
b := ¢ + Aa(dist?).

Then é coincides with ¢ on W\ U, and with ¢, on WﬂUg, where U, := {dist;, <
¢} denotes the e-neighborhood of L. Let us show that ¢ is J-convex. Indeed,

dd®p = dd® ¢ + Mo d(dist2) A d€(dist?) + Aa'dd (dist?).

On W N U. we have |d(dist?)| < Ce, where the constant C' depends only on
the geometry of L N W. Since d(dist?) A d®(dist}) is a quadratic function of
d(distzL), the second term on the right hand side can be estimated by

1
|\ d(dist?) A dE(dist?)| < CiX- = - €2
e

for some constant C7. The third term on the right hand side is estimated by

CaoAd

Ao/ dd(dist?) > —A%ddc(disti)l >—

for some constant Cy. Thus the modulus of J-convexity of ¢ satisfies
mg > me — Cihe — CaNd/e.

So if @ := minwmg > 0, then mz > a/2 > 0 on W whenever ¢ and /e are
sufficiently small.

Note that (5 is arbitrarily C'-close to ¢ for & small. Fix a cutoff function 3 with
support in W and equal to 1 on a neighborhood W’ C W of K. The function
¢ = (1~ 0)¢ + 3o.

satisfies ¢ = ¢ outside W and on L, and ¢ > ¢ on W'\ L. Moreover, since
the estimates mg > a and mg > a/2 are independent of € and §, Lemma 3.16
implies that ¢ is J-convex if € and /¢ are sufficiently small.
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Next pick a cutoff function vy with support in a smaller neighborhood W C W’
of K and equal to 1 near K. The function

Q= —py

is J-convex for p > 0 sufficiently small. Moreover, it satisfies

b < near K, ¢ > on W\(W'UL), ¢ =¢outside W, ¢ <1 on L.

So the function

5 max (¢, qg) on W/,
R outside W'
coincides with ¢ near K and on L and with ¢ outside W. Let Y be the J-
convex function obtained by smoothing ¢ as described in Corollary 3.14, leaving
it unchanged near K and outside W. Then o coincides with ¢ outside W and
with 1 near K. Moreover, since ¢ is C'-close to ¢ by construction, v is C'-close
to ¢ by Corollary 3.25.

So ¥ has all the desired properties except that, due to the smoothing procedure,
it may not agree with ¢ on L\ K. To remedy this, fix a cutoff function p with
support in U which equals 1 near K and 0 on L\ K and set

0= (1—p)p+ pv.

By Lemma 3.16, ¢ is J-convex if we choose I sufficiently C'-close to ¢. Since
1) agrees with ¢ together with their differentials along L, the same holds for ¥
and ¢. So ¥ is the desired function. O

Remark 3.17. Note that if the function ¢ (and hence, 1) is regular at the points
of L then the construction of Proposition 3.15 can be performed without creating
any new critical points. Indeed, the constructed function ¥ is C'-close to ¢. See
Lemma 3.27 below for a similar statement when ¢ has critical points along L.

The corresponding result for J-convex hypersurfaces is

Corollary 3.18. Let X,%' be J-convex hypersurfaces in a complex manifold
(V, J) that are tangent to each other along a totally real submanifold L. Then
for any compact subset K C L and neighborhood U of K, there exists a J-convex
hypersurface X" that agrees with ¥ outside U and with ¥’ near K. Moreover,
" can be chosen Cl-close to & and tangent to ¥ along L.

Proof. Pick smooth functions ¢, with regular level sets > = ¢~1(0) and ¥’ =
1~ 1(0) such that d¢ = di along L. By Lemma 2.4, after composing ¢ and
1 with the same convex function, we may assume that ¢, are J-convex on a
neighborhood W C U of K. Let ¥ : W — R be the J-convex function from
Proposition 2.13 which coincides with ¥ near K and with ¢ outside a compact
subset W/ C W. Since 9 is C'-close to ¢, it has 0 as a regular value and
¥ :=9¥71(0) is the desired J-convex hypersurface. O
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We will finish this section with the following

Lemma 3.19. Let ¢g,¢1 : V — Ry be two exhausting J-convexr functions.
Then there exist smooth functions ho,hy : Ry — Ry with h{,h} — oo and
hy, b >0, a completely exhausting function ¢ : V. — Ry, and a sequence of
compact domains V¥, k =1,..., with smooth boundaries ©* = OV*, such that

o VF CInt VE*Y for all k > 1;
e U VP =V

o Y21 gre level sets of the function ¢, and £ are level sets of the function
(bO fOT'j =1...;

o b =hiodn onOp (U ¥71) and v = hoo gy on Op (U3, ).

Proof of Lemma 3.19. We will call a diffeomorphism 4 : RT™ — R an admissible
function if A" > 0 and b’ — oo. Take any ¢; > 0, and denote V! := {¢; <
c1}, Xt := 9V, There exists an admissible function g; such that ¢g|s: <
di = gi(c1). Set g := ¢o, 1 := g1 0 $1. Take any cz > dy and denote
V2 = {4y < c2},%2% := V2 Then V! C Int V2. There exists an admissible
function go such that go(z) = x for x € [0,d;] and 91]s2 < do = ga(c2).
Set 19 := g2 0 Y. Continuing this process we will take cs > do and denote
V3 = {41 < c3}, 3% := OV3. There exists an admissible function gz such that
g3(xz) = z,x € [0,d2] and te|gs < d3 = gs(c3). Set Y3 := g3 o ¢, and so
on. Continuing this process, we construct two admissible functions hg, h; and
a sequence of compact domains V*, k =1,..., such that

o VF CInt V! for all k > 1 and J, VF = V;

e ¢, is constant on ¥J for odd j, and ¢ is constant on %7 for even j;
® Yoyen = hoo ¢g = ]EH;O Yaj and Yoqq = h1 o ¢1 = Jlglolo Yaj_1;

® Y121 > tPols2i-1, Yols2s > P1lx2s forall j > 1.

Then smoothing the continuous plurisubharmonic function max (g, v1) we get
the required smooth J-convex function ). O

3.3 Ciritical points of J-convex functions

We wish to control the creation of new critical points under the construction
of taking the maximum of two J-convex functions and then smoothing. This is
based on the following trivial observation: A smooth function ¢ : M — R on
a manifold has no critical points iff there exist a vector field X and a positive
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function A with X - ¢ > h. Multiplying by a nonnegative volume form 2 on M
with compact support, we obtain

/M(X L $)Q > /M hQd.

Using (X - ¢)Q + ¢LxQ = Lx () = d(¢ix€2) and Stokes’ theorem (assuming
M is orientable over suppf), we can rewrite the left hand side as

/M(X L P)Q = —/M dLx Q.

So we have shown: A smooth function ¢ : M — R on a manifold has no critical
points iff there exist a vector field X and a positive function h such that

—/ ¢LXQZ/ hQ
M M

for all nonnegative volume forms 2 on M with sufficiently small compact sup-
port. This criterion obviously still makes sense if ¢ is merely continuous. How-
ever, for technical reasons we will slightly modify it as follows.

We say that a continuous function ¢ : M — R satisfies X - ¢ > h (in the
distributional sense) if around each p € M there exists a coordinate chart U C
R™ on which X corresponds to a constant vector field such that

—/(Jd)LXQZh(p)/UQ

for all nonnegative volume forms © with support in U. Writing Q = g(z)d™x
for a nonnegative function g, this is equivalent to

- / 6(2)(X - g)(x)d™z > h(p) / g()d™z. (3.6)
U U

This condition ensures that smoothing does not create new critical points:

Lemma 3.20. If a continuous function ¢ : R™ D U — R satisfies (3.6) for
a constant vector field X and a constant h = h(p) > 0, then each mollified
function ¢s defined by equation (3.5) also satisfies (3.6) with the same X, h.

Proof. Let g be a nonnegative test function with support in U and 0 < § <
dist(suppg, OU). Let y € R™ with |y| < 6. Applying (3.6) to the function

x — g(x+y) and using translation invariance of X, h and the Lebesgue measure
dx := d™z, we find

= [ ble =X glade =~ [ 6(@)X -gla+ )iz
U U
> h/Ug(ac—f—y)dx:h/Ug(x)da:.
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Multiplying by the nonnegative function ps and integrating yields

/(bs )X - gla / [ o= )ost)X -g(a)dy d

>h// x)ps(y dydm—h/
Bs

The next proposition shows that the condition X - ¢ > h is preserved under
taking the maximum of functions.

O

Proposition 3.21. Suppose the continuous functions ¢, : M — R satisfy
X -¢>h, X 9> h with the same X,h. Then X - max(¢,1) > h.

More generally, suppose (dx)aea is a continuous family of functions ¢y : M —
R, parametrized by a compact separable metric space A, such that all ¢ satisfy
X - ¢x > h with the same X, h. Then X - maxyca¢px > h.

Proof. Let U C R™ be a coordinate chart and X,h := h(p) be as in (3.6).
After a rotation and rescaling, we may assume that X = a%. Suppose first
that ¢, are smooth and 0 is a regular value of ¢ — ¢). Then 6 := max(¢,))
is a continuous function which is smooth outside the smooth hypersurface ¥ :=
{z € U | ¢(x) = 9(x)}. Define the function 879 as dgT(x) if ¢(z) > ¢(x) and
3}#(1’)

ox

- otherwise. We claim that - Bar is the weak zi-derivative of 6. Indeed, for
any test function g supported in U we have (orienting ¥ as the boundary of

{6=¢})
Boroe [ Borar| By,
v O {o>y} 911 (pevy Dor”

=/¢gdx2...dxm—/ ¢agdm
> {ozw} 0%

— [ Ygdxy dxm*/ g—wgdmx
by {p<y} 011
[ 999 gy,
U (91’1

since ¢ = 1 on Y. This proves the claim. By hypothesis we have % > h, so
the conclusion of the lemma follows via

9
/9 99 ym, / 9 g > h/ gd™z.
axl U 8(1;1 U

Next let ¢, : U — R be continuous functions satisfying (3.6). By Lemma 3.20,
there exist sequences ¢, ¥, of smooth functions, converging locally uniformly
to ¢,, such that X - ¢ > h and X - ¢ > h for all k. Perturb the ¢; to
smooth functions ¢, such that 0 is a regular value of ¢ — ¥y, ¢p — ¢ locally
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uniformly, and X dp > h—1 /k for all k. By the smooth case above, the function
max (¢, P satisfies

—/ max(gz;k,ibk)ngme (h—l/kj)/ gd"x
U U

for any nonnegative test function g supported in U. Since maX((ik, i) —
max(¢, 1) locally uniformly, the limit & — oo yields the conclusion of the lemma
for two functions ¢, 1.

Finally, let (¢x)rea be a continuous family as in the lemma. Pick a dense
sequence Ap, Ag,... in A. Set ¢y := max{¢y,,..., o5, } and ¢ := max eada.
By the lemma for two functions and induction, the functions 1, satisfy (3.6)
with the same X, h for all k. Thus the lemma follows in the limit & — oo if we
can show locally uniform convergence ¢ — .

We first prove pointwise convergence ¢, — 9. Solet & € U. Then ¢ (z) = ¢ ()
for some A € A. Pick a sequence ky such that Ay, — X\ as { — oco. Then
Oxap, () = Oa(z) = (z) as £ — oo. Since ¢y, (x) < Yy, (x) < Y(x), this
implies ¢, (x) — ¥(z) as £ — oo. Now the convergence v (z) — (x) follows
from monotonicity of the sequence ().

So we have an increasing sequence of continuous functions 1 that converges
pointwise to a continuous limit function . By a simple argument this implies
locally uniform convergence v, — 1: Let ¢ > 0 and =z € U be given. By
pointwise convergence there exists a k such that ¢y () > ¢ (z) —e. By continuity
of ¢r, and 9, there exists a § > 0 such that | (v) -k (x)] < € and |(y)—¢(z)| <
e for all y with |y — x| < §. This implies ¥ (y) > ¥(y) — 3¢ for all y with
|ly—x| < 0. In view of monotonicity, this establishes locally uniform convergence
¥, — 1 and hence concludes the proof of the proposition. O

Finally, we show that J-convex functions can be smoothed without creating
critical points.

Proposition 3.22. Let ¢ : V — R be a continuous J-convexr function on a
complex manifold satisfying X -¢ > h for a vector field X and a positive function
h:V — R. Then the J-convex smoothing ¥ : V. — R in Proposition 3.10 can
be constructed so that it satisfies X -1 > h for any given function h < h.

Proof. The function % is constructed from ¢ in Lemma 3.12 by repeated appli-
cation of the following 3 constructions:

(1) Mollification ¢ — ¢s. This operation preserves the condition X - ¢ > h by
Lemma 3.20.

(2) Taking the maximum of two functions. This operation preserves the condi-
tion X - ¢ > h by Proposition 3.21.

(3) Adding a C%-small function f to ¢. Let k : V — R be a small positive
function such that supy (X - f)(z) > —k(p) for each coordinate chart U around
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p as in condition (3.6) (for this it suffices that f is sufficiently C'-small). Then
we find

—/Uf(fv)(X'g)(x)de=/U(X~f)($)g(fﬂ)d:v > —k(p)/Ug(w)d:v,

so the function ¢ + f satisfies X - (¢ + f) > h — k. In the proof of Lemma 3.12,
this operation is applied finitely many times on each compact subset of V', so
by choosing the function £ sufficiently small we can achieve that X -¢ > h. [

Propositions 3.21 and 3.22 together imply

Corollary 3.23. If two smooth J-convex functions ¢, on a complex manifold
V satisfy X - ¢ >0 and X -1 > 0 for a vector field X, then the smoothing 6 of
max(¢, 1) also satisfies X -6 > 0.

Remark 3.24. Inspection of the proofs shows that Propositions 3.21 and 3.22
remain valid if all inequalities are replaced by the reverse inequalities.

Corollary 3.25. If two smooth J-convex functions ¢, on a complex manifold
V are C'-close, then the smoothing of max(¢, 1)) is Ct-close to ¢.

Proof. Let X be a vector field and hy : V — R functions such that h_ <
X -¢,X -4 < hy. By the preceding remark, the smoothing 1 of max(¢, ) can
be constructed such that h_ < X -9 < hy for any given functions h_ < h_
and hy > hy. Since X, h_,hy were arbitrary, this proves Cl-closeness of ¥ to
o. O

Finally, we apply the preceding result to smoothing of J-convex hypersurfaces.

Corollary 3.26. Let (M x R,J) be a compact complex manifold and ¢, :
M — R two functions whose graphs are J-convex cooriented by 0,, where r
1s the coordinate on R. Then there exists a smooth function 60 : M — R with
J-convex graph which is C°-close to min(¢,v) and coincides with min(¢,))
outside a neighborhood of the set {¢ = 1}.

Proof. For a convex increasing function f : R — R with f(0) = 0 consider the
functions
O(z,r) = f(r — (b(x)), U(z,r) = f(r — w(x))

For f sufficiently convex, ® and ¥ are J-convex and satisfy 0, > 0,9,¥ > 0
near their zero level sets. Thus by Propositions 3.21 and 3.22 the function
max(®, ¥) can be smoothed, keeping it fixed outside a neighborhood U of the
set {max(®, ¥) = 0}, to a function © which is J-convex and satisfies 0,0 > 0
near its zero level set. The last condition implies that the smooth J-convex
hypersurface ©71(0) is the graph of a smooth function § : M — R. Now note
that the zero level set {max(®,¥) = 0} is the graph of the function min(¢, ).
This implies that 6 is C%-close to min(¢, 1) and coincides with min(¢, 1) outside
U. O
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We finish this section with the following analogue of Remark 3.17

Lemma 3.27. Let L be a compact k-dimensional real submanifold of a complex
manifold (V,J), N D L be its tubular neighborhood in V with respect to some
Hermitian metric and m: N — L the normal projection. Let ¢ : V — R be a J-
convez function and p = @|,. Denote G := pom: N — R and ¢ := §+ Cdist?
where C' > 0 is chosen sufficiently large so that the function ¢ is J-convex
in N. Suppose that ¢ : L — R is a Morse function with a unique critical
point p € Int L of index k' < k. Suppose that ¢ and 1p have along L the same
differentials, and p is also a critical point of ¢ of the same index k'. Then,
given any neighborhood U of L in 'V, there exists a J-convez function ¥ which
coincides with ¢ outside U and with v in a smaller neighborhood U' C U of L
Moreover, ¥ can be chosen arbitrarily C'-close to ¢ and such that ¥ agrees with
¢ together with its differential along L, and having the same critical points as

0.

Proof. Let y1,...,y; be local coordinates in a neighborhood Q of the critical
point p such that LNQ = {y; = --- = y = 0} and dist? = |y|22[:y32 A
point u € Q can be assigned coordinates (z,y1,...,y;), where x = 7r(1U) € L.
Thus, we have ¢ (u) = ¢(x) + C Zi: y3. On the other hand, the condition on the

differentials of ¢ and v implies that the function ¢ can be written as

U(u) = o(x) + Qu(y) + ol|yl?),

where Q. (y) is a quadratic form of variables (y1,...,yx) with the coefficients
depending on = € L. Moreover, the equality of indices of the critical point p for
¢ and 1 ensures that the form @Q,(y) is positive definite. Consider the vector
field

!
1 0
Y =— E Y
|yl 1 ? y;

in 2\ L. Then if the neighborhood 2 is chosen small enough then there exists
an € > 0 such that

for all u = (z,y) € Q\ L.

Next, we use the construction of the function ¥ in Proposition 3.15. Let us
observe that this construction uses only the following operations:

a) Modifing functions ¢ and ¢ to functions Y=+ a(distz,) and b=¢+
ﬂ(diStL);

b) smoothing the function max (1), 5)
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The functions « and 3 in a) can be chosen to have an arbitrarily small support
Rewrite the proof of and such that o, 3" > % This implies that d(w)y)d)(Y), d(w)y)lﬁ(Y) > %|y\ for
3.15 accordingly g]] ¢ = (x, y) cQ0 \ L.

The operation in b) preserves the positivity of the derivative along the vector
field Y. Hence, applying Corollary 3.23 we conclude that the function ¢ has no
critical points in €\ L. Taking into account Remark 3.17 we conclude tat o
has no critical points in the rest of the neighborhood N, provided that it was
chosen small enough. O

3.4 From families of hypersurfaces to J-convex
functions

The following result shows that a continuous family of J-convex hypersurfaces
transverse to the same vector field gives rise to a smooth function with regular J-
convex level sets. This will be extremely useful for the construction of J-convex
functions with prescribed critical points.

Proposition 3.28. Let (M x[0,1],J) be a compact complex manifold such that
M x{0} and M x{1} are J-convex cooriented by Oy, where r is the coordinate on
[0,1]. Suppose there exists a smooth family (Xx)xejo,1) of J-convex hypersurfaces
transverse to O with ¥og = M x {0} and X1 = M x {1}. Then there exists a
smooth foliation (EA),\E[OJ} of M x [0,1] by J-convex hypersurfaces transverse

to O, with £y = M x {\} for X\ near 0 or 1.

Proof. Let ¢ > 0 be so small that the hypersurfaces M x {A} are J-convex
for N <eand A > 1—¢c Set V:i=Mx|[0,1] and U := M x (g,1 — ¢).
Reparametrize in A such that ¥y = M x {A\} for A <eand A > 1—¢. After a
C?-small perturbation and decreasing ¢, we may further assume that ¥ C U for
A € (e,1—¢). Pick a smooth family of J-convex functions ¢, with regular level
sets qS;l(O) = 3. After composing each ¢, with a suitable function R — R,
we may assume that ¢y > ¢, for all A <u with either A <ecor p>1—e.

The continuous functions

’l/))\ = maXuZAd)u

are J-convex by Lemma 3.8 and, by construction, satisfy
Wy >, for A < p. (3.7)

Moreover, we have ¢y = ¢, for A < e and A > 1 — . By Proposition 3.21,
the )y satisfy 0, - ¥y > h (in the distributional sense) for a positive function
h:M x[0,1] — R.

Next use Proposition 3.10 to approximate the ¢y by smooth J-convex functions
Y. By Remark 3.13, the resulting family ¢, is continuous in A and still satisfies
(3.7). By Proposition 3.22, the smoothed functions satisfy 0, - ¢ > h/2 > 0,
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hence the level sets 3y := 1/3;1(0) are regular and transverse to d,. We can
modify the smoothing construction to achieve ¥x = ¢ near A = 0 and 1, still
satisfying J-convexity, transversality of the zero level to 9., and (3.7). Note
that as a result of the smoothing construction the functions 1&,\, and hence
their level sets 3, depend continuously on the parameter \ with respect to the
C?-topology.

Since ¥ is transverse to d,, we can write it as the graph {r = fx(z)} of a
smooth function fy : M — [0,1]. By construction, the functions f\ depend
continuously on A with respect to the C?-topology, fn < f, for A < u, and
fa(z) = A for A <eand A > 1 — ¢, with some € > 0 (possibly smaller than the
one above). Note that f,(z) — fa(z) > p—Afor A\<p<eandl—e <A< p.
Pick a function g : [0,1] — [0, 1] satisfying g(A\) =0 for A <e/2and A > 1—¢/2,
gA) > —14+~vfore/2<A<ecand1—e¢ < A<1-¢/2 and ¢'(\) > « for
e < A< 1—¢, with some v > 0. For g sufficiently small, the graphs of the
functions fy(z) := fa(x) + g(A) are still J-convex, fx(z) = X for A < /2 and
A>1—¢/2, and

ful@) = fa@) = v(n =)
for all A < p. Now mollify the functions f (z) in the parameter \ to

*a»:iéfkﬂumxumm

with a cutoff function p : R — R as in equation (3.5). Since the functions fi_,

are C2-close to fy for u € supp(ps) and § small, the graph of fg\ is C2-close to
the graph of f) and hence J-convex. Moreover, for A’ > X the f, still satisfy

fua /h/ 2)ps(u w>/ﬁuNMMM%AM @)y (V).

Modify the fy such that fy(z) = A for A < ¢/2 and A > 1 — £/2, and so that
their graphs are still J-convex and fu(m) — falx) > (= A) for all A < p. The
last inequality implies that the map (x, A) — (x, f,\(m)) is an embedding, thus
the graphs of fy form the desired foliation 3. O



Chapter 4

Shapes for i-convex
hypersurfaces

In this chapter we introduce our main tool for the construction of J-convex
functions and use it to construct specific i-convex functions on C".

4.1 Shapes

Consider the map
m:C" = R% 2 (rR) = (Jz],]y])
for z = x 41y, z,y € R®. The image of the map = is the quadrant
Q:={(r,R)|r,R>0} CR

A curve C' C Q defines a hypersurface ¢ := 771(C) in C*. We call C the
shape of ¥¢. Our goal in this section is to determine conditions on C which
guarantee i-convexity of 3¢.

As a preliminary, let us compute the second fundamental form of a surface of
revolution. Consider R*¥@R! with coordinates (z,y) and R¥@R with coordinates
(z, R = |y|). To a function ® : R¥®R — R we associate the surface of revolution

Yo = {(z,y) e RF @ R' | &(x, |y|) = 0}.

We coorient X¢ by the gradient V® of ® (with respect to all variables). Denote
by &r = g% the partial derivative.

Lemma 4.1. At every z = (z,y) € Lo the splitting
1.5 = (.56 N (R* & Ry)) & (T.50 N (R & Ry)* )

43
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18 orthogonal with respect to the second fundamental form II. The second sub-
space is an eigenspace of II with eigenvalue ®r/|VP|R.

Proof. The unit normal vector to Xg at z = (z,y) is

1 (0]
V(Z) = W(VI@, fRy),

where V,® denotes the gradient with respect to the xz-variables. For Y ly we

get
1 Dp
D -(0,Y) = =0, =Y
Y2) (0.Y) = (0. 58Y) 4+ o
for some p € R. From (v(z),Dv(z)-(0,Y)) = 0 we deduce u = 0, so T,X¢ N
(R* @ Ry)~ is an eigenspace of IT with eigenvalue ®p/|V®|R. From this it
follows that

H((o, V), (X, )\y)) = (Dv-(0,Y),(X,\y)) =0
for (X, \y) € T.Zs N (R* @ Ry). O

Reduction to the case n = 2. Now let C C @ be a curve. At a point
z = x + 1y € Y¢ consider the subspace Ay, C R™ generated by the vectors
z,y € R™ and its complexification

AS, = Ngy +ilgy.

Let A be the orthogonal complement of A, in R™ and AS its complexification
(which is the orthogonal complement of A(gy in C"). Note that AT is contained
in T, ¥ ¢ and thus in the maximal complex subspace £,. So the maximal complex
subspace splits into the orthogonal sum (with respect to the metric)

E=AoAS =A®A, ®iAy,

where A = ¢, ﬂA;Ccy. We claim that this splitting is orthogonal with respect to the
second fundamental form I7, and A, and 7A | are eigenspaces with eigenvalues

®,./|V®|r and ®r/|VP|R, respectively.

Indeed, ¥ can be viewed as a surface of revolution in two ways, either rotating
in the z- or the y-variables. So by Lemma 4.1, the splittings

(&N Re@RY) @ (& N (Re @RS,

(gz NnR" @ iRy)) ® (52 N (R™ @ iRy)J‘>
are both orthogonal with respect to I and the right-hand spaces are eigenspaces.
In particular, A = &, N(Rx@iR™)+ and iA; = £, N(R"@iRy)" are eigenspaces

orthogonal to each other with eigenvalues ®,./|V®|r and ®r/|V®|R. Since AS,
is the orthogonal complement of A; ®iA; in C", the claim follows.



4.1. SHAPES 45

Now suppose that C' is given near the point 7(z) by the equation R = ¢(r),
and the curve is cooriented by the gradient of the function ®(r, R) = ¢(r) — R.
Since |[V®| = /@2 + &% = /1 + ¢/(1)2, the eigenvalues A\, on A and Ag on
1A equal

Ao B )
" |V(I)|’I“ r1/1+¢’(7')2’
(OFS 1
AR

VORI d )2

Hence by Proposition 2.9, the restriction of the normalized Levi form Ly to
A is given by

_ 1 ¢/(7")7 1 2
ool = s g

Hence we have proved

Lemma 4.2. Let X be the hypersurface given by the curve C = {¢(r)—R = 0},
cooriented by the gradient of ¢(r) — R. Then the restriction of the Levi form
Ls, to AS is positive definite if and only if

_9 1,

o ¢(r)

In particular, if ¢'(r) <0 the restriction is always negative definite.

LH(9) -

Lemma 4.2 reduces the question about i-convexity of X to positivity of £ (¢)
and the corresponding question about the intersection ECOA%}. When dim¢ Agy
1, this intersection is a curve which is trivially i-convex, hence Y ¢ is i-convex
if and only if £+(¢) > 0. The remaining case dim¢ AL, = 2 just means that
we have reduced the original question to the case n = 2, which we will now
consider.

The case n = 2.  We denote complex coordinates in C? by z = ({,w) with
¢ = s+it, w = u+ iv. The hypersurface £c C C? is given by the equation

V2402 = R=¢(r) = ¢(\/s? + u?).

We want to express the Levi form £ at a point z € X in terms of ¢. Suppose
that r, R > 0 at the point z. After a unitary transformation

¢ +— (cosa+ wsina, w +— —(sina + wcos «

which leaves ¥ invariant we may assume ¢t = 0 and v > 0. Then near z we can
solve the equation R = ¢(r) for v,

v= \/(b(\/ s2 +u?)? — 2 =: (s, t,u).
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According to Lemma 2.21, the normalized Levi form of the hypersurface Yo =
{v=1(s,t,u)} is given by L(T) = Lo|T|?, T € &, where

M((%s + 1) (14 93) + a8 + 97)
s t

+ 2wsu(wt - wu'l;/}s) - 2¢tu('l/}s + '(/)ud}t)) (41)

Lo =

Note that at the point z we have ¢t = 0 and ¥(s,0,u) = ¢(r) = ¢(vVu? + s2).
Using this, compute the derivatives at z,

w B d)/s z/} B (Z)//SQ ¢/u2 d} B ¢/u w B ¢H’U/2 ¢IS2
s r 9 88 — 7'2 T3 b u r 9 uu ’I"2 7"3 )
" su 'su 1
'l/)su:%* ¢T3 ) Py =0, Tbtt:*$7 Yy = 0.

Inserting this in equation (4.1), we obtain

(7“2 +52¢/2)3L0 B (¢//52 N ¢/u2 B l) <1+ QS/QUQ)
r3 - r2 r3 d) r2
N (¢//32 N ¢/§2) ¢/2282 3 2(¢)N‘29u B ¢/‘Zu>¢/2;u
r r r r r r
_ ¢//SQ N ¢/u2 N ¢713 B l<1+ ¢/2U2)
r2 r3 r ) r2 )’

We say that the curve C' is cooriented from above if it is cooriented by the
gradient of the function ¢(r) — R. Equivalently (since ¢ = 0 at z), the hypersur-

face ¢ is cooriented by the gradient of \/¢(\/52 + u2)2 — t2 — v, which is the
coorientation we have chosen above. The opposite coorientation will be called
coorientation from below. Lemma 4.2 and the preceding discussion yield the
following criteria for i-convexity of ¥¢.

Proposition 4.3. The hypersurface Xc = {R = ¢(r)} is i-convex cooriented
from above at r > 0 if and only if ¢ satisfies the following two conditions:

LY (¢) = (b/?(f) - % >0, (4.2)

112 /1,2 /3 1 12,,2
L A Y (R AT

L2(p) : . — = = (4.3)

2 r3 r P
for all (s,u) with s®> +u? = r2. It is i-convex cooriented from below if and only
if the reverse inequalities hold.

Remark 4.4. Let us note that for ¢ cooriented from above and when ¢’ > 0,
the maximal absolute value of the negative normal curvature of Y- equals

- - B B _d)// 1
M(¥) = max{—1I(T), T € T%,|T| = 1} = max <(1 +¢)3 qb\/m) '
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Hence, in that case the inequality pu(X¢) > > 0 for the modulus of J-convexity
of X, is equivalent to a system of inequalities, stronger than (4.2) and (4.3):

n _min(¢”,0) = ¢'(r) 1
Lo1(9)=¢ = Ty ¢“)>a (4.4)
L _ () 1+e
£E,2(¢) T r ¢<T) > 0’ (45)

¢// 2 ¢/ 2 ¢/3
£2,(0) = (L—e) "+ S 4+ S -

(1 + ¢/2u2) >0 (4.6)

1=

(1+ ¢’2) >0 (4.7)

¢// 2 ¢/ 2 ¢/3 1 ¢/2 2
£2,(0) = -+ 55 (1+5) -2

IS
72 73 r

¢

for all (s,u) with s? + u? = r2.
The following corollary gives some useful sufficient conditions for i-convexity.

Corollary 4.5. (a) If ¢ >0, ¢/ >0, ¢" <0 and
/3

" 1 12
¢+ = 5149 >0, (4.8)

then ¢ is i-convex cooriented from above.
(b)) If ¢ >0, ¢ <0, ¢" >0 and

/3
1
¢“+¢—77<0,
ro¢

then Yo is i-convex cooriented from below.

Proof. (a) If ¢’ > 0 and ¢” < 0 we get
/3

)2 "+ 2 - (1467,

So positivity of the right hand side implies condition (4.3). Condition (4.2) is
also a consequence of ¢" + Lj — %(1 +¢%) > 0.

(b) If ¢’ <0 and ¢” > 0 we get

o

So negativity of the right hand side implies the reverse inequality (4.3). The
reverse inequality (4.2) is automatically satisfied. O

/3
2@ <¢+ 2 -
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Remark 4.6. Let us rewrite in the case a) the sufficient conditions (??7)—(?7).
The following inequality guarantees the lower bound u(X¢) > e

B 14e
1 /! r
(I+e)p" + " 5

In the case ¢’ > 0,¢” > 0 the bound p(X¢) > ¢ follows from the inequalities

(1+¢) >0, (4.9)

¢ 1+e¢
L == — 0;
€ , ) > U;
/3 1
£§:¢”+7_ ;:5(1+¢’2) > 0. (4.10)
As a first application of Corollary 4.5 we have
2v2¢

Lemma 4.7. For any e > 0 and 6§ € (25%,¢) sufficiently small, the quarter
circle
o(r) :=e— /02— (e —1)?, r€le—4¢]

defines an i-convex hypersurface {R = ¢(r)} cooriented from below.

Proof. Denote s := \/m . We have

/ _ &~ " f
S =-"" 9=
Hence,
¢”+¢7/3_l:i 52_M_i
r ¢ s T e—s)’
Set t = ¢ — r. then we need to prove that
t3 3
F(t) = 2 S8 (4.11)

e—t €—s

where s = V62 — t2. We have

ro- (5 A).

F'(t . .
) has a unique zero when t = s, i.e. t =

b
t ﬁ7
[0, %) and positive on (%, d]. Hence the function F'(¢) has its minimum at the

point %. We compute F(%) = 2\/25‘5;67 and taking into account that € < %

we conclude that F' (%) > §2, which implies the inequality (4.11). O

The functiion negative on

For the remainder of this chapter we will only be interested in hypersurfaces
{R = ¢(r)} that are i-convex cooriented from above. We will call the cor-
responding function ¢ satisfying the conditions of Proposition 4.3 an i-convex
shape. The following lemma lists some elementary properties of i-convex shapes.
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Lemma 4.8 (Properties of i-convex shapes). (a) If ¢ is an i-convex shape then
$0 is ¢ + ¢ for any constant ¢ > 0 (i-convexity from above is preserved under
upwards shifting).

(b) If a ¢ is an i-convexr shape at v > 0, then the function ¢x(r) == Ap(r/A) is
an i-convez shape at Ar for each A > 0.

(c) If ¢,¢ are i-convex shapes for r < rq resp. r > rog such that ¢(ro) = (ro)
and @' (ro) = ¢'(ro), then the function

o (;5(7’) fO’I‘ r < To,
br) = {w(r) forr >rg

can be Cl-perturbed to a smooth i-convex shape which agrees with 6 outside a
neighborhood or ry.

(d) If ¢, are i-convex shapes, then the function

0 := max(¢, 1)

can be C°-perturbed to a smooth i-convex shape which agrees with 6 outside a
neighborhood or the set {¢ = 1}.

Proof. (a) If ¢ satisfies one of the inequalities (4.2), (4.3) and (4.8), then ¢ + ¢
satisfies the same inequality for any constant ¢ > 0.

(b) can be seen by applying the biholomorphism z — Az on C", or from
Proposition 4.3 as follows: The function ¢, has derivatives ¢x(Ar) = Ag(r),
AhN(Ar) = ¢'(r), &Y(Ar) = ¢(r)/A, and the replacement r +— Ar, ¢ — A,
@' — ¢, ¢ — @" /) leaves both conditions in Proposition 4.3 unchanged.

(c) follows from the fact that for given r, ¢, ¢’, the set of ¢” such that condi-
tion (4.3) holds is convex.

(d) After C%-perturbing ¢ we may assume that the graphs of ¢ and 1 intersect

transversally. Consider an intersection point rg such that ¢(rg) = 9 (ro) and
@' (ro) < ¥'(ro), so near ro we have

0(r) = {qﬁ(r) for r < ro,

P(r) forr>rg

Pick r_ < rg < ry with |ry —r_| < § small. Let x” : [r_,ry] — R be a
continuous function which near r_ increases steeply from x”(r_) = ¢”(r_) to a
constant m >> 0, near r; decreases steeply from m to x”(ry) = ¢"(r;), and
such that [+ x"(r)dr = ¢/(ry) — ¢/(r—). So the function x'(r) := ¢/(r_) +
[ X"(s)ds satisfies x'(r_) = ¢/(r_) and x'(r4.) = 1(r). The function x(r) :=
d(r-) + [ X'(s)ds satisfies x(r_) = ¢(r_) and |x(ry) — ¢(ry.)| < C6 for a
constant C' independent of §. Moreover, its first and second derivatives agree
with those of ¢ resp. v at rq resp. r4.
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It remains to show i-convexity of x; the desired function is then obtained by
interpolating from x to ¢ to the right of r4 for small §. Condition (4.2) holds
for x because it holds for ¢,v and up to error of order ¢ for r € [rg,r,] we
have r 2 ro, x(r) = ¢(ro) = ¥(rg) and x'(r) € [¢'(r0), ¥ (r9)]. Next note that
condition (4.3) for s = 0 becomes

(X-2)arx >0

r X

which is satisfied in view of condition (4.2). Since x”(r) is uniformly bounded
from below independently of §, there exists a constant o > 0 independent of §
such that x satisfies condition (4.3) for all |s| < 0. Moreover, near r_ resp. r4
condition (4.3) holds for x because it holds for ¢, and x” is larger than ¢”
resp. 1", So it remains to consider the region where x” = m in the case |s| > o.
In this region r, x, X" are bounded independently of §. On the other hand, since
the constant m is of order 1/, the term x”s?/r? becomes arbitrarily large as
0 — 0, so condition (4.3) holds for ¢ sufficiently small. O

The following lemma extends i-convex shapes to the subcritical case.

Lemma 4.9. For k < n set r := \/x%+---+x%+yi+1+"'+yﬁ and R :=
VYi 44y Let ¢(r) be an i-convex shape. Then ¥ :={R = ¢(r)} is an i-

convez hypersurface cooriented from above. Moreover, Y. intersects the subspace
t1R™ i-orthogonally.

Proof. Set ¥ := /22 + -+ + 22 and R := \/y? + --- + y2. By assumption, the
hypersurface 3 := {R = ¢(7)} is i-convex cooriented from above. Let (7, R)
be an increasing function of ¢(7) — R which is i-convex on a neighborhood of
Y. The unitary group U(n — k) acts on the second factor of C* = CF @ C"~*
and the functions z — 1(g2), g € U(n — k), form a smooth family of i-convex
functions. Therefore, by Lemma 3.8, the continuous function

Y(2) == maxgey(n_k)¥(92)

is i-convex. Set 2z’ := (z1,...,2x) and 2" := (241, ..., 2,). Since ¢ is increasing,
the function

g+ ¢(/Re ()2 + Re (92”)2) — /Im (2/)% + Im (92" )2

for fixed (2',2") is maximized iff Im (g2") = 0, so we have () = ¥ (r, R). This

implies that ¥(z) = v¥(r, R) is smooth and i-convex, hence its level set X is also
1-convex.

The i-orthogonality of ¥ to iR™ is clear from the definition. O
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4.2 Construction of special shapes

We will now construct special i-convex shapes satisfying the differential inequal-
ity in Corollary 4.5 (a). In fact, we will solve a slightly stronger differential
inequality (4.9) which ensures the lower bound for the modulus of J-convexity
for the constructed J-convex hypersurface.

One such solution with the desired properties has been constructed in [14]. The
following simplified construction was pointed out to us by M. Struwe. We will
find the function ¢ as a solution of Struwe’s differential equation

¢13
"4+ - =0 4.12
¢+ < (4.12)
with ¢ > 0 and hence ¢” < 0. Then the inequality (4.9) with e = % reduces to
¢® 3 ”
— ——(1 . 4.1
6% >0 (113)

Lemma 4.10. For any d,K,i,\ > 0 satisfying K > M and 12K5 <
(In K)=3/2 there exists a solution ¢ : (A3, KAS] — R of (4.12) with the following
properties:

(a) &' (A0) = +00 and d(Ad) > A+ dNd;

(b) G(ENS) = A+ dKNS and ¢/ (KN) < d;

(c) ¢ satisfies (4.18) and hence is the shape of an i-convex hypersurface coori-
ented from above.

Proof. First note that if ¢ satisfies equation (4.12) and inequality (4.13), then so
does the rescaled function A¢(r/\). Thus it suffices to consider the case A = 1.
The differential equation (4.12) is equivalent to
1y 207 1
() =25 -

__ﬁ_r’

thus 1/¢'? = In(r/6) for some constant § > 0, or equivalently, ¢'(r) = 1/1/In(r/9).
By integration, this yields a solution ¢ for r > ¢ which is strictly increasing and

concave and satisfies ¢/(d) = +oo. Note that f;ﬂs ¢’ (r)dr = 6K, with

K
du
K = < 00.
! /1 vinu

Fix the remaining free constant in ¢ by setting ¢(K9) := 1 + dKJ, thus
$(0) =1+ dKd — Kq0.

Estimating the logarithm on [1, K] from below by the linear function with the
same values at the endpoints,

In K
1 > -1
nu > % 1(u ),
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we obtain an upper estimate for Kj:

K < /\/F ‘/m /Kldz— \/F_l) (4.14)

By hypothesis we have vIn K > 2/d, hence K; < d(K — 1). This implies
$(0) > 1+dKo—d(K —1)6 = 1+ dd.

Concavity of ¢ implies ¢(r) > 1 + dr for all r € [d, Kd], and in particular
¢'(Kd) < d. So it only remains to check inequality (4.13). Denoting by ~
equality up to a positive factor, we compute

¢/3 3 /2 ¢,3 /2
A mi e
¢l3

~ —(1+dr) 6 — 60"
~ ; +d(1—¢) —61n(r/5)*? — 61n(r/5)/2.

The function on the right hand side is decreasing in 7. So its minimum is
achieved for r = K¢ and has the value

1 3/2 1/2 1 3/2
[ — [ >

by hypothesis. O

For numbers A, a, b, c,d > 0 consider the following functions:

Sa(r) = VA? + ar? (standard function),
Qx(r) = X+ br + cr?/2) (quadratic function),
Ly(r) = XA+ dr (linear function).

Let us first determine in which ranges they satisfy the inequalities (4.2) and
(4.3).

Lemma 4.11. (a) The function S\(r) is the shape of an i-convex hypersurface
for A>0,a>1andr > 0.

(b) The function Qx(r) is the shape of an i-convex hypersurface for A >0, b > 0,
c>1andr>0.

(¢) The function Qx(r) is the shape of an i-convex hypersurface for X > 0,
b=4—¢c,0<c<4and 0 <r <2\

(d) The function Ly(r) is the shape of an i-convex hypersurface for A >0, d > 1
and r > 0.

(e) The function Ly(r) is the shape of an i-convex hypersurface for A > 0, d > 0,
r >0 andr(1—d) < \d>.
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Proof. First note that by Lemma 4.8 (b) we only need to prove the statements
for A =1. Set §:= 51, Q := Q1, L := L;. We denote by ~ equality up to
multiplication by a positive factor.

(a) This holds because R = S(r) describes a level set of the i-convex function
é(r,R) = ar? — R% for a > 1.

(b) Condition (4.2) follows from

Q/(’I“)Q(’I“)—TZ(b—l—CT)(lﬁ-bT—l—?)—TZb+CT—T=b+(C—1)T>O7

and condition (4.3) from

2 _ 2 2 3 2,2
52(Q)ZC(T u)+(b+cr)u +(b+cr) _1_(b+cr)u
r2 73 T 72
~er(r? —u?) + (b4 er)u® + 12 (b4 er)® — 13 — (b + er)*u?
= (c—Dr* +bu® +7r2(b+cr)® —ru*(b+cr)
> (c— 1D + +r2(b+cr)® —r3(b+cr)

=(c— 1)T3 + rz(b + cr)z(b + (ec— 1)7’) > 0.

(c) Condition (4.2) follows as in (b) from
QMQ(ry—r>b+cer—r=4—c(l—r)—r>4—41—-r)=4r—r > 0.
For condition (4.3) it suffices, by (b), to show that

A=(c—1)r+OB+cr)? b+ (c—1)r)
=(c—Dr+ (4—0(1—r))2(4—c(1—7“)—7‘) > 0.

For ¢ > 1 this follows from (b). For ¢ < 1 we have 4 — ¢(1 — r) > 3 and
4—c¢(1—r)—r>3—r, hence

A>—r+9B8—-r)=27-10r >0

for r < 2.
(d) Condition (4.2) follows from

L'(r)L(r)—r=d(l+dr)—r=d+ (d* = 1)r > 0,

and condition (4.3) from

du* &3 1 d*u?
(e
r3 r  1l+dr r?

~ (14 dr)du® + d®r*(1 + dr) — 3 — d*ru®
=du® + d*r* + (d* — 1)r* > 0.

L2(L) =
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(e) Condition (4.2) follows from r(1 — d?) < d®/(1 + d?) via

d? d

L'(r)L(r) —r = 2 yr>d— —s = ——
(ML(ry—r=d+(d )r>d e 1—|—d2>

0,

and condition (4.3) as in (d) from
L2(L) = du® + d®r® + (d* — 1)r® > r*(d® + (d* — 1)r) > 0.
O

Remark 4.12. Tt is useful note the bounds for the modulus of convexity uy for
all J-convex shapes reviewed in Lemma 4.11

a) The normalized Levi form of the hyperboloid ar? — R? = —\? is equal
to L(T) = Mﬁﬁp for T € ¢ and the minimum —M (%) of the

negative normal curvature is equal to Hence p(X) = a—1.

2

(a?+a)r2+R?"
b) Assuming ¢ = 1 it can be deduced from the above proof that u(X) > ¢ — 1.
¢) TO BE CONTINUED

Lemma 4.13. (a) For \,¢ > 0 and d > b > 0 the functions Qx(r) and Lx(r)
intersect at a unique point Argr > 0, where rgr, = 2(d — b)A\/c.

(b) For X > 0 and a > d?> > 0 the functions Lx(r) and Sx(r) intersect at a
unique point A\rgr, > 0, where gy, = 2d\/(a — d?).

(c) For \,b > 0, a > ¢ > 0 and 2b*(a + ¢)®> < (a — ¢)3 the functions S(r)
and Qx(r) intersect at precisely two points Arsq, \rsq satisfying 0 < rsq <
4b/(a—c) < rgq. Moreover, the points rsq and rsq depend smoothly on a, b, c.

Proof. (a) and (b) are simple computations, so we only prove (¢). Again, by
rescaling it suffices to consider the case A = 1. First observe that for x > 0
and pu < 1 we have /T +z > 1+ px/2 provided that 1+ x > 1+ ux + p?2%/4,
or equivalently, < 4(1 — p)/p?. Applying this to z = ar?, we find that
S(r) > 1+ par?/2 provided that

401 — p)
2o B 4.1
re < an? (4.15)

Hence if )

2
par (r):1+br+%

&=
for some r > 0 and p < 1 satisfying (4.15), then S(r) > Q(r). Assuming pua > c,
we solve the last equation for r = 2b/(pa — ¢). Inequality (4.15) becomes

1+

4> 4(1 —
P2 = 5 < ( 2#)7
(a—o? = an
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or equivalently,
ab?u® < (1 — p)(pa — c)?. (4.16)

Now pick p := (a + ¢)/2a. The hypothesis a > ¢ implies p < 1 and pa =
(a+¢)/2>c. Withpa—c=(a—c)/2 and 1 —p = (a—c)/2a, inequality (4.16)

becomes
2 2
a—+c a—c (a—c
b? < ,
“ (2a> 2 < 2 >

26%(a +¢)? < (a—c)>.

or equivalently,

Assume this inequality holds, so S(ry) > Q(r1) at the point

2 4b

pa—c a—c

ry =

Now f(r) := Q(r)? — S(r)? is a polynomial of degre 4 satisfying f(0) = 0 and
f(r) — 400 as r — £oo. Since b > 0, we have f(r) > 0 for r > 0 close to
zero and f(r) < 0 for r < 0 close to zero, so f(r_) = 0 for some r_ < 0. By
the preceding discussion we have f(ry) > 0, so f has two more zeroes 15, 7sq
with 0 < 75 < 74 < rigg. Since the 4 zeroes of f are distinct they are all
nondegenerate, which implies smooth dependence on the parameters a,b,c. [

Now we can show

Lemma 4.14. For every a > 1 and v > 0 there exists a 0 < d < v and an
i-convex shape ¢(r) which agrees with S(r) = V1+ar? for r > v and with
L(r) = 1+dr forr close to 0.

Proof. Pick 1 < ¢ < a. Pick 0 < b < 1 such that 2b*(a + ¢)? < (a — ¢)3 and
4b < vy(a—c). By Lemma 4.13, the i-convex shapes S(r) and Q(r) = 1+br+cr?/2
intersect at a point 0 < ro < 4b/(a — ¢) < . Now pick b < d < 1 such that
r1 := 2(d — b)/c satisfies 11 < ro and 71 < d3/(1 — d*) . By Lemma 4.13,
the functions Q(r) and L(r) intersect at the point r1, and by Lemma 4.11 the
function L(r) is i-convex for r < r1. Now the desired function is a smoothing
of the function which equals L(r) for r < ry, Q(r) for r; <r <rg and S(r) for
r > ro. ]

Combining the preceding lemma with Lemma 4.10 (for A = 1), we obtain
Corollary 4.15. For every a > 1 and v > 0 there exists a 0 < § < v and an

i-convex shape ¢(r) which agrees with S(r) = /1 4+ ar? for r > ~ and satisfies
@'(8) = +oo and ¢(d) > 1.
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4.3 Families of special shapes

In this section we construct a family of i-convex shapes interpolating between
the function in Corollary 4.15 and the standard functions S .

We begin by constructing another family of solutions to Struwe’s differential
equation (4.12).

Lemma 4.16. For any § > 0 and d > 4 there exists a solution ¢ : [0,20] — R
of (4.12) with the following properties:

(a) ¢'(0) = 400 and ¢(J) > dd;

(b) ¢(26) = 2do6 and ¢'(26) < d;

(c) ¢ satisfies (4.13) and hence is an i-convexr shape.

Proof. The proof is similar to the proof of Lemma 4.10. By rescaling, it suffices
to consider the case § = 1. Define the solution ¢ by ¢'(r) := 1/vInr and

¢(2) := 2d, thus
> du
o(1) =2d — /1 T

Estimating the integral as in (4.14) and using d > 4, we find

2 >d+4 L>d
vVin2 Vin2 ~

since VIn2 > 1/2. Concavity of ¢ implies ¢(r) > dr for all r € [1,2], and in
particular ¢’(2) < d. So it only remains to check inequality (4.13). Denoting by
~ equality up to a positive factor, we compute

¢/3 1 /2 ¢,3 1 12
S N = (1 6?)

2r @
Nd¢/3_2_2¢/2
~d—2(Inr)3? —2(Inr)t/2.

P(1) > 2d —

The function on the right hand side is decreasing in r. So its minimum is
achieved for » = 2 and has the value

d—2(In2)%?% - 2(In2)/2 >4 -2-2=0,
since d > 4 and vIn2 < 1. O

Remark 4.17. For ¢ as in Lemma 4.16 and any constant ¢ € R, the part of the
function ¢ + ¢ that lies above the linear function dr is i-convex. Indeed, the last
part of the proof applied to ¢ + ¢ estimates the quantity in inequality 4.13 by
d—2(Inr)3/2 —=2(Inr1)"/?, where 7 is the larger intersection point of ¢ + ¢ and
dr. Since r; < 2, this is positive.



4.3. FAMILIES OF SPECIAL SHAPES o7

Extend the standard function to A < 0 and a > 1 by

Sa(r) == Var?2 — \2 r > |\/Va.

Note that S is the shape of an i-convex hypersurface because its graph is a
level set of the i-convex function ¢(r, R) = ar? — R2.

We say that a family of i-convex shapes ¥y : [6,7] — Ry with ¢, (8) = oo is
smooth if their graphs {R = 1¥(r)}, extended by the vertical line below 1 (),
form a smooth family of lines in the positive quadrant Q C R2.

Lemma 4.18. Let Ly(r) = A+ dyr, 0 <r <, 0 < X <1, be an increasing
smooth family of i-convex shapes, where X\ — dy is decreasing with dy = 8 and
0 < dy < 1. Then for any sufficiently small § € (0,7v/4) there exists a smooth
family of increasing i-convex shapes ¥y : [§,7] — R, =80 < A < 1, with the
following properties:

(a) PY_gs(r) = V/64r2 — 6452 for all r > §;

(b) ’l/}A(T) = mfor -8 < A<0andr > 7/2,
(c) ¥a(r) = La(r) for 0<S A <1 andr >~/2.
(d) Y4 (8) = oo for all \;

(e) ¥1(6) > 1.

Proof. (1) For each A € (0,1], set K := e*/X. Pick a smooth family of &, > 0
such that \d, increases with A and

AK)0\ < (InKy) 732, KAy < /2.

By Lemma 4.10, there exist i-convex solutions ¢y : [Ady, KxAdx] — R of (4.12)
satisfying

o ¢\ (Adx) = 400 and P (Adx) > A+ dryAdx;
L] (b)\(K)\)\(S)\) =\ + d)\K)\)\5,\ and (ZSI)\(K)\)\(S)\) S d)\.

(2) From dyp = 8 and d; < 1 we conclude Ky = el/16 < 2 and K; > ¢t > 2.
Hence there exists a 0 < A < 1 with K5 = 2. Set 0 := Ay < /4. By
Lemma 4.16 (with d = 8), there exists an i-convex solution ¢ : [§,25] — R of
(4.12) satisfying

e ¢'(6) = +oo and ¢(8) > 86;
e $(26) =160 and ¢'(20) < 8.

By Lemma 4.8 (a), the functions

dx = ¢(r) + Lx(20) — Lo(20) > ¢(r)
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are i-convex for 0 < A < X and & < r < 25. Note that the functions ¢5 and q@;\
have the same value at r = 26 and derivative co at r = 6. Since they both solve
the second order differential equation (4.12), they coincide on [§,24]. Thus the
families constructed in (1) and (2) fit together to a continuous family (¢ ) A€[0,1]
with ¢y = ¢y : [Aox, Kady] — Ry for A > X, and ¢y = ¢y : [3,20] — R for
A < A Set 0y := A6y for A > X and &y := § for A < X and define ¢, : [0x,7] —
R+ by
() = {?,\(r) for r < K0y,
A(r)  for r > K)0,.

After smoothing, the family ¢, is i-convex and agrees with Ly for r > ~v/2.

(3) For —8) < 7 < 0 consider the functions ¢, := ¢ + 7 : [§,25] — R;. By
Remark 4.17, the portion of ¢, above the linear function Lg is i-convex. Thus
for 0 < 6§ < 6/2 sufficiently small, the portion of ¢, above the function S_g; is
i-convex. Here S\(r) = v/64r? — A2 is the standard function defined above with
a =64 and X € [-89,0]. For —85 < A < 0 define ¢y : [0,7] — Ry by

ba(r) == o(r) + Sx(26) — So(20) for r < 26,
oa(r) == Sx(r) for r > 20.

Since Sy(r) — So(r) is increasing in r for A > 0, the condition ¢(5) > 8§ ensures
that ¢, lies above Sy). Thus after smoothing, the family ¢, is i-convex for
—80 < A < 1 and agrees with Ly (if A > 0) resp. Sy (if A < 0) for r > /2.
Now define 9, : [0,7] — R4 by

~ S_gsm  for r < 6y,
Ga(r) = 4278 O\
o(r) for r > 0.

After smoothing, the family 1,5,\ is i-convex for —85 < X\ < 1 and satisfies
conditions (b-d).

(4) To arrange condition (a), note that V_gs = max(S_gs, ¢7) for some 7 < 0.
By the discussion above, the functions max(S_gs, ¢, ) are i-convex for —85 <
7 < 0. For ¢ sufficiently small, we have max(S_gs, d_g5) = S_gs. After rescaling
in the parameter A, this yields a family 1/;,\ satisfying condition (a-d).

(5) To arrange condition (e), set 0, := (2 —t)d1 + (¢ — 1)d for ¢ € [1,2] and let
@ : [0t, K10;] — R be the i-convex shape from Lemma 4.10 with A = 1 and 6
replaced by &;. For A € [1,2] define ¢ : [6,7] — R, by

S,gg(r) for r < 6y,
PA(r) = ox(r)  for 6y <r <4y,
Ly(r) for r > ;.

For A = 1 this matches the previous family 1%\, so rescaling in A yields the
desired family 9y. O
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The following result is a family version of Lemma 4.14.

Lemma 4.19. For any p > 0 there exists a constant 0 < v < p and a smooth
family of increasing i-convex shapes ¢y : Ry — Ry, A € [0,1], with the following
properties:

(a) do(r) = 8r for all r;

(b) dx(r) = A+dxr forr <~ and all A\, where \ — d) is decreasing with dy = 8
and 0 < dy <1;

(c) dx(r) = V64r2 + X2 for r > p and all X.

Proof. Set a := 64 and ¢ := 2. With this choice and A € (0, 1] we consider the
functions

Sa(r) = VA2 +ar?, Qua(r) = A+ br + cr?/2), Lax(r)y=X+dr

as above. Here the constants b, d will vary in the course of the proof but always
satisfy the condition
0<b<d<b+b®<38. (4.17)

Then the numerical condition in Lemma 4.13 (c), 2b%(64+2)? < (64—2)3, holds
because b < 4. Hence all the numerical conditions in Lemma 4.13 are satisfied,
so the functions Sy, Qp x, La,n intersect at points Argr (b, d), Argr(d), Argg(b)
satisfying

2(d —b) 2d 4b

’I“QL(b,d)Z - R ’I“SL(d)Zm, 0<’I“5Q(b)< u_c

By condition (4.17) we have
rqr(b,d)(1 —d*) < rqr(b,d) <b* < d?,

so the numerical condition in Lemma 4.11 (e) is satisfied for r < Argr(b,d). It
follows that the shape functions Sy (r) and Qp A(r) are i-convex for all r, and
Ly (r) is i-convex for r < Argr(b,d). For each triple (b,d, A) we consider the
function

Yp,a,x = max(Sx, Qv ., Lax) = Mp,a.1(-/N).

This function will be i-convex provided that the region where it coincides with
L4 (r) is contained in the interval [0, Argr (b, d)]. We say that ¢y 4. is of type

(a) if ’)"QL(b, d) < TSL(d) << TSQ(b);
(b) if ’I“SQ(b) << TSL(d) < TQL(b, d);
(C) if TSQ(b) << TQL(b, d) < TSL(d);

see Figure [fig:??7] (where we have droped the parameters b,d, \). Thus the
function 9y, g, is i-convex for types (a) and (b), but not necessarily for type (c).

After these preparations, we now construct the family ¢, in 4 steps.
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Step 1. Consider A = 1. Pick a pair (b1, d;) satisfying (4.17) and such that

2(dy —b 4b
M<Ts@(b1)<a7_lc<p.

rQr(bi,d1) =
Then the shape function i, 4,2 is of type (a) and therefore i-convex for all
A > 0, and it agrees with Sy for r > ~. Note that in particular we have
rSL (dl) < p.
Step 2. Fix a parameter 0 < A\* < p/8. This condition ensures that for any
pair (b, d) satisfying (4.17) we have A*rqgr (b, d), \*rsq(b) < p. We may assume
that by is Step 1 is chosen so small that b2 < ¢/(a — b?) for all b € [0,b1]. Then
for any b € [0, b1] such that (b,d;) satisfies (4.17) we have

2d; —b) _ 26% 2 2d;
rarbd) = "= S < <ima@

=rsr(di) < p.

Let b7 € (0, b1] be the solution of bj+(b7)® = d;. We claim that for all b € [b}, b]
the function ¢ 4, A= is of type (a) and therefore i-convex. Indeed, by Step 1
this holds for b = b;. Since rgq(b) depends smoothly on b, if ¢, 4, A= changes its
type there must exist a b € [b], b1] for which rgg(b) = rsr(d1). But this implies
also rgr(b,d1) = rsr(d1), contradicting the preceding inequality.

Step 3. For b > 0 consider the function

) = Tt (@d-ba=d) b (a— (b +5%)?)

rsp(d) la=b+ve cd ‘d=b+b3: c(1+ b2)

A short computation shows that f(0) = 0, f(1) > 1 and f'(b) > 0 for all
b € (0,1). Thus there exists a unique b5 € (0,1) with f(b3) =1, i.e. ror(b,b+
b%) = rsr(b+ b3) precisely for b = b3. Since bj < b3, the function vy 412 x-
is of type (a) and therefore i-convex for all b € [b7,b3]. For b € [b5,1] we
have rgr(b,b+ b%) > rgp(b+ b?), so the function v, 413y« is of type (b) and
therefore also i-convex. Combining this, we see that the function )y 145 r~ is
i~convex for all b € [b%,1]. Moreover, \*rgr(b+ b3) < p for all b € [b7,1], so
Uy pys 2+ (1) = S3(r) for r > p.

Step 4. The previous step leads for b = 1 and d = b + b® = 2 to the function
1,22+ For d € [2,8] define by, Ay by the conditions

by + b3 = d, Aarsr(d) = p,

SO
pla —d?)

2d
Note that by = 1, Ay > A*, and 1 52 is i-convex for all A € [A*, \2] and agrees
with Sy for r > p. The same holds for the functions v, 4,5, for all d € [2,8].
In the limit d — 8 we find Ag = 0 and thus the linear function

Ad =

wb&g,o(’l“) = 8r.
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Now we combine the homotopies of i-convex functions 1)y 4, in Steps 1-4: Start-
ing from (by,dy, 1) we first decrease A to (by,dy, A*) (Step 1), then decrease b
to (bf,d1, A\*) (Step 2), next increase (b,d) simultaneously do (1,2, A*) (Step
3), and finally increase (b,d) and decrease A simultaneously to (bg,8,0). By
construction, each function ¢y 4 » during this homotopy coincides with the cor-
responding standard function Sy for r > p and with the linear function Ly for
r <~ for some small 7 > 0. Moreover, during the homotopy A is non-increasing
and d is non-decreasing. Smoothen the functions v 4. and perturb the homo-
topy such that X is strictly decreasing from 1 to 0 and d is strictly increasing
from d; < 1 to 8. The resulting homotopy, parametrized by A € [0, 1], is the
desired family ¢,. O

Now we can prove the main result of this chapter.

Proposition 4.20. For all 0 < p < € and any sufficiently small § € (0, p) there
exists a smooth family of increasing i-convex shapes ¥y : [d,e] > R, =85 < A <
1, with the following properties:

(a) P_gs(r) = V/64r2 — 6452 for all r > §;

(b) Ya(r) = V64r2 — X2 forr > p and all \;
(c) ¥\ (8) = oo for all A;
(6) wl(é) > 1.

Proof. Let (¢x)xejo,1) be the family of i-convex shapes from Lemma 4.19. They
agree with the standard functions v/64r2 — A2 for r > p and with the linear
functions A 4+ dyr for r < «. Since ¢o(r) = 8r, we can extend the family by
oA(r) := V6472 — X2 for A < 0 and r > N\/8.

Let (¢x)re[—gs,1] be the family from Lemma 4.18 which agrees with A + dyr for

r > /2 and X € [0,1], and with /6472 — A2 for r > /2 and A € [—8§,0]. So
the families 1) and ¢, fit together to a family of i-convex shapes [4, ] with the
desired properties. O

Change below here!

Define the standard i-convex function,
st (1, R) 1= 6412 — R* + 1.
on the handle H..

Proposition 4.21. For all 0 < p < € and B > 0 there exists a smooth family
of i-convex functions v : H. — R, t € [0, 1], with the following properties:

(a') 1/’0 = wst;

(b) Y1 = st on the set {1psy < —B} and near r =0 for all t € [0,1];

(c) ¥y = fr o forr > p, where fi : [—3,1+ 64e2] — R are strictly increasing
with fo =1, fi(x) = x near x = —f, and f1(0) > 1;

Check!
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(d) all 1y have 0 as the only critical point.

Proof. Let (¢x)xejo,1) be the family of i-convex shape functions from Lemma 4.19.
They agree with the linear functions A+ dxr for <. Let (1x)xe[-ss5,1) be the
family from Lemma 4.18 which agrees with A + dyr for »r > v/2 and A € [0, 1].
Since ¢o(r) = 8r and _gs(r) = V64r? — 6402 we can extend the families ¢y
and ¥y by S\(r) = v64r2 — A2 for A € [—8¢,0] resp. A € [—8¢,—8d]. The ex-
tended families ¥, and ¢, fit together to a family of i-convex shape functions
Xx :[0,e] = Ry, A € [—8¢,1], with the following properties:

(a) xa(r) = Sa(r) for r > p and all A, as well as for A < —86 and all r;
(b) xa(r) = S_gs(r) for 6 <r <26 and —85 < A < 1.

It will be convenient to perform a bijective continuous change of parameters
from A to u = pu(A) € [0,1 + 64¢?] defined by

14+22: A<,
A) =
H) {1—)\2: A >0,

s0 Sx(r) = \/64r2 + 1 — pu. Note that the family of hypersurfaces {R = x,(7)},
p € [0,1 + 64¢2], is transverse to the vector field

k n
0 0 0 0
(o w2 ) S ().
i_1< Ox; y(?lﬁ) Pt Oz yj@yj

Hence by Proposition 3.28 we can perturb it to a foliation by i-convex hyper-
surfaces X,, transverse to X with the following properties:

(a) ¥, ={R= /6412 +1— pu} for r > p and all y;

(b) o ={R = v64r2 — 6402} for 6 <r < 24.

Extend the foliation ¥,, to p € [—a, 0], for a € (0, §) sufficiently small, such that
$u(r) =+/64r2 +1 — pfor r > p and all u € [—a, 1 + 64¢?]. Define a function
v : Ho — Rby :=pon X, and 9 := —a otherwise. Pick an increasing
convex smooth function f : [—a, 1+64%] — R such that f(p) = pnear p = —a,
f(0) > 1, and f o1 is i-convex on U,%,,. Note that foi = fo1)y on the region
{ql}st > —a,r > p} and f o1 = —a < 1 on the region {wst > _a} \ U2y

Pick a constant ¢ > maxy_(foy))—ming,_ 1y and for ¢t € [0, 1] define ¢, : H. — R
by
Yy = max{ts, f o +c(t — 1)}

on {¢st > —a} and Py 1= g on {thsy < —a}. After smoothing, the functions
1 will be i-convex and we claim that they have the desired properties. Indeed,
properties (a) and (b) are immediate from the construction. Property (c) holds
with (a smoothing of) the function f; := max{1, f + ¢(t — 1)}. Property (d)
holds because ¥y = 1)t near 0, and away from 0 the level sets of the functions
st and 1 are transverse to the vector field X above, so by Corollary 3.23 taking
the maximum and smoothing does not create any new critical points. O
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Chapter 5

Symplectic and Contact
Preliminaries

In this chapter we collect some relevant facts from symplectic and contact ge-
ometry. For more details see [47].

5.1 Symplectic vector spaces

A symplectic vector space (V,w) is a (finite dimensional) vector space V with

a nondegenerate skew-symmetric bilinear form w. Here nondegenerate means
that v — w(v,-) defines an isomorphism V +— V*. A linear map ¥ : (Vi,w;) —
(Va, wa) between symplectic vector spaces is called symplectic if U*we = wo(V-, U-) =
wi.

For any vector space U the space UdU* carries the standard symplectic structure

wst((u,u*), (v,v*)) = 0" (u) — u*(v).

In coordinates ¢; on U and dual coordinates p; on U*, the standard symplectic
form is given by

Wst = Z dg; N dp;.

Define the w-orthogonal complement of a linear subspace W C V by
W :={veV |w(,w) =0 foralwe W}
Note that dim W + dim W* = 2n, but W N W< need not be {0}. W is called
o symplectic it W NW<« = {0};
e isotropic if W C W¥;

65
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e coisotropic if W« C W;

e Lagrangian if W« = W.

Note that dim W is even for W symplectic, dim W < n for W isotropic, dim W >
n for W coisotropic, and dim W = n for W Lagrangian. Note also that (W)« =
W, and (W/(W NW), w) is a symplectic vector space.

Consider a subspace W of a symplectic vector space (V,w) and set N := WNW«.
Choose subspaces Vi C W, Vo C W* and V3 C (V5 @ V3)* such that

W=VieN, WY=Nagl,, (WVielh)=NaeVs.
Then the decomposition
V=V1oNoV®d Vs
induces a symplectic isomorphism
(Viw) —» (W/N,w) ® (W¥/N,w) ® (N & N*,ws),
v1 +n+vg +vg — (1}1,1]2,(7’2,, —ivgw)) (5.1)

Every symplectic vector space (V,w) of dimension 2n possesses a symplectic
basis e1, f1,...,en, fn, i.e. a basis satisfying

w(es,ej) =w(fi, f;) =0, w(e;, ej) = ;.

Moreover, given a subspace W C V', the basis can be chosen such that

o W =span{er,...,extis f1,--5 [}

o W¥ =span{egi1,-.-,€n, [ktit1s- -y fn};

e WNWY =span{egi1,...,€x4i1}-
In particular, we get the following normal forms:

o W =span{ey, fi1,...,ex, [} if W is symplectic;

o W =span{ey,..., e} if W is isotropic;

o W =span{ey,...,en, f1,..., fx} if W is coisotropic;

o W =span{ey,...,e,} if W is Lagrangian.

This reduces the study of symplectic vector spaces to the standard symplectic
space (R?"™, wgy = >_ dg; A dp;).
A pair (w,J) of a symplectic form w and a complex structure J on a vector
space V is called compatible if

gJ ‘= W('v J)
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is an inner product (i.e. symmetric and positive definite). This is equivalent to
saying that
H(v,w) = w(Jv,w) —iw(v,w)

defines a Hermitian metric. Therefore, we will also call a compatible pair (w, J)
a Hermitian structure.

Lemma 5.1. (a) The space of symplectic forms compatible with a given complex
structure is nonempty and contractible.

(b) The space of complex structures compatible with a given symplectic form is
nonempty and contractible.

Proof. (a) immediately follows from the fact that the Hermitian metrics for a
given complex structure form a convex space.

(b) is a direct consequence of the following fact (see [47]): For a symplectic vector
space (V,w) there exists a continuous map from the space of inner products to
the space of compatible complex structures which maps each induced inner
product gj to J.

To see this fact, note that an inner product g defines an isomorphism A : V — V
via w(-,+) = g(A-,-). Skew-symmetry of w implies AT = —A. Recall that each
positive definite operator P possesses a unique positive definite square root
VP, and v/P commutes with every operator with which P commutes. So we
can define

Jg = (AAT) 2 A

It follows that J2 = —1 and w(-,J-) = g(VAAT",-) is an inner product. Conti-
nuity of the mapping g — J, follows from continuity of the square root. Finally,
if g = g for some J then A = J = J,. O

Let us call a subspace W C V of a complex vector space (V, J)

e totally real it W N JW = {0},
o totally coreal if W + JW =V,
o mazimally real if WNJW = {0} and W+ JW =V,

e complex if JW =W.

Note that dim W < n if W is totally real, dim W > n if W is totally coreal, and
dim W = n if W is maximally real.

Recall that a Hermitian vector space (V,J,w) is a complex vector space with
a J-invariant symplectic form w. Denote by W+ the orthogonal complement
with respect to the metric (v, w) := w(v, Jw). The following lemma relates the
symplectic and complex notions on a Hermitian vector space. It follows easily
from the relation W« = (JW)+ = J(W1).
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Lemma 5.2. Let (V, J,w) be a Hermitian vector space and W C V a subspace.
Then

(a) W isotropic <= JW C W+ = W totally real;

(b) W coisotropic <= W+ C JW = W totally coreal;
(a) W Lagrangian <= JW = W+ = W mazimally real;
(¢c) W complexr = W symplectic.

5.2 Symplectic vector bundles

The discussion of the previous section immediately carries over to vector bun-
dles. For this, let E — M be a real vector bundle of rank 2n over a manifold. A
symplectic structure on E is a smooth section w in the bundle A2E* — M such
that each w, € A2E? is a linear symplectic form. A pair (w,J) of a symplectic
and a complex structure on E is called compatible, or a Hermitian structure,
if w(-,J-) defines an inner product on E. Lemma 5.1 immediately yields the
following facts, where the spaces of sections are equipped with any reasonable
topology, e.g. the C:°. topology:

loc
(a) The space of compatible complex structures on a symplectic vector bundle
(E,w) is nonempty and contractible.
(b) The space of compatible symplectic structures on a complex vector bundle
(E,J) is nonempty and contractible.
This shows that the homotopy theories of symplectic, complex and Hermitian
vector bundles are the same. In particular, obstructions to trivialization of a
symplectic vector bundle (F,w) are measured by the Chern classes ¢, (E,w) =
ck(E, J) for any compatible complex structure J.
Remark 5.3. The homotopy equivalence between symplectic, complex and Her-
mitian vector bundles can also be seen in terms of their structure groups: The
symplectic group !

Sp(2n) :={¥ € GL(2n,R) | V'w = w} = {¥ € GL(2n,R) | ¥TJT = J}

and the general complex linear group GL(n,C) both deformation retract onto
the unitary group

U(n) = Sp(2n)NO(2n) = O(2n) N GL(n,C) = GL(n,C) N Sp(2n).
We end this section with a normal form for subbundles of symplectic vector
bundles.

Proposition 5.4. Let (E,w) be a rank 2n symplectic vector bundle and W C E
a rank 2k + 1 subbundle such that N := W N W% has constant rank . Then

(E,w) = (W/N,w)® (W“/N,w) ® (N & N*, ws).

1Sp(2n) is not the “symplectic group” Sp(n) considered in Lie group theory. E.g., the
latter is compact, while our symplectic group is not.
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Proof. Pick a compatible almost complex structure J on (E,w). Then
Vi=WnJw, Ve=WNnJW* V3:=JN

are smooth subbundles of EF. Now the isomorphism 5.1 of the previous section
yields the desired decomposition. O

5.3 Symplectic manifolds

A symplectic manifold (V,w) is a manifold V' with a closed nondegenerate 2-
form w. A map f: (Vi,w;) — (Va,ws) between symplectic manifolds is called
symplectic if f*ws = wy, and a symplectic diffeomorphism is called symplecto-
morphism. The following basic results states that every symplectic manifold
of dimension 2n is locally symplectomorphic to (R?",wy). In other words, ev-
ery symplectic manifold possesses a symplectic atlas, i.e. an atlas all of whose
transition maps are symplectic.

Proposition 5.5 (symplectic Darboux Theorem). Let (V,w) be a symplectic
manifold of dimension 2n. Then every x € V possesses a coordinate neighbor-
hood U and a coordinate map ¢ : U — U’ C R?™ such that ¢p*we = w.

The symplectic Darboux Theorem is a special case of the Symplectic neighbor-
hood Theorem which will be proved in the next section. Now let us discuss
some examples of symplectic manifolds.

Cotangent bundles. Let T*Q - @ be the cotangent bundle of a manifold Q.
The 1-form > p;dg; is independent of coordinates ¢; on @ and dual coordinates
pi on T Q) and thus defines the Liouville 1-form Ay on T™@Q). Intrinsically,

(Ast)(gp) - v = (P, T{gpyT - v) Tfor v € T(y ) TQ,

where ( , ) is the pairing between T;Q and T;Q. The 2-form wg; 1= —d)g s
clearly closed, and the coordinate expression wg; = . dg; A dp; shows that it is
also nondegenerate. So wg defines the standard symplectic form on T*Q. The
standard form on R2" is a particular case of this construction.

Almost complex submanifolds. A pair (w, J) of a symplectic form and an almost
complex structure on V is called compatible if w(-,J-) defines a Riemannian
metric. It follows that w induces a symplectic form on every almost complex
submanifold W C V' (which is compatible with J|w ).

J-convex functions. If (V,J) is an almost complex structure and ¢ : V' — R
a J-convex function, then the 2-form wy = —dd®¢ is symplectic. Moreover, We
is compatible with J if J is integrable (see Section 2.2). In particular, every
J-convex function on a Stein manifold induces a symplectic form compatible
with J.

Kahler manifolds. A Kéahler manifold is a complex manifold (V,J) with a
Kdhler metric, i.e. a Hermitian metric H = g — iw on T'V such that the 2-form

Sign?



70 CHAPTER 5. SYMPLECTIC AND CONTACT PRELIMINARIES

w is closed. Thus the Kdhler form w is a symplectic form compatible with J.
Note that every complex submanifold of a Kahler manifold is again Kéahler.

The two basic examples of Kéhler manifolds are C™ with the standard com-
plex structure and Hermitian metric, and the complex projective space CP™ =
(C"*+1\0)/(C\0) with the induced complex structure and Hermitian metric (the
latter is defined by restricting the Hermitian metric of C"*! to the unit sphere
and dividing out the standard circle action). Passing to complex submanifolds
of C™, we see again that Stein manifolds are Kahler. Passing to complex sub-
manifolds of CP", we see that smooth projective varieties are Kéhler. This
gives us a rich source of examples of closed symplectic manifolds.

Remark 5.6. While cotangent bundles and Ké&hler manifolds provide obvious
examples of symplectic manifolds, it is not obvious how to go beyond them. The
first example of a closed symplectic manifold that is not Kéhler was presented by
Thurston in 1976. In 1995 Gompf [24] proved that every finitely presented group
is the fundamental group of a closed symplectic 4-manifold, in stark contrast to
the many restrictions on the fundamental groups of closed Kéhler surfaces.

Problem 5.1. Show that a Riemannian metric g on a manifold @ induces a
natural almost complex structure J, on 1), compatible with wy;, which inter-
changes the horizontal and vertical subspaces defined by the Levi-Civita con-
nection. Prove that J, is integrable if and only if the metric g is flat.

5.4 Moser’s trick and symplectic normal forms

An (embedded or immersed) submanifold W of a symplectic manifold (V,w)
is called symplectic (isotropic, coisotropic, Lagrangian) if T,W C T,V is sym-
plectic (isotropic, coisotropic, Lagrangian) for every z € W in the sense of
Section 5.1. In this section we derive normal forms for neighborhoods of such
submanifolds.

All the normal forms can be proved by the same technique which we will refer
to as Moser’s trick. It is based on Cartan’s formula Lxa = ixda + dixa for
a vector field X and a k-form «. Suppose we are given k-forms g, a1 on a
manifold M, and we are looking for a diffeomorphism ¢ : M — M such that
¢* a1 = ag. Moser’s trick is to construct ¢ as the time-1 map of a time-dependent
vector field X;. For this, let a; be a smooth family of k-forms connecting «y
and a1, and look for a vector field X; whose flow ¢; satisfies

ooy = . (5.2)
Then the time-1 map ¢ = ¢ the solves our problem. Now equation (5.2) follows

by integration (provided the flow of X; exists, e.g. if X; has compact support)
once its linearized version

d * * (-
0= @%0% = ¢ (&t + Lx, o)
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holds for every t. Inserting Cartan’s formula, this reduces the problem to the
algebraic problem of finding a vector field X; that satisfies

é\{t + d’iXtOét + Y:XtdOét =0. (53)

Here is a first application of this method. Here, as well as thoughout the book,
by diffeotopy we denote a smooth family of diffeomorphisms ¢, t € [0.1], with

¢o = 1.

Theorem 5.7 (Moser’s Stability Theorem). Let W be a compact manifold with
(possibly empty) boundary OW . Let wy, t € [0,1], be a smooth family of symplec-
tic forms on W which coincide along OW and such that the relative cohomology
class |wy — wo] € H?(W,0W;R) is independent of t. Then there exists a dif-
feotopy & with ¢¢low = 1 such that ¢fw; = wy.

Proof. For every t the closed 2-form w; vanishes along OW and is trivial in
relative cohomology H?(W,0W;R), so there exists a 1-form 3; vanishing along
OW such that d@; = w;. The forms (; are not unique, but they can be chosen
to depend smoothly on ¢. This can be achieved either by local arguments in
coordinate charts (cf. [47], Theorem 3.17), or by Hodge theory as follows: Pick
a Riemannian metric on the manifold V and let d* : Q*(V) — Q}(V) be the
L2-adjoint of d. By Hodge theory, im(d*) = ker(d)*, so d is an isomorphism
from im(d*) to the exact 2-forms. The inverse of this isomorphism provides the
particular choice for j;.

Now we can solve equation (5.3),
0 = d)t + d’L‘tht + iXtdwt = d(ﬂt =+ ’I:tht)

by solving B; +ix,w; = 0, which has a unique solution X; due to the nondegen-
eracy of w;. Since X; vanishes on OW, its flow ¢, exists and gives the desired
family of diffeomorphisms. O

Corollary 5.8. Let V be a manifold (without boundary but not necessarily
compact). Let wy, t € [0,1], be a smooth family of symplectic forms on V' which
coincide outside a compact set and such that the cohomology class with compact
support [wy —wo] € H2(V;R) is independent of t. Then there exists a diffeotopy
¢r with ¢ = 1 outside a compact set such that ¢;w; = wy.

In particular, this applies if w; = dX\; for a smooth family of 1-forms Ay which
coincide outside a compact set, and in this case there exists a smooth family of
functions f; : V — R with compact support such that

G — Ao = dfy

Proof. Pick a compact subset W C V with smooth boundary such that the w,
coincide outside a compact subset W’ C Int W and [w] = 0 € H*(W,0W;R).
Construct a smooth family of 1-forms 8; on W as in the proof of Theorem 5.7.
Then (3, vanishes along 0W and is closed on a neighborhood of W, so 3; = df;

Adapt: Hodge theory
with boundary
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near OW for a (unique) function vanishing on OW. After cutting off f; outside
a neighborhood of W and replacing 3; by §; — df;, we may assume Gy = 0
near OW. Then the diffeomorphisms ¢; : W — W constructed in the proof of
Theorem 5.7 extend by the identity to the desired diffeomorphisms of V.

In the case w; = d)\; we pick f; = ;. Then the defining equation for X;
becomes A\; + ix,d\; = 0 and we find

d * * 70
%@ At = ¢rd(ix, \e),

t
A — Ao =d (/ iXS)\sds> .
0

Our second application of Moser’s trick is the following lemma, which is the
basis of all the normal form theorems below.

which integrates to

O

Lemma 5.9. Let W be a compact submanifold of a manifold V', and let wg,w;
be symplectic forms on V which agree at all points of W. Then there exist
tubular neighborhoods Uy, Uy of W and a diffeomorphism ¢ : Uy — Uy such that
olw =1 and ¢*w; = wp.

Proof. Set wy := (1 —t)wg+w1. Since wy = wy along W, w; are symplectic forms
on some tubular neighborhood U of W. By the relative de Rham Theorem,
since wy = w1 — wy is closed and vanishes along W, there exists a of 1-form § on
U such that 8 = 0 along W and d8 = w; on U. As in the proof of Theorem 5.7,
we solve equation (5.3) by setting 5 + ix,w; = 0.

To apply Moser’s trick, a little care is needed because U is noncompact, so the
flow of X; may not exist until time 1. However, since f = 0 along W, X;
vanishes along W. Thus there exists a tubular neighborhood Uy of W such that
the flow ¢(x) of X, exists for all z € Uy and ¢ € [0,1], and ¢;(Uy) C U for
all t € [0,1]. Now ¢ : Uy — Uy := ¢1(Up) is the desired diffeomorphism with
W{wl = wyp- O

Now we are ready for the main result of this section.

Proposition 5.10 (symplectic normal forms). Let wg, w1 be symplectic forms
on a manifold V.and W C V a compact submanifold such that wo|lw = wi|w.
Suppose that N := ker(wg|w) = ker(w1|w) has constant rank, and the bundles
(TW«o /N, wy, (TW“/N,wy over W are isomorphic as symplectic vector bun-
dles. Then there exist tubular neighborhoods Uy, Uy of W and a diffeomorphism
¢ : Uy — Uy such that ¢|lw =1 and ¢*w; = wo.

Proof. By Proposition 5.4,

(TV|W,(U0) = (TW/N, u)o) D (TWWO/N, wo) D (N D N*,wst),
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and similarly for wy. By the hypotheses, the right-hand sides are isomorphic for
wp and wy. More precisely, there exists an isomorphism

v (TV|W7WO) - (TV‘Wawl)

with U|ry = 1. Extend ¥ to a diffeomorphism ¢ : Uy — U; of tubu-
lar neighborhoods such that |y = 1 and ¢¥*w; = wg along W, and apply
Lemma 5.9. O

All the normal forms are easy corollaries of this result.

Corollary 5.11 (Symplectic neighborhood Theorem). Let wy,w; be symplectic
forms on a manifold V. and W C V' a compact submanifold such that wo|w =
w1|w is symplectic, and the symplectic normal bundles (TW®° wp), (TW',wq)
over W are isomorphic (as symplectic vector bundles). Then there exist tubular
neighborhoods Uy, Uy of W and a diffeomorphism ¢ : Uy — Uy such that ¢|lw = 1
and ¢*w1 = wy.

Corollary 5.12 (Isotropic neighborhood Theorem). Let wg,w; be symplectic
forms on a manifold V- and W C V a compact submanifold such that wolw =
wilw = 0, and the symplectic normal bundles (TW“° /TW, wq), (TW* /TW,w1)
are isomorphic (as symplectic vector bundles). Then there exist tubular neigh-
borhoods Uy, Uy of W and a diffeomorphism ¢ : Uy — Uy such that ¢lw = 1
and ¢*wi = wy.

Corollary 5.13 (Coisotropic neighborhood Theorem). Let wg,w; be symplectic
forms on a manifold V- and W C 'V a compact submanifold such that wolw =
w1|lw and W is coisotropic for wy and wy. Then there exist tubular neighborhoods
Uo,Ur of W and a diffeomorphism ¢ : Uy — Uy such that ¢lw = 1 and ¢*wy =
wo -

Corollary 5.14 (Weinstein’s Lagrangian neighborhood Theorem). Let W C
(V,w) be a compact Lagrangian submanifold of a symplectic manifold. Then
there exist tubular meighborhoods U of the zero section in T*W and U' of W
in V and a diffeomorphism ¢ : U — U’ such that ¢|w is the inclusion and
P*W = wet-

Proof. Since W is Lagrangian, the map v — 4,w defines an isomorphism from
the normal bundle TV/TW|w to T*W. Extend the inclusion W C V to a
diffeomorphism ¢ : U — U’ of tubular neighborhoods of the zero section in
T*W and of W in V. Now apply the Coisotropic neighborhood Theorem to the
zero section in T*W and the symplectic forms wy; and ¥*w. O]

5.5 Contact manifolds and their Legendrian sub-
manifolds

A contact structure £ on a manifold M is a completely non-integrable tangent
hyperplane field. According to the Frobenius condition, this means that for
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every nonzero local vector field X € £ there exists a local vector field YV € £
such that their Lie bracket satisfies [X,Y] ¢ £. If v is any 1-form locally defining
g, i.e. € = ker «, this means

da(X,Y) = —%a([X, Y1) 0.

So the restriction of the 2-form da to § is nondegenerate, ie. (£, dafe) is a
symplectic vector bundle. This implies in particular that dim¢ is even and
dimM = 2n + 1 is odd. In terms of a local defining 1-form «, the contact
condition can also be expressed as o A (da)™ # 0.

Remark 5.15. If dim M = 4k + 3 the sign of the volume form a A (da)?**+1 is
independent of the sign of the defining local 1-form «, so a contact structure
defines an orientation of the manifold. In particular, in these dimensions contact
structures can exist only on orientable manifolds. On the other hand, a contact
structure £ on a manifold of dimension 4k + 1 is itself orientable.

Contact structures € in this book will always be cooriented, i.e., they are globally
defined by a 1-form «. In this case the symplectic structure on each of the
hyperplanes ¢ is defined uniquely up to a positive conformal factor.

Given a J-convex hypersurface M (which is by definition cooriented) in an al-
most complex manifold (V, J), the field £ of complex tangencies defines a contact
structure on M which is cooriented by Jv, where v is a vector field transverse
to M defining the coorientation. Conversely, any cooriented contact structure
& arises as a field of complex tangencies on a J-convex hypersurface in an al-
most complex manifold: Just chose a complex multiplication J on ¢ compatible
with the symplectic form do in the sense that da(-, J-) is a (positive definite)
inner product on ¢ and extend J arbitrarily to an almost complex structure on
Vi=M x (—¢,e€).

Remark 5.16. If dim M = 3 then J can always be chosen integrable. However,
in dimensions > 5 this is not always the case, see Example 77?7 below.

Let (M, £ = kera) be a contact manifold of dimension 2n + 1. An immersion
¢: A — M is called isotropic if it is tangent to £. Then at each point x € A we
have do(T,A) C &4y and dalgp(r,a) = d(alpa)) (z) = 0. Hence do(T, L) is an
isotropic subspace in the symplectic vector space (&, da). In particular,

1
dimA < idimf =n.

Isotropic immersions of the maximal dimension n are called Legendrian.

1-jet spaces. Let L be a manifold of dimension n. The space J'L of 1-jets
of functions on L can be canonically identified with T*L x R, where T*L is the
cotangent bundle of L. A point in J!L is a triple (g, p, z) where ¢ is a point in
L, p is a linear form on T, L, and z € R is a real number. Pick local coordinates
(q1,...,qn) are local coordinates on L and write covectors in T*L as > p;dg;.
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It is easy to check that the 1-form

pdq:=> pidg

i=1

is independent of the choice of such coordinates. It is called the canonical 1-
form on T*L. The 2-form dp A dq := d(pdq) is called the canonical sympletic
form on T*L. The 1-form dz — pdq defines the canonical contact structure

gcan = ker(dz - de)

on J'L. A function f : L — R defines a section

a5 f(0) = (.4 (0). /(@)

of the bundle J'L — L. Since f*(dz — pdq) = df — df = 0, this section is a
Legendrian embedding in the contact manifold (J'L, £). Consider the following
diagram, where all arrows represent the obvious projections:

[to be added]

We call P, the Lagrangian projection and Pront the front projection. Given a
Legendrian submanifold A C J!'L, consider its images

Prag(A) CT*L, Piont(A) C L X R.

The map Pras : A — T7L is a Lagrangian immersion with respect to the
standard symplectic structure dp A dqg = d(pdq) on T*L. Indeed, the contact
hyperplanes of £ ., are transverse to the z-direction which is the kernel of the
projection Pyae. Hence A is transverse to the z-direction as well and Ppag|a is
an immersion. It is Lagrangian because

Pgdp Adg = d(pdg|a) = d(dz|s) = 0.

Conversely, any exact Lagrangian immersion ¢ : A — T* L, i.e. an immersion for
which the form ¢*, dq is exact, lifts to a Legendrian immersion (13 A — J'L. It
is given by the formula (;AS := (¢, H), where H is a primitive of the exact 1-form
¢*pdq so that qg*(dz —pdq) = dH — ¢*pdq = 0. The lift  is unique up to a
translation along the z-axis.

Remark 5.17. More generally, a Liouville structure on an even-dimensional ma-
nifold is a 1-form « such that da is symplectic. For example, the form pdg
is the canonical Liouville form on the cotangent bundle T*L. An immersion
¢ : L — V into a Liouville manifold (V,«) is called exact Lagrangian if ¢*« is
exact.

Let us now turn to the front projection. The image Pront(A) is called the (wave)
front of the Legendrian submanifold A C J!L. If the projection 7|y : A — L is
nonsingular and injective, then A is a graph {((¢,(q), f(q)) | ¢ € m(A)} over
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m(A) C L. The Legendre condition implies that the 1-form « is given by o = df.
So

A={((g,df (2), f(2) | ¢ € m(A)}

is the graph of the 1-jet j!f of a function f : 7(A) — R. In this case the front
Prront(A) is just the graph of the function f.

In general, the front of a Legendrian submanifold A C J'L can be viewed as
the graph of a multivalued function. Note that since the contact hyperplanes
are transverse to the z-direction, the singular points of the projection |5 coin-
cide with the singular points of the projection Ppont|a. Hence near each of its
nonsingular points the front is indeed the graph of a function.

In general, the front can have quite complicated singularities. But when the
projection 7|p : A — L has only “fold type” singularities, then the front itself
has only “cuspidal” singularities along its singular locus as shown in Figure
[fig:777].

Let us discuss this picture in more detail. Consider first the 1-dimensional case
when L = R. Then J'L = R3 with coordinates (g, p, ) and contact structure
ker(dz — pdgq). Consider the curve in R? given by the equations

q = 3p*, z = 2p°. (5.4)

This curve is Legendrian because dz = 6p?dp = pdg. Its front is given by (5.4)
viewed as parametric equations for a curve in the (g, z)-plane. This is a semicu-
bic parabola as shown in Figure [fig:?777].

Generically, any singular point of a Legendrian curve in R? looks like this. This
means that, after a C°°-small perturbation of the given curve to another Leg-
endrian curve, there exists a contactomorphism (i.e. a diffeomorphism which
preserves the contact structure) of a neighborhood of the singularity which
transforms the curve to the curve described by (5.4) (see [4], Chapter 1 §4).
If we want to construct just C! Legendrian curves (and any C' Legendrian
curve can be further C''-approximated by C°° or even real analytic Legendrian
curves, see Corollary 7.25), then the following characterization of the front near
its cusp points will be convenient. Suppose that the two branches of the front
which form the cusp are given locally by the equations z = f(q) and z = g(q),
where the functions f, g : [0,e) — R satisfy f < g (see Figure [fig:??7]). Then
the front lifts to a C! Legendrian curve if and only if

f(0) =g(0),  f'(0) = g'(0),
f"(q) = —o0 as ¢ — 0, g"(q) — +o0 as ¢ — 0.

In higher dimensions, suppose that a Legendrian submanifold A C J'L projects
to L with only “fold type” singularities. Then along its singular locus the front
consists of the graphs of two functions f < ¢ defined on an immersed strip
S x [0,¢). Denoting coordinates on S x [0,€) by (s,t), the front lifts to a C*
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Legendrian submanifold if and only if

_ Of (g 0y~ 29
f(S,O) - g(s,O), a(svo) - ot (8,0),
2 2
%(s,t)e—oo ast — 0, %(s,t)—wi—oo ast — 0.

However, in higher dimensions not all singularities are generically of fold type.

Ezample 5.18. Given a contact manifold (M, £ = ker a) and a Liouville manifold
(V, B), their product M x V is a contact manifold with the contact form a @ .
For example, if M = J'N and V = T*W with the canonical contact and
Liouville forms, then M x V = JY(N x W) with the canonical contact form. A
product A x L of a Legendrian submanifold A C M and an exact Lagrangian
submanifold . C V is a Legendrian submanifold of M x V. In particular,
the product of a Legendrian submanifold A C J!N and an exact Lagrangian
submanifold L C T*W is a Legendrian submanifold in J*(N x W).

5.6 Contact normal forms

Let (M?"*! ¢ = kera) be a contact manifold and A¥ ¢ M, 0 < k < n, be
an isotropic submanifold. The following result is due to Darboux in the case
that A is a point (see e.g. Appendix 4 of [3]); the extension to general A is
straightforward and left to the reader.

Proposition 5.19 (contact Darboux Theorem). Near each point on A there
exist coordinates (q1,--.,qn,P1s---,Pn,2) € RZ"FLin which o = dz — > p;dg;
and A = R¥ x {0}.

To formulate a more global result, recall that the form w = da defines a natural
(i.e., independent of «) conformal symplectic structure on £. Denote the w-
orthogonal on £ by a superscript w. Since A is isotropic, TA C TA¥. So the
normal bundle of A in M is given by

TM/TA=TM/¢ ®&/(TA) & (TA)Y/TA = R&ST*A & CSN(A).

Here TM/¢ is trivialized by the Reeb vector field R,, the bundle {/(T'A)% is
canonically isomorphic to T via v + i,w, and CSN(A) := (TA)*/TA denotes
the conformal symplectic normal bundle which carries a natural conformal sym-
plectic structure induced by w. Thus CSN(A) has structure group Sp(n — k),
which can be reduced to U(n — k) by choosing a compatible complex structure.

Let (M, &) and (N, &n) be two contact manifolds. A map f: M — N is called
isocontact if f*En = &y, where f*En = {v € TM | df - v € {y}. Equivalently,
f maps any defining 1-form ay for {n to a defining 1-form f*ays for £y In
particular, f must be an immersion and thus dim M < dim N. Moreover, df :
&y — &N is conformally symplectic, i.e., symplectic up to a scaling factor. We
call a monomorphism F' : TM — TN isocontactif F*{ny = &pypand F @ &y — En
is conformally symplectic.
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Proposition 5.20 (Isotropic neighborhood Theorem, Contact Version [63]).
Let (M, &n), (N,En) be contact manifolds with dim M < dimN and A C M
an isotropic submanifold. Let f : A — N be an isotropic immersion covered by
an isocontact monomorphism F : TM — TN. Then there exists an isocontact
immersion g : U — N of a neighborhood U C M of A with g|lp = f and dg =F
along A.

Remark 5.21. (a) If ¢ is an embedding then ¢ is also an embedding on a suf-
ficiently small neighborhood. It follows that a neighborhood of a Legendrian
submanifold A is contactomorphic to a neighborhood of the zero section in the
1-jet space JLA (with its canonical contact structure).

(b) A Legendrian immersion f: A — (M, &) extends to a an isocontact immer-
sion of a neighborhood of the zero section in J'A.

(c) Suppose that the conformal symplectic normal bundle of an isotropic sub-
manifold A is the complexification of a real bundle W — A (i.e., the structure
group of CSN(A) reduces from U(n —k) to O(n—k)). Then a neighborhood of
A is contactomorphic to a neighborhood of the zero section in J'A @ (W & W*)
(with its canonical contact structure, see Example 5.18). In this case (and only
in this case) the isotropic submanifold A extends to a Legendrian submanifold
(the total space of the bundle W).

We will also need the following refinement of the Isotropic neighborhood The-
orem. Following Weinstein [63], let us denote by isotropic setup a quintuple
(Vyw, X, %, A), where (V,w) is a symplectic manifold with Liouville vector field
X, ¥ C V is a codimension one hypersurface transverse to X, and A C X
is a closed isotropic submanifold for the contact structure ker(ixw)|ys. Let
(TA)“/TA C & be the symplectic normal bundle over A.

Proposition 5.22 (Weinstein [63]). Let (Vi,w;, X;, 2i, A;), ¢ = 0,1 be isotropic
setups. Given a diffeomorphism f : Ag — Ay covered by an isomorphism ® of
symplectic normal bundles, there exists an isomorphism of isotropic setups

F: (Uo, wo, Xo, X0 NUo, Ao) — (Ur, w1, X1, 21 N UL, A1)
between neighborhoods U; of A; in V; inducing f and ®.

We will need a stronger form of Weinstein theorem 5.20. Not only the contact
structure, but even the contact form can be standardized near an isotropic
submanifold.

Proposition 5.23. Let \g, \1 be two contact forms for the same contact struc-
ture £ defined on a meighborhood of an isotropic submanifold A C V. Then
there exists a fived along A contact isotopy hy : Op (A) — Op (A) such that
A1 = hi)o.

Proof. We are following here the standard Moser homotopic method. Set \; =
(1 —t)Ag + tA1, t € [0,1]. Then ) is a contact form for £ for all ¢t € [0,1].
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Differentiating the equation h; * Ag — A\, we get, using Carna’s formula for the
Lie derivative:

i(Xe)dA + d(A (X)) = p, (5.5)
where
Kolho(e)) = P = a =

Let R; denotes the Reeb vector field of the form X;, ie. M\(R;) = 1 and
i(Ry)dM\s = 0. Let us write Xy = a;R; + Y}, where Y; € £ and denote b, := u(Ry)
and o := ple. Then (5.5) is equivalent to the system

dat(Rt) = bt,

5.6
Z(Y;g)d)\t = — dat|§. ( )

Let us consider a germ X along A of a hypersurface tangent to £ along A. There
exists a smooth function f on ¥ such that f|x = 0 and df|¢, = al¢,. Note
that for each t the vector field R; is transverse to ¥ on Op A. Hence the first
of equations (5.6) has a solution a; on Op A which satisfies an initial condition
at|ss = f. The second equation is a non-differential non-degenerate linear system
of equation with respect to Y; and hence it has a unique solution Y; after a; is
found. Note that by our choice of f the right-hand side of the second equation
vanishes along A, and hence X;|y = (atR: + Y:)|a = 0. Hence the vector field
X can be integrated to the required isotopy h; : Op A — Op A, fixed along A.

O

All the properties discussed in this section also hold for families of isotropic
submanifolds. Moreover, any isotropic submanifold with boundary can be ex-
tended beyond the boundary to a slightly bigger isotropic submanifold of the
same dimension.

Finally, we mention that a similar homotopy argument proves Gray’s Stability
Theorem, which states that on a closed manifold all deformations of a contact
structure are diffeomorphic to the original one.

Theorem 5.24 (Gray’s Stability Theorem [27]). Let (&)icf0,1] be a smooth
homotopy of contact structures on a closed manifold M. Then there exists a
diffeotopy ¢ : M — M with ¢:& = & for all t € [0,1].

5.7 Stabilization of Legendrian submanifolds

The goal of this section is the proof of the following

Proposition 5.25. Let Ag C (M?"1 ¢ = kera) be a closed orientable Leg-
endrian submanifold and k an integer. Suppose that n > 1. Then there ex-
ists a Legendrian submanifold Ay C M and a Legendrian regular homotopy
Ay, t € ]0,1], such that the self-intersection index of the immersion L :=
UsepoAe x {t} € M x [0,1] equals k (mod 2 if n is even).
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A local construction. The proof of Proposition 5.25 is base on a stabilization
procedure which we will now describe. Consider the front projection of a (not
necessarily closed) orientable Legendrian submanifold Ag C R?"*1. Suppose
that Pront(Ao) intersects B™ x [—1,2] in the two oppositely oriented branches
{z =0} and {z = 1}. Let f: B™ — (—1,2) be a function which equals zero near
OB™ and has no critical points on level 1. Replacing the branch {z = 0} over
B™ by {z = tf(q)} we obtain a family of Legendrian immersions A; C R?"+1,
t € [0,1]. Note that the set {¢ € B" | f(¢) > 1} is a smooth n-manifold with
boundary. Denote by x({f > 1}) its Euler characteristic.

Lemma 5.26. The self-intersection index of the immersion L := Uicjo,11A¢ X
{t} € M % [0,1] equals

I = (=" ({f 2 1)

(mod 2 if n is even).

Proof. Perturb f such that all critical points above level 1 are nondegenerate
and lie on distinct levels. Self-intersections of L occur precisely when ¢gf has a
critical point go on level 1 for some ¢y € (0,1). By the Morse Lemma, we find
coordinates near qg in which go = 0 and f has the form

1< 1 &
_ - 2 - 2
f(q)—ao—2§ q,»+2_§ 4
=1 1=k+1

where a9 = f(qo) = 1/to and k is the Morse index of ¢o. The p-coordinates on
the branch {z =tf(q)} of A; near gy are given by

b= g |+t i>k+1.

Thus the tangent spaces in T(R?"+1 x [0,1]) = R?"*2 of the two intersecting
branches of L corresponding to {z = 1} and {z =t f(q)} are given by

le{plz...:pn:(),z:Ojﬁ
Ty = {p; = —tog; for i < k,p; = +toq; for i > k+ 1,z = apt}.

Without loss of generality (because the self-intersection index does not depend
on the orientation of L) suppose that the basis (9y,, ..., 0y, ,0;) represents the
orientation of Tj. Since the two branches of Ay are oppositely oriented, the
orientation of Ty is then represented by the basis

(8(11 - toapl ge e 76(171, + toapT” 7(8t + aoaz)) .
Hence the orientation of (T3, T3) is represented by

(61117 e .,8qn,6t, _81717' ] _apnv _8z)7
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which equals (—1)Ft7+72(»=1)/2 times the complex orientation
(8Q17 81717 ) aqna 8pny 8z7 at)
of R?"*+2 = C™*1. So the local intersection index of L at a critical point ¢ equals

I (Q) _ (_1)indf(q)+n+n(n71)/2

(mod 2 if n is even), where ind(g) is the Morse index of g.

On the other hand, for a vector field v on a compact manifold N with boundary
which is outward pointing along the boundary and has only nondegenerate ze-
roes we have Poincaré-Hopf Index Theorem holds: The sum of the indices of v
at all its zeroes equals the Euler characteristic of M (see [33]). Note that if v is
the gradient vector field of a Morse function f, then the index of v at a critical
point g of f equals (—1)indf(‘n. Applying the Poincaré-Hopf Index Theorem to
the gradient of the Morse function —f on the manifold {f > 1} = {—f < —1}
(which is outward pointing along the boundary because f has no critical point
on level 1), we obtain

{F =1 =Y indypy(g) = Y (~1)Mr@ = 3 (pyrinds @

q

q q
— (_1)n(n—1)/2 ZIL((]) _ (_1)n(n—1)/2IL'
q

O

Proof of Proposition 5.25. Since all Legendrian submanifolds are locally isomor-
phic, a neighborhood in M of a point on Ay is contactomorphic to a neighbor-
hood in R?"*! of a point on a standard cusp 322 = 2¢?. Thus the front consists

of two branches {z = +/2¢3} joined along the singular locus {z = ¢ = 0}.

Now deform the branches to {z = +e} over a small ball disjoint from the sin-
gular locus, thus (after rescaling) creating two parallel branches over a ball as
in Lemma B.9. Now deform Ay to A; as in Lemma B.9, for some function
f: B" — (—=1,2). Then Proposition B.7 follows from Lemma B.9, provided
that we arrange x({f > 1}) = k for a given integer k if n > 1.

Thus it only remains to find for n > 1 an n-dimensional submanifold-with-
boundary N C R™ of prescribed Euler characteristic x(N) = k (then write
N = {f > 1} for a function f : N — [1,2) without critical points on the
boundary). Let Ny be a ball in R”, thus x(Ny) = +1. Let N_ be a smooth
tubular neighborhood in R™ of a figure eight in R?, thus x(N_) = —1 (here we
use n > 2!). So we can arrange x (V) to be any integer by taking disjoint unions
of copies of Ni. O

Remark 5.27. The preceding proof fails for n = 1 because a 1-dimensional
manifold with boundary always has Euler characteristic £ > 0. Therefore for
n = 1 the local construction in Lemma 5.26 allows us only to realize positive
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values of the self-intersection index Ij,. As explained in Appendix B, this failure
to create negative Iy, is unavoidable in view of Bennequin’s inequality. However,
no analog of Bennequin’s inequality exists in overtwisted contact 3-manifolds,
and we will show in Section 6.6 how to realize any value of the self-intersection
index in that case.



Chapter 6

The h-principles

6.1 Immersions and embeddings

We begin by reviewing some facts about smooth immersions and embeddings.
For a closed subset A C X of a topological space, we denote by Op A a suffi-
ciently small (but not specified) open neighborhood of A.

The h-principle for immersions. Let M, N be manifolds. A monomor-
phism F : TM — TN is a fibrewise injective bundle homomorphism cover-
ing a continuous map M — N. Any immersion f : M — N gives rise to a
monomorphism df : TM — TN. We denote by Mon(T'M,TN) the space of
monomorphisms, and by Imm (M, N) the space of immersions. Given a (possi-
bly empty) closed subset A C M and an immersion h : Op A — N, we denote
by Imm(M, N; A, h) the subspace of Imm(M, N) which consists of immersions
equal to h on Op A. Similarly, the notation Mon(TM,TN; A, dh) stands for the
subspace of Mon(T M, TN) of monomorphisms which coincide with dh on Op A.
Extending S. Smale’s theory of immersions of spheres (see [58, 59]) M .Hirsch
proved the following h-principle (see also [32],[18]):

Theorem 6.1 (Hirsch [37]). For dimM < dim N and any immersion h :
Op A — N, the map [ — df defines a homotopy equivalence between the spaces
Imm(M, N; A, k) and Mon(T M, TN; A,dh). In particular, any monomorphism
F € Mon(TM,TN; A,dh) is homotopic to the differential df of an immer-
sion f: M — N which coincides with h on Op A. Given a homotopy F; €
Mon(TM,TN; A,dh), t € [0, 1], between the differentials Fy = dfy and Fy = dfy
of two immersions fo, fi € Imm(M,N; A h), one finds a regular homotopy
ft € Imm(M, N; A h), t € [0,1], such that the paths F; and df;, t € [0,1], are
homotopic with fized ends.

For example, if M is parallelizable, i.e. TM =2 M xR*, the inclusion RF — RF+1
gives rise to a monomorphism TM = M x R¥ — T(R") = R" x R", (z,v)
(0,v). Thus Hirsch’s theorem implies that every parallelizable closed manifold

83
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MP* can be immersed into R¥tT,

Immersions of half dimension. Next we describe results of Whitney [65] on
immersions of half dimension. Fix a closed connected manifold M™ of dimension
n > 2 and an oriented manifold N2" of double dimension. Let f : M — N be an
immersion whose only self-intersections are transverse double points. Then if M
is orientable and n is even we assign to every double point z = f(p) = f(¢) an
integer I;(z) as follows. Choose an orientation of M. Set I;(z) := £1 according
to whether the orientations of df (T, M) and df (T, M) together determine the
orientation of N or not. Note that this definition depends neither on the order
of p and ¢ (because n if even), nor on the orientation of M. Define the self-

intersection index
If = ZIf(Z) €z

as the sum over all self-intersection points z. If n is odd or M non-orientable
define Iy € Zy as the number of self-intersection points modulo 2.

Theorem 6.2 (Whitney [65]). For a closed connected manifold M™ and an
oriented manifold N?™, n > 2, the following holds.

(a) The self-intersection index is invariant under reqular homotopies.

(b) The self-intersection index of a totally regular immersion f : M — N can
be changed to any given value by a local modification (which is of course not a
regular homotopy).

(c) If n > 3, any immersion f : M — N is regularly homotopic to an immersion
with precisely |If| transverse double points (where |I;| means 0 resp. 1 for Iy €
Zs).

Since every immersion of half dimension is regularly homotopic to an immersion
with transverse self-intersections ([64], see also [38]), Part (a) allows to define
the self-intersection index for every immersion f : M — N. Since every n-
manifold immerses into R??, Parts (b) and (c) imply (the cases n = 1,2 are
treated by hand)

Corollary 6.3 (Whitney Embedding Theorem [65]). Every closed n-manifold
M"™, n>1, can be embedded in R>".

Remark 6.4. The preceding results continue to hold if M has boundary, provided
that for immersions and during regular homotopies no self-intersections occur
on the boundary.

Remark 6.5. For n = 1 Whitney [65] defines a self-intersection index Iy € Z.
With this definition, all the preceding results continue to hold for n = 1 (note
e.g. that 7T1V2_’1 = Z)

Isotopies. Finally, we discuss isotopies, i.e. homotopies through embeddings.
Consider a closed connected orientable k-manifold M* and an oriented (2k+1)-
manifold N2**1. Let f, : M — N be a regular homotopy between embeddings
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fosf1 : M — N. Define the immersion of half dimension F : M x [0,1] —
N x [0,1], F(z,t) := (fi(z),t). Its self-intersection index Iz := Ip is an
invariant of f; in the class of regular homotopies with fixed endpoints fy, fi-
Recall that Iy, takes values in Z if k is odd and Z; if k is even.

Theorem 6.6 (Whitney). If k > 1 and N is simply connected, then fi can be
deformed through regular homotopies with fized endpoints to an isotopy if and

only if I,y = 0.
The proof uses the following

Lemma 6.7. Let M, N,A be manifolds and F' : A x M — N a smooth map.
If 2dim M + dim A < dim N, then F' can be C*-approximated by a map F
such that F()\, -) is an embedding for all A € A. Moreover, if F is already an
embedding on a compact subset K C A x M we can choose F=F onK.

The case A = [0, 1] is due to Whitney [64].

Proof of Theorem 6.6. The argument is an adjustment of the Whitney trick [65].
Take two self-intersection points Yo = (yo,%0), Y1 = (y1,t1) € N x (0,1) of the
immersion F' : M* x [0,1] — NZ?*+1 x [0, 1] defined above. If k + 1 is even we
assume that the intersection indices of these points have opposite signs. Each
of the double points g, y1 is the image of two distinct points xoi, xli e M,ie.
we have f;, () = yo and fi, (z5) = y1. As k > 1, we find two embedded paths
v*E 1 [to, t1] — M such that v*(tg) = 22, v (t1) = «F, and 4T (t) # v~ () for all
t € [to,t1]. We claim that there exists a smooth family of paths ¢, : [-1,1] — M,
t € [to,t1], such that

o 5;(£1) = ~*(t) for all t € [to, t1];
® :,(S) = yo, 0t,(s) = y1 for all s € [-1,1];

e §; is an embedding for all ¢ € (¢, t1).

Indeed, a family with the first two properties exists because N is simply con-
nected. Moreover, we can arrange that d; is an embedding for ¢ # tg,t1
close to tg,t;. Now we can achieve the third property by Lemma 6.7 because
2-14 1< 2k+ 1. Define

A :[to, ty] x [-1,1] — N x [0,1], (t,s) — (0e(s),t).

Then A is an embedding on (tg,t1) x [—1,1] and A(tg x [—1,1]) = Yo, Aty X
[-1,1]) = Y;. Thus A serves as a Whitney disk for elimination of the double
points Yy, Y7 of the immersion F'. Due to the special form of A, Whitney’s elim-
ination construction ([65], see also [50]) can be performed in such a way that the

modified immersion F' has the form F(x,t) := ( fe(x), t) for a regular homotopy
ft : M — N such that the paths f,, f; € Imm(M, N), t € [0,1], are homotopic.
Hence the repeated elimination of pairs of opposite index intersection points of
the immersion F' results in the required isotopy between fy and f;. O
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6.2 The h-principle for isotropic immersions

The following h-principle was proved by Gromov in 1986 ([32], see also [18]).

Let (M, ) be a contact manifold of dimension 2n+1 and J a compatible almost
complex structure on £. Let A be a manifold of dimension k¥ < n and A C A
A need not be a a closed subset. Let h : Op A — M be an isotropic immersion. We denote
submanifold, right? Ty Tso(A, M; A, h) the space of isotropic immersions A — M which coincide
with A on Op A, and by Real(TA,; A, dh) the space of injective totally real
homomorphisms T'A — £ which coincide with dh on Op A. The map f — df

provides an inclusion d : Iso(A, M; A, h) — Real(TA,&; A, dh).

Theorem 6.8 (Gromov’s h-principle for isotropic immersions; contact case,
see [32] and also [18]). The map d : Iso(A,M;A,h) — Real(TA,¢&; A,dh) is
a homotopy equivalence. In particular, given F' € Real(TA,¢&; A, dh) one finds
f € Iso(A,M; A h) such that df and F are homotopic in Real(TA,&; A, dh).
Moreover, f can be chosen C°-close to the map A — M covered by the homo-
morphism F. Given two isotropic immersions fo, f1 € Iso(A, M; A, h) and a
homotopy F; € Real(TA,&; A,dh), t € [0,1], connecting dfy and df; one finds
a regular homotopy fi € Iso(A, M; A, h) connecting dfy and dfi such that the
paths Fy and dfy, t € [0,1], are homotopic in Real(TA, &; A, dh) with fized ends.
Moreover, the f, can be chosen C°-close to the family of maps A — M covered
by the homotopy F.

Combining the preceding theorem with Hirsch’s Immersion Theorem 6.1 yields

Corollary 6.9. Let A, M, A, h be as in Theorem 6.8. Suppose that fo: A — M
s an immersion which coincides with the isotropic immersion h on Op A and
F; is a family of monomorphisms TA — TN such that Fy = dfy, F; = dh on
Op A for allt € [0,1], and Fy € Real(TA,TM;A,dh). Then there exists a
reqular homotopy f; : A — M such that

(i) f1 € Iso(A, M; A h);
(i1) fi =h on Op A for all t € [0,1];

(i1i) there exists a homotopy Ff, s € [0,1], of paths in Mon(T'A, TM; A, dh)
such that F? = df, and F} = F; for all t € [0,1], F§ = dfy and F§ €
Real(TA,&; A, dh) for all s € [0,1].

Proof. We first use Theorem 6.8 to construct an isotropic immersion g, €

Iso(A, M; A, h) and a homotopy of totally real monomorphisms F; € Real(T'A, TM; A, dh),
t € [1,2], such that F5 = dgo. Next we apply Hirsch’s Theorem 6.1 to get a

regular homotopy ¢: € Imm(A, M; A, k), ¢t € [0,2], such that go = fo and the

paths dg;, F}, t € [0, 2], are homotopic with fixed ends. Let

G :10,2] x [0,1] = Mon(TA,TM; A, dh), (t,s) — G}
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be this homotopy, i.e. GY = dg;, G = F} for all t € [0,2] and G = dfo, G5 = dg
for all s € [0,1]. The required paths are now defined by f; := got, t € [0,1], and

F:=Go¢:[0,1] x[0,1] = Mon(TA, TM; A, dh), (t,s) — F7,

where ¢ : [0,1] x [0,1] — [0,2] x [0,1] is any homeomorphism mapping the
boundary as follows (see Figure [fig:h-isotropic]):

0,1l x0—[0,2] x0,  [0,1] x1—[0,1] x 1,
0x[0,1] =0x[0,1], 1x[0,1] = (2x[0,1])U([1,2] x 1).

O

For later use, let us reformulate the homotopy conditions in Theorem 6.8. Fix

compatible complex structures Jys, Jy on &as, £ and positive transversal vector
fields vy, vy. Since Sp(2n) and Gl(n,C) both deformation retract onto U(n),
the space of totally real monomorphisms TM — TN is homotopy equivalent
to the space of monomorphisms F : TM — TN for which F(vy) = vy and
F : (&v,JJy) — (En,Jn) is complex linear. Since the spaces of compatible
complex structures and positive transverse vector fields are contractible, this
homotopy equivalence does not depend on the choice of Jas, Jy, var, vn-

Here is yet another reformulation. Extend Jj; to an almost complex structure
on R x M such that ny; := —Jprvpr has positive R-component, and similarly
for Jy. Then any monomorphism F : TM — TN with F(vy) = vy and F¢ :
&y — En complex linear extends canonically to a complex linear monomorphism
Fs*: T(Rx M) — T(Rx N) via F**(nps) := nn. Conversely, if dim M < dim N
or the manifold M is open, then any complex monomorphism G : T(R x M) —
T(R x N) is homotopic in the space of complex isomorphisms to a stabilization
Fst of a monomorphism F : TM — TN. Indeed, this amounts to finding a non-
vanishing homotopy between the two sections G(n,) and ny of the (dim N +41)-
dimensional bundle g*T(R x N) — M, where g : M — N is the map underlying
G. This is always possible if dim M < dim N or M is open because the only
obstruction, the relative Euler class, lives in H4™ N+1(Mx[0,1], M x{0,1}) = 0.

6.3 The h-principle for isotropic embeddings

We will use the following general position observation.

Lemma 6.10. Let dimA =k =n—gq, ¢ > 0. Then any q-dimensional family
of isotropic immersions A — (M,£) can be C*°-approximated by a family of
isotropic embeddings.

In particular, if & < n then the word “immersion” in Corollary 6.9 can be
replaced by “embedding”.

Adapt, maybe move to
other place.

Proof??7?



Do we need this
formulation, or should
we adapt it to the
notation in this
section?
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It turns out that if n > 1 then, using the stabilization trick from Section 5.7
and Whitney’s Theorem 6.6, this can be done even for k = n, i.e. one can prove
the following h-principle for isotropic embeddings rather than immersions. For
n = 1 the analogous claim is false, see Section 6.6 below.

Proposition 6.11. Let (M?"+1 ¢), n > 1, be a contact manifold with compat-
ible almost complex structure J on R x M. Let A¥, k < n, be a closed manifold.
Let fo : A — M be an embedding and F; : T(Rx J'A)|x — T(Rx M) be a homo-
topy of real monomorphisms such that Fo = 1 X dfg|p and Fy is complex linear.
Then there exists an isotopy of embeddings fi : Op A — M on an open neighbor-
hood Op A C J'A of the zero section such that f1 is an isocontact embedding, and
there exists a homotopy Fy, s € [0,1] of paths in Mon(T(Rx Op A), T(R x M))
such that FY = 1 x df|x and F} = F; for all t € [0,1], F§ = 1 x dfo|s and
F} is complex linear for all s € [0,1]. Moreover, we can arrange that fi(A) is
C%-close to fo(A) for all t € [0,1].

Proof. By applying Corollary 6.9 we can satisfy all the conditions of the the-
orem, except that f; will be an immersion rather than an embedding and f;
will be a regular homotopy rather than an isotopy. Of course, it is enough to
arrange for the restriction f;|s to be an isotopy. We will keep the notation f;
for this restriction.

By Lemma 6.10, after a C°°-small isotropic regular homotopy, we may assume
that f; is an isotropic embedding.

In the subcritical case k < n, a generic perturbation of f;, fixing fo and fi, will
turn f; into a smooth isotopy (Lemma 6.7).

Consider now the Legendrian case k = n. We will deform the regular homotopy
ft to an isotopy, keeping the end fy fixed and changing f; via a Legendrian
isotopy. According to Whitney’s Theorem 6.6, in order to deform the path f; to
an isotopy keeping both ends fixed we need the equality I;s; = 0. On the other
hand, according to Proposition 5.25, if n > 1 then for any Legendrian embedding
go there exists a Legendrian regular homotopy g¢; with any prescribed value of
the Whitney invariant I;,,;. Hence combining f;, ¢ € [0, 1], with an appropriate
Legendrian regular homotopy f;, t € [1,2], we obtain a regular homotopy ft,
t € [0,2], with
I{ft}t€[0,2] =0.

By Whitney’s Theorem 6.6, {f;} can be further deformed, keeping the ends fy
and fy fixed, to the required isotopy. O

6.4 The h-principle for totally real embeddings

Proposition 6.12. [see [32], [18]] Let (V,J) be an almost complex manifold
of dimension 2n, and f : L — V a smooth real embedding of a k-dimensional
manifold L. Suppose that there exists a homotopy Fy, t € [0,1], of monomor-
phisms such that Fy = df and Fy : TL — TV s totally real. Then there ezists
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a C%-small isotopy of f to a totally real embedding g : L — V. If the embedding
f is totally real on a neighborhood Op A of a closed subset A C L, and the
homotopy F; is fized on Op A, then the isotopy f: can also be chosen fized on
OpA.

6.5 Disks attached to J-convex boundary

Theorem 6.14 below, which is a combination of h-principles discussed in this
chapter, will play an important role in proving the main results of this book.

Let (V,J) be an almost complex manifold and W C V a domain with smooth
boundary OW. Given a k-disk D C V' \ Int W with D N W = 9D and which
transversely intersects OW, we say that D is transversely attached to W in V.
We say that D is J-orthogonally attached to W if J(T'D|sp) C T(OW). Note
that this implies that 0D is tangent to the distribution & = T'(OW) N JT (OW).
In particular, if OW is J-convex then 0D is an isotropic submanifold for the
contact structure &.

Remark 6.13. Note that any totally real manifold transversely attached to OW
along an isotropic submanifold is isotopic relative its boundary to a J-orthogonal
one through a totally real isotopy.

Theorem 6.14. Suppose that (V,J) is an almost complex manifold of dimen-
sion 2n, n > 2. Let W C V be a domain with smooth J-convex boundary and D
a k-disk, k < n, transversely attached to W in V. Then there exists a C°-small
isotopy of D through transversely attached disks to a totally real disk D' which
is J-orthogonal to OW .

Proof. Let us denote by f the inclusion D < V. There exists a homotopy of
monomorphisms ®; : TD — TV t € [0,1], covering f such that &y = df and
®; is totally real. We can assume without a loss of generality that

(a) ®1(TOD) C &, and
(b) ®,(TOD) C ToW
for all ¢ € [0,1]. Indeed, by Lemma A.1 (a) we have
1 (Vs Vasaem1) = 0 and - (Vo i, Va1 1) = 0

for k < n, where V;CJC and V¥, are the complex resp. real Stiefel manifolds
of k-frames in C" resp. R". Now fix outward pointing vector fields NoD, Now
along 0D and OW. Then these two vanishing homotopy groups are precisely
the obstructions to achieving (a) and (b) together with the condition ®;(ngs) =

—new for all ¢t € [0, 1].

The restriction ®;|7p) gives us a homotopy of monomorphisms P, : T(0D) —
T(OW) covering f|ap. Now we use Proposition 6.11 to construct an isotopy
gt : 0D — OW such that

Argument changed,
please check!
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(i) g0 = flop:
(ii) ¢ is isotropic, and

(iii) the path of homomorphisms dg; : T(0D) — T(0W), t € [0, 1] is homotopic
to @, in the class of paths of monomorphisms beginning at dgy and ending
at a totally real homomorphism T'(0D) — &.

Extend the isotopy g; to an isotopy f; : D — V \ Int W of smooth embeddings
transversely attached to W such that fy = f. According to Remark 6.13 we can
assume that the disk fi(D) is J-orthogonal to OW. We claim that there exists
a homotopy of monomorphisms ¥, : TD — TV t € [0, 1] such that

a)Vo=df1 : TD - TV,
b) ¥, is totally real, and
c) ¥y =dfy on TD|gp.

Indeed, consider first a homotopy

\i/ L dfl-?t, te [07 %]7
t =
(I)Qtflv te (%71

The homotopy ¥, satisfies the above conditions a) and b), but not ¢). However,
in view of property (iii) above the path \I/t|TD| »p 1s homotopic through paths
with fixed ends to a path of totally real monomorphisms and hence the homotopy
®, can be modified to a homotopy ¥, satisfying condition c) as well. More
explicitly, property (iii) allows us to pick a continuous family of monomorphisms
I$:T(OD) — &, s,t € [0,1], such that T? = W, '} = dfy|sp, T§ = fdi|op, and
I'; is totally real for all s € [0, 1], see Figure [fig:?7?]. After rescaling in the unit
disk D we may assume that W,(z) is independent of the radius for 2 € D with
|2| > 1/2. Then the desired homotopy ¥ can be defined by

By(a) U(22), |zl €[0,4];
T @), el e (1)

It remains to apply Gromov’s h-principle for totally real embeddings 6.12. It
provides an isotopy of embeddings f; : D — V \ Int W, t € [1,2], fixed along
0D together with its differential, such that fo : D — V \ Int W is totally
real and J-orthogonal to 0W. Finally, note that all the isotopies provided by
Propositions 6.11 and 6.12 can be chosen C%-small. This concludes the proof of
Theorem 6.14. U

6.6 The three-dimensional case

[to be added]



Chapter 7

Some complex analysis

7.1 Some complex analysis on Stein manifolds

There exist a number of equivalent definitions of a Stein manifold. We have
already encountered two of them.

Affine definition. A complex manifold V is Stein if it admits a proper holo-
morphic embedding into some CV .

J-convex definition. A complex manifold V is Stein if it admits an exhausting
J-convex function f:V — R.

The classical definition rests on the concept of holomorphic convexity. To a
subset K C V of a complex manifold associate its holomorphically convex hull

K:={zeV | | /()] < sup|f]| for all holomorphic functions f: V — C}.
K

Call V' holomorphically convex if K is compact for all compact subsets K C V.

Example 7.1. Let B C CV be a closed ball around the origin. For x ¢ B the
holomorphic function f(z) := (z, ) satisfies |f(2)| < |2||z| < |z|* = |f(x)| for
all z € B. Hence B= B equals its own holomorphically convex hull.

Next consider a properly embedded complex submanifold V' C CY and a com-
pact subset K C V. Let B C C¥ be a closed ball containing K. Then
K c ZV N B) C¢ B = B, where the first two holomorphically convex hulls
are taken in V and the third in CV. Since K is closed in V, it is compact. This
shows that V' is holomorphically convex.

Ezample 7.2 (Hartogs phenomenon). The Hartogs domain ) := intB*(1) \
B*(1/2) C C? has the holomorphically convex hull = intB*(1) (in particular,
Q is not holomorphically convex). To see this, let f : € — C be a holomorphic
function. For fixed z € C, |z| < 1, the function w — f(z,w) on the annulus (or

91



92 CHAPTER 7. SOME COMPLEX ANALYSIS

disk) A, :={w € C|1/4 - |z]> < |w]* <1 — |2|?} has a Laurent expansion

oo

few) =3 a2k,

k=—o0

The coefficients ax(z) are given by

1 z,
ar(z) = 5 /ICI—T fg(ka) d¢

for any r > 0 with 1/4 — |2|* < r? < 1 — |z|?. In particular, ax(z) depends
holomorphically on z with |z| < 1. Since A, is a disk for |z] > 1/2, we have
ar(z) =0 for k < 0 and |z| > 1/2, hence by unique continuation for all z with
|z| < 1. Thus the Laurent expansion defines a holomorphic extension of f to
the ball int B4(1).

Classical definition. A complex manifold V is Stein if it has the following 3
properties:

(i) V is holomorphically convex;

(ii) for any = # y € V there exists a holomorphic function f : V. — C with
f(@) # fy);

(iii) for every x € V there exist holomorphic functions fi,...,f, : V. — C
which form a holomorphic coordinate system at x.

Clearly, the affine definition implies the other two (holomorphic convexity was
shown in Example 7.1). The classical definition immediately implies that every
compact subset K C V can be holomorphically embedded into some CV. The
implication “classical = affine” is the content of

Theorem 7.3. [Remmert [55]] A Stein manifold V in the classical sense admits
a proper holomorphic embedding into some CN .

Remark 7.4. A lot of research has gone into finding the smallest N for given n =
dimc V. After intermediate work of Forster, the optimal integer N = [3n/2] +1
was finally established by Eliashberg-Gromov [17] and Schiirmann [57].

The implication “J-convex = classical” was proved by Grauert in 1958:

Theorem 7.5 (Grauert [28]). A complex manifold which admits an exhausting
J-convex function is Stein in the classical sense.

In particular, Grauert’s theorem solves what was known, for domains in C", as
“Levi’s problem”:

Corollary 7.6. A relatively compact domain U C V in a Stein manifold V
with smooth J-convex boundary OU is Stein.
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Proof. By Lemma 2.4, there exists a J-convex function ¢ : W — (0,2) on a
neighborhood W of OU in V with OU = ¢~1(1). Let ¢ : V. — R be a J-
convex function with mingey > 0. Pick a convex increasing diffeomorphism
f:(0,1) — (0,00). Then a smoothing of max(f o ¢,9) : U — R is J-convex
and exhausting, so U is Stein by Grauert’s theorem. O

Remark 7.7. In fact, Grauert proves in [28] the following generalization of Levi’s
problem: A relatively compact domain U C V in a complex (not necessar-
ily Stein) manifold V' with smooth J-convex boundary 90U is holomorphically
convex.

It is clear from any of the definitions that properly embedded complex subman-
ifolds of Stein manifolds are Stein. We will refer to them as Stein submanifolds.

Two fundamental results about Stein manifolds are Cartan’s Theorems A and
B. They are formulated in the language of sheaves, see [10] for the relevant
definitions and properties. Let V' be a complex manifold and O the sheaf of
holomorphic functions on V. For a nonnegative integer p, let OP be the sheaf
of holomorphic maps to CP. A sheaf F on V is called analytic if for each z € V,
Fu is a module over O, and the multiplication O x F — F is continuous. A
sheaf homomorphism f : F — G between analytic sheaves is called analytic if
it is a module homomorphism. An analytic sheaf F is called coherent if every
x € V has a neighborhood U such that Fy; equals the cokernel of an analytic
sheaf homomorphism f : OF, — Of,, for some nonnegative integers p, q.

Oka’s Coherence Theorem [53] states that a subsheaf F of OP is coherent if and
only if it is locally finitely generated, i.e., for every point x € V there exists a
neighborhood U and finitely many sections f; of Fy that generate F, as an
Oy-module for every y € U.

Example 7.8. Let W C V be a properly embedded complex submanifold of a
complex manifold V and d > 0 an integer. For an open subset U C V, let Zy
be the ideal of holomorphic functions on U whose d-jet vanishes at all points of
U NW. This defines an analytic sheaf 7 on V. We claim that Z is coherent. To
see this, let z € V. If x ¢ W we find a neighborhood U of z with UNW = {)
(since W C V is closed), hence Zy = Opy. If x € W we find a small open
polydisk U = int(B2(1) x --- x B%(1)) C V around x with complex coordinates
(#1y...,2n) in which WNU = {z = --- = z; = 0}. Then the ideal Iy is
generated as an Op-module by the monomials of degree (d+ 1) in z1, ..., 2, SO
by Oka’s Coherence Theorem [53], Z is coherent.

Remark 7.9. The coherence of the sheaf 7 in the preceding example can also be
proved without Oka’s theorem as follows. As above, let (z1,..., z,) be complex
coordinates on a polydisk U in which WNU = {z = -+ = 2z, = 0}. We claim
that every f € Zy has a unique representation

f(z) = fr(2)2",
I

where the summation is over all I = (iy,...,4) with iy +---+ i =d+ 1 and
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=20 z;". The coefficient f; is a holomorphic function of z, ..., z,, where

1 < /¢ <k is the largest integer with 7, # 0.

We first prove the claim for d = 0 by induction over k. The case k =1 is clear,
so let k > 1. The function (zg,...,2,) — f(0,...,0,z2k,...,2,) vanishes at
zr = 0, thus (as in the case k = 1) it can be uniquely written as zj fx (2, . . ., 2n)
with a holomorphic function fi. Since the function (z1,...,2,) — f(21,--.,2n)
vanishes at z; = .-+ = zx_1 = 0, by induction hypothesis it can be uniquely
written as 21 f1(21,. .-, 2n)+* -+ 2k—1fk—1(2k—1, - - -, 2n) With holomorphic func-
tions f1,..., fk—1. This proves the case d = 0. The general case d > 0 fol-
lows by induction over d: Using the case d = 0, we write f(z) uniquely as
z21f1(z15 oy 2n) + -+ 26 f2(2k, - . -, 2n). Now note that the functions f1,..., fx
must vanish to order d—1 at z; = - - - = z; = 0 and use the induction hypothesis.
This proves the claim.

By the claim, Zy is the direct sum of copies of the rings F}; of holomorphic
functions of zy,...,z, for 1 < £ < k. Since .7-'5 is isomorphic to the cokernel
of the homomorphism O — Ouy, fi,..., fo—1 = 21f1 + -+ + 2e—1fo—1, this
proves coherence of 7.

Now we can state Cartan’s Theorems A and B. Denote by H?(V,F) the coho-
mology with coefficients in the sheaf F. In particular, H°(V, F) is the space of
sections in F. Every subsheaf G C F induces a long exact sequence

. — HYV,G) — HYV,F) — HY(V,F/G) — HT'(V,G) — ... .

Theorem 7.10 (Cartan [10]). Let V be a Stein manifold and F a coherent
analytic sheaf on V. Then

(A) for every x € V, H(V,F) generates F, as an Op-module;
(B) H1(V,F) = {0} for all ¢ > 0.

We will only use the following two consequences of Cartan’s Theorem B.

Corollary 7.11. Let W be a Stein submanifold of a Stein manifold V. Then
every holomorphic function f : W — C extends to a holomorphic function
F :V — C. More generally, let f : U — C be a holomorphic function on a
neighborhood of W and d a nonnegative integer. Then there exists a holomorphic
function F : V. — C whose d-jet coincides with that of f at points of W.

Proof. Let Z be the analytic sheaf of holomorphic functions on V' whose d-jet
vanishes at points of W. By the example above, 7 is coherent. Thus by Cartan’s
Theorem B, H'(V,Z) = 0, so by the long exact sequence the homomorphism
H°(V,0) — H°(V,0/I) is surjective. Now O, /Z, = {0} for x ¢ W, and for
x € W elements of O, /T, are d-jets of germs of holomorphic functions along
W. So f defines a section in O/Z, and we conclude that f is the restriction of
a section F in O. O
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Corollary 7.12. Fvery Stein submanifold W of a Stein manifold V' is the com-
mon zero set of a finite number (at most dime V + 1) of holomorphic functions
fi:V—==C.

Proof. The argument is given in [11]. It uses some basic properties of analytic
subvarieties, see e.g. [30]. An analytic subvariety of a complex manifold V is a
closed subset Z C V that is locally the zero set of finitely many holomorphic
functions. Z is a stratified space Z = Zy U --- U Zj, where Z; is a (non-closed)
complex submanifold of dimension i. Define the (complex) dimension of Z as
the dimension k of the top stratum. If Z’ C Z are analytic subvarieties of the
same dimension, then Z’ contains a connected component of the top stratum
Zk of Z.

Now let W C V be a Stein submanifold of a Stein manifold V. Pick a set
S C V containing one point on each connected component of V' \ W. Since Sy
is discrete, W U S; is a Stein submanifold of V. By Corollary 7.11, there exists
a holomorphic function f; : V' — C which equals 0 on W and 1 on S;. The
zero set W1 := {f1 = 0} is an analytic subvariety of V, containing W, such that
W1\ W has dimension < n — 1, where n = dim¢ V. Pick a set So C Wi \ W
containing one point on each connected component of the top stratum of Wy
that is not contained in W. Since each compact set meets only finitely many
components of Wy, the set Sy is discrete, so W U Sy is a Stein submanifold of
V. By Corollary 7.11, there exists a holomorphic function fo : V' — C which
equals 0 on W and 1 on Sy. The zero set Ws := {f1 = fo = 0} is an analytic
subvariety of V, containing W, such that W5 \ W has dimension < n — 2.

Continuing this way, we find holomorphic functions fi,..., fp+1 : V — C such
that W C W41 :={f1 =+ = fny1 =0} and W,,;1 \ W has dimension < —1.
Thus W, \W=0and W={fy =--- = fry1 =0} O

7.2 Real analytic approximations

In order to holomorphically attach handles, we need to approximate smooth
objects by real analytic ones. In this section we collect the relevant results.

A function f : U — R™ on an open domain U C R" is called real analytic if
it is locally near each point given by a convergent power series. A real analytic
manifold is a manifold with an atlas such that all transition functions are real
analytic. A submanifold is called real analytic if it is locally the transverse zero
set of a real analytic function. Real analytic bundles and sections are defined
in the obvious way.

Remark 7.13. As a special case of the Cauchy-Kowalewskaya theorem (see
e.g. [20]), the solution of an ordinary differential equation with real analytic
coefficients depends real analytically on all parameters.

Complexification. There is a natural functor, called complexification, from
the real analytic to the holomorphic category. First note that any real analytic
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function f : U — R™, defined on an open domain U C R"™, can be uniquely
extended to a holomorphic function f€: U® — C™ on an open domain U® C
C™ with US N"R™ = U. A bit less obviously, any real analytic manifold M
can be complexified to a complex manifold M which contains M as a real
analytic submanifold. This can be seen as follows (see [8] for details). Pick a
locally finite covering of M by countably many real analytic coordinate charts
¢; : R™ D U; — M. So the transition functions

Gij = ¢, 0 ¢ Uij = ¢Z~_1(¢i(Ui) N ¢j(Uj)) — Uj;

are real analytic diffeomorphisms. Successively extend them to biholomorphic
maps ¢f; : U — US; such that ¢%; = (¢f;) 7. Note that U = UF and ¢f; = 1.
Define M€ as the quotient of the disjoint union 1L UF by the equivalence rela-
tion z; ~ z; iff 2; € US and z; = (Z);-Cj (z:) € Uﬁ-. (This is an equivalence relation
because of the cocycle condition qﬁg-:k ) qﬁg = fk.) The inclusions U;C — 1] j U JC
induce coordinate charts US < M® with biholomorphic transition functions.

Finally, this construction needs to be slightly modified to ensure that MC is
Hausdorft (see [8]).

Similarly, one sees that a real analytic map f : M — N between real analytic
manifolds extends to a holomorphic map f€ : M® — NC between (sufficiently
small) complexifications. It follows that the complexification M is unique in
the sense that if V, W are complex manifolds, containing M as real analytic and
totally real submanifolds, with dim¢ V' = dim¢ W = dimg M, then some neigh-
borhoods of M in V and W are biholomorphic. A corresponding uniqueness
holds for complexifications of maps. As a real manifold, the complexification
MC is diffeomorphic to the tangent bundle T'M.

Complexification has the obvious functorial properties. For example, if N C M
is a real analytic submanifold of a real analytic manifold M, then the (sufficiently
small) complexification N© is a complex submanifold of MC.

The crucial observation, due to Grauert [28], is that complexifications of real
analytic manifolds are in fact Stein.

Proposition 7.14. Let MC be the complezification of a real analytic manifold
M. Then M possesses arbitrarily small neighborhoods in M which are Stein.

Proof. By Proposition 2.13, M possesses arbitrary small neighborhoods with
exhausting J-convex functions. By Grauert’s Theorem 7.5, these neighborhoods
are Stein. O

A complexification MC which is Stein is called a Grauert tube of M. Now
the basic results about real analytic manifolds follow via complexifiction from
corresponding results about Stein manifolds.

Corollary 7.15. FEvery real analytic manifold admits a proper real analytic
embedding into some RV .



7.2. REAL ANALYTIC APPROXIMATIONS 97

Proof. By Theorem 7.3, a Grauert tube M® of M embeds properly holomor-
phically into some C. Then restrict this embedding to M. O

Corollary 7.16. Let N be a properly embedded real analytic submanifold of a
real analytic manifold M. Then every real analytic function f: N — R extends
to a real analytic function F : M — R. More generally, let f : U — R be a real
analytic function on a neighborhood of N and d a nonnegative integer. Then
there exists a real analytic function F': M — R whose d-jet coincides with that
of f at points of N.

Proof. Let MC be a Grauert tube of M. After possibly shrinking M€, we
may assume that a complexification NC of N is a properly embedded complex
submanifold of MC, and f complexifies to a holomorphic function f€ on a
neighborhood of N in M€. Corollary 7.11 provides a holomorphic function
G : M® — C whose d-jet agrees with that of fC at points of NC. Then the
restriction of the real part of G to M is the desired function F. O

Corollary 7.17. FEvery properly embedded real analytic submanifold N of a
real analytic manifold M is the common zero set of a finite number (at most
2dimg M + 2) of real analytic functions f; : M — R.

Proof. Complexify N to a properly embedded submanifold N¢ ¢ M€ of a
Grauert tube MC. By Corollary 7.12, N€ is the zero set of at most n + 1
holomorphic functions F; : M© — C, where n = dimg M. The restrictions of
Re F; and Im F; to M yield the desired functions f;. O

Remark 7.18. H. Cartan [11] takes a slightly different route to prove Corollar-
ies 7.16 and 7.17: Define coherent analytic sheaves on real analytic manifolds
analogously to the complex analytic case. Cartan proves that for every coherent
analytic sheaf F on M, there exists a coherent analytic sheaf € on a complex-
ification M® such that F¢|y; = F @ C. From this he deduces the analogues of
Theorems A and B in the real analytic category, which imply the corollaries as
in the complex analytic case.

Corollary 7.15 implies that every C*-function on a real analytic manifold M can
be CF-approximated by real analytic functions. To state the result, equip M
with a metric and connection so that we can speak of k-th (covariant) derivatives
of functions on M and their norms.

Corollary 7.19. Let f : M — R be a C*-function on a real analytic manifold.
Then for every compact subset K C M and € > 0 there exists a real analytic

function g : M — R which is e-close to f together with its first k derivaties on
K.

Proof. Embed M real analytically into some RY. Pick any C*-function F :
RY — R which coincides with f on K. By Weierstrass’ theorem (see e.g. [22]),
F can be C*-approximated over K by a polynomial G : RN — R. Let g be the
restriction of G to M. O
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On the other hand, Corollary 7.16 shows that every real analytic function on
a properly embedded real analytic submanifold N of a real analytic manifold
M can be extended to a real analytic function on M, with prescribed normal
d-jet along N. The following result combines the approximation and extension
results.

Proposition 7.20. Let f : M — R be a C*-function on a real analytic mani-
fold. Let N be a properly embedded real analytic submanifold, K C M a compact
subset, d a nonnegative integer and € > 0. Suppose that f is real analytic on a
neighborhood of N. Then there exists a real analytic function F : M — R with
the following properties:

o F ise-close to f together with its first k derivatives over K ;

e the d-jet of F' coincides with that of f at every point of N.

The proof is based on the following

Lemma 7.21. For every d,k € N there exists a constant Cq 1, such that for all
pEeN, D>6§ >0 and vy > 0 there exists a polynomial P : R — R with the
following properties:

e P(0)=1 and P'(0) =--- = P{¥(0) =0;
o [PO(x)| <~ forall0 <1<k andd < |z| < D;
o |PO(x)] < Cyy/8" for all0 <1<k and |z| < 6.

Proof. Let k be given. Pick a C*-function f : R — R with the following
properties:

e f(z) =0 near z = 0;
o f(x)=1for |z| > 1;
o [(f—1)D(z)] < Cp/2for |z| <1and 0 <1 <k,

with a constant Cy depending only on k. For D > ¢ > 0 define g(z) := f(z/9).
Then g : R — R has the following properties:

e g(z) =0 near x = 0;
e g(z)=1for 6 < |z| < D
e [(g—1)O(z)| < Cr/(28") for |z| <6 and 0 <1 < k.

By Weierstrass’ theorem (see e.g. [22]), we find for every 3 > 0 a polynomial
Q@ : R — R satisfying

e Q(0) = 0;
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¢ (Q-1)W(x)| <Bford<|z|]<Dand0<I<E;
e (Q—1)W(x)] < Ch/d" for |x| <6 and 0 <1 < k.
For d € N consider the polynomial P(z) := Q(x)?*! — 1. By the Leibniz rule,
Q@@= ( : )Q(“)(w) QU (a).
X - _ 11 .. d+1
i1+ Fig 1=l

This shows P(0) = 1 and P®(0) = 0 for 1 < < d. Now let v > 0 be given.
For 6 <|z| < D and 1 <1 < k the estimates on @ yield

PO@ < 3 ( l )ﬁl(Hﬂ)d“

it gy =1 -t
= (d+ 1)1+ /)M <(d+1D)FBA+ ) <y

for ( sufficiently small. For § < |z| < D and [ = 0 we find
PO (2)] = |Q(x) = 1] [1 4+ Q(x) +---+ Q¥ (z)| < B(2d +1) < v

for p <1 sufficiently small. Similarly, for |z| < 6 and 1 <[ < k we get

d+1 k d+1
‘(P)(l)(x)‘ = Z (i1 .. .lid+1> (Ck _;ll) < (d - 1) (gk ha 1) )

i1+ Figp1=l
and for |z| < ¢ and [ =0,
[P(2)] <] Q) +1 < (Ce + )™ + 1.

Hence P satisfies the required estimates with Cy 5 := (d+1)*(Cr+1)414+1. O

Proof of Proposition 7.20. By Corollary 7.17, there exist real analytic functions
@1y sm : M — R such that N = {¢1y = -+ = ¢, = 0}. Then ¢ :=
¢34+ +¢2, : M — Risreal analyticand N = ¢~1(0). Let distx be the distance
from N with respect to some Riemannian metric on M. Since ¢ vanishes only to
finite order in directions transversal to IV, there exists an r» € N such that, after
rescaling the metric, we have ¢(z) > disty(x)" for all z € K. Set D := maxg¢.
For § sufficiently small, W := {¢ < §} is a tubular neighborhood of N over K.

For 6,7 > 0 let P : R — R be the polynomial from Lemma 7.21. The real
analytic function ¥ := P o ¢ : M — R has the following properties:

e Y(z)=and ¢/(z) = --- = D (x) = 0 for z € N;
o YpW(z)| < Cryforall0<I<kandzec K\W;
o [pD(2)] <C1Cyp/8" forall 0 <1<k and x € WNK,
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with a constant C; depending only on ¢ (and not on § and ). Here and in the
following we assume M C RN and denote by ") any partial derivative of order

l.

Without loss of generality, we may increase d until d > r(k + 1). By Corol-
lary 7.16, there exists a real analytic function A : M — R whose d-jet agrees
with that of f at points of N. Hence there exists a constant C5, depending only
on f and h, such that

o [(f — B)W(x)] < Cydisty(x)?t < 00D/ for all 0 < | < k and
reWNK,;

o [(f—h)W(z)<Cyforal 0<I<kandz e K\W.

We can estimate the product ¢ - (f — h) for 0 <1<k and z € W N K by

l

[(f = W)Y ()] < Zl(f W)@ (@) [ ()]

<N 0yl
=0

i)/r% < (k +1)C1CoClad,

since the exponent of § satisfies (d —i)/r +¢—1>d/r —1 > 1 by the choice of
d. Similarly, for 0 <1 < k and z € K \ W we obtain

W(f — h)] D (@) < (k+1)C1Cay.

Now let € > 0 be given. By Corollary 7.19, there exists a real analytic function
g: M — R with |(f —g)P(2)] <& forall 0 <1<k and z € K, with &’ > 0 to
be determined later. Define the real analytic function

Fi=g+4+¢-(h—g): M —R.

Since ¢ (z) = --- = @ (z
at points of N For 0 <1

(F = N)P@)] <1 =) (g = NP (@) + |l (h = V()]
< (1+Cry)e + (k+1)C10a. (7.1)

For0<I<kand z e WnK we find
(F = £)P(@)| < [[1 =) (g — HIP@)] + [h— £)]D ()]
Cf“ "4 (k+1)C,CoCy 6. (7.2)

) =0 for z € N, the d-jet of F' agrees with that of f
<kandz e K \ W we estimate

Now first choose v > 0 small enough so that the second term on the right-hand
side of (7.1) becomes < /2. Given =, choose 6 > 0 small enough so that the
second term on the right-hand side of (7.2) becomes < ¢/2. Finally, choose
¢’ > 0 small enough so that the first terms on the right-hand sides of (7.1) and
(7.2) become < /2. Then F' has the desired properties. O
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Proposition 7.20 clearly generalizes to sections in real analytic bundles £ — M.
For this, view the total space of the bundle as a real analytic manifold and note
that a map M — E that is C%-close to a section is a section. Thus we have

Theorem 7.22. Let f : M — E be a C*-section in a real analytic fibre bundle
E — M over a real analytic manifold M. Let N C M be a properly embedded
real analytic submanifold, K C M a compact subset, d a nonnegative integer
and € > 0. Suppose that f is real analytic on a neighborhood of N. Then there
exists a real analytic section F : M — E with the following properties:

(i) F is e-close to [ together with its first k derivatives over K ;
(i) the d-jet of F coincides with that of f at every point of N.

Ezxample 7.23. Every Riemannian metric on a real analytic manifold can be
C*-approximated by a real analytic metric. By Remark 7.13, the exponential
map of a real analytic metric is real analytic. Now the standard proof yields real
analytic tubular resp. collar neighborhoods of compact real analytic submani-
folds resp. boundaries. In particular, this allows us to extend any compact real
analytic manifold with boundary to a slightly larger open real analytic manifold.

Theorem 7.22 also has a version with parameters.

Corollary 7.24. Let E — M be a real analytic fibre bundle over a real analytic
manifold M, K C M a compact subset, and € > 0. Let f; : M — E be a family
of C*-sections depending in a C* fashion on a parameter t in a compact real
analytic manifold T with boundary. Suppose that the f; are real analytic for
t € 0T and depend real analytically on t € OT. Then there exists a family of
real analytic sections Fy : M — E, depending real analytically on t € T, with
the following properties:

(i) F; is e-close to f; together with its first k derivatives over K for allt € T;

(Z’Z) Ft = ft fOT’ te oT.

Proof. By Example 7.23, we can include A in a larger open real analytic manifold
A. Extend f; to a C*-family f; over A and view f; as a C*-section in the bundle
E — A x M. Now apply Theorem 7.22 to this section, the compact set A x K,
and the properly embedded real analytic submanifold 9A x M. O

We conclude this chapter with a result on real analytic approximations of
isotropic submanifolds in contact manifolds that will be needed later. See Chap-
ter 5 for the relevant definitions.

Corollary 7.25. Let A be a closed isotropic C*-submanifold (k > 1) in a real
analytic closed contact manifold (M, «) (i.e., the manifold M and the 1-form «
are both real analytic). Then there exists a real analytic isotropic submanifold
AN C (M, a) arbitrarily C*-close to A.
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Similarly, let (A¢)iepo] be a C*-isotopy of closed isotropic C*-submanifolds in
(M, a) such that Ay and Ay are real analytic. Then there exists a real analytic
isotopy of real analytic isotropic submanifolds A}, arbitrarily C*-close to Ay,

with Aj = Ag and A} = Ay.

Proof. Let A C M be a real analytic submanifold C*-close to A, but not nec-
essarily isotropic. Then A = (b(]&) for a C*-diffeomorphism ¢ : M — M that is
C*-close to the identity. The contact form ¢*« vanishes on A but need not be
real analytic. Thus ¢*«a induces a C*-section in the real analytic vector bundle
T*M|; — A which vanishes on the real analytic subbundle TA C T*M|j. Let
v — A be the normal bundle to TA in T* M|z with respect to a real analytic
metric and denote by (¢*a)” the induced C*-section in v. Let $” be a real
analytic section of v that is C*-close to (¢*a)” and extend it to a real analytic
section [ of T* M| that vanishes on TA, and hence is C*-close to ¢*« along A.
Extend 3 to a C* one-form on M (still denoted by 3) that is C*-close to ¢*cv.
By construction, 3 is real analytic along A and |z =0.

By Theorem 7.22 (with d = 0), there exists a real analytic 1-form & that is C*-
close to 8 and coincides with § along A. In particular, &|; = 0. By construction,
@ is Ck-close to a. Hence ay := (1 — t)& + ta is a real analytic homotopy of
real analytic contact forms. By Gray’s Stability Theorem 5.24, there exists a
diffeotopy ¢ : M — M and positive functions f; with ¢ja = fia. Now in
Moser’s proof of Gray’s Stability Theorem (see e.g. [9]), the ¢; are constructed
as solutions of an ODE whose coefficients are real analytic and C*-small in this
case. Hence by Remark 7.13 the ¢; are real analytic, C*-close to the identity,
and depend real analytically on ¢. It follows that A’ := ¢1(A) is real analytic,
C*-close to A, and a|y = 0. O

Remark 7.26. (1) Corollary 7.25 remains valid (with essentially the same proof)
if the submanifold A is not closed, providing a real analytic approximation on
a compact subset K C A.

(2) If A is Legendrian, then A’ is Legendrian isotopic to A: By the Legen-
drian neighborhood theorem (Proposition 5.20), A’ is the graph of the 1-jet of
a function f in J'A, and the functions ¢f provide the isotopy.



Chapter 8

Recollections from Morse
theory

NEW CHAPTER

. . . . TENTATIVE
Throughout this chapter, V' denotes a smooth manifold of dimension m. ( )

8.1 Ciritical points of functions

Let ¢ : V — R be a smooth function p € V' be a critical point of ¢, i.e. d,¢ = 0.
The Hessian Hess,¢ defines a symmetric bilinear form on 7,V. The nullity of
¢ at p is the dimension of ker Hess,¢ := {v € T,V | Hessp¢(v, w) = 0 for all
w € T,V}. The Morse index at p is the maximal dimension of a subspace on
which the quadratic form v — Hess, (v, v) is negative definite. The critical point
p is nondegenerate if its nullity is zero.

Lemma 8.1 (Morse Lemma [49]). Near a nondegenerate critical point p of ¢
of index k there exist smooth coordinates u € R™ in which ¢ has the form

P(u) = d(p) —ui — - —ujp + upyy o+ up, (8.1)

More precisely, this means that for a function ¢ on a neighborhood of 0 € R™
there exists a diffeomorphism g between neighborhoods of 0 such that g*¢ has
the form (8.1).

Remark 8.2. (1) If the function ¢ on a neighborhood of 0 € R™ already satisfies

d(w1,. .., 2k, 0,...,0) = ¢(p) — 22 —--- — x%, then we can choose the diffomor-
phism ¢ to satisfy g(z1,...,2k,0,...,0) = (z1,...,2k,0,...,0). To see this,
apply the proof of the Morse lemma in [49] to find new coordinates w1, ..., Uy,
near 0 in which ¢(u) = ¢(p) —uf — - —uj + ui . --- + ul,. Inspection of the

proof shows that u; = x; on R¥ x {0}.

103
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(2) The Morse lemma also holds with parameters as follows: For a compact
manifold (possibly with boundary) K let ¢, : V — R, z € K be a smooth
family of functions with a nondegenerate critical of index k at p for all z. Then
there exists a smooth family of diffeomorphisms ¢, : (U,0) — (V,,p) from a
neighborhood U C R™ of 0 onto neighborhoods V, € V of p such that for all
ze K,

¢zogz(u) :¢z(p) _u% - _u%+u%+1+u72n

The next lemma shows that near a degenerate critical point one can always split
off the nondegenerate directions.

Lemma 8.3. Near a critical point p of ¢ index k and nullity ¢ there exist
smooth coordinates (X1, ..., Tm—k—t,Y1ys- s Yk, 21, - - -, 2¢) € R™ in which ¢ has
the form

Px,y,2) =at — - +ap g — Yl — YR ()

with a smooth function ¥(z).
Proof. Set B := Hess,¢ and n := m — {. Identify a neighborhood of p in V with

a neighborhood of 0 in R™ = R” @ R’ such that R® = ker B. Define a function
F on a neighborhood of 0 in R™ by

F(w,z) = g—z(w, z).

Since 3—5(0,0) = gi}‘z (0,0) is invertible, the zero set F~1(0) is a graph w =
w(z) over RY. After applying a diffeomorphism near 0 € R™ we may assume
F~1(0) = R*. Consider the smooth family of functions ¢, = ¢(-,z) : R® — R,
z € R near 0. By construction, each ¢, has a nondegenerate critical point of
index k at w = 0. Now Lemma 8.3 follows from the parametrized Morse Lemma,

in Remark 8.2 O

We say that a l-parameter family ¢y, t € (—¢,¢) of functions near p € V' is of
birth type if after t-dependent coordinate changes on V near p and on R it is of
the form

$r(z,y,2) = [a]* = |y +2° —tz (8.2)

for (z,y,2) € R™* @ R*"! @ R. The family ¢_;, t € (—¢,¢) is said to be of
death type. The critical point of ¢q is called embryonic. Note that in a birth
type family a pair of nondegenerate critical points of indices k and k—1 appears
at t = 0 and in a death type family such a pair disappears.

Lemma 8.4. In a generic 1-parameter family of functions only birth-death type
degeneracies appear.

Proof. Using Lemma 8.3 we can reduce the lemma to the case m = 1 of 1-
parameter families of functions R — R. In this case Lemma 8.4 is just Whitney’s
theorem proved in [66]. O



8.2. ZEROES OF VECTOR FIELDS 105

8.2 Zeroes of vector fields

Let X be a smooth vector field on V and p € V be a zero of X. The differential
D, X : T,V — T,V induces a splitting into invariant subspaces

T,V =Ef 0 E, ® E),

where E;‘ (resp. B, ES) is spanned by the generalized eigenvectors to eigen-
values with positive (resp. negative, vanishing) real part. The dimension of £
is called the Morse indext of X at p. Denote by X°:V — V, s € R, the flow
of X.

Theorem 8.5 (Center Manifold Theorem [1]). Let p € V be a zero of a C™F1-
vector field X, r € N. Then there exist local invariant C"'-manifolds VVpi
tangent to Epi and a local invariant C"-manifold Wz? tangent to Eg at p. The
Wf are unique and smooth resp. real analytic if X is.

W, (resp. W;, Wz?) are called the local stable (resp. unstable, center) manifold
at p. The center manifold is in general neither unique nor smooth, even if X is.
By the center manifold theorem we can choose C"-coordinates Z = (z,vy, z) €
Ef ® E; ® E) in which Wi and W) correspond to Ei resp. Ef; in these

coordinates X is of the form
X(2,y,2) = (ATw, A7y, A%) + O(|Z|*) (8.3)

with linear maps A% (resp. A=, A%) all of whose eigenvalues have positive
(resp. negative, zero) real part.

A zero p is called hyperbolic if Eg = {0}, i.e. all eigenvalues of D, X have nonzero
real part. In this case we have global stable and unstable manifolds characterized
by
W ={zeV| lim X*(z)=p}
S§—F 00

They are injectively immersed (but not necessarily embedded) in V.

We say that a 1-parameter family Xy, ¢t € (—¢,¢) of vector fields near p € V is
of birth type if in suitable coordinates (r,y,z) € R™ % @ R*~! @ R near p it is
of the form

Xu(w,y,2) = (AF2+0(al 1Z]), A7y +O(lyl 12]), 22 ~t+0(22 1] |Z])) (3.4)

with smooth families of linear maps Ati all of whose eigenvalues have positive

resp. negative real part. The family X_4, t € (—¢, ) is said to be of death type.
The zero of X is called embryonic. Note that in a birth type family a pair of
hyperbolic zeroes of indices k and k — 1 appears at ¢ = 0 and in a death type
family such a pair disappears.

INot to be confused with the topological index of a vector field at an isolated zero!

Is this right?
Smoothness?
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Lemma 8.6. (a) A generic vector field has only hyperbolic zeroes.

(b) In a generic 1-parameter family of vector fields without nonconstant periodic
orbits only birth-death type degeneracies appear.

Proof. (a) follows from general transversality arguments.

(b) In a generic 1-parameter family of vector fields only two types of degeneracies
appear (see [4] $332 — 33): The first type corresponds to birth-death type; the
second type corresponds to a Hopf bifurcation in which a nonconstant periodic
orbit appears or disappears at ¢ = 0, which is excluded by the hypothesis of
(b). O

Lemma 8.7. Let p be an embryonic zero of a smooth vector field X. Then

Tt . s _
Wy ={zeV| lim X°)=p}

$—F oo

is an injectively immersed smooth manifold with boundary W;t.

Proof. Pick coordinates (x,y, z) on a neighborhood U of p in which X is of the
form (8.4) with ¢ = 0. Then UﬂWp_ ={(z,y,2) e U |2 =0,2<0}isa
smooth submanifold with boundary U N W, = {(z,y,2) € U | x = 2 =0} and
the statement for Wp’ follows by invariance under the flow of X. The statement

for W;’ is proved analogously. O

8.3 Gradient-like vector fields

We call a smooth function ¢ : V' — R Lyapunov function for a vector field
X, and X gradient-like for ¢, if X - ¢ > 0 outside the zeroes of X. We call
¢V — R strong Lyapunov function for X, and X strongly gradient-like for ¢,
if X ¢ > 0|X|? for some § > 0, where |X| is the norm with respect to some
Riemannian metric on V.

The space of (strong) Lyapunov functions for a given vector field X is a convex
cone. In particular, if ¢g, ¢ are (strong) Lyapunov functions for X then so is
(1 —1t)po + tey for all ¢t € [0,1]. Note that critical points of ¢ are also zeroes of
a gradient-like vector field X but not necessarily vice versa.

The question of existence of a Lyapunov function for a vector field X separates
into two issues: local existence near the zero set of X, and global existence.
Assuming local existence near the zero set, Sullivan [61] gives a necessary and
sufficient criterion for the existence of a global Lyapunov function in terms of fo-
liation cycles. The simplest obstruction to a Lyapunov function is a nonconstant
periodic orbit of X.

Lemma 8.8. Let X be strongly gradient-like for ¢. Then each nondegenerate
zero of X is hyperbolic and also a nondegenerate critical point of ¢.
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Proof. Consider a nondegenerate zero p € V of X. In coordinates Z near
p={Z =0} we have

X(Z2)=AZ+0(Z),  ¢(Z)=¢p)+LZ+0(Z)
with the linear map A := D, X and the linear form L := d,¢. Strong gradient-

likeness
X -¢(Z) = LAZ + O(|Z|®) > §|AZ|* + O(| Z ).

implies LAZ > §|AZ|?/2, which is only possible for L = 0 since A is nonde-
generate. So we have

1
6(2) = 6(p) + 5 B(2,2) + O(|12]")
with the symmetric bilinear form B := Hess,¢. Again strong gradient-likeness
X-¢(Z) = B(Z,AZ) + O(1Z%) = 6|AZ]* + O(|Z]%)

yields

B(v, Av) > §|Av|? /2.
Nondegeneracy of A implies nondegeneracy of B, so p is a nondegenerate critical
point of ¢.

To prove hyperbolicity of p, extend A = D, X C-linearly to the complexified
tangent space T,V ® C and extend B = Hessp¢ to 1,V ® C by

B(z + iy, +1iy) := (3(337&6/) + B(y,y’)) + i(B(x'y) - B(%yl))-

Thus B is C-linear in the first and C-antilinear in the second argument, B(v,w) =
B(w,v), and Re B(v, Av) > 6|v|?/2. Let 0 # v € T,V ® C be an eigenvector of
A to the eigenvalue 0 # A € C, i.e. Av = Av. Then

AB(v, Av) = B(Av, Av) = B(Av, Av) = AB(v, Av).

If XA were purely imaginary, this would imply B(v, Av) = —(v, Av), in contra-
diction to positivity of Re B(v, Av). O

Remark 8.9. Suppose that X is the gradient of ¢ with respect to a positive
definite but not necessarily symmetric (2,0) tensor field g, i.e. dp(v) = g(X,v)
for all v € TV and g(v,v) > 0 for all v # 0. Then X is strongly gradient-like
for ¢ and the zeroes of X coincide with the critical points of ¢. At a zero p of
X we have Hess, (v, w) = ¢gp(DpX - v,w), so p is a nondegenerate zero of X iff
it is a nondegenerate critical point of ¢. If g is symmetric (i.e. a Riemannian
metric), then so is the bilinear form Hess, (-, D,X+) = ¢,(D, X+, D, X-) and all
eigenvalues of D, X are real.

Lemma 8.10. (a) Near each hyperbolic zero a vector field admits a strong
Lyapunov function.

(b) For a birth or death type family X, near p there exists a neighborhood U of
p and a smooth family of strong Lyapunov functions ¢; : U — R for X;.

Check!
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Proof. (a) Consider coordinates in which X has the form (8.3) with EJ = {0}.
By [2] Theorem 22.3 there exist quadratic forms Q* on E;,t which are strongly
Lyapunov for the linear maps AT. Then ¢(z,y) := QT (z) + Q~ (y) is a strong
Lyapunov function for X.

(b) Consider coordinates in which X has the form (8.4). Let QF be a smooth
family of quadratic forms on E;[ as in (a) that are strongly Lyapunov for Ati.
Then

Bul,y.7) = QF (0) + Qr (9) + 532° 12

is a smooth family of strong Lyapunov functions for X;. O

The following result states that a Lyapunov function can be put into any pre-
scribed form near a hyperbolic or birth-death type zero.

Proposition 8.11. (a) Let X be a vector field on V' with a hyperbolic or em-
bryonic zero p. Let ¢ : V — R be a Lyapunov function for X and ¢'°¢ : U — R
a Lyapunov function on a neighborhood U of p with ¢(p) = ¢'°(p). Then there
exists a Lyapunov function ¢ : V — R which agrees with ¢ outside U and with
¢ near p.

(b) Let Xy, t € [—e,€] be a smooth family of vector fields on V' with a birth or
death type zero p. Let ¢y : V — R be a smooth family of Lyapunov functions for
X; and ¢i°° : U — R a smooth family of Lyapunov functions on a neighborhood
U of p with ¢¢(p) = #\°°(p) for all t. Then there exists a smooth family of
Lyapunov functions 1y : V. — R, t € [—¢, €] which agrees with ¢; outside U and
with ¢\°¢ near p.

Remark 8.12. (1) In case (a), ¢y, := (1 —u)¢+ utp, u € [0,1] is a smooth family
of Lyapunov functions with ¢g = ¢, ¢, = ¢ outside U, and ¢; = ¢'°° near p.

(2) By Lemma 8.10, in case (a) we can choose ¢'°° to be strongly Lyapunov, so
1 is strongly Lyapunov near p.

Analogous remarks apply to case (b).

The proof of Proposition 8.11 will occupy the remainder of this section. It is
based on a smooth version of the J-convex surroundings in Chapter 9 to which
we now proceed.

Consider a vector field X with a Lyapunov function ¢ : V' — R and a hyperbolic
zero p of index k and value ¢(p) = ¢. Pick a regular value a < ¢ such that
D, =W, N{¢ > a} is a smoothly embedded k-disk.

Lemma 8.13. For every neighborhood N of D, there exists a b > ¢ and a
closed subset
S % DY x [a,b] 2 U C N'\ D,

with the following properties:

(i) dlsm—r—1xprxiry = t;
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(i) ¢

(iii) each hypersurface S™*=1 x DF x {t} is transverse to X.

gm—k-1x prx () =t near (S™FLx OD* x [a, b)) U(S™F1 x DF x {b});

Proof. Pick b > ¢ and a neighborhood
¥ 28" X By

of SF := W,F N ¢~'(b) in the level set ¢! (b) such that S c S™~*F~1 x Bf.
Denote by x the coordinate on S™ %=1 and by (p,y) € [0,2] x S¥~! polar
coordinates on BE. For ¢ < b’ < b denote by

Wy = Sm=F=1 x BY x [V, )

the result of flowing 37 by —X until it hits the level ¢ = V', so that ¢(z, p,y,7) =
T for 7 € [V/,b] and p is invariant under X. Denote by

Wo =2 8™ k=1 % [1,2] x S¥71 x [a, b]

the result of flowing S™ %=1 x [1,2] x S¥=! € £; by —X until it hits the level
¢ = a, so that ¢(z,p,y,7) = 7 for 7 € [a,b] and p is invariant under X. By
choosing b > ¢ and ¥; sufficiently small we can ensure that

W:ZWOUW1 CN.

Since X - p =0 and X -7 > 0, any graph 7 = f(p) in W is transverse to X.
Now set
T := ([1,2] x [a,b]) U ([0,2] x [V/,b]) C R?

and pick a region
[0,2] X [a, )] 2 RCT

with the following properties:
(1) 7(p:t) = 85
(if) 7(p,t) =t near ({2} x [a,0]) U ([0, 2] x {b});
(iii) each hypersurface [0,2] x {t} is a graph 7 = f;(p) with f; constant near
p=0
(see Figure 777). Then the region
U:={(z,py,7) €W |(p,7) € R}

has the desired properties. O

Next we prove an analogue of Lemma 8.13 for an embryonic zero. Consider a
vector field X with a Lyapunov function ¢ : V' — R and an embryonic zero p
of index k — 1 and value ¢(p) = ¢. Define VV;E as in Lemma 8.7. Pick a regular

value a < ¢ such that lA); = Wp_ N{® > a} is a smoothly embedded half k-disk.
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Lemma 8.14. For every neighborhood N of ﬁlj there exists a b > ¢ and a
closed subset

D™ x [a,b] 22U C N\ D,

with the following properties:
(i) ¢
(i1) ¢lpm-1xqey =t near (OD™1 x [a,b]) U (D™ " x {b});

Dm—1x{t} >t

(iii) each hypersurface D™~' x {t} is transverse to X.

Proof. Pick b > ¢ and a neighborhood
¥, 2Byt

of the (m — k)-disk S := W, N ¢71(b) in the level set ¢~1(b) such that S C

B""!. Denote by (p,y) € [0,2] x S™=2 polar coordinates on By'~'. For ¢ <

b < b denote by
Wy = Byt x [, 0]

the result of flowing 1 by —X until it hits the level ¢ = ¥', so that ¢(p,y,7) =7
for 7 € [b',b] and p is invariant under X. Denote by

Wo = [1,2] x S™ 2 x [a, b]

the result of flowing [1,2] x S™~2 C ¥; by —X until it hits the level ¢ = a, so
that ¢(p,y,7) = 7 for 7 € [a,b] and p is invariant under X. By choosing b > ¢
and X; sufficiently small we can ensure that

W .=WyuW; C N.
Now pick R C T C R? exactly as in the proof of Lemma 8.13. Then the region
U:={(p,y,7) €W |[(p,7) € R}

has the desired properties. O

The next lemma states that we can interpolate between two Lyapunov functions
near the stable manifold.

Lemma 8.15. Let X be a vector field with Lyapunov function ¢ and hyperbolic
(resp. embryonic) zero p. Suppose that ¢'°¢ is a Lyapunov function for X near
p with ¢(p) = ¢'°°(p) = c. For suitable a < c define D, (resp. ﬁ;) as above.
Then there exists a Lyapunov function x : N — [a,00) on a neighborhood N of
D, (resp. ﬁ;) which agrees with ¢ near N'N0 ¢~ (a) and with ¢'°¢ near p.
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Proof. Pick a sufficiently small § > 0. If p is hyperbolic X has no critical points
on the set D, N{¢ > a+05}N{¢'°° < c—d} and is transverse to its boundary. If p
is embryonic X has no critical points on the set ﬁ; N{¢ > a+5}N{g"° < c—4},
is transverse to the boundary components ﬁ; N{$p=a+0d} and 13; N{gtc =
c— 6}, and is tangent to the boundary component D, N {¢ > a+d} N{ Ploc <
c— 6}. Hence in either case we can use the flow of X to construct a Lyapunov
function x on D, (resp. D,’) which agrees with ¢ for ¢ < a + ¢ and with ploc
for ¢'°¢ < ¢ — 6. Applying the same argument to a small neighborhood of D,
(resp. ﬁ; ) yields the desired function Y. O

Proof of Proposition 8.11. We first prove part (a) for p hyperbolic. Let x : N' —
R be as in Lemma 8.15, and let

5™kt % DF x [a,b) 2 U C N'\ D
be as in Lemma 8.13. For ¢ € [a, b] set
U := 8™ F=1 x D* x {t}.

Then the function
0:U — R, Oz, p,y,t) =1t

has the following properties:
(i) ¢ >0 on U;
(ii) ¢ = 0 near (S™F=1 x OD* x [a,b]) U Uy;
(iii) X -6 > 0.

After replacing x by f o x for a suitable function f with f(¢) = ¢ near ¢t < ¢
we may assume that sup, x < b. Pick a small § > 0 such that sup, x <
b—dand x = ¢ on NN{a < ¢ < a~+ §}. Interchange level sets of 6 near
§m=k=1 5 9DF x [a,b] to obtain a function @ for which (i) and (iii) still hold,
but instead of (i) we have 0(p,a+08) > b—6 for all p € [0,2—8]. This condition
ensures > x on

U = (8™ 1% [0,2—6]x S~ x [a+6, b)) U(S™ 1 x[0,2] x S*~1 x [a, a+7]).
Extend 6 to NV by setting 6 := a on N\ U. Set

U" = 8m k1 % [2-6,2] x S¥71 x [a + 4,0
and define ¢ : V — R by

= max(0,x) on N \U”,
e outside N'\ U".
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Since § > x on U’ this defines a continuous function. Since y > a on N, the

function v agrees with x on A"\ U, in particular ¢ = ¢'°° near p. According to

Proposition 3.22, a suitable smoothing of ¥ will be a Lyapunov function for X State better result to
with the desired properties. This proves part (a) for p hyperbolic. refer to!

Part (a) for p embryonic is proved analogously, using Lemma 8.13 and Lemma 8.15
for the embryonic case.

Finally, we prove part (b). Let Xy, ¢;, $i°¢ for t € [—¢, €] be as in the statement
of (b). Part (a) yields for each ¢ a Lyapunov function for X; which agrees with
¢; outside U and with ¢l°® near p. Note that for each t the constructions in
part (a) can be done smoothly for all parameters s sufficiently close to t. So
for each t € [—¢,¢] we find an open subset I; C [—¢,¢] and a smooth family
of Lyapunov functions 9%, s € I, for X which agrees with ¢ outside U and
with ¢!°¢ near p. Since finitely many of the I; cover [—¢,¢], we find a partition
—e =1ty <t <. <ty =¢e and smooth families of Lyapunov functions 1,
t € [titi—1), i = 1,..., N for X; which agree with ¢; outside U and with ¢
near p. Now for each 1 < i < N — 1 the functions v} and ;"' both agree
with ¢,, outside U and with qbfc near p, so the same holds for the interpolating
functions (1 — s)i + sy;t', s € [0,1]. Concatenating the families ¢ with
these interpolations and appropriately changing the parametrization yields the
desired family ¥; and concludes the proof of Proposition 8.11. O

8.4 Morse functions
8.5 Modifications of Morse functions

8.6 The h-cobordism theorem



Chapter 9

J-convex surroundings

9.1 J-convex surrounding problem

For a closed subset A of a complex manifold (V,J), consider the following

Surrounding problem. Does A possess arbitrarily small neighborhoods with
smooth J-convex boundary? In Section 2.5 we have seen that the surrounding
problem is solvable for

e totally real submanifolds;

e properly embedded complex hypersurfaces with negative normal bundle.

The main theorem of this chapter solves the surrounding problem for totally
real balls suitably attached to J-convex domains. For a hypersurface ¥ in an
almost complex manifold (V,J), we say that a submanifold L with boundary
OL C ¥ is attached J-orthogonally to % along OL if, for each point p € 0L,
JT,L C T,¥ and T),L ¢ T,%. The first condition implies that 0L is an integral
submanifold for the maximal complex tangency £ on X. If ¥ is J-convex and
dimg L = dim¢ V' = n, then the second condition 7},L ¢ T,% follows from the
first one because integral submanifolds of the contact structure £ have dimension
at most n — 1.

Theorem 9.1. Let (V,J) be a complex manifold of complex dimension n and
W C V a compact domain with smooth J-convexr boundary OW. Let A C
V \ intW be a a totally real k-ball attached J-orthogonally to OW along OA.
Let V! C V be an open neighborhood of W U A. Then W U A has a compact
neighborhood W' C V' with smooth J-convex boundary.

Moreover, if k < n and f(D¥ x D"=%) C V \intW is a totally real embedding
extending A = f(D* x {0}), attached J-orthogonally to OW along f(ODF x
D"=k), then W' can be chosen such that OW' intersects f(D¥ x D"=k) J-
orthogonally.

113
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Proof. We use the notation of Lemma 4.9. Thus for k£ < n we set

ro= w?+~-~+x%+y,§+1+~--+y%, R:=\/y} + - +yi,

where z1 + iy1,..., T, + i1y, are complex coordinates in C™. The notation D
stands for the unit k-disc {R < 1,7 = 0} C C™. We denote by H. the k-handle

{R<1+4er<elcCm

Let us consider a slightly bigger domain W VI, W CInt] W with a J-convex
boundary OW which J- orthogonally intersect A. Denote A=A \ Int W. Let
us parameterize A by a diffeomorphism f : D, — A such that f(D) = A. The
diffeomorphism _f can be extended to a totally real embedding f: D, x Q”*k —
V' such that f|p.xo = f and f(D. x D"7*) is J-orthogonal to OW. The
embedding f can be extended to a diffeomorphism F : U.(D. x D"F) — V'
such that the 2-jet of the pull-back complex structure J= f+«J coincides with the
standard complex structure i along D, x D"~*  C". In particular, for any d>0
there is a ¢ > 0 such that in U, (D, x D"’k) the complex structures 7 and J are
§-close in the C%-metric. Denote 3 := F~13. Using Proposition 3.15 we find for
any a > 1 a hypersurface 5’ which comc1des with ¥ outside U, (D. x D"~*), and
with the hypersurface {S(r) = V1 + ar?} in U,/ (D. x D"~%) for a sufficiently
small positive ¢/ < o. It can make this constructionnlfeeping the i-orthogonality
condition between D, x D"~* and the hypersurface Y. Using Corollary 4.15 we
can construct an i-convex hypersurface ¥’ (given by {R = ¢(r)} for a suitable
shape ¢) which surrounds the disk D and coincides with ¥’ outside U, (D).
Note that by Lemma 4.9 the hypersurface {R = ¢(r)}, and hence ¥’ is i-
orthogonal to D, x D" *. By Remark ?? the modulus of i-convexity of >
is bounded below by a constant independent of ¢’. Hence, by Lemma ?? we
conclude that if ¢ is chosen small enough then ¥’ is also J- -convex. Let | WcCH
be the region bounded by ¥’ and containing D. Then W' := Wu F(W) is the
desired neighborhood of W U A.

O

Corollary 9.2. Let (V,J) be a complex manifold and W C V a compact do-
main with smooth J-conver boundary OW. Let L C V' \ intW be a totally real
compact submanifold attached J-orthogonally to OW along OL. Then W UL has
arbitrarily small neighborhoods with smooth J-convex boundary.

Proof. Let U C V be a given open neighborhood of W U L. Pick a Morse
function ¢ : L — R with regular level set L = ¢~1(0) and critical points p; of
values 0 < ¢(p1) < -+ < ¢(pm) and Morse indices k;. Consider the gradient
flow of ¢ with respect to some Riemannian metric. The stable manifold D~ (p;)
of p; is a totally real kq-ball attached J-orthogonally to 0W. By Theorem 9.1,
we find a compact neighborhood W; C U of WU D™ (p;) with smooth J-convex
boundary. Moreover, due to the last statement in Theorem 9.1, we may assume
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that L intersects 0W; J-orthogonally. In particular, D~ (ps) is attached J-
orthogonally to W;. Now continue by induction over the critical points. O

The preceding corollary extends to totally real immersions. We say that two
totally real submanifolds L, Ly of the same dimension in an almost complex
manifold (V,J) intersect J-orthogonally at p if JT,,L1 = T,Ls.

Corollary 9.3. Let (V,J) be a complex manifold and W C V' a compact domain
with smooth J-convex boundary OW. Let L C V \ intW be a totally real immer-
sion of a compact manifold, with finitely many J-orthogonal self-intersections
away from OL and attached J-orthogonally to OW along OL. Then W U L has
arbitrarily small neighborhoods with smooth J-conver boundary.

Proof. Let U C V be a given open neighborhood of W U L. Let L1, Lo be the
two local branches of L at a self-intersection point p. By J-orthogonality of the
intersection, there exist local holomorphic coordinates in which L; C R™ and
Ly C iR™. Let B(p) C U be the image in V of a small ball around the origin in
C™. The boundary 0B(p) is J-convex and intersects Ly and Lo J-orthogonally.
Construct such balls around all self-intersection points p1, ..., pm, disjoint from
each other and from OW. Then W’ := W U B(p1) U--- U B(p) C U has
J-convex boundary, to which the totally real submanifold L\ intWW’ is attached
J-orthogonally. Hence the result follows from Corollary 9.2. O

In particular, for W = () we obtain

Corollary 9.4. Let (V,J) be a complex manifold and L CV a totally real im-
mersion of a compact manifold with finitely many J-orthogonal self-intersections.
Then L has arbitrarily small neighborhoods with smooth J-conver boundary.

Remark 9.5. An alternative proof of the last corollary combines surroundings
of totally real embeddings (Proposition 2.13) with the surroundings near the
double points provided by Lemma 4.7 below.

9.2 J-convex surroundings and extensions

Lemma 9.6. Let A be a closed subset of a complex manifold (V,J). If the
surrounding problem is solvable for A, then given a bounded J-convex function
¢ on a neighborhood of A, A possess arbitrarily small neighborhoods U with
smooth J-convex functions i such that 1 = ¢ near A and OU is a regular level

set of .

Proof. By hypothesis, A possesses arbitrarily small neighborhoods U with smooth
J-convex boundary. Let ¢ < infy ¢ and C > sup4 ¢. By Lemma 2.4, there ex-
ists a J-convex surjective function 45 : W — [¢,C 4+ 1] on a neighborhood W of
AU such that U = ¢~1(C) is a regular level set. A smoothing of max(¢, @) is
the desired function . O
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The main theorem of this chapter allows us to extend J-convex functions over
handles with control over the critical points.

Theorem 9.7. Let (V,J) be a complex manifold of complex dimension n and
W C V a compact domain. Let A C V \ intW be an embedded totally real
k-ball attached J-orthogonally to OW along OA. Let ¢ : W — R be a J-conver
function with regular level set OW = ¢~1(a) which is extended to a function on
A such that ¢ >a onintA. Then given any open neighborhood V.C V of WUA
and b > maxa¢, there exists a compact neighborhood Wcv of WUA and a
J-convex function i : W — R with the following properties:

(a) =3¢ on W' :={¢p < da'} for some a’ < a;

(b) v=1(b) is a regular level set that coincides with $~*(a) outside a neighborhood
UcV\W of 9A;

(c)=fod on W\U for a smooth function f:R — R;

(d) there exists an isotopy hy : A" — A’ (on an extension A of A up to OW')
such that hy =1 on A"\ U, hg =1, and hi¢p = ;

(e) the critical points of ¥ agree with the critical points of ¢|a and have positive
definite Hessian transversely to A.

The following is the key result for the proof of the Theorem 9.7.

Proposition 9.8. Let H be a standard k-handle and ¢ : U — R an i-convex
function on a neighborhood of S such that ¢|s = a and dp = —2dR along S.
Extend ¢ to a function DUU — R such that ¢ >a on intD. Let U be a
neighborhood of S in U and b > maxp¢p. Then there exists a neighborhood
W C H of {¢ < a}UD and an i-convex function 1 : W — R with the following
properties:

(a) ¥ =¢ on {p < a'} for some d' < a;

(b) =1(b) is a regular level set that coincides with ¢~ (a) outside U;
(c)ih=fop on{p<a}\U for a smooth function f: R — R;

(d) there exists an isotopy hy : D14e — D1y such that hy = 1 outside D1+Eﬂ(~],
ho =1, and hi¢ = ¢;

(e) the critical points of 1 agree with the critical points of ¢|p and have positive
definite Hessian transversely to D.

Proof. Fix A > 1. By hypothesis, ¢ coincides together with its differential
along S = {r = 0,R = 1} with the i-convex function Ar?> — R?> + 1 + a. By
Proposition 3.15, there exists an i-convex function ¢Z : U — R, C'-close to ¢,
with ¢ = ¢ outside U and ¢ = Ar2 — R2 + 1 + a near S. Since ¢ and ¢ are
C'-close and have no critical points on (sufficiently small) U, there exists and
isotopy hy @ D11e — Dite such that hy = 1 outside D14 N U, hy = 1, and
hio = é.

Extend ¢ to an open neighborhood W of U U D by (ZS|D + Ar? outside U.
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This function will be i-convex for A sufficiently large. Choose W so small that
supy, ¢ <b .

By construction, the level set ¢~ (a) agrees with the hypersurface {R = v/1 + Ar2}
on r < « for some v > 0. By Corollary 4.15 and Lemma 4.9, there exists an
i-convex hypersurface ¥ C W (given by {R = o(r)} for a suitable shape )
which surrounds the disk D and coincides with ¢~(a) along r = .

Choose a tubular neighborhood X[ — 1,1] of ¥ = {0} in W such that the
hypersurfaces ¥; := 3{t} are i-convex, and outside U they coincide with level
surfaces of the function ¢. By Lemma 2.4, there exists an i-convex function
¢ :X[—1,1] — R with level sets ¥; such that (|s, = b and (5_, = <infy ¢.
Extend (¢ to the domain bounded by ¥_; as the constant b’ and set

¢ 1= max(, ()

on the domain W := {¢ < b} € W bounded by ¥. Note that 1) = ¢ in the
region {¢ = b’} bounded by X_;, hence ¥ is strictly i-convex (although the
constant function ¥’ is not) and 1Z = QNS near D. In particular, the critical points
of ¥ on {¢ = '} agree with the critical points of f ¢|p and have positive definite
Hessian transversely to D. On the other hand, ¢ = { near X, and in particular

> = ¢ 1(b).

Observe that on W'\ U we have 1) = f o ¢ for a continuous convex function
f + R — R which is smooth except at one point (where ( = ¢) and satisfies
f(x) =z for x < o’ with some @’ < a. Let f be a smooth convex function which
agrees with f for # < @’ and # > a. We can replace ¥ on {(,b < a}\ U by the
smooth function f o (;57 without changing it near Dj 4. and keeping it i-convex.
Let us denote the resulting function by ¢ Finally, we smoothen the function
¢, without changing it on {¢ < a} \ U and near D;,., to the desired i-convex

function 1.

It only remains to verify that the smoothing processes do not create new critical
points. For the step from w to 1/) this is obvious. For the smoothing from 1/) to
¥, after shrinking U and W, we may assume that it takes place in the region
where 0 < 7 < v and @(z,y) = ¢D1+g (71,...,2) + Ar?. In this region we have
Vr-¢ > 0. Since Vr is also transverse to the hypersurface ¥ = {R? - Ar? =1},
hence to each of the nearby hypersurfaces Y, it satisfies Vr - ( > 0 whenever
¢ > 0. Now it follows from Propositions 3.21 and 3.22 that the smoothing of
max((, ) does not create new critical points. O

Proof of Theorem 9.7. After a small perturbation near A, we may assume that
¢ is real analytic near 0A. Let va be the unique vector field tangent to A along
OA with va - ¢ = —2. Thus va is real analytic. By Lemma 77, there exists
a holomorphic embedding F : H, — V with F(D) = A whose differential
along S maps v to va and T(0~ H)|g to T(OW). The i-convex function F*¢ :
UUD — R, with U a neighborhood of S, satisfies ¢|s = a and d¢ = —2dR along
S. Let 1E :H > W — R be the i-convex function provided by Proposition 9.8.
Property (c) allows us to extend Fy¢) by fo¢ to a J-convex function ¢) on W' :=
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W U F(W). The properties of ¢ in Theorem 9.7 follow from the corresponding
properties in Proposition 9.8. O

9.3 Surrounding by level-sets of a given J-convex
function

Theorem 9.9. Let ¢ : V — R be a J-convex function. Suppose that for a
critical point p of ¢ and a real a the stable manifold of p intersects ¢ > a
along a disc A. Then for any neighborhood U of {¢ < a} U A there exists
diffeomorphisms g : V. — V and h : R — R such that

e the function ¥ = ho ¢og is J-convex;
e glv \ U preserves the level sets of ¢;
hd h|(—oo,a) = Id;

e there exists a’ > a such that the level set {1 = a'} surrounds {¢ < a}UA
and is contained in U.

TO BE CONTINUED
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Modifications of J-convex
Morse functions

In this chapter we show how to modify critical points of J-convex Morse func-
tions. This parallels the h-cobordism theory for ordinary Morse functions. Thus
we wish to do the following modifications:

e moving the attaching spheres by isotopies;
e changing the order of critical levels;
e creation and cancellation of critical points;

e handle slides.

10.1 Moving the attaching spheres by isotopies

For a function ¢ : V' — R we will use the notations
Vb = d)il(b)a V[a’b] = (,2571([0,, b])
The goal in this section is to prove the following result.

Proposition 10.1. Consider a complex manifold (V,J) and a proper J-convex
function ¢ : V — R without critical values in the interval [a,b]. Let A C V?
be an isotropic submanifold and L C V its image under the flow of =V 4¢. Let
(At)iejo,1) be an isotropic isotopy of Ao := LNV in V.

Then, after composing ¢ with a sufficiently convex increasing function f :
[a,b] — R, there exists a diffeotopy hy : V. — V with the following properties for
allt €[0,1]:

(i) hy = 1 outside V1ol

119
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(ii) @i := ¢ o hy is J-conver;
(ii1) the image Ly of A under the flow of —V4,¢; intersects V' in Ay.

Remark 10.2. The corresponding result for ordinary functions ¢ is very easy:
It just states that one can realize a smooth isotopy of spheres A; descending
spheres for a homotopy of gradient-like vector fields, keeping the function ¢
fixed. In contrast, Proposition 10.1 is more subtle because the gradient vector
fields V4, ¢, are determined by the functions ¢; themselves.

The proof requires some preparation. The following lemma is the main technical
ingredient.

Lemma 10.3. Let ¥ be a J-convex hypersurface in a complex manifold (V,.J)
and X+ a vector field near ¥ with JX+ € TX. Let A C X be an isotropic
submanifold and X be a vector field along A that is transverse to . Suppose
that £, A, X+ are real analytic. ~ Then for any compact subset K C A there
exists a J-convex hypersurface X' with the following properties:

(i) K C ¥ and § C TY along K;
(ii) X' is transverse to X+ and X' = % outside a neighborhood of K ;
(i1i) JX (x) € T,X forallx € K.

Proof. Let n =dimc V and k — 1 = dim A. We will only carry out the proof in
the Legendrian case k = n, the case k < n being analogous but notationally more
involved. Note that the case k < n formally follows from the Legendrian case
provided that the symplectic normal bundle (TA)¥/TA of A in the maximal
complex tangency ¢ C T'X is trivial. Indeed, in this case a neighborhood of
A (after shrinking it) is isomorphic to a neighborhood of the zero section in
J'A @ C"F by a real analytic contactomorphism (see Chapter5). So we can
extend A to a real analytic Legendrian submanifold A 2 A x R*% ¢ ¥ and X
to a vector field X along A.

After possibly changing its sign, we may assume that X' is opposite to the
coorientation of ¥. The flow of X+ extends A (after shrinking A) to a real
analytic submanifold A x [-1,1] C V. Thus a neighborhood of A in V' is biholo-
morphic to a neighborhood of A@® 0 in A® @ C. Here A® is the complexification
of A and X+ generates the real line 0 @ iR. This implies that T = TA® ¢ R
with complex tangency & = TAC along A. Denote coordinates on A & C by
(z,w) = (x,y,u + iv), where y are coordinates on A and x coordinates in the
fibres of AC. In these coordinates, 3 can be written near A as the graph

Y ={v=0¢(x,yu)}

of a function ¢ with ¢(0,5,0) = 0 and d¢(0,y,0) = 0. The choice of X+
implies that ¥ is J-convex cooriented from above. We will find ¥’ as the graph
> = {v = ¢(x,y,u)} of a function ¢ with ¢ = ¢ outside a neighborhood of
K®0in A® @ R. The condition K C ¥’ and £ C TY along K are equivalent
to ¢(0,y,0) = 0 and d,¢(0,y,0) = 0 for y € K. After rescaling and possibly
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changing its sign, we can write the given vector field X as X =9, —7(y)0, +Y
with Y tangent to {\C and 7 some given function on A. Then JX € T along
K is equivalent to ¢, (0,y,0) = 7(y) for y € K.

Let Q := dist} be the squared distance (with respect to some Hermitian metric)
from the zero section in A®. By Lemma 2.13, @ is a J-convex function. Note
that the hypersurface {v = Q(x,y)} is tangent to ¥ along A. Its Levi form at
points of A is given by —dd®(Q(xz,y) — v)|e—rac = —dd®Q, so {v = Q(z,y)}
is J-convex along A cooriented from above. Thus by Corollary 3.18, we can
modify ¥ near K, preserving J-convexity and the condition A C X, such that
Y ={v=0Q(z,y)} near K.

Now let a function 7(y) be given as above. Our task is to find a smooth function
¢ with J-convex graph such that

$(0,4,0)=0,  d:4(0,5,00=0,  $u(0,5,0) = 7(y)
for y € K and gg(ac,y,u) = Q(z,y) outside a neighborhood of K.

Pick a function g(y,u) on A & R with g(y,0) = 0 and g¢,(y,0) = 7(y) for all
y € K, and such that g(y,u) < —1 outside K’ x [—1,1] for some compact
neighborhood K’ of K in A. For any € > 0 let ¢°(y,u) := eg(y,u/e). These
functions satisfy ¢°(y,0) =0, d.¢°(y,0) = 0 and ¢5(y,0) = 7(y) for all y € K,
and ¢°(y,u) < —e outside K’ x [—¢, e]. Moreover, we have

l9°(y, u)| < Comax(|ul,e), |[g;l |95, < Coe, |gals 95l < Cos  ggul < Co/e

for (y,u) € K’ x [—e,e] with a constant Cj not depending on e. For 0 < a < 1/2
and € > 0 consider the function

w(%yﬂﬁ) = aQ(‘r’y) + 95(% u)

Our desired function ¢ will be a smoothing of

¢ = max(Q — &,4)).
Let us first determine the region where ¥ < Q) — ¢, or equivalently,
9 (yu) +e < (1-a)Qz,y). (10.1)

For |u| > ¢ or y ¢ K’ this inequality holds because the left hand side is negative
and the right hand side is nonnegative. Moreover, 1 — a > 1/2 implies

gs(y7 U) +e § (CO + 1)8 S 2(00 + 1)€<1 - a’)7

so inequality (10.1) holds if Q(z,y) > Cie with the constant Cy := 2(Cy + 1)
not depending on € and a. So we have ¥ < @) — € outside the compact region

W= {(z,y,u) |y € K',Jul <¢e,Q(z,y) < Cre}.
On the other hand, in the region

W= {(z,y,u) |y € K',Q(x,y) + Colu| < e}
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we have the converse estimate

9" (y,u) + € > eB(y) — ColulB(y) > Qz,y) > (1 —a)Q(z,y).

Hence ¢ > @ — € on the neighborhood W of K.

We will show below that for a and ¢ sufficiently small the graph of v is J-convex
on W’. Assuming this for the moment, note that the graph of Q — ¢ is also J-
convex. Thus by Corollary 3.26, we can C?-approximate 1[) by a smooth function
¥ with J-convex graph which agrees with ) on W and Q — ¢ outside W’. (Note
that in Corollary 3.26 the minimum appears rather than the maximum because
the graphs are cooriented from below rather than above). Now on any fixed
(i-e. independent of a,¢) compact neighborhood U of K’, the function Q — ¢
C2-approaches Q as e — 0. Hence for small &€ we can modify & outside W’ so
that it agrees with X outside U. This yields the desired hypersurface X'

It remains to prove J-convexity of the hypersurface {v = ¥ (z,u)} over W’ for
small ¢ and e. For this, cover K’ by finitely many holomorphic coordinate
charts in which A corresponds to iR"~!. Choose ¢ so small that the coordi-
nate charts cover the region {(z,y) | y € K',Q(z,y) < Cie}. According to
Lemma 77, in each such coordinate chart a sufficient condition for J-convexity
of the hypersurface {v = (z,u)} is given by

Emin(,(/}) = qubnin - 2|{¢)uu| |dz'l/}‘2 - 4|dzwu| ‘dzw|(1 + WJUD > 0.

By the J-convexity of the function @), we have Hgin > v for some constant
~v > 0. Moreover, |Q,| < C|z| and all derivatives of @ involving a u-derivative
vanish. Here and in the following C' denotes a generic constant that depends on
Cy, C1,7 but not on a,e. The estimates for g° yield

HJ™ > qa—Ce, || < Cale| + Ce,  [thul, [pzu] <O, |thuu| < Cfe
for (y,u) € K’ x [—¢,¢]. It follows that
LM (4h) > ya — Ce — Calx| — Ca?|x|*/e.
Now on W’ we have v|z|?> < Q(x,y) < Ci¢, and hence
LM (1)) > ya — Ce — Cay/e — Ca?.
Choosing € < a?, we obtain
L7 () > ya — Cd?,

which is positive for a > 0 sufficiently small. This proves J-convexity of the
hypersurface {v = 1(z,u)} and hence the lemma. O

Lemma 10.4. Let ¢ be a proper J-convex function on the complexr manifold V/
without critical values in [a,b]. Let L C V14 be a totally real submanifold that
intersects each level set J-orthogonally. Suppose that ¢ and L are real analytic.
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Then there exists a J-convex function v, C'-close to ¢, such that 1) = ¢ on L
and V1) is tangent to L.

Moreover, if V4¢ is already tangent to L near V0eaTy vl for some [a/, V] C
(a,b), then we can choose ) = ¢ on ylaal e,

Proof. Let X be the unique vector field tangent to L, orthogonal to the inter-
section of L with level sets of ¢, with d¢(X) = 1. Then X is real analytic and
JX is tangent to the level sets of ¢. The flow of X defines a real analytic diffeo-
morphism A X i[a,b] = L, where A := L N V% This diffeomorphism extends to
a biholomorphic identification of a neighborhood of L in V with A€ x C, where
AC is the complexification of A. Denote coordinates on A€ by z and on C by
u+4v. Under this identification L corresponds to A x i[a,b], and X = 9,, ¢ = v
along L. Since the level sets of ¢ are J-orthogonal to L, they are tangent to
TA® @R along L.

Define the function
1
¥z u,0) = 0+ Q=) + o flo)?

on A® x C, where Q := distf\ for some Hermitian metric on A® and f is a
positive function. We compute

dip = dv + dQ + f(v)udu + %f’(v)zﬂdv,

d = du +dQ o Jyc — f(v)udv + %f’(v)zﬁdu,
wy = —dd%p = wg + f(v)du A dv along L.

In particular, ¥ is J-convex and diy = dv = d¢ along L. Hence by Proposi-
tion 3.15, ¥ can be extended to a J-convex function on V which is C'-close to ¢
and agrees with ¢ outside a neighborhood of L. The gradient of 1 is determined
by the equation

wy (V) Y) = —d“yp(Y)
for all Y € TV. Now d%y = du along L implies V1 = f(v)d, along L, so V2
is tangent to L.
Finally, suppose that V4¢ is already tangent to L near Vl0eal yyPibl pick a

cutoff function 8 : V' — [0, 1] which equals 0 outside V0e"T and 1 where Vs
is not tangent to L. Construct ¥ as above and set

0:=(1-p)¢+ B
This function agrees with ¢ on Ve gy and by Lemma 3.16 , 6 is J-convex
for 1 sufficiently C'-close to ¢.

Consider a point z with 0 < 8(x) < 1. By construction, we have ¢(z) = ¢(x)
and d¢(x) = dip(x). Moreover, since V,¢(z) is tangent to L, the vector fields
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X, Vg and Vo are parallel along L. By appropriate choice of the function f
in the construction of v, we can therefore arrange Vg4¢ = V9 along L. Since
¢ and 1 agree to first order, we have

wy = (1 = Blwg + Bwy
at the point x. Hence for any Y € T,V
wo(Veh,Y) = —d®0(Y)
= —(1-B)d"¢ — Bd“y
= (1 = B)wp(Veg,Y) + Bwy(Vyh, Y)

(1= Bwg(Ved, Y) + Buwy (VoY)
wo(Vep,Y).

This shows Vgl = V¢ along L. In particular, V0 is tangent to L, so 0 is the
desired function. O

Next we will prove a special case of Proposition 10.1.

Lemma 10.5. Proposition 10.1 holds provided that the A, are sufficiently C?-
close to Ag.

Include complete proof!

Proof. (sketch) We will construct the h; C?-close to the identity. Then the ¢,
will be C?-close to ¢ and hence automatically J-convex. So we only have to
show that by C2-small variations of ¢ we can arrange L to meet V% in any
Legendrian embedding C2-close to Ag.

Consider a variation ¢, := ¢ + €1 of ¢ in the direction of a function v with a
small parameter . The new gradient field will be of the form

V.0 = Vo +eY + O0(e?).

For any function f let wy := —dd® f. If this is nondegenerate the gradient V 19
of another function is determined by the equation

wr(Vyg,v) = —dg(Jv)

for all v € TV. Using this, we find

wo, (V. de,v) = —do.(Jv)
= —d¢(Jv) — edip(Jv)
= wy(Ved,v) + cwy(Veth, v).

On the other hand, we have

wWo. (Vo be,v) = w4 (Vo,v) + ewy (Y, v) + 2wy (Vo ,v) + O(e7).
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Comparing the linear terms in ¢, we find
i(y,vw)w(b = iv¢¢dd(c1/).

This equation uniquely determines Y = Vg9 + Y’ with iy wyg = ivwdd(cz/}. As
in the proof of Proposition 2.13, consider (in the Lagrangian case) local complex
coordinates (x,y) near Ag in which L = {y = 0} and V¢ = 9,,. Take ¢ to
vanish on L, so % is only a function of x. Then Y’ is a vector field in the
z-coordinates, i.e. tangent to L. By varying the derivative of ¢ along L we can
arrange for Vg1 any vector field in the y-coordinates, i.e. transverse to L. Now
the result follows from the implicit function theorem. O

Proof of Proposition 10.1. Step 1. We first prove the proposition under the
hypothesis that ¢ and the isotopy A; are real analytic.

Let ¥ := V% The flow of the real analytic vector field V¢/|V¢| defines a real
analytic diffeomorphism
¥ X [a,b] 2 Vbl

Under this identification, ¢ corresponds to the function (z,r) — r, V¢/|Vé| to
the vector field 9., L to A x [a,b], and A; to Ay x {a}. In view of Lemma 12.9,
Ay x {r} is isotropic for all r € [a, b].

Pick a C%-function g : [a, b] — [0, 1] which is real analytic on an interval [a’, '] C
(a,b) and equals 1 on [a,a’] and 0 on [0, b]. For t € [0, 1] define

Ly = U Aigry X {r} C X x [a,b].
r€la,b]

This is a totally ral submanifold, real analytic on X x [a’, V'], which intersects
each level set ¥ x {r} in the isotropic submanifold

At,r = Atg(r) X {T}

Let X, , be the unique vector field tangent to L; along A; , with dr(X, ;) = 1.
In particular, X, , is transverse to the level sets 3 x {r}. Hence by Lemma 10.3
there exist J-convex hypersurfaces ¥, , transverse to 0, such that A, C 3.,
the contact structure &, is contained in T, along A;,, and JX;, € T3,,.
Note that the last two conditions say that L; intersects ¥, J-orthogonally for
all 7. Moreover, we may choose ¥;, = X x {r} for r outside [a/,V’].

Proof!

By construction, the ¥ , for fixed ¢ and varying r form a foliation near L;. Thus
by Proposition 3.28, we can modify the X, to a J-convex foliation, keeping
them fixed near L; and for r outside [a’,b’]. Let ¢, be the function which
equals 7 on the new hypersurfaces ir,t- Pick a sufficiently convex increasing
function f : R — R such that f o is J-convex for all ¢ € [0, 1]. Now we apply
Lemma 10.4 to the functions f o1, and the totally real submanifolds L; over the
set {r € [@/,']}. We find J-convex functions ¢;, C'-close to f o, and agreeing
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with f o, on L; and for r outside [a’,b'], such that Vg, ¢, is tangent to L;.
Thus L; is the image of Ayp = Ag x {b} = A under the flow of —Vg,¢;, and
by construction L; intersects ¥ x {a} in Ay, = A; x {a}. This proves property
(ii).

By construction, ¢; agrees with f o ¢ for r outside [a/,b]. Moreover, since
Lo = L, we can arrange ¢g = f o ¢. It remains to find an isotopy h; such that
¢¢ = f o ¢ohy. Define diffeomorphisms g, : VI*¥ — VI8 on the level ¢ (r)
by following the flow of —V4¢ down to V* and then the flow of V4,¢: up to
the level ¢; *(r). Then go = 1 and ¢y = f o ¢ o hy. Moreover, g, = 1 on V1:¢']
and

g VI 2 n o 0,0 = S x 1,0, (2,7) — (n(x),7)

with v := g¢|y,». Define hy on the level $~*(r) as Gip(ry With a smooth function
p : [a,b] — [0,1] which equals 1 on [a,d’] and 0 near b. Then h; = 1 near b and
h is the desired isotopy.

Step 2. It remains to remove the hypothesis that ¢ and the isotopy A; are real
analytic.

Let ¢, A, A; be as in the proposition. Pick an interval [a’,b'] C (a,b). Let ¥ be
C?-close to ¢ (hence J-convex), real analytic on 1 ~*([a’,b']), with ) = ¢ near
Vet Denote by A, C ¢~1(a’) the image of A; under the flow of V1. By
Corollary 7.25, we can C'-approximate A; by a real analytic isotropic isotopy
A} in ¢p~1(a’).

The image of A under the flow of —V ¢ intersects ¢~!(a’) in an isotropic
submanifold A% that is C'-close to A{. So by Lemma 10.5, we can modify
¢ inside the region ¢~ 1([b’,b]) to achieve A = AJ. Similarly, again using
Lemma 10.5, for every ¢ € [0, 1] we can perturb % inside the region ¥~ ([a, a’])
to 1/, such that the image of A} under the flow of —V, v intersects ¢ ~1(a) in
At.

Denote by AY Y~1(V') the image of A under the flow of —V 1. Now apply
Step 1 to the restriction of ¥ to ~!([a’,b']) and the isotropic submanifolds
AY | Al. Denote the resulting J-convex functions on 1~!([a’,5]) by ¢; and ex-
tend them to V(%% via ¢ on ¢~ ([t/,b]) and 1, on 1v~"([a,a’]). By construction,
these extensions are J-convex, coincide with ¢ for t = 0 and near V%% and sat-
isfy property (iii). Now the same argument as in Step 1 provides the diffeotopy
h; with ¢; = ¢ o hy. This concludes the proof of Proposition 10.1. O

10.2 Changing the order of critical levels

In this section we consider the following situation. Let ¢ be a J-convex function
on an n-dimensional complex manifold V. Let ¢ be a nondegenerate critical
point of ¢ of index k < n with ¢(q) = b. Let a < b and suppose that the stable
manifold Wq_ does not meet any critical points of value > a. Define the stable
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disk and sphere
- . — 1 . —
D, =W, N{¢ >a}, S, :=0D,.

Let a’,b" be given with a’ < a <b < ¥'. The following result states that we can
move the level a above the critical level b by a J-convex deformation.

Proposition 10.6. There exists a homotopy of J-convexr functions ¢; such
that ¢ = & and ¢, = fi o ¢ outside a neighborhood U C V1"V of D, , where
fi : R = R are increasing convex smooth functions with fo = 1, fi(x) = z for
x < a, and fi(a) > b. Moreover, all ¢; have q as a nondegenerate index k
critical point of value b and no other critical points in U.

The following lemma reduces the statement of Proposition 10.6 to a model
function on the standard handle H. = D}, _ x D?"~* C C". Here z; = z; + iy,
are complex coordinates such that (yi,...,yx) are coordinates on D 1. and
(T1, oy Ty Yhtds - - Yn) O0 D27F As in Lemma 4.9, introduce the functions

ri= x%+"'+x%+yi+1+"'+y%’ R:=\/y? + - +yi

Lemma 10.7. Under the hypothesis of Proposition 10.6 and for any constant
A > B :=b—a, after a C*-small J-convex deformation of ¢, fived outside a
neighborhood of D, and keeping q as the only critical point (preserving nonde-
generacy and its value), the following holds: There exists a neighborhood of D
biholomorphic to the standard handle H. in which D, corresponds to the disk
D=Dlc D’erE and ¢ to the standard function

Vs (r, R) = Ar? — BR? 4 1.

Proof. By the Morse lemma, for 6 > 0 small there exists an embedding f :
D¥ — D; onto a neighborhood of ¢ such that f*¢(R) = b — BR?. Using
gradient-like vector fields, this extends to a diffeomorphism f : D — D/ with
ffo(R) = b — BR?. Let f: D < V be a real analytic embedding CQ—clqse to
f. Extend f to a holomorphic embedding F : H. — V. Then F*¢|p = f*¢ is
C?-close to the function R — b — BR2. Moreover, since the level sets of ¢ are
J-orthogonal to D, the level sets of F*¢ are C'-close to being i-orthogonal to

D. Hence we find q~5, C?-close to ¢ (thus J-convex) and equal to ¢ outside a
neighborhood of D, such that F*¢|p(R) = b— BR? and the level sets of F*¢
are i-orthogonal to D.

Now consider on H,. the function
Vi (r, R) := Ar®* — BR* + b,

which is i-convex for A > B. The conditions on F *q~5 above show that F *q~5
agrees with 1y together with its derivative along D. Hence by Proposition 3.15,
after a C'-small J-convex deformation supported near D we may assume that
F*¢ = 1t near D. Since the stable and unstable manifolds of 0 with respect



128CHAPTER 10. MODIFICATIONS OF J-CONVEX MORSE FUNCTIONS

to F' *(Z) and g coincide, the critical point 0 remains nondegenerate during this
deformation. C'-closeness ensures that no new critical points are generated.
Now shrink & such that F*¢ = v on H,. and the lemma is proved. O

Proof of Proposition 10.6. We may assume without loss of generality a = 0 and
b = 1; the general case then follows by composing all functions with the affine
function z — (b — a)x + a. After applying the deformation in Lemma 10.7 with
B =1 and A = 64, we may further assume that there exists a neighborhood U
of D, biholomorphic to the standard handle H. in which D corresponds to
the disk D = D} C D}, _ and ¢ to the standard function

Vi (r, R) = 64r% — R? 4 1.

Let ¢ : H. — R, t € [0,1], be the family of i-convex functions from Propo-
sition 4.21 with § < —a’ and any p € (0,e). The ¢, can be extended to
smooth functions ¢; : V. — R by ¢ := f; o ¢ outside U = H_, where the func-
tions f; : [-3,1 + 64¢?] — R from Proposition 4.21 are extended to functions
fi : R — R with fi(z) = 2 for z < —3 and sufficiently convex for x > 1 + 64¢>
such that f; o ¢ is i-convex. Now the properties of the ¢; follow from the corre-
sponding properties of ¢, and f;. O

10.3 Creation and cancellation of critical points

10.3.1 Main propositions

In this section we describe creation and cancellation of critical points of J-convex
functions. We begin by recalling the relevant concepts from Morse theory.

A local model for the creation of a pair of critical points is given by the family
of functions

k n
Py () = 23—ty —fo—k Z 7
i=2

i=k+1

for x € R™ and ¢ € [—1,1]. Note that ¢y has no critical points for ¢ < 0, two
nondegenerate critical points (£ \/15/73, 0,...,0) of indices k, k — 1 for ¢ > 0, and
a unique degenerate critical point at the origin for ¢ = 0. Replacing ; by 1_¢
gives a local model for cancellation of a pair of critical points. We call a critical
point p of a function ¢ an embryo critical point if in a neighborhood of p the
function is equivalent to the model function 1 in the sense that ¢ = foygog
for diffeomorphisms f, g.

As before, W denotes a compact cobordism with boundary OW = 0, W IIo_-W
and all functions on W will be assumed to have 0.LW as regular level sets. A
family of functions ¢; : W — R and gradient-like vector fields X; is called a
cancellation (resp. creation) family if there is a ¢ty € (0,1) such that for ¢ > ¢,
(resp. t < tg) the function ¢; has no critical points, for ¢t > to (resp. t > tg) it
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has exactly two critical points of index k and k — 1, k = 1,...,n transversely
connected by exactly one trajectory of X;, and for ¢ = ¢y it has a unique
embryo critical point. For J-convex functions we always assume in addition
that X; = Vg, ¢, where g, is the metric defined by the function ¢; (see Section
77 above). A deformation of functions ¢, : W — R, ¢ € [0,1], is called weakly
supported in U C W if there exists an isotopy h; : R — R such that on W\ U
we have ¢y = hy o ¢g.

The goal of this section is to prove the following Propositions 10.8 and 10.9.

Proposition 10.8. Let (W, J, ¢) be a Stein cobordism, where the J-convez func-
tion @ has mo critical points. Then given any point p € Int W and an integer
k =1,...,n, there is a creation family ¢ of J-convexr functions, weakly sup-
ported in Op p, such that ¢g = ¢ and ¢1 has a pair of critical points of index k
and k — 1.

Note that in the usual Morse theory an analog of Proposition 10.8 is rather
trivial: using an appropriate cut-off construction any local creation family can be
implanted into a globally defined family, see Subsection 10.3.2 below. However,
in the context of J-convex functions this scheme does not seem to work. In
fact, we do not know whether the statement remains true if one drop the word
“weakly” and tries to construct a locally supported creation family.

Proposition 10.9. Let (W, J, ®) be an elementary Stein cobordism of type II.
In other words, the J-convex function ¢ has exactly two critical points p,q of
index k and k — 1, respectively, which are transversely connected by a unique
gradient trajectory. Denote a_ := ¢lg_w,b:= ¢(q),c:= ¢(p). Choose a reqular
value a € (a—,b). Let A be the closure of the stable disc of the critical point p
in {¢ > a}. Then there exists a cancellation family ¢, : W — R, t € [0,1], of
J-convex functions, weakly supported in Op A, such that ¢g = ¢ and ¢1 has no
critical points.

10.3.2 Recollections from Morse theory

We first recall some facts from the h-cobordism theory for ordinary Morse func-
tions. The basic reference in [50].

Let ¢ : W — R be a Morse function and X a gradient-like vector field. For a
critical point p of ¢ denote by D;;L its stable resp. unstable manifold.

Lemma 10.10. D;,t are smooth submanifolds. If  and X are real analytic then
so are Dpi.

Consider a cobordism W with a Morse function ¢ : W — R which is constant
on 0+W. Suppose ¢ has precisely two critical points p, g of index k and k — 1,
respectively, which are transversely connected by a unique trajectory of some
gradient-like vector field X. Denote a_ := ¢|o_w,b := ¢(q), ¢ ;= ¢(p). Choose
a regular value a € (a—,b). Let A be the closure of the stable disc of the critical

point p in {¢ > a}.
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Lemma 10.11. A is a smoothly embedded half-disk with upper boundary 01 A =
Dy n{¢ > a} and lower boundary 0-A =A N{¢ = a}. If ¢ and X are real
analytic then so are A and O+ A.

Proof. O

10.3.3 Carving one J-convex function with another one

Let ¢ : U — R be J-convex function on an open set U and ¥ = {¢ = a} be a
regular level set. Let us denote by U_ and Uy the domains {¢ < a} and {¢ > a},
respectively. Let ¢ :  — [c_,c4] be another J-convex function defined on a
compact subdomain Q) C U with boundary 92 = 0, Q U 0_Q U 9, such that
Ylopo = cx and 04 QU Oyw C intU,. For a small € > 0 let us denote by Q° the
domain {c_ +e <9 <cy —e} CQ, and by US the domain {¢p <a—c} CU_.
By composing ¢, % with increasing weakly convex diffeomorphisms g, h : R — R
we can arrange that the functions ¢ = g o ¢ and ¥ = h o ¢ satisfy the following
conditions:

e > ¢onUsNQ.;
e ¢>von (U NQ)UI_Q.

To see this, first compose 1 with h such that h(c_) < ming¢ and h(c_ +¢€) >
maxgq- ¢, thus {ﬁv > ¢ on ° and 1; < ¢ on 0_. Then compose ¢ with g such
that g(z) = x forx < a—e and g(a) > maxU+mQJ, thus ¢ > 1 on (U NQ)UI_Q
and{/;>$on Uz NQ..

Take the function rnax(%7 ’(Z) and apply to it the smoothing procedure from Sec-
tion 3.2. This operation we will call the carving with ¥ of the level set ¥ of
the function ¢. The resulting function will be denoted by my (¢, X). Though
there are numerous ambiguities in the definition of this operation it is impor-
tant that it can be done for families of functions smoothly dependent on the
parameters, that ¢ can be chosen arbitrarily small and the smoothing can be
chosen sufficiently close to max(¢, 1)) in the sense of Corollary 3.8. In particu-
larly, everywhere below where we use the notation my (¢, ) we assume that €
is chosen sufficiently small and the approximation is good enough.

10.3.4 The notation and special shapes

Let RF = R*=! x R be the space with coordinates (z1,...,zx), Ds, t > 0,
k

denotes the disc {) x7 < t*} of radius ¢, and we write D instead of D;. We will
1

also use the notation D;(p) for the disc of radius ¢ centered at a point p € RF.
We further denote by D_ the lower half disc D N {x; < 0}, and set 01 D_ =
D_n{zp =0} and 0_D_ =IdDND_, so that we have 0D_ =9_D_Ud,D_.
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Viewing R* as a coordinate subspace of C" with complex coordinates (z; +

Y1, - - -, Tn+iyn) we will consider the splitting C* = R* x R?"~* and will write
z € C"as z = (z,u), where . = (£1,..., %), ¥ = (Tr41y- -, Tny Y1s- -, Yn). We
will also denote =’ := (z1,...,zk_1). Let us set

p=ll2"l| =

k—1
E 1:?, R =
1

so that R = ||z ||, = |[u]].

Given a compact subset K C C" and o > 0 we will denote by U, (K) its open
metric o-neighborhood in C”. If K is a subset of R* then we denote

B,(K):=K x {r <o} c RF x R™~F ="

In Corollary 4.15 we constructed shapes ¢2 5(m) for a > 0 and sufficiently small
7,6 > 0, which define i-convex hypersurfaces G5 =1{R=¢5 ()} C C" sw-
rounding the disc D. We can choose the family smoothly dependlng on param-
eters a,7,d. The i-convex hypersurface C,‘i s satisfies the following conditions

a) C5 5\ Uy(D) = {R? — ar? = 1} \ U,(D);
b) 0275 N B5(D1_7) = {’I“ = (5} N Bg(Dl_,y).

10.3.5 Proof of Proposition 10.9
Assuming that the disc A in the Proposition 10.9 and the function ¢|g, A are real
analytic, we can parameterize A by a real analytic diffeomorphism o : D_ — A

so that we have a(0_D_) = 0_A =A NO_W, while a(04D_) = 01 A is the
stable disc of the critical point ¢q. We also may assume that

(i) ¢o 04\8+D_ = *kp2 + b, where k =b — a;
(i) da (Rlo_p_ ) = ~2kVéla_a.

The embedding o : D_ — A — W extends to a biholomorphism A between a
neighborhood U = U,(D_) for some o > 0 and a neighborhood Op A C W.

Insert a in the notation
in Corollary 4.15



132CHAPTER 10. MODIFICATIONS OF J-CONVEX MORSE FUNCTIONS

Let v = ¢po A: U — R be the pull-back of the function ¢ to U. The second
condition above means that Vé|s_p_ = —V(kR?)|o_p_.

We will construct the cancellation family of i-convex functions v for the func-
tion 19 = 1 which is weakly supported in U. Then the deformation v; o A~}
extends to the required cancellation deformation ¢, on W.

A family of i-convex o, : U — R, t € [0,1], will be called admissible if the
following two conditions are satisfied:

Stab. The intersection R* N U, and the disc A_ are invariant with respect to
the gradient flow of all functions ¢, t € [0, 1];

Loc. The deformation v, is weakly supported in U.

We will call an admissible deformation preliminary if the critical points of ¢,
remain fixed (but may change the critical values).

The required cancellation deformation will be constructed by concatenating sev-
eral admissible deformations. All the deformations which we construct below
will be preliminary, except the last one which will be of cancellation type. To
simplify the notation we will denote all the deformations by 1, and parameter-
ize them sometimes by ¢ € [0, 1], and sometimes by different intervals, assuming
that at any given moment the function ¢ is the function constructed as the
result of the previous step. We will also use the notation 3 for the restriction
of the current function 1 to RENU.

Let us recall that ¥|s_p_ = a. The critical values 1(q) and ¥ (p) may change
during the deformation but we will nevertheless always denote them by b and c.

Step 1. Normalization near D_ and critical points.

Lemma 10.12. For any A > 0 there exists a preliminary deformation v, such
that the function 1y has the form (B(z) + Ar? near D_ for some A >0, and

B(x) = —kR* + b near 0_D and on 0, D_,

where k =b — a.

We will choose A = 64k.

Proof. Thanks to the condition V¢|s_p_ = V(kR?)|s_p_ we can apply Propo-
sition 3.15 to modify 8 = ¢|gr~y to ensure the conditions for 8. Next, we can
apply 3.15 again along D_ to satisfy the first condition. O

Let us now restrict 9 to a smaller neighborhood U,(D_) such that in this
neighborhood v = f(z) + Ar?, and in U,(0-D_) we have 3(z) = —R? + ¢.
We will keep the notation U = U(o) for this smaller neighborhood. All further
deformations will be chosen admissible for that smaller neighborhood.
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Step 2. Construction of special surroundings. Choose
o o

R=1--R'=1--.

2 4

For t € [R/,1] let us denote by 3; the level set of the function ¢ which contains
the hemisphere S; = {||z|| = t}. Denote by D', D", D" C D’ C D the discs of
radius R’, R, respectively, and set D’ = D_N{R < R'} = D'N{x <0}. We
will use the notation X, %', X" instead of ¥; for t = 1, R', R, respectively.

Next, we will construct a special family of i-convex hypersurfaces it, t € [R,1],
as follows. Choose a smooth family of i-convex hypersurfaces CS% ={R =
¢9% ()} introduced above Section 10.3.4, and consider a 1-parametric family

Cgé),,y(t), t € [R', 1] where the decreasing functions §(t),v(t) are chosen in such
a way that the following conditions are satisfied

o 6(R),v(R) < g;

e the hypersurfaces Y, = tC’gzlt) sy tE [R’, 1], define a smooth foliation of
the domain 2 bounded by Y =Yg and ¥ == §~]1, where tC?th) 5(8) its
image of C’gé) () under the homothety z — t2;

e 6(1),7(1) < e, where € > 0 is determined below in the Lemma 10.15.

We denote by N; the domain in U bounded by ¥, and will write ¥/ and N’
instead of X/ and Nps Note that ¥; \ U, ) (D) = 3¢ \ Uy (D).

Step 3. Second preliminary deformation.

Lemma 10.13. There exists a preliminary deformation v, t € [0, 1], such that

a) There exists d > ag and n > 0 such that the level set A = {1; = d}NUg (D_)
is contained in N'\ Uy(D) and AN (U \ Ug(D-)) coincides with ¥";

b) the angle between the gradient vector field Vi1 and the vector field —u is
> T in B\ R*, where B = {41 < d} NU is the domain bounded in U by
the level set A;

c) the angle between the gradient vector field Vip1 and the cone spanned by the
vector fields —u and T is > T in (BNUz(0-D_)) \ R¥;

d) the deformation is weakly supported in N'\ (Ug ().

Proof. Let us first observe that the function ¢ satisfies the conditions b) and c)
in a stronger form:

b)) dyp(u) > 0 in U \ RF;
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&) dip(z) < 0in Uy (8_D_) \ R¥,

which inplies that the angle in question is > 7. Let us first use Lemma 3.15
and adjust ¢ via a C'-small preliminary deformation to make it equal to k(p? —
64R? — 6427) in U.(04D_) for a sufficiently small e < . This can be done
preserving the above conditions b’) and ¢’). Next, we apply Proposition 4.20
near the (k — 1)-disk 04 D_ and construct a preliminary deformation vy, t €
[0, 1], which is weakly supported in U.(0+D_), such that one of its level sets
surrounds 04 D_, i.e. there exists a regular value d; € (¥1(q), 11 (p)) such that
A1\ U (0+D_) = X \U(0+D_) for t € (R',1), where Ay = {¢); = d1}. In
addition we can ensure that the properties b’) and ¢’) still holds for ¢;. Let us
denote By := {11 < di}.

Before further adjusting the function ¥ we will rename, following our notational
convention, the constructed function 11 back to 1. Note that D = D_ \ Int By
is the stable disc of the critical point p in {¢) > dy}. The function ¢|p has a
unique non-degenerate maximum at p, and hence it is equivalent to the func-
tion ¢ — AR? on the unit disc D € R¥ ¢ C™ for some A > 0, where ¢ = 9 (p).
After a posible C*°-small adjustement we can assume that the conjugating dif-
feomorphism D — D, which we again denote by «, is real analytic, and hence
extends to a biholomorphism @ : Op D — OpD. Let us denote by 71 and uq
the images of the vector fields 7 and u under the diffeomorphism a. Note that
uy =u+o(r) and T1 = ux + 7 +o(r), where > 0 and 7 is tangent to the
spheres S;.

We can modify the function ¢ = 1 o & to have the form ¢ — AR? + 64Ar? in
Uy (D) for a sufficiently small § > 0. The necessary perturbation is C!-small,
and hence we can ensure that the angle between VQZ and the cones generated
by 21 and ﬁl is bounded below by 7. Apply now Proposition 4.20 to get a

deformation {/;t weakly supported in Ug (D) such that the level level set /~11 of

the function 1;1 which coincides with A; outside U% (D) corresponds to a regular

value di > 121(0) and surrounds D, i.e. (gl NU,g (D)) N D = &. The special

~

function constructed in 4.20 has the property that dl;l (?) < 0,dy1(u) > 0 and
dip(T) = 0. Hence for a sufficiently small 6 we conclude that the angle between
V1 and the cones generated by 51 and 1 is bounded below by 7. Replanting

the constructed deformation {/;t back to Op D via the biholomorphism & we get
the deformation v; with the required properties. O

Step 4. Elimination along the stable disc. Let us choose n > 0 be the
number defined in Lemma 10.13. We will also assume that n < . Then we have
s U,(D-) C B. The following statement is the standard cancellation lemma in
Morse theory (see [?], Lemma ?777).

Lemma 10.14. For any positive 0 there exists a cancellation deformation By :
DN {zr < n} — R with By = B which is supported in D" N {x < n}.
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Let us choose C' > 0 such that the function 3;(z) + Cr? is i-convex in B, (D N
{zx <n}) for all t € [0, 1].

Lemma 10.15. There exists € < n and a preliminary deformation 1y which is
supported in B,(DN{xzy, < 6}), such that ¢ satisfies conditions b)-c) of Lemma
10.18 and, in addition, 11 = B(z) + Cr? in B.(D N {z), < 0}).

Proof. Apply Proposition 3.15 along the disc D_. O

Step 5. Elimination of critical points.

Let ¥ be an i-convex function on the domain {2 bounded by >’ and ¥ which has
Y t € [R,1], as its level sets. Let U; denotes the restriction of the function
¥ to the domain €; bounded by Y and &y, t € [R',1]. Let us apply the
defined above carving operation and consider the family of i-convex functions
Uy = my, (¥, A), t € (R, 1]. This family has the following properties.

Lemma 10.16. (i) ¢y = fort > R";
(i) )y is weakly supported in U;
(#11) Py have no critical pointts for all t € [R',1].

(iv) Yilv,, , = Wg(B(x) + Cr?, A), where the function U = Vi, , has
the form h(r),r € [6(1),n].

Note that the first three properties just say that 1); is a preliminary deformation
of the function .

Proof. The property (i) follows from the fact that BN Q, = @ if t > R”,
while (ii) follows from the compactness of the intersection N B. The property
(iii) follows from Proposition 3.21 taking into account properties b) and c) of
Lemma 10.13. Finally (iv) is a corollary of the inequality v(¢),6(¢) < € and the
properties of special shapes. O

Before continuing, we again rename, following our notation convention the func-
tion ¢ into . Let us define ¢u|y, , | = mg (Bt + Cr?), where 3, t € [0,1]
is the cancellation deformation from Lemma 10.14. This deformation is weakly
supported in Uy (p_), and hence can be extended to the whole U as the required

cancellation deformation for the function ¥ : U — R.

This completes the proof of Proposition 10.9. O

10.3.6 Proof of Proposition 10.8

Take a point p € U Assuming that ¢ is real analytic near p, we can choose
holomorphic coordinates in Op p, such that
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e the point p has coordinates (—1,0,...,0);

e Vo(p) = 8%1 and Vi|yqg» is tangent to RF.

Using Proposition 3.15 we can modify the function ¢ in a ball U = U, (p) for a
positive o < % to make it equal

1 (x +§)2+Zk:$2+0r2 —|—c—}
2\ 2 ™ 8’

¢ = ¢ (p), where the constant C' > 0 satisfies the following condition. Pick a
0 € (0, %2) and choose any creation type deformation §; : Dy(p) — R, t € [0, 1],
supported in Int Dy(p) which creates two critical points of index k and k — 1,

~ k
where Bo(x) = ¢|p, ) = 3 ((331 +3)2 4+ Zx?) Then we choose the constant
2

C > 0 such that the function ¢;(x,u) = B;(x) + Cr? is i-convex f in the domain
Gy = {(z,u) € U;z € Dy(p)}. Let us denote by S, t € [1 — 20,1 + 206]
the level set of the function ¢ : U = U,(p) — R which contains the point
pr = (—t,0,...,0), and by T; the domain {z € U; ¢(z) < ¢(p¢)} bounded by S;.
Consider a family of i-convex surfaces ¥; = tC}/(t))d(t) CcCtel—20,1426],
where the decreasing functions (t), §(¢t) are chosen in such a way that surfaces
C} form a smooth foliation of the domain Q bounded by ¥1_59 and 3j49,
and (1 + 26),6(1 + 20) = 0 < 6. Consider a i-convex function ¥ : O — R
such that the hypersurfaces ¥; serve as the level sets for ¥. Denote by €,
t € (1— 26,1+ 20] the domain bounded by ¥1_29 and ;. Denote ¥; := ¥|q,.
We have Q199 = Q and U499 = V.

Remark 10.17. Note that in view of property b) of special shapes C%y,d we
have Y1100 NGy = {r = 6’} N Gy and the restriction 11429 of the function
U199 to Gy has cylinders {r = §(t)} NGy for t € [1 — 0,1+ 26] as its level sets.

Consider a family of functions ®; = my, (¢, S1+6),t € (1 — 26,1 + 26].

Lemma 10.18. The family ¢¢, t € [1 — 6,1+ 20], has the following properties.

(i) ¢r=¢ fort <1—10;
(ii) the deformation ®; is weakly supported in Ug (p)
(#ii) ¢ has no critical points for all t.

(w) ¢1|G9 = My o9 (¢|G375170 N Ge)-

Proof. For t < 1 — 6 we have Oy NTy_g = & which implies 1). On the other
hand, we have €129 N T1_p C Ug(p), which implies 2). Both functions have

positive derivatives along the vector field T — U, and hence Proposition 3.21
implies 3). Finally, 4) follows from Remark 10.17. O
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Before constructing the next and final step of the deformation we rename the
function ¢1 12, back into ¢. According to 10.18.4) we have ¢|g, = My, ,,(Flay, S1-6N
Gy). Let us define ¢, on Gy for t € [0,1] as follows. Let ¢y(z,u) = Bi(z) + Cr?

be the creation family considered above. Then we set

¢t = mw1+29 (5‘(:’9; 5179 N GH)

This deformation is weakly compactly supported in Gy, and hence can be ex-
tended to U as equal to the function ¢ (possibly, rescaled in the target) on U\ Gy.
It remains to notice that the functions ¢; are non-singular in the complement of
the disc Dg(p). Indeed, both functions, ¢, = (; + cr? and 11429 have a positive
derivative along the vector field u on Gy N Q, and hence the claim follows from
Proposition 3.21 implies 3). This completes the proof of Proposition 10.8. [
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Chapter 11

Proof of the existence
theorems

11.1 Existence of Stein structures on cobordisms

A cobordism is a compact oriented manifold W with oriented boundary oW =
0+ W I1 0_W, where the orientation agrees with the boundary orientation for
0+ W and is opposite to it for 9_W. We allow one or both of 91 W to be emtpy.
A Morse cobordism (W, ¢) is a cobordism W with a Morse function ¢ : W — R
having 0L W = ¢~ 1(cs) as regular level sets.

Theorem 11.1. Let (W, ¢) be a Morse cobordism of dimension 2n with 0L W =
¢ Y(cy). Let J an integrable complex structure on W such that O_W is real
analytic and ¢ is J-convex near O_W . Suppose that n > 2 and all critical points
of ¢ have index < n. Then there ezist

e q diffeotopy hy : W — W with hg = 1 and hy = 1 near OW;

e a homotopy of convex increasing functions g; : R — R with go = 1 and
g+ = 1 near (—oo,c_]|;

e a homotopy of reqular values ¢y of ¢y :==gropo ht_1 with cg = ¢4

such that 04 W is real analytic and ¢ |w, is J-convez, where Wy := ¢; " ([c—, ¢t]).

Remark 11.2. Note that the conclusions of Theorem 11.1 imply that ¢; has no
critical points with values in [e, ¢4 ].

For the proof we will decompose a cobordism into elementary ones: We call a
Morse cobordism (W, ¢) elementary if ¢ admits a gradient-like vector field X

139

Move this chapter?
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such that no two critical points of ¢ are connected by an X-trajectory. An
admissible partition of a Morse cobordism (W, ¢) with ¢=1(0LW) = cy is a
finite sequence c— = ¢y < ¢1 < --- < ¢y = ¢y of regular values of ¢ such
that each subcobordism Wy = ¢~([ck_1,cx]), k =1,..., N is elementary. The
following lemma is proved e.g. in [50].

Lemma 11.3. Every Morse cobordism admits an admissible partition.

Proposition 11.4. Theorem 11.1 holds for an elementary Morse cobordism.

Proof. Let (W, ¢,J) be as in Theorem 11.1 and X a gradient-like vector field
such that no two critical points of ¢ are connected by an X-trajectory.

If ¢ has no critical points set h; := 1, g; := 1 and let ¢; be a decreasing homotopy
from co = ¢4 to ¢1 > ¢y such that ¢ is J-convex on ¢~ 1([c_, ¢1]).

Otherwise consider a critical point p. Since its stable disk D, meets no other
critical points, it meets the J-convex hypersurface 0_W transversely along a
sphere S,. Moreover, n > 2 and dim D, < n. Thus by Theorem 6.14 there
exists a C%-small homotopy of disks D; transversely attached to 0_W with
Do = D, and such that D, is totally real and J-orthogonal to 0_W. Moreover,
by Theorem 7.22 and Corollary 7.25 we may assume that D; is real analytic.

Let g+ : W — W be a diffeotopy with g9 = 1, g = 1 near 0. W and D; =
gt(D; ). Since the D; are transversely attached to d_W, we can choose the
gi to preserve levels of ¢ on ¢~ 1([c_,d_]) for some small d_ > c_. Define
a new diffeotopy h; : W — W by h;y := g; on {¢ > d_} and h; := gg(cye
on ¢~t(c), ¢ € [e_,d_], where 3 : [c_,d_] — [0,1] is a smooth increasing
function with = 0 near ¢ and 3 = 1 near d_. Thus hy = 1 near d_W and
Y=o ht_1 =¢o gt_l. It follows that the vector field X; := g;+ X is gradient-
like for 1; and the stable disk of the critical point h:(p) of ¥, with respect to
X; equals D;. (Note, however, that X; # hy X).

Consider a slightly smaller disk D, = D; N {¢p > ¢_} for a small ¢_ > c_.
Since D; is real analytic and totally real, it has a neighborhood biholomorphic
to a standard k-handle H, C C" such that D1 corresponds to the unit disk
D C iRF. In view of Proposition 3.15, we can C'-perturb v near 0D to a
J-convex function ¢ which corresponds to the standard function vy near dD.

To be continued... O

Proof of Theorem 11.1. Let (W, ¢,J) be as in Theorem 11.1. By Lemma 11.3
(W, ¢) admits an admissible partition ¢ = ¢y < ¢! < -+ < ¥ = c;. We
will prove by induction on 4 that the statement of the theorem holds for W :=
¢~ 1([c° ¢]). For i = 0 (with ¢® moved slightly above c_) this is trivially true.
Now suppose that the statement of the theorem holds for W Let hi, g, ct
be the corresponding homotopies so that 9, W7 is real analytic and (blﬂwli is

J-convex, where ¢! = g¢ o po (hi)~! and W} = (¢¢) " ([c_, cl]).
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Since ¢! = gi o ¢ near d, W', we can extend ¢i to a function ¢! : Witl - R
by
P
giod on WL\ W
Since ¢¢ has no critical points in W\ W{, the Morse cobordism
(Werl Wz+1 \Wz ¢z+1)

is elementary, see Figure [fig]. ~ Since 9_ Witl = O, Wi is real analytic and
¢’+1 is J-convex near _Witl = 0. Wi, we can apply Proposition 11.4 to
this cobordism. Let h”‘l "‘H ”H be the corresponding homotopies so that
3+Wf+1 is real analytic and g?f |WL+1 is J-convex, where ¢’+1 =gt ogo

()1 and W = (35 (e, 2.
We extend h? and At to diffeotopies of Wit! via the identity on Wit!\ W
resp. W{ and define homotopies on Wit! by

pitt = hb, for 0 < ¢<1/2,
hyfliohl for1/2<t<1,

i+l 95t for 0 <t <1/2,
o T\ og for1/2<t<1,

Gl g (c H'l_ for 0 <t <1/2,
‘ atliohi for1/2<t<1.

Note that cj™' is continuous at t = 1/2 because & = qu”l(a Wity =
gi(ci+1) The corresponding homotopies ¢! := gl+10¢0(h2+1) and W/t =
(651 (e, i+]) are given by

i+l gét opo (hét)_l for 0 <t <1/2,
L g ot o (RS )TY for1/2 <t <1,

Witl — Witt for 0 <t <1/2,
b\ wWiuwg for1/2<t <L

7+1

+1. Moreover, @1 is given

In particular, we see that (bffl has regular value c;
by

1 on Wit!

Hitl — {¢11 on Wi,
=
and therefore .J-convex. Hence the homotopies hi ™, gi™, ci*! have the desired

properties and Theorem 11.1 is proved. O

The following version of Theorem 11.1 for open manifolds was first pointed out
by R. Gompf [26].

Fig!!!
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Theorem 11.5. Let (V,J) be an open complex manifold of complex dimension
n and ¢ : V. — R an exhausting Morse function. Suppose that n > 2 and all
critical points of ¢ have inder < n. Then there exist

e a diffeotopy hy : W — W with hg = 1;

e a homotopy of convex increasing functions g; : R — R with go = 1 and
g+ = 1 near (—oo, ming|;

e a homotopy of smooth embeddings f; : V — V with fo = 1;
such that g1 o ¢ o hfl is fiJ-convex.
Proof. To be done. O

To be rewritten: Proof of the existence results (abstract, in ambient
manifold, with holo function as in Forstneric).

11.2 Handles in the holomorphic category

For the purposes of this section, let us slightly modify the definition of an
attaching map. Let W be a manifold with boundary and extend it to a slightly
larger manifold W. An attaching map is an embedding F' : H D U — W such
that F(S) C OW and the differential dF along S maps 0~ H|s to OW and the
outward pointing vector field i to an inward pointing vector field nr. Then for
€ > 0 small let

WUrH:=WHOH/HNF Y (W)>z~ F(x) € WnF(H)

Note that F~1(GW) is a graph over 9~ H near S, so W Ur H describes indeed
the attaching of a handle for & small.

Remark 11.6. The following facts are seen as in the previous section.

(1) If J,Jy are almost complex structures on W, H and dF is complex linear
along S, then W Up H carries a natural homotopy class of almost complex
structures J Up H that agree with J on W and with Jy along D.

(2) An isotopy of attaching maps F}, induces a canonical family of diffeomor-
phisms ¢, : WUg, H — W Up, H. Moreover, if the differentials dF} are complex
linear along S for almost complex structures J, J; on W, H, then ¢ (J Up, J;) is
a continuous homotopy of almost complex structures on W Ug, H.

(3) If J is an (integrable) complex structure on W and the attaching map
F: (U,i) — (W,.J) is holomorphic, then W Ug H carries a natural (integrable)
complex structure. We will consider below the case that OW is J-convex. Since
0~ H is Levi-flat for the complex structure i, the attaching map cannot map
0~ H to OW in that case. This explains our modified definition of “attaching

map”.
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Lemma 11.7. Let (W,J) be a complex manifold with real analytic J-convex
boundary. Let Fy : H. D U, — W be an attaching map such that dFy :
(TH|s,i) — (TW, J) is complex linear. Then (after shrinking €) there exists a
family of attaching maps F; : U, — W,te [0,1], C*-close to Fy, such that Fy
s holomorphic and

dFy : (TH|g,i) — (TW,J)

is complex linear for all t € [0, 1].

Proof. Without further mention, we will shrink € whenever necessary. Moreover,
all homotopies will be chosen C*°-close to the original data.

As J integrable and OW is real analytic and J-convex, the maximal tangency &
on OW is a real analytic contact structure. Set P. := D% x D*~* and consider
the Legendrian embdding go := (Fp)|p. : P- — 0W. By Corollary 7.24 and the
remark following it, there exists a Legendrian isotopy g¢; : P. < OW such that
g1 is real analytic.

By hypothesis, dF; maps the vector field v along S to a vector field vy on
OW transverse to £&. By Theorem 7.22, there exists a family v; of transverse
vector fields on OW such that vy is real analytic. Set 7 := Jv;. Again by
Theorem 7.22, we can extend g; to a real analytic embedding f; : (V. :=
Di, _\intDf) x D=k — W with df; - = n;. Connect fo := (Fp)|v. to fi by
a smooth isotopy of totally real embeddings f; : Vo — W with df; - n = n;.

Complexify the (totally real) differentials df; along S to complex linear isomor-
phisms df, : (TH|g,i) — (TW|y,(s),J). Complexify the totally real embed-
ding f1 : V. = U.NR™ < W to a holomorphic embedding F} : U. < W. Note
that dFy = d®fy and dF, = d®f, along S. Connect Fy to F; by an isotopy of
smooth embeddings F; : U. — W with dF, = d°f, along S. By construction,
dF; = d® f, maps T(0~ H)|s to T(OW) and 7 to the inward pointing vector field
n:. Thus the F; are attaching maps with dF; : (TH|g,i) — (TW,J) complex
linear for all ¢ € [0, 1]. O

Proposition 11.8. Let (W, J) be a compact almost complex manifold of complex
dimension n > 2 with boundary OW = 0~W U W (we allow 9~W = 0).
Suppose W carries a function which is constant on the boundary components
and has a unique critical point of index k < n. Suppose that near 0~W, J is
integrable and 0~ W is J-convex.

Then there exists an integrable complex structure J on W such that J = J near
OW and J ~ J rel 0"W.

Proof. Let W/ C W be a collar neighborhood of =W = 9~W’ with real
analytic J-conxev boundary dTW’. By Morse theory [50], there exists an em-
bedding f : H < W of a k-handle, with attaching map fy := fly : U — W/,
such that W smoothly deformation retracts onto a smoothing of W' U f(H).
Let Jy := f*J on H. By Proposition [prop:ac-attaching???] and Lemma 11.7,
there exists a family of almost complex structures J; on H and an isotopy

Reference?
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of attaching maps f; : U < W’ such that J; = 4, f; is holomorphic, and
dfy : (TH|s, J;) — (TW]|y,(s), J) is a complex isomorphism for all ¢. By Lemma
[lem:ac-homotopy???], this gives rise to a homotopy of almost complex struc-
tures J/ on W’ U f(H), fixed near W, such that J} = J and J; =: J' is
integrable.

It only remains to extend .J' to all of W. For this, let W C WU f(H) be a tubu-
lar neighborhood of W’ U f(D). Let g; : W < W be an isotopy of embeddings
such g; = 1 near W' U f(D), go is the inclusion, and g; is a diffeomorphism.
Now J := g1,J’ is an integrable complex structure on W which coincides with
J' on W’'. Moreover, J; := g1.g;J' provides a homotopy rel W’ from Jy = J to
Ji = J'. Since J' was homotopic rel 9~ W to J, this concludes the proof. O

11.3 Extension of Stein structures over handles

Theorem 11.9. Let (W, J) be a compact almost complex manifold of complex
dimension n > 2 with boundary OW = 0~W UOTW (we allow 0~ W =0). Let
¢ : W — [a,b] be a function with =W = ¢~1(a), 07W = ¢=1(b) and a unique
critical point in W of index k < n. Suppose that near 0~ W, J is integrable and
¢ is J-convex.

Then there exists an integrable complex structure J on W such that J = J near
O W, Jn~Jrel W, and ¢ is J-convex.

Proof. Let 9~ W x[0, 1] be a collar neighborhood of =W = =W x {0} on which
J is integrable and ¢ is J-convex with level sets 9~ W x {t}. Let ¢’ be C*-close to
¢, real analytic near 0~ W x {1/2}, with ¢’ = ¢ outside 0~ W x [1/4, 3/4]. Then
@' is J-convex and ¢’ = f*¢ for a diffeomorphism f isotopic to the identity rel
WA\O~W x[1/4,3/4]. Thus it suffices to prove the theorem for ¢’ and J' := f*J.
Denoting ¢’, J' again by ¢, J, we may hence assume that ¢ is real analytic near
a level set ¢~1(a’), @’ > a, and J-convex on W' := ¢~1([a,d’]).

By Proposition 11.8, J is homotopic rel 9~ W to an integrable complex structure
J'. Perturb the gradient vector field V4, ¢, fixed near OTW, to a C'-close vector
field X. Then X is gradient-like for ¢ and has a nondegenerate zero at the
critical point p of ¢. Let A C W \ intWW’ be the stable disk of p for X. Then
A is totally real and real analytic. Moreover, since X =V, ¢ near OTW', Ais
attached J’-orthogonally to 9T W’ along OA.

By Theorem 9.7, there exists a surjective J'-convex function ¢ : W — [a,b] on
a neighborhood W of W' UA with 1 = ¢ on W’ and a unique index k critical
point at p. Moreover, there exists an isotopy h; : A — A, fixed near 0A and p,
with hg = 1 and hj¢ = 1. Now we argue as in the proof of Proposition 11.8.
Extend h; to an isotopy of embeddings h; : W < W such that ht|W/ =1,
ht| A= hh h() is the inclusion, and h1 is a diffeomorphism. Then the Morse
functions hZ ¢, Y W — [a,b] coincide on W/UA. By Lemma 13.8, there exists a
diffeotopy g; : W — W, fixed on W/UA, with gihi¢ = ¢. Hence the embeddings
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fi := hy o g; satisfy: fo is the inclusion, filw+ = 1, and f; is a diffeomorphism
with fi.1) = ¢. Now J := f1..J" is an integrable complex structure on W, which

coincides with J' on W', such that ¢ is J-convex. Moreover, J; := fi.f;'J’
provides a homotopy rel W’ from Jy = J to J; = J'. Since J’ was homotopic
rel 9~ W to J, this concludes the proof of Theorem 11.9 O

Now we are ready to prove the existence theorem for Stein structures stated in
the introduction.

Theorem 11.10 (Eliashberg [14]). Let V*" be an open smooth manifold of di-
mension 2n > 4 with an almost complex structure J and an exhausting Morse
function ¢ without critical points of index > n. Then V admits a Stein struc-
ture. More precisely, J is homotopic through almost complex structures to an
integrable complex structure J such that ¢ s J -convez.

Proof. Let ¢; < ¢o < ... be the critical levels of ¢ (possibly infinitely many).
For simplicity, suppose that each critical level ¢; carries a single critical point
pi; the obvious modifications for several critical points on one level are left to
the reader. Let dj be regular levels with

a1 <di<co<dy<...

and set Vi := {¢ < di}. We will inductively construct almost complex struc-
tures Ji, k € N, and homotopies J}, ¢t € [0,1], on V with the following proper-
ties:

e Ji|v, is integrable and ¢|y, is Ji-convex;

o JY = Jy 1, Jt = Jg, and J}|v,_, = Jp—1 for all t € [0,1].

Here we have set Jy := J and Vj := (). The case k = 1 follows directly from
Theorem 11.9 with ~W = (). For the induction step, supppose that Jy_;
and J}_, have already been constructed. After replacing dj_; by a slightly
higher level in the preceding step, we may assume that Ji_; is integrable on
a neighborhood of Vi_;. Applying Theorem 11.9 to W := Vi \ intV;_; and
the almost complex structure Jx_i1, we find a homotopy of almost complex
structures j,i on V4 such that j,§|vk_1 = J,_; for all ¢, j,g = Jo_1, Jp = j,i is
integrable, and ¢|y, is Jy-convex. Let AV}, x [0, 1] be a collar neighborhood of
OV = 0V, x {0} in V' \ intV}, and extend J} to V by

‘]]2 on Vk,

J} = j,i(lfs) on OVj, x {s},
Jr—1 on V' \ (Vx UdVy x [0,1]).

This proves the induction step.

Now let sequences Jy, J,ﬁ as above be given. Since Ji|v,_, = Jk—1, the Ji fit
together to an integrable complex structure J on V with J|y, = Ji, and it
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follows that ¢ is J-convex. Define a homotopy of almost complex structures J¢,
t € [0,1], on V as the concatenation of the homotopies J,i, k € N, carried out
over the successively shorter time intervals [1 —2'=% 1 —27F]. Continuity of J*
for t < 1 follows from J} , = JP. Continuity at ¢ = 1 holds because Jt|y, = Ji
for all t > 1 — 27%, so near every point J* becomes independent of ¢ for ¢ close
to 1. In particular, we have J' = .J and J® = JY = Jy = J. This concludes the
proof of Theorem 11.10. O

Proposition 11.11. Let Jy and Jy are two Stein cobordism structures on a
manifold W with boundary OW = 0_W U W, where the complex structures
Jo and Jy share the same concave and convex parts of the boundary, O_W and
0L W . Suppose that there exist Ji-convex functions ¢i, k = 0,1, such that the
following conditions are satisfied:

(i) ¢o = ¢1 = ¢ on Op (0_-W);

(i) the functions ¢g and ¢1 have a unique and common critical point p, and
the stable manifolds of p for the gradient vector fields Xo = Xg4,,5, and
X1 = Xg4,,5, coincide;

(i1i) Jo and Jy coincide on Op (0_W U D), where D is a common stable ma-
nifold for the gradient vector fields Xo and X1.

(iv) the functions ¢g and ¢1 are equivalent: there exist a diffeomorphism and
g : W — W which is fized on Op (0_W) and leaves D invariant, and a
diffeomorophism h : R — R such that ¢1 = ho¢gog.

Then there exists a homotopy of Stein cobordism structures J; on W and a
family of Ji-convex functions ¢, : W — R such that

e Jy=JyonOp(0_-WUD), te|0,1];

o the stable disk of p for gradient fields X, = X, 4, coincides with D for all
t €10,1].

e ¢ = hyopgog; for isotopies g : W — W fized on W' and hy : R — R as
in item (iv) above.

Proof. TO BE ADDED O
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Chapter 12

Welnsteln structures

12.1 Convex symplectic manifolds

We review in this section some notions introduced in [16].

Let (V,w) be an exact symplectic manifold of dimension n. A primitive A such
that dA = w is called a Liouwville form on V. The vector field X that is w-dual to
A, i.e. such that i xw = A, is called Liouville vector field. Note that the equation
d\ = w is equivalent to Lxw = w. If X integrates to a flow X*: V — V then
(X*)*w = etw, i.e. the Liouville field X is (symplectically) expanding, while —X
is contracting. By a Liouville manifold we will mean a triple (V,w, X) where X
is an expanding vector field for w. Note that

ixA=0, ixd\=)\,  Lx\=)\ (12.1)

so the flow of X also expands the Liouville form, (X?)*\ = e!A. A map ¥ :
(Vo,wo, Xo) — (V1,wy, X1) between Liouville manifolds with Liouville forms A;
is called exact symplectic if * Ay — A\ is exact.

A Liouville manifold (V,w, X) is called (symplectically) convez if the expanding
vector field X is complete and there exists an exhaustion V = (J;—, VE by
compact domains V¥ C V with smooth boundaries along which X is outward
pointing (so the V¥ are invariant under the contracting flow X ~*,¢ > 0).! The
set

Core(V,w, X) := U ﬂ XHVE)
k=1t>0

is independent of the choice of the exhausting sequence of compact sets Vj, and
is called the core of the convex Liouville manifold (V,w, X). We have

IThis notion of symplectic convexity is slightly more restrictive than one given in [16].
However, the authors do not know any examples of symplectic manifolds that are convex in
one sense but not the other.

149
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Lemma 12.1. Int Core(V,w,X) = @.

Proof. For each compact set V* we have

t—o0

1
Volume(X_t(Vk)) = e_tﬁ /wn — 0,
Vk

and hence Volume([7),., X *(V¥)) =0 for all k € N. O

We say that a convex Liouville manifold (V,w, X) has cylindrical end if X has
no zeros outside a compact set. In this case, let Q C V be a compact domain
with smooth boundary ¥ = 9 along which X is outward pointing and such
that X has no zeros outside  (e.g. = V¥ for large k). Then V \ Int €2, splits
as X x [0,00) and the Liouville form A = ixw can be written as e'(a), where
t € R is the parameter of the flow and « := A|y. The form « is contact, and thus
(V \ Int Q,w) can be identified with the positive half of the symplectization of
the contact manifold (X, £ = ker ). In fact, the whole symplectization of (3, §)
sits in V' as (J;eg X'(2) and this embedding is canonical in the sense that the
image is independent of the choice of ¥: Its complement V'\ [J,cp X*(X) equals
the core Core(V,w,X) defined above. The Liouville manifold (V,w, X) defines
the contact manifold (X, ) canonically. We will write (£,¢) = 9(V, X) and call
it the ideal contact boundary of the Liouville manifold (X,w) with cylindrical
end.

We do not know whether the ideal boundary depends on the choice of the Li-
ouville field X which satisfies the cylindrical end property. The answer depends
Equivalent? on the following open problem:

Problem 12.1. Does symplectomorphism of symplectizations imply contacto-
morphism of contact manifolds?

Note that all known invariants of contact manifolds (e.g contact homology and

other SFT-invariants) depend only on their symplectizations (since symplec-

tomorphism of the symplectizations yields symplectic cobordisms both ways

Is this correct? Don’t whose composition is homotopic to product cobordism). and hence cannot
we need exactness? distinguish contact manifolds with the same symplectization.

Contact manifolds which arise as ideal boundaries of Liouville symplectic ma-

Reference? Not used nifolds with cylindrical end are called strongly symplectically fillable.
so far.

12.2 Deformations of convex sympletic structures

A homotopy (V,ws, Xy), s € [0,1], of convex Liouville manifolds is called an
elementary homotopy of compact type if there exists a smooth family of exhaus-
tions V' = (J,—; V¥ by compact domains VF C V with smooth boundaries along
which X is outward pointing. A homotopy (V,ws, Xs), s € [0,1], is called of
compact type if it is a composition of finitely many elementary homotopies of
compact type.
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Proposition 12.2. Let (V,ws, Xs), s € [0,1], be a compact type homotopy of
convexr Liouville manifolds with Liouville forms As. Then there exists a dif-
feotopy hs : V. — V such that \g — h¥\s is exact for all s € [0,1].

Proof. Tt suffices to consider the case of an elementary homotopy (V,ws, Xs).
Denote by ©¥ the boundary OV, by A, the Liouville form dual to X, and by &*
the contact structure induced on X% by the contact form A|s, s € [0,1],k € N.
By Gray’s Stability Theorem 5.24 there are families of contactomorphisms

g+ (36,65) — (55,€0),

so that (YF)*\, = el Ao for a smooth family of functions fE.ok - R (We
denote the restriction of A to the various hypersurfaces by the same letter).
For ¢ € R set ¥%¢ := X¢(=¥) and define the diffeomorphisms

k,c . yc k —c . yk,c k,c
Y= XS ol o Xy Xy — XoC

By equation (12.1) we have (1%€)*\, = efioXa ")y, For a sequence of real
numbers dj, (which will be determined later) set

SEi=mbh = gbl VE= XMV, fE = e Xg M o ()7

7k
A short computation using equation (12.1) shows that the map ¥ := X Iy
Yk o Bk — V satisfies (WF)*\y = \¢ and hence canonically extends to a map,

~ k ~
still denoted by ¥¥ : Op SF — Op (X;fs ¥F), which maps trajectories of Xg to
trajectories of X, and satisfies (WF)*\, = Ao.

Now we choose the constants dj such that for each s € [0,1] the hypersurfaces

~ Ik~

¥*¥ k € N, are mutually disjoint and the hypersurfaces X;fs (XF), k € N, are
mutually disjoint. We achieve the first condition by choosing the dj nondecreas-
ing. The second condition holds if we have

min,, (dk — ff(l‘)) > maxy (dk—l - ﬁ_l<x))

for all s € [0,1] and k > 2. So we can achieve both conditions by defining the
d, inductively by d; := 0 and

di :==dr—1 + max{(),maxfsk(x) — min fskfl(x)}

These conditions ensure that the U* induce a diffeomorphism
sk e
vo:op (USh) =0 | XSS
k=1 k=1

satisfying W¥A; = Ag. Let us extend ¥, anyhow to a diffeomorphism ¥, : V —
V. Now we apply Corollary 5.8 to each of the open domains Int Vol€+1 \ Vg
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and the family of exact symplectic forms ¥rw, = d(¥*\; whose primitives are
s-independent near the boundary ESH U Xk, This yields a family of diffeo-

morphisms ¢s : V' — V which are the identity on Op (Uiil i’g) and such

that the composition hs := ¥, o ¢5 is the required exact symplectomorphism
(VaWOaXO) - (Vvyws;Xs) O

In particular, Proposition 12.2 implies

Corollary 12.3. A family (V,ws, Xs) of Liouville manifolds with cylindrical

ends consists of exactly symplectomorphic manifolds if the closure Use[o,l] Core(V, ws, Xy)
of the union of their cores is compact.

12.3 Weinstein manifolds

A Weinstein manifold (V,w, X, ¢) is a symplectic manifold (V,w) with a com-
plete Liouville field X which is gradient-like for an exhausting Morse function
¢ : V — R. The triple (w, X, ¢) is called a Weinstein structure on V.

Remark 12.4. (1) Any Weinstein manifold (V,w, X, ¢) induces a convex Liouville
manifold (V,w, X). However, not every convex Liouville manifold arises from a
Weinstein manifold, see [46, 23].

(2) Later on, in deformations of Weinstein structures we will also allow ¢ and X
to have death-birth (or cusp) singularities; in this section we restrict ourselves
to the Morse case.

A Weinstein domain (W,w, X, ¢) is a compact symplectic manifold (W, w) with
boundary W with a Liouville vector field X which is outward pointing along the
boundary and gradient-like for a Morse function ¢ : W — R which is constant
on the boundary. Thus any Weinstein manifold (V,w, X, ¢) can be exhausted
by Weinstein domains Wy = {¢ < di}, where di " oo is a sequence of regular
values of the function ¢.

A Weinstein manifold (V,w, X, ¢) is said to be of finite type if X has only finitely
many critical points. Note that by attaching a cylindrical end any Weinstein
domain (W,w, X, ¢) can be completed to a finite type Weinstein manifold, called
its completion and denoted by Compl(W,w, X, ¢). Conversely, any finite type
Weinstein manifold can be obtained by attaching a cylindrical end to a Weinstein
domain. The contact manifolds which appear as ideal boundaries of finite type
Weinstein manifolds, or equivalently as boundaries of Weinstein domains, are

Reference? called Weinstein fillable. In view of Theorem [?77?], this is equivalent to being
Stein fillable.

An important example of a Weinstein structure is provided by the cotangent
bundle V' = T*Q of a closed manifold ¢ with the standard symplectic form
w = dX\, A = pdq. To define a Weinstein structure, take any Riemannian
metric on @ and a Morse function f : @ — R. Note that the Hamiltonian
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vector field X of the function F(q,p) := (p, Vf(¢)) (or in a more invariant
notation F' = A(Vf)) coincides with V f along the zero-section of T*Q. Thus
the vector field X = pa% + X is Liouville and gradient-like for the Morse

function ¢(q,p) := [p|> + f(g) if f is small enough.

Exercise 12.5. Find explicitly a Weinstein structure on 7*Q if @) is not com-
pact and describe its ideal contact boundary.

The product of two Weinstein manifolds (V1, w1, X1, ¢1) and (Va,wa, Xa, ¢2) has
a canonical Weinstein structure (V3 x Va, w1 Gwa, X1® Xa, ¢1B¢d2). In particular,
the product

1 0 0
(V,w, X, ¢) x (R%,dei Ndwi 5 (xax + yay) > (@ + y?))

is called the k-stabilization of the Weinstein manifold (V,w, X, ¢).

Recall from Section 5.1 that a subspace W of a symplectic vector space (V,w)
(and similarly for manifolds) is called isotropic resp. coisotropic if W C W
resp. W C W, where W denotes the w-orthogonal complement.

Proposition 12.6. Let (V,w) be a symplectic manifold with an expanding vector
field X, and let p be a hyperbolic zero of X. Then

(a) the stable manifold W~ (p) is isotropic, and

(b) the unstable manifold W+ (p) is coisotropic.

Proof. Let ¢y : V. — V be the flow of X. Abbreviate W := W+ (p) and
W~ =W~ (p), so T,V = T,W+ & T,W~. All eigenvalues of the linearization
of X at p have negative real part on T,W~ and positive real part on T,IW*. It
follows that the differential T}, : T,V — T}, )V satisfies

tlim Tope(v)=0forx e W0 e T,W™,
. lim Ty (v) =0 for z € Wtve T,Wt.

(a) Let x € W~ and v,w € T,W~. Since ¢;(x) — p as t — oo, the preceding
discussion shows

etw(v,w) = (Qb:w)(vvw) = wqﬁt(w) (Tx¢t : U;Tzd)t : ’LU) —0

as t — oo. This implies w(v, w) = 0.

(b) Let x € Wt and v € (T,W*)¥ C T,V. Suppose v ¢ T,WT. Take a
sequence t, — —oo and let xy := ¢y, (). Pick Ay > 0 such that vy 1= A\ Tpdy, v
has norm 1 with respect to some metric on V. Note that vy € (T, W)« for
all k. Pass to a subsequence so that vy, — v € T,V. Since T, ¢, contracts
the component of v tangent to W+ and expands the transverse component, we

Reference:
lambda-lemma?
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find 0 # veo € T,W ™.

We claim that ve, € (T,W1)“. Otherwise, there would exist a wo, € T,W™T
with w(vee, Weo) # 0. But then w(vy, wy) # 0 for k large and some wy, € T, W,
contradicting vy, € (Ty, W), Hence vs is w-orthogonal to TpWJr. Since
T,W~ is isotropic by part (a), vs is also w-orthogonal to 7T,W~. But this
contradicts the nondegeneracy of w because T,V = T,W+ & T,W ™. O

Corollary 12.7. Let (V,w) be a symplectic manifold of dimension 2n with an
expanding vector field X, and let p be a hyperbolic zero of X. Then the stable
manifold satisfies dim W~ (p) < n.

Remark 12.8. In view of Lemma 8.8, Proposition 12.6 and Corollary 12.7 apply
in particular to a zero p of the expanding vector field X in a Weinstein manifold
(V,w, X, ¢). Thus its core, which is the union of all stable manifolds, consists of
isotropic manifolds. Under suitable technical assumptions (X Morse-Smale and
(X, ¢) standard near critical points), the core is in fact an isotropic embedded
CW complex, see [6].

Note that in a Weinstein manifold (V,w, X, ¢) any regular level set . := ¢~ 1(c)
carries a canonical contact structure &. defined by the contact form a. :=

(ixw)ls,-
Lemma 12.9. Let (V,w, X, $) be a Weinstein manifold.

(a) If ¢ is a regular value of ¢ then for any critical point p € V with ¢(p) > ¢
the intersection W~ (p) N X, is isotropic in the contact sense, i.e. it is tangent

to &..

(b) Suppose ¢ has no critical values in [a,b]. Let A*> C ¥, = ¢~(a) be an
isotropic submanifold. Then the image of A* under the flow of X intersects %y
in an isotropic submanifold AP.

Proof. (a) Since X is tangent to W~ (p) and W~ (p) is isotropic by Propo-
sition 12.6 and Lemma 8.8, the Liouville form A\ = ixw satisfies Alyy-(,) =
(ixw)lw—(p) =0.

(b) Let f > 0 be the function such that Lyx¢ =1 on ¢~ *([a,b]). Denote by 1
the flow of fX, thus A® = ¢,_,(A®). By equation (12.1) the 1-form \ = iyw
satisfies LxA = A, hence LyxA = fA, so the flow ¢; only rescales A and the
lemma follows. U

Lemma 12.9 shows that every Weinstein structure on V provides a handlebody
decomposition of V' where cells are attached along isotropic (in the contact
senss) spheres. The core disks of the handles are isotropic in the symplectic
sense. We will discuss this handlebody decomposition picture with more details
in Chapter 13 below.

Lemma 12.10. Let W = (W,w, X, ¢) be a Weinstein cobordism structure such
that ¢ has no critical points. Denote by &, t € [m = ming, M = max¢)|, the
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induced contact structure on the level set Vi = {¢ = t}. Let g : (Vin,&m) —
(Varéar) be the holonomy contactomorphism along X. and hs : (Vin,&m) —
(Vin,&m), s € [0,1], ho = 1Id, be any contact diffeotopy. Then there exists a
family of Weinstein structures Wy = (W, ws, X5, 0), 20 = W0, such that W,
coincides with W near OW , and the holonomy map gs : V,, — Vi along X is
equal to go hg, s € [0, 1].

12.4 Weinstein structure of a Stein manifold

Proposition 12.11. [(see EliGro91] Let (V, J) be a Stein manifold and ¢ : V —
R a completely exhausting (see Section 2.8 above) J-convexr Morse function.
Then

(wp = —d°¢, Xy := Vg0, 9)

is a Weinstein structure on V. The symplectic manifold (V,wy) is independent,
up to symplectomorphism isotopic to the identity, of the choice of completely
ezhausting J-convexr Morse function ¢.

Proof. By definition of J-convexity, wg := —dd®¢ is a symplectic form, i.e., a
closed nondegenerate 2-form. Denote Xy := V¢ the gradient of ¢ taken with
respect to the metric (X,Y) := wy (X, JY). Then X4 is Liouville. Indeed, for
any Y € TV we have

d°(Y) = (V,JY) = ~wy(V§,Y) = ~ix,we(Y).

Hence

iX¢W¢ = 7dc¢, LX¢LU¢ = We.
To prove the second part of the proposition consider two completely exhaust-
ing J-convex functions ¢g,¢1 : V — R;. Using Lemma 3.19 we find smooth
functions hg,h1 : Ry — Ry with hg, b — oo and hy,h{ > 0, a completely
exhausting function ¢ : V' — R,, and a sequence of compact domains V*,
k=1,..., with smooth boundaries ¥ = 9V*, such that

o VECIntVFH for all k > 1;
e U VE=V;

o Y2771 are level sets of the function ¢; and X% are level sets of the function
¢o for j=1,...;

e ¢y ="hjo¢p on Op (U;il EQj*l) and 1 = hg o ¢g on Op (U]Oil EQj).

Let us construct now a compact type homotopy between the Weinstein struc-
tures (wey, Xog, P0) and (wg,, X¢,,¢1) on V. Then Proposition 12.2 will imply
that the symplectic manifolds (V, wg,) and (V, wy, ) are symplectomorphic via a
diffeomorphism isotopic to the identity.



156 CHAPTER 12. WEINSTEIN STRUCTURES

The required compact type homotopy can now be be constructed as a compo-
sition of four elementary compact type homotopies. First, note that for any
function h : Ry — R, such that b’ — oo and h” > 0 the linear combination
h*(z) = (1—s)x+sh(x) has the same properties for any s € (0, 1], and hence the
Weinstein structures which correspond to the family of completely exhausting
J-convex functions hjo¢; provide elementary compact type homotopies between
the Weinstein structures (we,, Xg,, i) and (Wh,06,s Xh,0e:, i © ¢;), 1 = 0,1. On
the other hand, for each 2 = 0,1 the family ¢ = (1 — t)h; o ¢; + 13, s € [0,1],
consists of exhausting J-convex functions which concide near boundaries of an
exhausting sequence of compact domains. In view of Proposition 2.7 (by choos-
ing the h; sufficiently convex) we can also assume that these functions are com-
pletely exhausting. Hence the Weinstein structures which they generate provide
elementary homotopies between (Wh,;op; s Xh;op;s i © ¢;) and (wy, Xy, ). O

Note that the contact structure &, defined on a regular level set X, = ¢~*(c) by
the form d¢®|s, is formed in this case by the distribution of complex tangent
hyperplanes to the J-convex hypersurface ..

Remark 12.12. Let (V,J) be any almost complex manifold which admits an
exhausting J-convex Morse function ¢ : V' — R. Then even if the symplectic
form wy = —dd®¢ is not compatible with .J one still gets a Weinstein structure
(V,we, Xy, ¢), similar to the one defined in Proposition 12.11. The only differ-
ence in this case is that the Liouville vector field X4 should be defined directly
as wg-dual to —d%¢, i.e. by

—d(c(b = iXd)w(z,.
Applying both sides to a tangent vector JZ we find
dd(Z) = wy(Xg, I Z),
so X, is gradient-like for ¢ with respect to the positive definite (but in general
non-symmetric) (2,0) tensor field g4 := wy(-, J-). Completeness of X4 can be
achieved similarly to the integrable case.

Proposition 12.11, Remark 12.12 and Corollary 12.7 imply

Corollary 12.13. The indices of critical points of any J-convex Morse function
on a 2n-dimensional almost complex manifold are < n.

12.5 Weinstein structures near critical points

In this section we prove that a Weinstein structure can be arbitrarily altered
near a hyperbolic or birth-death type critical point. The precise formulation is
given in the following two propositions.
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Proposition 12.14. Let p be a hyperbolic critical point of ¢g in a Weinstein
manifold (V,w, Xg, ¢o). Let (w, Xioc, Proc) be a Weinstein structure on a neigh-
borhood Viee of p such that p is a hyperbolic critical point of ¢oc of value
D1oc(p) = ¢o(p) and inder ind,(pioc) = ind,(¢g). Then there exists a homo-
topy of Weinstein structures (w, X, ¢¢) on V' such that (X, ¢¢) = (Xo, ¢o)
outside Vipc, Xt has a unique hyperbolic zero at p in Vi for all t € [0,1], and
(X17¢1) = (Xloca¢loc) nearp.

Proposition 12.15. State and prove analogue for birth-death case.

We first prove Proposition 12.14 in the special case that X;,. = X and ¢q is a
strong Lyapunov function.

Lemma 12.16. Let p be a hyperbolic critical point of ¢ in a Weinstein manifold
(V,w, Xo, ®) such that Xo-¢ > 6|Xo|? for some § > 0. Let X,c be a vector field
on a neighborhood Vie. of p with a hyperbolic zero at p such that Lx,, w = w
and Xjoe - ¢ > 5|X100|2. Then there exists a homotopy of strong Weinstein
structures (w, X¢,d) on V such that Xy = Xo outside Vipe, X¢ has a unique
hyperbolic zero at p in Viec for allt € [0,1], and X1 = Xjoc near p.

Proof. Pick local coordinates {Z} near p = {Z = 0}. Hyperbolicity of X,
implies | Xo(Z)| > 7v|Z| for some v > 0, and similarly for Xjoc. So the function ¢
satisfies do(Z) < c|Z| and X¢-¢(Z) > §|Xo(Z)|? > 8| Z|? for positive constants
c and 3 = vd, and similarly Xjo. - ¢(Z) > B|Z|>. Tt follows that the vector
fields X; := Xo + t(Xioc + Xo) satisfy Lg,w = w and X, - ¢(Z) > B|Z|? for all
t € [0,1]. Cut the interval [0,1] into 0 =t < t; < --- <ty = 1 such that

[ Xt,4,(2) = X4, (2)] < alZ]

i+1

for all ¢, with an arbitrarily small constant o = «(c, 3) to be chosen later. Thus
by induction over 7 it suffices to prove the statement under the assumption

| X10c(Z) — X0(Z)| < o] Z|.

The 1-form A := i(x,_x,,)w is closed. So there exists a unique function H
with H(0) = 0 and dH = A, ie. Xg — Xjoc = —Xu, where Xy denotes the
Hamiltonian vector field of H. Pick e > 0 and a cutoff function g : [0, €] — [0, 1]
with g = 1 near 0, g = 0 near ¢, and |¢'| < 2/e. Define

f(2)=q9(Z2%), Hy:=tfH,  X;:=Xo+ Xp,.

Define strong
Weinstein structure.
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The vector fields X; satisfy X; = X for |Z|?> > € and X; = Xjo. near p. Since
Ld
H(Z)| = —H(sZ)d
@) =| [ FHG2)
1
< / \Z| |dH (s7)|ds
0

1
S/ 1 Z| | X10c(s2) — Xo(sZ)|ds
0
<z,
2

we can estimate for [Z|? < e and a < %:

Xo-¢=(Xo+tfXp) ¢+tHX; ¢
> 2" = t|H(2)| |df (Z)| |do(Z)]

« 4
> gz - 2121 412 iz
> (8- 2coz)|Z|2
> Bizp.
2

This shows that X; is strongly gradient-like for ¢ and has a hyperbolic zero at
p for all ¢, so Lemma 12.16 is proved. O

Next we discuss linear Liouville vector fields.

Lemma 12.17. The space of hyperbolic linear Liouville vector fields on a sym-
plectic vector space (V,w) with fized unstable and stable subspaces E* is path
connected.

Proof. Recall that E~ is isotropic, E7T is coisotropic and V = E~ @ ET. Hence
Explain this? ~we can identify (V,w) with (C",ws) with coordinates z; = x; + iy; such that
E~ corresponds to R¥ spanned by z = (z1,...,2;) and Et corresponds to
R2"=* spanned by y = (y1,...,%%) and z = (2j41,---,2n). Now consider a
hyperbolic linear Liouville vector field X on (C™, ws) with unstable and stable
subspaces E*. As the flow of X is conformally symplectic and preserves E* it
preserves the splitting C* = R¥@4iR* ©C"~*, thus X is of the form X (x,y,2) =
(Az, —By, Cz) for matrices A, B,C all of whose eigenvalues have positive real
parts. Now note that the spectrum o (M) of a matrix M satisfies for a,t € R

a((l — )M + ta]l) = (1 - t)o(M) +ta,

so if all eigenvalues of M have positive real part the same holds for (1—¢) M +tal
for any a > 0 and ¢ € [0,1]. Hence the linear Liouville vector fields

1
Xpi=(1-0)X +tXa,  Xa(2,9,2) = (22,-y, 52)
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are hyperbolic with unstable and stable subspaces E* for all ¢ € [0,1]. This
shows that any X can be connected to the standard field Xy and thus the
lemma. O]

Proof of Proposition 12.14. Let (V,w, Xo, ¢o), p and (Xjoc, $10c) be as in Propo-
sition 12.14. In view of Proposition 8.11 we may assume without loss of gener-
ality that ¢g and ¢y, are strong Lyapunov functions for Xg resp. Xjo.. We will
modify (Xo, ¢o) near p in 3 steps. Let us call a homotopy (Yz, ¢:) admissible
if (w, Xt, ¢¢) is a Weinstein structure, (Xi, ¢¢) = (Xo, ¢o) outside Vipe, and X
has a unique hyperbolic zero at p in Vi, for all ¢ € [0, 1].

Step 1: There exists an admissible homotopy (X¢, ¢¢) such that the unstable
(resp. stable) subspace Ef(X1) of X1 at p agrees with the unstable (resp. stable)
subspace EpjE (Xioe) of Xioc-

To see this, pick a homotopy of symplectomorphisms f; such that fy = 1,
ft = 1 outside Vo, and the differential d, fi maps E;E(Xloc) to Epi(Xl). Then
X; = fXo has the desired properties. After applying Step 1 and changing
notation, we may thus assume that Epi (Xioe) = E;t(Xo) =: E;)t. Fix Darboux

coordinates {Z} near p and denote by Y@ and ¢3"*® the linear resp. quadratic

parts in the Taylor expansion near p.

Step 2: There exists an admissible homotopy (Yy, ¢¢) such that Yy = Yo and

d
¢1 — gua )

The linear resp. quadratic parts satisfy
in in uad
Lymw=w,  Xg"-¢o(2) >68|Z°,  Xg"-¢3"(2) > 6|2)?

for some § > 0. Therefore we may first apply Lemma 12.16 to homotope X to
XU (fixing ¢g) and then Proposition 8.11 to homotope ¢q to qzﬁguad (fixing X}i").
After applying Step 1 to (Xo, ¢p) and in the converse direction to (Xioe, dloc)
we may thus assume that Xy, Xjo are linear and ¢g, ¢1oc are quadratic in the
same Darboux coordinates {Z} near p.

Step 3: There exists an admissible homotopy (X, ¢¢) with (X, d1) = (Xioc, Ploc)
near p.

By Lemma 12.17 there exists a homotopy of hyperbolic linear Liouville vector
fields X; near p from Xy = X to X1 = Xioc. By 77? there exists a homotopy of
strong quadratic Lyapunov functions ¢, for X; near p from ¢y = ¢ t0 ¢1 = dioc.
Since the strong Lyapunov property is stable under C2-small perturbations,
there exists a partition 0 = 5 < t; < --- < ty = 1 such that for all 7 the
following hold:

e ¢, is a strong Lyapunov function for X; for all t € [t;, t;11];

e ¢; is a strong Lyapunov function for X;, , for all t € [t;, t;11].

i+1

Therefore we can inductively for each i apply Lemma 12.16 to homotope X,
to Xy,,, (fixing ¢,) and then Proposition 8.11 to homotope ¢y, to ¢, +1 (fixing
X¢,.,). This concludes the proof of Proposition 12.14. O
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12.6 Weinstein normal forms

Proposition 12.18. Let 20; = (w;, X;,¢) j = 0,1, be two Weinstein cobordism
structures on the manifold W with boundary OW = 04 WUOI_W , which share the
same Lyapunov function ¢. Suppose that Wy and Wy coincide on Op (OW_),
that ¢ has a unique critical point p € W, and that the stable discs D; of p
for vector fields X;, j = 0,1, coincide: Dy = Dy = D.Then the Weinstein
structures Wy and W are strongly homotopic via a homotopy which is fixed on
Op (0_W) and leaves invariant the stable disc D.

Proof. TO BE ADDED O

Remark 12.19. An analog of Proposition 12.18 holds also for Stein domains.
See Proposition 11.11 below.

By Proposition 5.20, near an isotropic submanifold in a level set of a Weinstein
manifold (V,w, X, ¢) we can put (w, X) and one level set of ¢ into normal form.
However, even in a neighborhood of a point there is no hope to find a normal
form for the whole structure (w, X, ¢) since rescaling ¢ yields non-equivalent
local data. The following results describe normal forms for Weinstein structures
up to homotopy.

Recall that the core of a Weinstein manifolds is the union of all stable manifolds
of critical points.

Proposition 12.20. Let A be the core of a Weinstein manifold (Vy,wo, Xo, ¢o).
Let (wioe, Xioc, Ploc) be a Weinstein structure on a neighborhood Viee of A such
that ¢1oc has the same critical points as ¢g of the same values and Xioc i
tangent to A. Then there exists a homotopy of Weinstein structures (we, X+, ¢¢)
on V such that (we, X, ) = (wo, Xo, Po) outside Vi for all t € [0,1] and
(W17X17 ¢1) = (WlomXIOCa leoc) near A.

If (Wioc, Xiocs Proc) = (wo, Xo, o) on a neighborhood of a closed subset A C A,
then we can achieve that (wi, X, ¢t) = (wo, Xo, o) near A for all t € [0,1].

Corollary 12.21. Let (w;, X;, ¢;), 1 = 0,1, be Weinstein structures on V having
the same critical points of corresponding values and indices and the same core.
Then (wo, Xo, ¢o) and (w1, X1, ¢1) are Weinstein homotopic.

Proof. By Proposition 12.20, after a Weinstein homotopy of (wg, Xo, ¢9) we may
assume that (wg, Xo, ¢o) and (w1, X1, ¢1) agree on a neighborhood U of their
common core A. By Lemma [??77], after shrinking U we may assume that U is
transverse to Xg. Now for ¢ = 0,1 the flow of X; defines a Weinstein homotopy
from (U,wi,XZ-,gbi) to (V,wi,Xi,@). O

Proof of Proposition 12.20. To be done. O



Chapter 13

Weinstein handlebodies

13.1 Handles in the smooth category

For integers 0 < k < m and a number € > 0 consider the m-dimensional k-
handle
H:=HF:=D}, x DI ",

where DF denotes the closed k-disk of radius . We will use the following
notations (see Figure [fig:handle]):

e the core disk D := D¥ x {0} and the core sphere S := dD;

e the lower boundary 0~ H := 0D} x D™~k;

the upper boundary 0T H := D¥ x 9D™~*;
e the normal bundle v := T(0~H)|s = S x R™ "% to S in 0~ H;
e the outward normal vector field n along S C D;

e the attaching region U := H \ D¥ x D™k,

We are not fixing the “width” € of the handle and allow us to choose it as small
as it is convenient.

Now let W be a compact m-manifold with boundary 0W. An attaching map
for a k-handle is an embedding f : 0~ H — O0W. Extend f to an embedding
F:(UUNO H)— (W,0W) by mapping 1 to an inward pointing vector field
along OW. Then we can attach a k-handle to W by the map f to get a manifold

WUy H:=WIHIH/gse~p@)ew-

Different extensions F' give rise to manifolds that are canonically diffeomorphic,
i.e., related by a diffeomorphism that is unique up to isotopy. Moreover, the

161
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diffeomorphism can be chose to be the identity on a shrinking of W, i.e., the
complement of a tubular neighborhood of OW'.

Remark 13.1. Note that the boundary of W U; H has a corner along f(0D¥ x
OD™ k). But this corner can be smoothed in a canonical way as follows
(cf. Chapter 4): Introduce the norms

R:=\/ai+--+2] and r:= /ol + -+,

Pick a concave curve « in the first quadrant of the (r, R)-plane as in Figure
[fig:corner] which equals the curve R = 1 near (g,1) and r = ¢ near (§,0) for
some 0 < 0 < €. Denote by H, C H the region bounded by the hypersurface
{(r,R) € v} and containing the core disk. Then W Uy H, is a smooth manifold
with boundary which is easily seen to be independent of the curve =y, up to
canonical diffeomorphism fixed on a shrinking of W. Therefore, we will suppress
~ from the notation and denote the resulting smooth manifold with boundary
again by W Uy H.

In particular, this argument shows independence of the “width” e.

Remark 13.2. The boundary of W Uy H is obtained from OW by surgery of
index k, i.e., by cutting out a copy of 9D¥ x D™~* and gluing in D¥ x D™~
along the common boundary dD* x D™k, The manifold (W Uy H) \ W/,
where W/ C W is the complement of a tubular neighborhood of OW, provides
a canonical cobordism between OW and O(W Uy H). This cobordism carries a
Morse function which is constant on the boundaries and has a unique critical
point of index k in the center of the handle, see [50] and Section 13.2 below.

Remark 13.3. By the tubular neighborhood theorem (see [42]), the attaching
map f: 0~ H — W is uniquely determined, up to isotopy, by the following two
data:

(i) the embedding f|g : S =S¥~ < OW (the attaching sphere);

(ii) the trivialization df : v 2 S x R™™* — vy of the normal bundle to f in
OW (the normal framing).

Lemma 13.4. An isotopy of attaching maps f; : 0" H — OW, t € [0,1],
induces a canonical family of diffeomorphisms ¢, : W Uy, H — W Uy, H.

Proof. By the isotopy extension theorem (see [42]), (after possibly shrinking )
there exists a diffeotopy ¢ : OW — OW such that f; = ¥, o fo. Let OW x
[—1,0] be a collar neighborhood of OW = W x {0} and define for each ¢ a
diffeomorphism

U, : OW x [—t,0] — OW x [—t, 0], (z,7) = (Vrpa(2),7).

Then U, fits together with the identity on W \ (OW x [—t,0]) and H to a
diffeomorphism ¢, : W Uy, H — W Uy, H, see Figure [fig:?77]. O
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Ezample 13.5. In general, the diffecomorphism type of W;H depends on the
normal framing. It also generally depends on the particular parametrization
f S — f(9) of the embedded sphere f(S) C OW. For example, attaching an
m-handle to the m-ball D™ via a diffeomorphism f : $™~! — S™~! yields a
manifold D™ Uy H that is easily seen to be homeomorphic to S™. However,
it is in general not diffeomorphic to S™. Indeed, by Lemma 13.4, f — D™ Uy
H defines a map from isotopy classes of diffeomorphisms of S™~! to smooth
structures on S™ (up to diffeomorphism). This map is known to be surjective
for all m # 4 (see [42]; the remaining case m = 4 amounts to the 4-dimensional
smooth Poincaré conjecture). For example, all the 28 smooth structures on S7
arise in this way.

Morse theory. For a function ¢ : V — R on a manifold and ¢ < d we
introduce the following self-explanatory notations:

VemgTie,  VEEmg((cood), VI im gl (fed) et
The main result of Morse theory can now be formulated as follows (see [50]):

Proposition 13.6. Let ¢ : V — R be a proper function on a manifold such
that V1t contains a unique nondegenerate critical point p on level ¢ € (a,b).
Then V=t is obtained from V=% by attaching a k-handle, where k = ind(p).

Since every (paracompact) manifold admits an exhausting Morse function with
distinct critical levels (i.e., every level contains at most one critical point)
(see [50]), this implies

Corollary 13.7. Every manifold is obtained from a ball by successive attaching
of at most countably many handles.

We will later need the following lemma about equivalence of Morse functions.

Lemma 13.8. Let W™ C V™ be compact manifolds with boundary and A C
VAW be an embedded k-disk transversely attached to W along its boundary. Let
¢, : V. — R be two Morse functions with a unique index k critical point p € A
and regular level sets OW = ¢~ 1(a) = ¢~ 1(a) and OV = ¢~1(b) = ¢~1(b),
a < b. Suppose that ¢ = 1 on W U A and their restrictions to A have a
nondegenerate maximum at p. Then there exists a diffeomorphism f:V —V
with flwua = 1, isotopic to 1 rel W U A, such that f*i = ¢.

Proof. By the Morse lemma, there exists an orientation preserving diffeomor-
phism g : U — U’ between neighborhoods of p such that g*i) = ¢. Moreover, we
may assume the g = 1 on U N A. (To see this, first find coordinates x1, ..., xx
on A near p in which ¢(z) = ¢ — 2% — .-+ — z7 and extend them to coordinates
Z1,...,Z, for V near p. Then apply the proof of the Morse lemma in [49] to find
new coordinates ui, . . ., u, near p in which ¢(u) = c—uj—---—ug4uj - -+ul.
Inspection of the proof shows that u; = x; on A. Pick corresponding coordinates

v; for ¢ and define g by u; — v;.) After shrinking U, U’, we can extend g to a
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diffeomorphism ¢ : B — B of a ball B containing U, U’ such that g = 1 near B
and g is isotopic to 1 rel 9B. Extend g to a diffeomorphism g : WUN — WUN,
where NV is a neighborhood of A U B in V| such that g = 1 outside B. Using
the flow of a gradient-like vector field for ¢» on N \ U’, we can modify g by an
isotopy fixed on WUAUU to a diffeomorphism h : WUN — W U N’ satisfying
h*1) = ¢. Now pick a gradient-like vector field X for ¢ on N \ U, tangent to
ON, and set X' := h,X on N’ \ U’. Extend X to a gradient-like vector field
on V'\ (W UU) and normalize it such that X - ¢ = 1, similarly for X’. Denote
the flows of X, X’ by v,v;. For z € V \ (W UU), let t(x) < 0 be the unique
time for which v;(,) () € OW. Now define f: V — V by f:=h on WUU and

f(z) = ’Y,_t(m) o 'Yt(a:)(x) on V\ (WuUU). O

13.2 The standard Weinstein handle

We will be interested only in attaching handles of index k < n and view the
handle H = HY = D}, _ x D?"~* as canonically embedded in C™ as the bidisk

k n
{Zx?Jr Z |2 < €2, Zyj <(1+¢)%}, (13.1)
j=1 j=k+1
where z; = x; +14y;, j = 1,...,n, are the complex coordinates in C". In

particular, the handle H carries the standard complex structure ¢, as well as the
standard symplectic structure wey = Y dx; A dy;.

The symplectic form wg; on H admits a hyperbolic Liouville field

k n
0 0 1 0 0
w3 (wg mwgy ) 1y 3 (o vy )

j=1 j=k+1

which is gradient-like for the function

Ou (2 fHZI 3 lal - Zyy

j=k+1

More generally, X is gradient-like for a function on H of the form ¢ (u, v) with

k n
=2 T+ > IZJI,U—Z%
j=1 k+1

j=
provided that
9y o9
ou v
Note that s (u,v) = 1 + u — v satisfies these conditions. The following lemma

describes some more general functions satisfying these conditions, which will be
needed in constructions below.

(u,v) >0, (u,v) <0 forall0<u<e? 0<v<(1+6)% (13.3)
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Lemma 13.9. For any e >0 and 0 < § < 1 + &2 there exists a smooth family
of functions ¥ (u,v) on H¥ with the following properties:

(a) Yy satisfies conditions (13.3) (hence is gradient-like for Xg ) for allt € [0,1];
(b) 1o = s and 1y = g in a neighborhood of the set {1s < 0} U{ u = &2}.
(c) 1 < 0 in a neighborhood of the core disk D.

Proof. This is pretty clear from Figure [fig:W-shape|, but here is an explicit

construction. Pick any smooth function f : [I — (1 +¢)?,1 + 2] — R with the
following properties:

o f'(s) >0 and f(s) < s for all s;
o f(s)=sfor s <0;

e f(s) < ¢ forall s.

Pick 0 < a < b < €% and a smooth non-decreasing function p : [0,£2] — [0, 1]
with p =0 of [0,1] and p =1 on [b,&?]. Let

g(u, s) = f(s) + p(u) (s — f(s)).
and define

1/}1 (ua U) = g(ua ¢St (U, U))a 7//t = (1 - t)wst + t’l,[)l

Let us verify the conditions in the lemma.

(a) The hypotheses on f and p imply 3¢ = p/(u)(s — f(s)) > 0 and %2 =

f'(s) + p(u)(1 = f'(s)) > 0, and we find

O _ dg @5% O _ 0g Ost

u ou s ou 0" aw osaw O

Hence 1, and therefore also 1), satisfies conditions (13.3).

(b) Clearly ¢y = ts. For s < 0 we have g(u,s) = s, which shows t:(u,v) =
st (u, v) whenever g (u,v) < 0. For u > b we have g(u, s) = s and therefore
i (u, v) = Ys(u, v).

(c) For u < a we have g(u, s) = f(s) and therefore ¥ (u,v) = f(ts(u,v)) < &
by the choice of f. O

Remark 13.10. Lemma 13.9 can be seen as a warm-up for the much more so-
phisticated study of shapes for i-convex functions on the handle in Chapter 4.

13.3 Weinstein handlebodies

Let us denote by £~ := ker(Ast|s- ) the contact structure defined on 9~ H by To be rephrased.
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the Liouville form Ay = i(Xgt )wst. Note that the bundle £~ |g canonically splits
as (TS®C)@e™*, where e"* is a trivial (n — k)-dimensional complex bundle.
We will denote by og the isomorphism

TSRC@e" % —¢_|S.

We need some notation. Suppose we are given a real k-dimensional bundle
FE, a complex n-dimensional bundle F', n > k, and an injective totally real
homomorphism ¢ : E — F. Then ¢ canonically extends to an injective complex
homomorphism ¢ ® C: EQ C — F. If n > k and ¢ ® C extends to a fiberwise
complex isomorphism @ : (E ® C) @ "% — F then ® is called a saturation of
¢. When n = k the saturation is unique.

Now let (V,w, X, ¢) be a Weinstein manifold, p a critical point of index k of
the function ¢, and a < b = ¢(p) a regular value of ¢. Denote W := {¢ < a}.
Suppose that the stable manifold of p intersects V \ Int W along a disk D.
By Proposition 12.6 the disk D is isotropic in (V,w), and by Lemma 12.9 the
attaching sphere S = 9D is isotropic in (OW,&). Thus the inclusion T'S —
£ extends canonically to an injective complex homomorphism 7'S ® C — &,
while the inclusion T'D — TV extends to an injective complex homomorphism
TD ® C — TV. There exists a homotopically unique complex trivialization of
the normal bundle to TS ® C in £ which extends to D as a trivialization of
the normal bundle to TD ® C in T'V. This trivialization provides a canonical
I'd rather speak of the isomorphism ®p : TSR C® en—k &ls. We will call @ canonical saturation

“complex (or of the inclusion T'S «— £.
symplectic) normal

framing” The following result (at least the existence part) has been proved in [63].

Simplify formulation! Proposition 13.11 (Weinstein [63]). Let (W,w, X, ¢) be a 2n-dimensional We-
instein domain with boundary OW and & = ker(A|gw ) the contact structure on
OW defined by the Liouville for A = ixw. Let h: S — OW be an isotropic em-
bedding of the (k—1)-sphere S covered by a saturation ® : TS@C@e" % — ¢ of

the differential dh : TS — &. Then there exists a Weinstein domain (W, w, )~(, a)
such that W C Int W, and

(Z) (&’X7$)|W = (vaa ¢)¢
(ii) the function <E|W\Intw has a unique critical point p of index k.

(iii) the stable disk D of the critical point p is attached to OW along the sphere
h(S), and the canonical saturation ®p coincides with .

Given any two Weinstein extensions (Wo,wo, Xo,¢o) and (Wi,w1, X1,¢1) of

(W,w, X, @) satisfying properties (i)-(iii), there exists a diffeomorphism g :

Wy — W1 fized on W such that (wo, Xo, ¢o) and the pull-back structure (g* w1, g* X1, 9" 1)
are homotopic in the class of Weinstein structures satisfying conditions (i)-(iii).

In particular, the completions Compl(Wy, wo, Xo, ¢o) and Compl(Wy, w1, X1, ¢1)

are symplectomorphic via a symplectomorphism fized on W.
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We say that the Weinstein domain (W@),X’, 5) is obtained from (W,w, X, ¢)
by attaching a handle of index k along an isotropic sphere h : S — OW with a
saturation homomorphism ®.

Proof. Extend the Weinstein structure (w, X, ¢) to a slighly larger manifold
W’ > W. After adding a constant to ¢ we may assume that ¢lgw = —1.
Let (H,wst, Xst, ¢st) be the standard Weinstein handle of index k. By Proposi-
tion 5.22 there exists an isomorphism of isotropic setups

F: (U ws, Xaty 05 (1) N T, S) — (U, w, X1,0W N U, h(S))

between neighborhoods of S in H and h(S) in W’ inducing h and ®. Thus
(w, X) and (ws, X¢) fit together to a Liouville structure (&, X) on W' Up H.
Moreover, the level set {t)sy = —1} corresponds via F' to the level set {¢p = —1}.
Thus after perturbing ¢» on W'\ W, keeping it transverse to X, we may assume
that the level sets {¢) = t}, ¢ € [-1,—1 + §] correspond via F to level sets
{5t = g(t)} for some & > 0 and diffeomorphism g : [0,] — [0,8']. Now let 9 be
the function on W’ Up H which equals g=! o+ on W' and the function ¢; from
Lemma 13.9 on H. Then (W = {z/? <4}, @, X, é) has the desired properties.

For uniqueness, pull back (w1, X7,¢1) by any diffeomorphism g : Wy — Wy
fixed on W and mapping the critical point and stable disk of ¢g to those of ¢;.
Compose g*¢; with a homotopy of functions R — R to arrange the same values
at the critical point and apply Corollary 77. O

Remark 13.12. Note that Proposition 13.11 implies that even in the case
of infinitely many handles the handlebody description determines the sym-
plectomorphism type of Weinstein manifold. Indeed, it follows that given 2
manifolds (Vi,wy, X1,¢1) and (Vi,wa, Xa, ¢2)) with the same handlebody de-
scription, there is a symplectomorphism of a neighborhood U; of the core K;
of the first manifold onto a neighborhood U; of the core Ks of the second.
Moreover, the neighborhoods can b chosen i such a way that their boundaries
are transversal to the Liouville fields X; and X, respectively. On the other
hand, |J X{(U;) = V4 and |J X4(Uz) = Vs, and hence the symplectomorphism
i

t
U; — U, can be extended to a symplectomorphism V; — V5 by matching the
corresponding trajectories of the Liouville fields.

Theorem 13.13. Suppose that a 2n-dimensional almost complex manifold (V, J)
admits an exhausting Morse function ¢ with only critical points of index < n.
Then there exists a Weinstein structure (w, X, ¢) (with the same ¢!) on' V' such
that J is homotopic to an almost complex structure compatible with w.

Proof. Let ¢ : V — RT be an exhausting Morse function with critical points
of index < n. The critical values of ¢ are discrete. Let us order them: ¢y =
0 < ¢ < cg..., introduce intermediate regular values dp = cx—1 + %,

k=1,...,and set Wy := {¢ < dy}, 3k := OWy, k= 1,.... Note that there are

Rephrase, overlaps
with Corollary 77

Still to be corrected.
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only finitely many critical point on each critical level. We are going to construct
the Weinstein structure inductively on Wi.

W7 is a disjoint union of finitely many balls. We choose on each of them a
Weinstein structure which consists of the standard symplectic structure of the

unit ball in the standard symplectic (R?", > dzy Adyy), the radial Liouville field
1

1 (<& 0 0
X == — —
2 (zlj Tk 8$k +yk 8yk> )

k
and the function ¢, which can be assumed to be equal d; (Z xﬁ + yi) on each
1

of the balls. We can deform J on V so it becomes compatible with the chosen
symplectic form on Wj.

Let us assume that we already constructed the required Weinstein structure
(w, X, ¢) on W, for some | > 1, so that J|w, is compatible with the Weinstein
structure on W;. The standard Morse theory tells us that W;,; can be obtained
from W; by a simultaneous attaching of several handles of index < n. Without
a loss of generality we can assume that there is just one handle.

Let p be the corresponding critical point of the function ¢, and A the intersection
of its stable manifold (formed by the trajectories of X converging to p) with
V\Int W;. Then A is a disk of dimension k& = ind p, transversely attached to W}
in Wi C V. By Theorem 6.14 there exists an isotopy of A in Wi\ Int W} into
a totally real disk A’ which is J-orthogonally attached to W; along an isotropic
submanifold of 0W].

By Proposition 13.11 we can extend the Liuoville structure from W to a Lioville
structure (', X', ¢’) on a domain Wy, € Op (Wi U A" C Wiyq, so that W},
is obtained from W, by attaching a handle of index k& with the core disk A’
using the canonical saturation of the attaching map provided by the totally real
disk A’. In particular the almost complex structure on W}/ '+, can be deformed
to become compatible with w”. Now observe that by construction there is an
isotopy oz : Wy, — V, t € [0,1], such that ag is the inclusion W _, — V,
ar(W/,) = Wiy and a¢lopw, = Id. Moreover, one can arrange that the
function ¢’ oh differs from ¢ by a reparameterization of the image, i.e. ¢ = Bo¢’
for a diffeomorphism g : Ry — R,. The push-forward almost complex structure
(1)« J extends in the same homotopy class to V. Hence, (ay).w’, (a1)« X', §) is
the required extension of the Weinstein structure (w, X, ¢, ¢) from W, to Wi ;.

If the function ¢ has finitely many critical points then to complete the proof it
remains to attach a cylindrical end to Wy where ¢y _1 is the last critical level. If

o0
there are infinitely many point that the resulted structure on V=W, =W,
1

is automatically Weinstein provided that the Liouville vector field X is complete.
However, this can be easily achieved by an appropriate rescaling of w and X in
the neighborhood of all regular levels OW, = {¢p =d;}, I =1,..., . O
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13.4 Swubcritical Weinstein manifolds

A 2n-dimensional Weinstein manifold (V,w) is called subcritical if it admits a
Weinstein structure (X, ¢) such that all critical points of the function ¢ have
index < n. More precisely, it is called k-subcritical, k > 1 if all critical points
of ¢ have index < n — k.

Theorem 13.14 (Cieliebak [13]). Let (V,w, X, @) be a k-subcritical 2n-dimesional
Weinstein manifold. Then (V,w) is symplectomorphic to the k-stabilization of
a Weinstein manifold (V' ,w', X', ¢") of dimension 2(n — k).

The proof requires some preparation. Note that if k¥ < n, then the standard 2n- Still to be proofread.
dimensional handle H (e) of index k contains the standard (2n — 2)-dimensional

handle H'(¢) = H(e) N C"~!. The contact structure &, on 9~ H canonically

splits as &,_; @ ', where £, _; is the canonical contact structure on 9~ H’. In

the next section we will need the following

Lemma 13.15. Let (W,w, X, ¢) be a Weinstein domain of dimension 2n, and
W' a codimension 2 submanifold which is invariant with respect to X, and
such that the restriction (w|w, X |w, ¢lw’) defines on W' a Weinstein domain
structure. Suppose that the normal bundle to W' in W is trivial. Let h :
S — OW' be an isotropic embedding together with a saturation homomorphism
P :TS®C®C 1 = ¢ then one can simultaneously attach the handle
H' to W’ using h and ®', and the handle H to W using h and ® = ¢/ & 1d :
TSRCoCF1lgel = oW =¢ @el to get a pair a Weinstein domains
W = WU H.G, X,$) and (W' =W’ Y, H'.&',X,¢) such that
. (W’,@W’) C (W,5W), X' is tangent to W';

o (. X" ¢)=(@X,0)l, and

e the normal bundle to W’ mn W 1s trivial.

We will also need the following

Lemma 13.16. Suppose that (M, &) be a (2n+1)-dimensional contact manifold
and (N, () its codimension 2 contact submanifold with a trivial normal bundle.
Let S be a k-dimensional manifold, k < n, f : S — V an isotropic embedding
and ® : E =TS ®C @ "% — ¢ a saturation of its differential df : TS — €.
Suppose that there exists a homotopy fy : S — M,t € [0, 1], which begins with
fi=f and ends at a map f1 : S — N. Then there ezists an isotropic isotopy
gt : S — M and a family O, of saturation of df;,t € [0, 1], such that

® Jo :f;
e g1(S) C N;

o g, is C°-close to f,.
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e the restriction of ®1 to By =TSQC@e" * 1 CE=TS®@C®e"* is
a saturation of the homomorphism dg, : S — (.

Proof. By assumption, there is a splitting u : ¢ ® ! — €|y, where €' is a
trivial complex bundle. Denote by v the vector field u(e) where e generates e!.
Consider a homotopy ¥, : TS®C@®e™ % — ¢ of complex homomorphisms which
covers the homotopy f;, t € [0,1], and begins with ¥g = ®. We can assume
that Uy (e,_r) = v, where e,_j is the generator of the second summand in
the decomposition e * = enk=1 @ ¢!, Indeed, the obstructions to do that
lie in the groups Wj(SQ”_l), j < k < n, which are trivial for any n > 1.
Hence, we can further adjust ®; to ensure that Uy|g, is a saturation of a totally
real homomorphism ¢ : T'S — (. Now we apply Gromov’s h-principle for
isotropic immersions 6.8 to CP-approximate the map f; : S — N by an isotropic
immersion f; : S — N, whose differential df; : T'S — ( is homotopic to
through totally real homomorphisms 7'S — (. Note that the homotopy of
complex homomorphisms ¥; can be modified into ¥; : ' — § so that it ends
at a saturation ¥y : T'S — £ of the homomorphism df; such that ¥, (F;) C .
Next, we apply again Theorem 6.8 and construct an isotropic regular homotopy
gt, t € [0,1], connecting go = f with g1 = f1, together with a family &, : E — £
of saturations of dg; such that the paths \Tlt and @, t € [0, 1], are homotopic
with fixed ends. It remains to note that by dimensional reasons (see Lemma
6.10) we can assume that g; is an isotopy, rather than a regular homotopy. O

Proof of Theorem 13.14. 1t is sufficient to consider the case £k = 1. As in the
proof of Theorem 13.13 let ¢y < ¢;1... be the critical levels of the function ¢,
d; < ... intermediate regular values: ¢; < di < ¢g < dy < ... and W, =
{6 <di},1=1,.... We will construct the required Weinstein manifold V' C V/
inductively by successively adjusting the handlebody decomposition of V. On
each step we will change the Weinstein domain structure on Wy by Weinstein
homotopy, and change the attaching map by contact isotopies of OW}. As it is
explained above this will not affect the symplectomorphism type of the resulted
Weinstein manifold.

Up to Weinstein homotopy we can assume that W; is a round ball in C"* = R??
with the standard symplectic structure and the radial Liouville field. We set
Wi = W; UC" L. Suppose we already deformed a Weinstein domain struc-

ture on W;, so that for the resulted Liouville structure (&,)? , a there exists a
codimension 2 submanifold with boundary (W/,0W/) C (W,;,0W,) such that

a) X is tangent to W/;

b) the function % has no critical points outside W/;

c) the normal bundle to W} in W is trivial.

We will consider the case when there is only 1 critical point on the level d;;.
The general case differs only in the notation. Then the Weinstein domain W4
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can be obtained from W, by attaching a handle H of index k with an isotropic
embedding h : S — OW] of the core (k — 1)-dimensional sphere S C H with a
saturation homomorphism ® : TS ® C®C* % — ¢, where & denotes the contact
structure on the boundary of the Weinstein domain (W;, @, X, ¢). According to
Lemma 13.16 we can adjust the attaching map via an isotropic isotopy (which
is the same as via ambient contact isotopy) to ensure that h(S) C OW/ and that
the saturation @ restricted to By = TS Q@C®e" 1 c E=TSQC@e"F
is a saturation of the homomorphism dh : S — &', where &' = £ N (OW)) is the
induced contact structure on 0W,. Then using Lemma 13.15 we can simultane-
ously attach index k handles to W; and to W]. The resulted Weinstein structure
on (W, th) H) coincides up to Weinstein homotopy with (W41, w, X;+1,¢) and
we keep this notation for it. The Weinstein domain W;, , = W/ . (IE‘J H' is
»PlE,
embedded in W41 in such a way that all the above properties a)-c) are satis-
fied. This gives a simultaneous handlebody description of Weinstein manifolds
(V'w') of dimension 2n — 2, and of 2n-dimensional manifolds V,w. Note that
this handlebody decomposition of (V,w) coincides with the decomposition of
the stabilization (V’ x R?, w’ @ ws;), and hence, according to Propositions 13.11,
12.2 and Remark 13.12 the manifolds (V,w) and (V' x R?,w’ @ wy) are sym-
plectomorphic.

O

The following theorem is a slight modification of a result from [16].

Theorem 13.17. Let (Vi, w1, X1, ¢1) and (Va,ws, Xa, ¢2) be two subcritical We-
insten manifolds. Suppose there exists a homotopy equivalence h : Vi — V,
covered by a homomorphism ® : TVy — TV such that ®*ws = wi. Then h is
homotopic to a symplectomorphism f : (Vi,w1) — (Va,ws).

13.5 Morse-Smale theory for Weinstein struc-
tures

Lemma 13.18. Let (V,w, X, ¢) be a Weinstein structure. Let a be a regular
value of ¢, and p a critical point with ¢(p) = b > a. Suppose that all the
trajectories of the vector field —X emanating from p hit the level set ¥, = {¢ =
a}, i.e the intersection of the stable manifold of p with {¢ > a} is a disk D with
boundary S = 0D C ¥,.

(i) Then for any ¢ € (a,b] there is another Lyapunov Morse function (j) for X
such that ¢( ) = b, while all other critical values 0f¢ and ¢ coincide.

Proof?7?
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(i) Given any contact isotopy hy : Lo — X4t € [0,1], there is family of
Weinstein structures (wy, X¢, ¢) such that the stable manifold of the point
p for Xy intersects ¥, along h(S), t € ]0,1].

(i1i) Let q be another critical point of index ind g = indp — 1 such that ¢(q) =
¢ < a and the intersection of the unstable manifold of p with {¢ < a}
is a disk A with boundary ¥ = OA C %,. Suppose that S and ¥ inter-
sect transversely at 1 point. Then (V,w) admits a Weinstein structure
()2,5) such that Crit(g) = Crit(¢) \ {p,q}, where we denote by Crit((g)
and Crit(¢) the sets of critical points of the functions (E and ¢.

To be continued... Proof. The first statements have been proved in [12]. O



Chapter 14

From Weinstein to Stein

14.1 Stein structures on Weinstein manifolds

Two Weinstein cobordisms or manifolds
W= (W,w,X,$) and W =W,z X,0)

are called coarsely equivalent if there exists a diffeomorphism h: W — W such
that

(i) $oh=go¢ for a diffeomorphism ¢ : R — R;

(ii) R\ = g1\ + godo, where A, X are Liouville forms of 20 and %, g1, g2 are
C*-functions on W such that g; > 0 and near critical points of ¢, have
g1 = 1 and g2 = 0. In other words h preserves the Liouville structure (i.e.
w and X) near critical points of ¢ and induces contactomorphism between
the corresponding level sets of functions ¢ and a

The diffeomorphism h is called in this case a coarse equivalence between 20 and

0. If both Weinstein structures are given on the same smooth manifold W
then we will always require the equivalence h to be diffeotopic to the identity.

Lemma 14.1. If20 and 20 are Weinstein manifolds then any coarse equivalence
between 2 and AT is isotopic to a symplectomorphism. In the cobordism case the
map h viewed as an embedding to the completion (W) is isotopic to a symplectic
embedding onto a domain with starshaped boundaries.

By a small adjustment of a Weinstein cobordism 20 we will mean a combination
of the following operations:

(i) C*°-small deformation;

173
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(ii) C'-small deformation near critical points of functions ¢.

The following theorem is a ramification of Proposition 11.4.

Theorem 14.2. Let 9 = (W,w, X, ¢) be a Weinstein cobordism or manifold.
Suppose the induced contact structure on O_W admits a compatible integrable
CR-structure J. Then J extends to an integrable complex structure on W such
that (J,ac 0 @) is a Stein cobordism structure on W and 20(J, $) is coarsely
equivalent to L0’ which is obtained from 0 by a small adjustment. Here o is a
diffeomorphism R — R.

Remark 14.3. If n = dim W = 2 then any sufficiently smooth CR-structure on
O_W is integrable, see [?] . In the real analytic case the claim is straightforward.

If n > 2 then according to a theorem of Grauert (?7) any integrable CR-manifold
symplectically fillable, while not every contact manifold is.

A Weinstein cobordism 20 = (W,w, X, ¢) is called elementary if ¢ is a Morse
function whose critical points are not connected by X-trajectories.

Proof of Proposition 14.2. Suppose first that the cobordism 27 is elementary.
We can assume that the stable discs D1, ..., Dk of all critical points q1, ..., qx
K

are real analytic. The complex structure J given on U; = Op d_-W UJ Op (¢;)
1

K
extends to Uy = Op (U DZ-) in a unique way compatible with the real analytic
1

structure of the discs. There exists a J-convex function 5 : U1 UU; — R which
K ~ K

coincides with ¢ on Uy U|J D; and has V¢ = X along |J D;. According to ??
1 1

the Weinstein structure 20(J, %) given on Uy U Us extends to W to a Weinstein
structure 20 equivalent to 2.

Next, we apply the Surrounding Lemma ?? and find a J-convex function ng on
U, u Ug, which coincides with h o ¢¢ on Opd(U; U Us), coincides with ¢ on

Op U D;, and such that there exists ¢ > m = ¢|37W for which
1

K
Uop(%’)CWCZ{WS(ESC}CU1UU2.
1

There exists a diffeomorphism g : W — W, = {m < (;5 < c} which is an
equivalence between the Weinstein structure 20 on W and 20(J, (b) on W.. Then
the induced complex structure J' = g*J and the induced g*.J-convex function
¢ = ¢ o g on W define the required Stein cobordism structure on W such that
W(J', @) is equivalent to 20.

When the cobordism 2 is not necessarily elementary, let us take an admissible
partition m = ¢y < ¢; < --- < Cny = M such that the induced cobordism
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structures on Wy = {cx—1 < ¢ < ¢}, k = 1,..., N, are elementary. Next,
we consequently extend the Stein cobordism structures to Wy, ..., Wy in such
a way that on each of W the Weinstein structure and Stein structure are
equivalent. Though the equivalences hj do not necessarily match into a global
coarse equivalence, we can modify them on U; = {¢; < ¢ < ¢fct +¢}, i =
1,...,N — 1, for any sufficiently small £ > 0 to get a global coarse equivalence
h:W—W.

O

Theorem 14.4. Let W = (V,w, X, ¢) be a Weinstein manifold structure which
is Stein near critical points of ¢. Then there ewists a Stein complex structure
J onV and a diffeomorphism o : R — R such that the function ¢ = ao ¢ is

J-convez, and the Weinstein structures 20 and 20(J, ¢) are coarsely equivalent.

14.2 Constructing Stein homotopies

While the notion of homotopy of Weinstein or Stein cobordism structures is self-
explanatory, the notion of homotopy of Stein or Weinstein manifold structures
needs some clarification.

Slightly rephrasing a similar definition given in Section 12.2 in a more general
context of convex Liouville manifolds, we call a family of Weinstein structures
(V,wt, Xt, ¢t), or Stein structures (V, Ji, ¢1), t € [0,1] a simple homotopy if there
exists a family of functions ¢; < ¢2 < ... on the interval [0, 1] such that for each
t €[0,1], ¢;(t) is a regular value of the function ¢, and |J{¢: < cx(t)} = V.

k

A homotopy between two Weinstein structures is, by definition, a composition
of finitely many simple homotopies. For any two exhausting J-convex functions
0,01 : V. — R there exists a homotopy connecting (J, ¢p) and (J, ¢1) (see
Section 12.4), and hence existence of a Stein homotopy connecting (Jp, ¢p) and
(J1,¢1) depends only on the Stein complex structures Jy,J; and not on the
functions ¢g, ¢1.

Two Weinstein homotopies 2; = (W, wy, Xy, ¢¢) and ’lelt = (AW/t,&t,)?t, at) are
called coarsely equivalent if there exists a diffeotopy hy : W — W of coarse
equivalences between the structures 20; and 20;.

By a small adjustment of a Weinstein homotopy 20, we will mean a combination
of the following operations:

(i) C°°-small deformation;
(i) C'-small deformation near critical points of functions ¢;;

(iii) reparameterization ¢t — «(t), where « : [0,1] — [0, 1] is a non-decreasing
C*>°-function.
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In the remaining part of this chapter we prove the following two theorems.

Theorem 14.5. Let 0, = (W, wy, Xy, ¢1) be a Weinstein homotopy such that
Wo = W(J, ¢o) for a Stein structure (J,¢g9) on W. Then after, possibly, a
small adjustment of the homotopy Wy, there exists a homotopy of J-convex
functions ¢y such that vy = ¢g and the homotopies W, and WW(J, ;) are coarsely
equivalent.

The above theorem applies both, to the manifold and cobordism cases.

Theorem 14.6. Let (Jo, o) and (J1,¢1) be two Stein manifold structures on
the same manifold V, and Wy = W(Jy, ¢o) and W, = W(J1, $1) are the cor-
responding Weinstein structures. Suppose there exists a Weinstein homotopy
W, connecting Wy and Wy. Then after, possibly, a small adjustment of the
homotopy 2y, there exists a homotopy of Stein structures (Ji, ¢1) such that the
homotopies D0(Jy, i) and W are coarsely equivalent.

For the cobordism case Theorem 14.6 needs to be modified.

Theorem 14.7. Let (Jy, ¢o) and (J1, ¢1) be two Stein cobordism structures on
the same manifold W, and o = W(Jo, ¢o) and Wy = W(J1, ¢1) are the corre-
sponding Weinstein structures. Suppose there exists a homotopy 20; connecting
Wy and Wy, such that the induced homotopies & of contact structures on O_W
can be covered by a homotopy of integrable CR-structures. Then there ezists a
homotopy of Stein structures (Ji, ¢¢) such that the homotopies 0 (Jy, ¢¢) and
20, are coarsely equivalent.

Clearly, Theorem 14.6 follows from Theorem 14.6 Indeed, it is clearly sufficient
to prove 14.6 for simple homotopies, while the latter case follows from 14.6
inductively applied to cobordisms {cx—1 < ¢ < ¢}, k=1,....

14.3 Special coarse equivalence of cobordisms
and homotopies

For the purposes of this chapter let us first slightly expand the notion of an
elementary Weinstein cobordism. We say, that a Weinstein cobordism 20 =
(W,w, X, ¢) is elementary of type II if either W contains a unique critical point
which is of embryo type (see Section ?? above), or ¢ has exactly two critical
points transversely (define!!) connected by a unique X-trajectory.

Elementary cobordisms introduced above in Section 14.1 will be called of type I
if we need to distinguish them.

A coarse equivalence between two elementary cobordisms of type II is required
by definition to be a Liouville symplectomorphism in a neighborhood of the
unique X-trajectory connecting the critical points of ¢.
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A coarse equivalence h : W — W between two elementary Weinstein cobordisms
W= W,w,X,¢) and W = (W,, X, ¢) is called special if h sends trajectories
of X to trajectories of X.

Lemma 14.8. Any coarse equivalence h : W — W between two elementary
Weinstein cobordisms which near the critical points is a Liouvile diffeomorphism
18 isotopic to a special one through coarse equivalences.

Proof. First, extend the diffeomorphism £ from the neighborhoods of critical
points in the case of type I, or from the neighborhood of the unique trajec-
tory connecting critical points in the case of type II, to neighborhoods of stable
and unstable manifolds of critical points of ¢. In particular, this defines a
new contactomorphism h; between neighborhoods of unstable spheres in 0_W
and O_W in the case of type I, and between neighborhoods of unstable hemi-
spheres in O_W and O_W in the case of type II (see Section ?? above). This
contactomorphism is contactly isotopic to h, and hence can be extended to a
globally defined contactomorphism hy : - W — 0_W. Then h; uniquely ex-
tends trajectory-wise to the rest of W by a diffeomorphism preserving level sets
of the functions ¢ and ¢. Clearly, the constructed special coarse equivalence h
is isotopic to h through coarse equivalences. O

An admissible partition of a Weinstein cobordism 20 = (W, w, X, ¢) is a finite
sequence m = ¢y < ¢1 < -+- < ¢y = M of regular values of ¢, where we denote
dlo_w = m, ¢lo,w = M, such that each subcobordism W}, = {cx—1 < ¢ < i},
k=1,...,N, is elementary.

One similarly defines an admissible partition of a Weinstein manifold, with the
only difference that ¢;, ¢ = 0,1,..., form an increasing infinite sequence of
regular values of ¢ converging to co.

Lemma 11.3 implies that

Lemma 14.9. Any generic Weinstein cobordism admits an admissible partition
into elementary cobordisms of type I

Let m = ¢y < ¢y < --- < ey = M be an admissible partition of a Weinstein
cobordism Y. Suppose that ¢, 0 < ¢ < 1gllﬁiénN |ek+1 — ck|, is chosen in such a
way that all values in the intervals [ck,ck_+_5], k=0,...,N — 1, are regular.
Let us denote c;i' =cp+efork=0,...,N —1. We further denote

Wy o= {a1 <o <a}, Wii={¢f <o <}

fork=1,...,N and Uy := {cg gqﬁgcg} fork=0,...,N —1.
Given two arbitrary Weinstein cobordisms

W= (W,w,X,¢) and W= (W,5,X,0¢)
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and an admissible partition P : m = cy < ¢; < --- < cy = M for 20, we call a
coarse equivalence h : W — W special and compatible with the partition P if
there exists an € > 0 such that

(i) ¢ has no critical points in Uy, = {cx, < ¢ < ¢f}, k=0...,N —1;

(ii) hlwe is a special equivalence between the elementary Weinstein cobor-
disms 205, and 207, where we denote by 207 and 205 the restrictions of
the Weinstein structures 20 to W, and 20 to Wi = h(W¢), k=1,...,N.
respectively;

(iii) for each k¥ = 1,..., N the diffeomorphism h maps stable manifolds of
critical points of ¢ in W}, to the stable manifolds of the corresponding
critical points of ¢ in Wy.

Remark 14.10. If a special coarse equivalence is compatible with some partition,
then it is also compatible with any finer partition.

Lemma 14.11. Let hg : W — W be a coarse equivalence between two Weinstein
structures 20 and WW. Then given any partition P admissible for 3, there
exists a homotopy Wy, t € [0,1], Wy = W, of Weinstein structures on W, and
diffeotopy hy : W — W of coarse equivalences Wy — /QY], such that hy is a
special coarse equivalence compatible with the partition P. Moreover, if 20 has
the form 20(J, ¢) for a Stein cobordism structure (J,¢) on W and the Weinstein
cobordism 20 is Stein near critical points, then the homotopy W, can be chosen
in the form 20, = W(J, ¢¢).

N N __
Proof. We first apply Lemma 14.8 and construct the isotopy hs : J Wi — JWj
1 1

to make it special on each elementary cobordism W;. This isotopy extends to
N—1

U Uk as isotopy of coarse equivalences.

0

The only remaining thing to fix is the condition (iii) of the definition of special
coarse equivalences. In the Weinstein case we can use Lemma 12.10 to deform
the Liouville structure on each Uy, k = 1,..., N —1, so that the diffeomorphism
hilu, would preserve the trajectories of the Liouvile fields. In the Stein case,
one can use Proposition 10.1 to deform the function ¢|y, to make h; preserving
the stable manifolds of critical points in Wy ;. O

The extension of the notion of special coarse equivalence to Weinstein manifolds,
and an analog of Lemma 14.11 are straightforward.

A family 20; = (W, we, Xt, ¢¢), t € [0, 1], of Weinstein cobordisms is called an
elementary homotopy of type I, IIb and IId, respectively, if
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Type 1. 20; is an elementary cobordism for all ¢ € [0, 1];

Type IIb. (birth) there is ¢y € (0,1) such that for ¢ < ¢y the function ¢; has
no critical points, for ¢t < ¢y has exactly two critical points of index j and
j+1,7=0,...,n—1, connected by exactly one X-trajectory, and for
t =ty has a unique embryo critical point;

Type IId. (death) there is ¢ty € (0,1) such that for ¢ > ¢y the function ¢; has
no critical points, for ¢t > ¢y has exactly two critical points of index j and
j+1,5=0,...,n—1, connected by exactly one X-trajectory, and for
t = to has a unique embryo critical point.

Let 20; = (W, wy, Xt, ¢t), t € [0,1], be an elementary homotopy of type I. Let
us order critical points c1,...,cx € W of ¢¢ and denote by ¢ (¢),...,ck(t)
the corresponding critical points of ¢, t € [0,1]. Denote «a;(t) := ¢:(c;(t)),
t €10,1], j = 1,...,K. The ordered set of fuctions (a1,...,ax : [0,1] — R
is called the profile of the elementary homotopy 20;. Two profiles (a1, ...,ak)

and (aq,...,ak) are called equivalent if there is a diffeomorphism [0,1] x R —
[0,1] x R which sends the graphs of functions a1, ..., ak to graphs of functions
ai,...,0K.

Lemma 14.12. Let 25; and %t, t € [0,1], be two elementary homotopies of
type I which have equivalent profiles. Denote by & and Et the contact struc-
tures induced by W and W on O_W and O_W. Let ho : W — W be a coarse
equivalence between elementary cobordisms Wy and ,Q\I/TO, ft be a Weinstein iso-
morphism between 20, and %t defined on a neighborhood of critical points of
¢, and gy : O_W — O_W be a contact isotopy (O_-W, &) — (8,W7 é}) such that
go = hlo_w. Then there exists a coarse equivalence hy : W — W between the
homotopies 2; and %t, t € [0,1], such that hg = h, helo_w = g+ and hy = fi
near critical points of ¢;.

Lemma 14.13. Let 205, and %t, t € [0,1], be two elementary homotopies of
the same type IIb or IId. Denote by & and 5 the contact structures induced by
W and W on O_W and O_W. Suppose that both homotopies share the same
death-birth moment ty € [0,1] and denote by o the interval (to,1] in the case
IIb, and [0,to) in the case IId. Let us also consider a slightly bigger interval
o' = [to—e,1] or[0,to+¢] in the cases IIb and IId, respectively. Fort € o let us
denote by v; the unique Xy-trajectory connecting critical point of the function ¢y,
and let the notation 7; have the same meaning for ¢;. We extend the notation
Y Yt to o’ D o choosing any continuous paths t — W and t — W such that v,
and Y, are embryo points. Let hg : W — W be a coarse equivalence between
elementary cobordisms Wy and QAﬁo, gr : O_W — O_W be a contact isotopy
(0-W, &) — (a_W,é}) such that go = hlg_w, and f; be a family of Wenstein
isomorphisms Op Ty — Op ft, t € o'. Then @ere exists a coarse equivalence
hi : W — W between the homotopies W and Wy, t € [0,1], such that hg = h,
hilo_w = g¢, and hy = fr on Op~; fort € o’.
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An admissible partition of the homotopy 2, ¢t € [0,1], is a sequence 0 =
to < t; < --- < t, =1 of parameter values, and for each £ = 1,...,p a
finite sequence of functions m(t) = cf(t) < cf(t) < --- < &, (1) = M(1),
t € [ty—1,tx], where we denote m(t) := ¢¢|o_w, M(t) := ¢¢|ow,, such that
c?, Jj=0,..., Ng(t) are regular values of ¢; and the restriction of the homotopy
20, to each Wi (t) = {ck—1(t) < ¢ < cx(t)}, k = 1,..., Ny, t € [tp—1,tx], is
elementary.

A standard general position argument implies that

Lemma 14.14. Any generic homotopy W, t € [0,1], of Weinstein cobordism
structures on W admits an admissible partition.

Proposition 14.15. Let (Jo, ¢9) and (J1,$1) be two elementary Stein cobor-
dism structures on W. Suppose that there exist

— an isotopic to the identity equivalence h : W — W between the corresponding
Weinstein cobordism structures 20(Jy, ¢o) and (J1, ¢1) and

- a homotopy jt of J-convexr CR-structures on O_-W connecting Jolo_w and
W Jlo_w.

Then there exists

e o homotopy of integrable complex structures (Ji), t € [0,1], on W which
connects Jy and J1 and coincides with J; on O_W;

e q diffeotopy hy : W — W, t € [0,1], connecting the identity with h;

e q diffeotopy g; : R = R,

such that for each t € [0,1], the function ¢r = g: o ¢ o hy is Ji-convex and the
diffeomorphism hy is an equivalence between 2(Jy, o) and W(Jy, d¢).

Remark 14.16. As it is explained above in ??? the second condition in the
formulation of the lemma is automatically satisfied in the case n = 2.

Proof. To simplify the notation we consider the case when ¢ and ¢; have unique
critical points. The general case is similar.

We can assume that Jy and J; have the same underlying real analytic structures.
Indeed, all real analytic structures compatible with a given smooth structure
are isotopic. We can also assume that the homotopy J; is real analytic and thus
extends to a homotopy of integrable complex structures on a neighborhood
U D 0_W, all compatible with the fixed real analytic structure. Let us define a
family ¢; of J; convex functions without critical points on Op 0_W C U which
are constant on d_W. Then there exist diffeotopies hy, g; such that ¢, = g opoh,
on Opd_W. Let Dy and D; denote stable discs of critical points py and p; of
the functions ¢y and ¢;.
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Let us consider first the case when Dy and D; are real analytic and the index
of the critical points is maximal, i.e. equal to n = dim¢c W. By assumption,
there exists an isotopy Dy, t € [0, 1], between Dy and D; such that Dy is totally
real in U and J; orthogonally attached to 0_W. According to ?? one can make
this isotopy real analytic. We claim that the family of complex structures jt on
Op d_W extends as a family of integrable complex structures to Op D; which
for t = 0,1 coincide with the given complex structures Jy and J;.

Indeed, let us parameterize discs D; by real analytic embeddings v, : D™ — W.
We can assume that p; = 7¢(0) for t = 0,1. Let us denote A; :=~; '(D; NU).

Consider the complex manifold W, = (U, J) U ((D™),4), where we
2€AS~AE(2)eU

denote by Y© a C™-neighborhood of a subset Y ¢ R"® C C", and by ¢ the
complexification of the real analytic embedding ;. We will keep the notation jt
for the complex structure on W;. For all ¢ the inclusion DUU — W extends to a
smooth embedding I'; : Wt — W onto UUOp Dy, and hence we can identify Wt
with Op (0_WUDy). On the other hand, for ¢ = 0, 1 the real analytic totally real
embeddings 7o, 71 extend canonically to biholomorphic embeddings of (D™)® —
W, and hence the embeddings I'; can be chosen biholomorphic for ¢ = 0,1
and thus we can view (W, Jo) and (Wy,.J;) as holomorphic (codimension 0)
submaniifolds of (W, Jy) and (W, J1), respectively.

Now use Theorem 9.7 to find a family of jt—convex functions $t on Wt such that
for each t € [0, 1] the function ¢,

e extends ¢; from Op 0_W,
e has a critical point of index k with D; as its stable disc and

e has one of its regular values surround 0_W U Dj.

We will denote by W\t the domain in /V[v/t bounded by that level. Moreover, using
Proposition 4.20 we can arrange that for t = 0, 1 the function ¢; coincides with
¢t outside a bigger neighborhood of d_W U D; which is compactly supported in

Wt In the latter case we will keep the notation ¢t for thus constructed function
on the whole W.

Consider a family of isotopies g; s : W — W, ¢, s € [0,1], such that

e g is the identity on Op (-W U D, for all ¢,s € [0,1];

® g0 is the identity map W — W, and g, 1 (W) = /Wt for all ¢t € [0, 1];
Define a family of Stein cobordism structures (Jy, ¢,,) on W, u € [0, 1], as follows

i

ol

(98,311.‘]07 <l~50 ° 90~,3u), u € [O
(Ju, Pu) = (g§u7171‘]3u:17¢3u—1 © g3u—1,1), € (
(97 3-3uJ1, D1 © 91,3-3u), u e (

j, (14.1)
]

)

wiho el §
— Wl

)

This is a bad reference.
One needs to separate
an appropriate
statement as a
theorem in Section 5.



It would be good to
have a reference for
this in Section 2.
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The constructed homotopy 20(J,, ¢,) is in the class of Weinstein structures
coarsely equivalent to 20(Jy, ). This concludes the proof of Proposition 14.15
for the case k = n and when the discs Dy and D; are real analytic.

If the discs Dy and D; are not really analytic, let us C2-approximate the pa-
rameterizing maps ;, t = 0,1, by real analytic totally real embeddings +; which
have the same 2-jet at 0 as ;. There exist J-convex functions ¢}, t € [0,1],
C?-close to ¢; which have p; as critical points, and D} = ~;(D™) as their stable
discs. This can be done keeping the condition that the functions ¢y and ¢,
are equivalent near critical points via a local biholomorphism. Applying the
above construction to the functions ¢f, and ¢} we construct a family of Stein
cobordisms (Jy, ), u € [0,1]. In particularly, the construction ensures exis-
tence of a family of local biholomorphisms h,, between a neighborhood G of the
critical point py and neighborhoods G,, of the critical points of the function ¢/,
which sends the function ¢ to ¢/,. Consider a Jy-convex function ¢, C?-close
to ¢y on W (and hence to ¢g) which coincide with ¢f, outside G and with ¢g
on a smaller neighborhood of pg, and construct a modified family of functions
¢!l which are equal to ¢!, outside h,(G) and equal to ¢j o h, on hy(G). Using
criterion 14.12 the Weinstein cobordisms 20(.J,, ¢!/) are all equivalent. On the
other hand, the linear interpolation ¢g , between ¢o and ¢g (resp. (resp. ¢,
between between ¢/ and ¢1) consists of J-convex functions equal to ¢y near
po (resp. ¢1 near pp), and Hence, we can again apply the criterion 14.12 to
conclude that the Weinstein cobordisms 20(Jo, ¢ ,,) as well as 2(J1, ¢1,.,) are
all coarsely equivalent. Thus, concatenating the homotopies (Jo, ¢”0.u), (Ju, @%)
and (J1, ¢1,4) we get the required homotopy between Stein cobordisms (Jy, ¢o)
and (Ji, ¢1).

If £ < n we can first use the canonical framing of stable discs to extend Dy
and D; to totally real embeddings of D* x D*~* for a sufficiently small ¢ > 0.
Then the above proof works without any changes if replace Dy and D1 by these
extended embeddings.

O

14.4 From Weinstein to Stein homotopies

Theorem 14.6 is a corollary of the following

Proposition 14.17. Let 25, = (wy, Xi, ¢1), t € [0,1], be a homotopy of We-
instein cobordism structures on W. Let (J,¢), t € [0,1], be a Stein cobordism
structure on W. Suppose there exists a course equivalence h : W — W between
Wo and W(J, ). Let & and ¢ be the contact structures induced, respectively,
by W, and W(J, ) on O_W, and gy : O_W — O_W be an isotopy such that
go = hlo_w and (g1)«& = ¢, t € [0,1]. Then after, possibly, a small adjustment
of the homotopy 2, there exists a family of J-convex functions vy : W — R
and a coarse equivalence hy : W — W between the homotopies 20y and 20(J, )
such that hg = h and hilo_w = g+, t € [0,1].
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Proof. First, we make a small adjustment of 20; to ensure that it satisfies the
genericity conditions needed for applications of Lemma 14.14. Consider an
admissible partition

O=to<ti < - <t,=1 mt)=cf(t) <cf(t) < - <ch, (t)=M(),

t € [tk—1,tk], k=1,...,p, of the homotopy 20;. We will assume that the parti-
tion points t; are chosen sufficiently closely surrounding every point ¢ for which
the function ¢; has an embryo (death-birth) point so that every for elementary
cobordism of type II the Weinstein structure is Stein near the the trajectory
connecting critical points. Besides, without a loss of generality we can assume
that all the hypersurfaces Z? ={¢: = Cf(t)} are independent of ¢. Let us make
the next small adjustment to make the homotopy 20; constant near each t;,
1=0....,p.

We will inductively extend the homotopy v; and h; to intervals A; = [t;—1,¢;],7 =
1,...,p and for each A; we will do the construction inductively over elementary
cobordisms W} bounded by _ W = ¥! | and 0, W = X%. Suppose that ¢,
and h; are already constructed for t < t; ;. Using Lemma 14.11 we can arrange
that h;, , is a special coarse equivalence compatile 1 with the partition of W
into elementary cobordisms W;, j=1,...,N;. We will also assume that for

t € A; the families h; and ¢, are already constructed on |J sz Denote
J<k-1
si - To simplify the notation we will assume that the interval A; is

gt = hy
[0, 1], denote h := hy, ,, and write W instead of W}.

We will consider separately cases when it is of type I,IIb and IId.

Type I. First make a small adjustment of 20;, so that near critical points of ¢;
20, coincides with 20(J, ¢ = 1)) for all ¢ € A. Consider the profile (aq, ..., ak)
of the homotopy 20;. Using Proposition 10.6 we can construct a family of J-
convex functions ¥; on W which has an equivalent profile. Then, according
to Lemma 14.12 the homotopies 20; and 20(.J, ¢;) are coaresely equivalent, and
there exists a coarse equivalence h; : W — W such that hg = h and helo_w = g;-

Type IIb. In this case the function ¥ = 1 has no critical points. The function
¢+ has no critical points, for ¢t € (tg, 1] it has two critical points, p; and ¢ of index
k and k — 1, respectively, so that we have ¢.(p;) > ¢¢(¢:), and for tg € (0,1)
the function ¢y, has an embryo type singularity p € W. As in Lemma 14.13
we denote by 7; the unique X;-trajectory connecting p; and ¢, t € (tg, 1] and
for t € [tg — ,tp we choose any continuous path ¢ — ~; € Int W such that -,
is the embryo point. Let us use Proposition 10.8 to construct a creation family
of J-convex functions ¥; : W — R with 1y = 1 such that the birth moment is
to. Moreover, we can arrange that 1, has the same critical points p;, ¢; as the
function ¢;, and that ; serves as the unique gradient trajectory of v; connecting
the critical points. Next, we use Lemma 77 to make a small adjustment of 20,
to make it isomorphic to 20(J, ;) on Op s, t € [to — €, 1]. It remains to apply
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Lemma 14.13 to construct the required coarse equivalence h; : W — Whbetween
Qﬂt and QB(J, ’l/]t)7 t e [O, 1]

Type IId. The proof is similar to the case IIb using Proposition 10.9 instead
of Proposition 10.8. O

Proposition 14.18. Let (Jy, ¢o) and (J1, ¢1) be two Stein cobordism structures
on a manifold W. Suppose there exists a family 20, t € [0,1], of Weinstein
cobordisms connecting Wy = W(Jo, do) and W1 = W(J1,d1). Then (Jo, do)
and (J1,¢1) can be connected by a family (Jy, ¢1), t € [0,1] of Stein cobordisms
such that, after a possible small adjustment of 2y, the homotopies W, and
W(Je, ¢1), t € [0,1] are coarsely equivalent.

Proof. Let us first use Proposition 14.17 to construct a homotopy of Stein cobor-
disms (Jo, ¢4), t € [0, 1] such that ¢, = ¢o and such that (after a possible small
adjustment of 20;) the homotopies 2 (Jy, ¢;) and W, are coarsely equivalent.
Next, we will use Proposition 14.15 to construct a homotopy (Jz, ¢¢), t € [0,1],
connecting (Jy, @) and (J1, ¢1) in the class of cobordisms coarsely equivalent to
(J1,¢1). To do that let us subdivide the cobordism (W, Jy, ¢1) into elementary
cobordisms: W = Wy U-.-U Wpy. Using Proposition 14.15 we can construct
the required family (J;,v:) on Wi, such that 20(Wi, J;,v) is equivalent to
W (W1, J1, ¢1). Next, we inductively extend the homotopy to Wa, ... Wy. As it
was pointed out above in Remark 14.10(iii) equivalent of elementary cobordisms
do not necessarily can be glued together into coarsely equivalent cobordisms,
because the condition (v) in the definition of coarse equivalence need not to
be necessarily satisfied. However, as it is explained in this remark one can use
Lemma 10.4 to change the family ¢, in a small neighborhoods Uy of 0_Wj,
k=1,...,N in order to satisfy this conditon as well. Thus for the constructed
homotopy (J;, ¥:) the corresponding Weinstein homotopy 203(W, J;, 1) is in the
class of Weinstein cobordisms coarsely equivalent to 20(W, Jy, ¢1).

O

Proof of Theorem 14.7. According to the definition of homotopy of Weinstein

structures there is a finite partition 0 = tg < t; < --- < ty = 1 such that for

each interval Ay = [tg—1, k], kK = 1,..., N, there exists a sequence of continuous

functions ¢} (t) < -++ < ci(t) < ..., t € Ay, such that all cf(t) are regular values

for ¢, for all t € Ay and (J{¢¢ < ¢;(t)} = V. Without a loss of generality we
J

can assume that all the functions CZ (t) are constant on A;. Indeed, there exists
an isotopy g, : V. — V, t € Ay, such that gi = Id and g!({¢o = ¢} (0)}) = {¢y =
c{(t)} for all j = 1,.... Pulling back the Weinstein structure 2J; by ¢; makes
the functions c{ contant. Continuing this process for j = 2,..., N we make all
functions cZ(t) ,i=1,...,N,j=1,..., constant.
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First, apply consequently Proposition 14.17 to the homotopy 20;, t € Ay, re-
stricted to Wy = {¢g < cl}, Wa = {cl < ¢y < c3},... to construct a family of
Jo-convex functions ¢; : V' — R such that the homotopies 20(V, J, ¢;) and 20,
t € A are coarsely equivalent. Next, repeat the construction for extending the
family 1; to As, ..., AnN.

O
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Chapter 15

Subcritical Stein and
Welilnstein structures

15.1 Morse cobordisms

Let W be a smooth oriented cobordism between 0_M and 0.M, ¢ : W —
[m, M] be a Morse function such that ¢ls_w = m,¢lo,w = M, and X is a
gradient vector field of ¢ for some Riemannian metric g on W. We will call
the triple(W, X, ¢) a Morse cobordism. Any Weinstein cobordism 20 has an
underlying Morse cobordism 97120.

Mimicking the defined above notions of (coarse) equivalence of Weinstein cobor-
disms and Weinstein homotopy.

Proposition 15.1. Let M, = (W, X,, ¢+) be a homotopy of Morse cobordisms,
such that My = MA for a a 2n-dimensional Weinstein cobordism 20. Suppose
that for all t € [0,1] the function ¢ has no critical points of index > n. Then
there exists a Weinstein homotopy 20y with Wy = W for which My and W, are
coarsely equivalent.

187
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Part 1V

Additional topics
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Chapter 16

Stein manifolds of complex
dimension two
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Chapter 17

Weinstein structures and
Lefschetz fibrations
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Chapter 18

Stein manifolds in
symplectic topology
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Appendix A

Immersions and
embeddings

Some homotopy groups. Here we collect some results on homotopy groups
that will be used in this book. For 1 < k < n denote by V,,  the Stiefel manifold
of orthonormal k-frames in R", and by G, 1, the Grassmannian of k-dimensional
subspaces in R". The obvious projection p : Gy,  — V,, 1 defines a fibration

O(k) — Vn,k — Gn,k

with fibre the orthogonal group O(n). For ¢ <k < n the map V,,  — Vi that
forgets the last k — ¢ vectors defines a fibration

Vi—thi—e = Voo — Vie.

Here an explicit inclusion V;,—g k¢ < Vi, 1 is given by adding to a (k — ¢)-frame
in R"=* x {0} C R™ the last ¢ standard basis vectors. Note that V., = O(n)
and V,, 1 = S"!. Thus the preceding fibration includes the following special
cases:

anl,kfl i Vn,k - Snil» (A].)
O(TL - k) - O(TL) — Vn,k, (A2)
O(n—1) — O(n) — S" 1. (A.3)

Of course, the preceding discussion carries over to the complex case: Just re-
place everywhere V;, ;. by the complex Siefel manifold Vf’k, G 1 by the complex

Grassmannian Gg,k, O(n) by the unitary group U(n), and S*~! by 271
Lemma A.1. (a) The map mVy—1 p—1 — TV induced by the inclusion is
an isomorphism for i < n — 2 and surjective for i = n — 2. Similarly, the

map me_Lk_l — meEk is an isomorphism for i < 2n — 2 and surjective for
1 =2n— 2.

197
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b) Vi is (n — k — 1)-connected and V', is (2n — 2k)-connected.
s n,k

(c) For n >k +2, the group Vi n—r equals Z if k is even or k =1, and Zs if
k> 1 is odd.

Proof. Part (a) follows directly from the long exact sequence of the fibration (A.1)
because "1 is n — 2-connected. For Part (b), let i < n — k. Then it follows by
induction from Part (a) that m;V,, = mVy—g111 = 78" F = 0. The complex
cases are analogous.

For part (c), let n > k42 and k > 2 (the case k = 1 is trivial). Then it follows
by induction from part (a) that mxVy, - = Tk Vit2,2. Now observe that an
element of Vi1 2 is a unit vector in R**2 and a second unit vector orthogonal
to the first one. Thus Vi, 22 equals the tangent sphere bundle of S¥+1 and the
fibration (A.1)

k k41
Vig11 2 S% = Voo — S

describes this bundle. Now for an oriented sphere bundle S* — E — B, the
boundary map my41B — m:S* = 7 in the long exact sequence is given by
evaluation of the Euler class e(E) € H**1(B) (this follows directly from the
definition of the obstruction cocycle representing the Euler class in [60]). Thus
the fibration above yields an exact sequence

ghtl o 7 x(SFT) ey
Th+1 = — ST 2L — Va2 — 0,

where the first map is multiplication with the Euler characteristic of S¥*1. Since
x(SFt1) is 0 for k even and 2 for k odd, it follows that TEVan—k = Tk Vit2,2
equals Z for k even and Z, for k odd. O

In particular, setting £k = n in Lemma A.1 (a) we find

Corollary A.2. The map m;O(n — 1) — m0(n) induced by the inclusion is
an isomorphism for i < m — 2 and surjective for i = n — 2. Similarly, the
map m;U(n — 1) — mU(n) is an isomorphism for i < 2n — 2 and surjective for
1=2n—2.

Define the stable homotopy groups m;0 := m;O(n) for i < n —1 and mU :=
m;U(n) for i < 2n (this is independent of n by the preceding corollary). These
groups are determined by the celebrated

Theorem A.3 (Bott Periodicity Theorem [7]). (a) The stable homotopy group
;U equals 0 if i is even and Z if i is odd.

(b) The stable homotopy group m;O equals Zg if i =0 or 1 (mod 8), Z if i =3
or 7 (mod 8), and 0 otherwise.

The h-principle for immersions. Fix integers 1 < k < n. Let f : DF — R"
be an immersion of the closed k-disk into R with f(z) = (z,0) near dDF.
Its differential yields a fibrewise injective bundle homomorphism df : T'(D*) =
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DF xR*F — R™. Taking the images of the standard basis vectors ey, . .., e, € R¥,
this can be viewed as a map df : D¥ — V,, ;. to the Stiefel manifold of k-frames
in R" satisfying df (z) = (e1,...,ex) =: vo for & € D*. Thus df : (D*¥,0D*) —
(Viuk, vo) represents an element

Qf) == [df] € Vo ko = T (Voo ke, v0)

which we call the Smale invariant of f. Clearly (f) is invariant under regular
homotopies of f fixed near dD*. The following is the simplest version of the
h-principle for immersions, proved by Smale first for k¥ = 2 [58] and then in
general.

Theorem A.4 (Smale [59]). For k < n, Q2 defines a bijection between regular
homotopy classes of immersions f : D¥ — R™ with f(z) = (z,0) near dD* and
Tk Vi k-

Although we will only use this version, let us mention some generalizations.
Smale [59] extended the result to immersions of spheres as follows. Fix base
points zg € V3 (S*) in the frame bundle of S* and 35 € R™ x Vi and call an
immersion f : S¥ — R™ based if df (zo) = yo. Consider two based immersions
f,g : Sk — R™. After a small perturbation, we may assume that dg agrees
with df in a neighborhood of zy. Cutting out this neighborhood, we obtain
maps df,dg : D¥ — V, that agree on dD*. The continuous map S* —
Vi that equals df on the upper and dg on the lower hemisphere represents
a homotopy class Q(f,g) € m;V, k. Clearly Q(f,g) depends only on the based
regular homotopy classes of f and g. We call (f, g) the relative Smale invariant
of f and g.

Theorem A.5 (Smale [59]). Fiz a based immersion f : S¥ — R", k < n.
Then g — Q(f, g) defines a bijection between based regular homotopy classes of
immersions g : S* — R" and Tk Vi k-

Remark A.6. The theorem holds for non-based immersions provided that 7V,
acts trivially on m;V,, 5. E.g., this is the case if n > k + 1 (because then
T Vo = 0) or if k =2 and n = 3 (because moV3 2 = 0). The latter case gives
the famous “sphere eversion” [58]: The standard sphere S? C R? can be turned
inside out by a regular homotopy.

Immersions of half dimension. Observe that m,Va, , equals Z for n even
and Zs for n > 1 odd, which suggests that for immersions of half dimension
the isomorphism of Theorem A.5 may correspond to the self-intersection index.
This is indeed the case:

Theorem A.7 (Smale [59]). The self-intersection index defines a bijection be-
tween reqular homotopy classes of immersions S™ — R*" (or D™ — R?" stan-
dard near D) to Z (for n even) resp. Zs (for n > 1 odd).

We will reproduce below the short proof of this theorem from [59]. It is based on
some results by Lashof and Smale [44]. Let M* be a closed oriented connected
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k-manifold, & > 1. To an immersion f : M* — R?* we can assign, besides
its self-intersection index, several other invariants. Denote by vy the oriented
normal bundle of f and by x(vy) € Z its Euler characteristic (i.e., its Euler class
evaluated on the fundamental class of M). We have a map S(vy) — S2k=1
(x,v) + v from the normal sphere bundle of f to the unit sphere in R?*. Its
mapping degree d,(f) € Z is called the normal degree of f. Similarly, the map
SM — S*=1 (x,v) + d,f - v from the tangent sphere bundle of M gives rise
to the tangential degree d.(f) € Z. Of course, the Euler characteristic of the
tangent bundle T M is just the usual Euler characteristic x(M) of M. Finally, f
induces the tangential map Ty : M — Gap i, © — df (T, M) to the Grassmannian
of oriented k-planes in R?*. Clearly, the numbers x(vy), d,(f), d-(f) and the
homotopy class of T are invariant under regular homotopies.

Theorem A.8 (Lashof and Smale [44]). For an immersion f : M* — R2k,
k> 1, of a closed oriented connected manifold the following holds:

(a) dr(f) = —x(vy)-

(b) d(f) = x(M).

(c) If k is even then d.(f) = 2I;.

(d) Let f,g : M* — R?* be two immersions, k > 2, satisfying x(vy) = x(v,) if k
1s even. Then the tangential maps induce the same map T]’f = T; : H* (Gop ) —
H*(M) on integral cohomology.

Remark A.9. Statements (b) and (d) have generalizations to immersions M* —
R™ not of half dimension in terms of integral Stiefel-Whitney classes, see [44].

Proof of Theorem A.7. By Theorem 6.2, I; attains every possible value. So it
remains to show that Iy = I, for two immersions f,g : S k — R?* implies that
f and g are regularly homotopic.

If £ > 11is odd, by Theorem A.5 regular homotopy classes are in one-to-one
correspondence to miVar i = Zg. Since [ is surjective onto Zy, it must be
bijective.

For k even consider the commutative diagram

Tyu.T,
m(S*) L (Gogg) —F— m(Vark)

P PO
Tfu Ty .
Hp(S*) 2% Hyp(Gapg) 22— Hip(Vaii),

where p : Vo 1, — G,k is the projection, T, Ty : Sk — G, ; are the tangential
maps, and hg, h1, ho are the Hurewicz maps. By definition of €2 and the tan-
gential map we have pQ(f, g) = (T4 — Ty4)[S*]. Now suppose I; = I,. Then
x(vf) = x(vg) by Theorem A.8 (a) and (c), hence T} = Ty by Theorem A.8
(d), and therefore Ty, = Ty, on homology. By the diagram, this implies

0= (Tfe — Tgu)ho[S*] = ha(Trp — Ty )[S*] = hap#Q(f, 9) = ph2Q(f, 9).
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Now Va1 is (k — 1)-connected (Lemma A.1), so hy is an isomorphism by the
Hurewicz theorem. As p, is also injective ([44]), it follows that Q(f,g) = 0. But
then f and g are regularly homotopic by Theorem A.5. O

Now consider a family of immersions f; : D"~! — R?"~1 t ¢ [0,1], with
fi(x) = (2,0) for (z,t) near (D"t x [0,1]). It induces an immersion

F:D" ' x[0,1] — R?", (z,t) — (ft(z),t)

with F(x,t) = (x,t,0) for (x,t) near (D"~ ! x [0,1]). Let Ir be its self-
intersection index.

On the other hand, let 8; : D"~ ! x R® — R?"~! be a family of normal framings
for f,, i.e. dfy @ B, : D" ! x R2»~1 — R?"~1 is a fibrewise orthogonal isomor-
phism, with 3;(z)v = (0,v) for (x,t) near D"~ x [0,1] U D"~* U {0}. The
restriction 3; : D"~ x R™ — {0} x R* C R?"~! equals fibrewise the identity
for  near D™~ ! and thus represents an element [3;] € m,_10(n). Its image
in m,-10(2n — 1) is represented by df; @ 81, which is homotopic via df; @ 5; to
the constant map dfy ® Gy. So

[61] € K := ker[r,_10(n) — m,_10,
where we have used that m,_10(2n — 1) equals the stable group m,_;0.

Proposition A.10. The element [31] € K depends only on the self-intersection
index Ir and the map Ip — [B1] is surjective onto K.

Proof. In view of Theorem A.4, Theorem A.7 and Remark 6.5, we may replace
Ir by the element Q(F) € m,Va, , represented by F. The fibrewise injective
differentials df, : D! x R*~! — R2?"~! define a map df : D"~ ! x [0,1] —
Van—1,n—1 which represents an element Q(f) € m,V2,_1,n—1. Since
_(df G

dF = ( 0 4
is homotopic to df; @ 1 through fibrewise injective maps, Q(f) maps to £Q(F)
under the natural map m,Va,—1,n—1 — 7, Vapn, . Since this map is an isomor-
phism by Lemma A.1, we may replace Q(F) by Q(f).
Now consider the fibre bundle

On)=Vyn —02n—1)=Voy_120-1 = Van—1,n-1

(a special case of (A.1)). We are given a map df : D" ! x [0,1] — Vap—1.n-1
which equals the basepoint vy := (e1,...,e,_1) near (D"~ x [0,1]), and a
lift df ® B : D"~! x [0,1] — Vay—1,2,—1 which equals the basepoint wy :=
(€1,...,e2,-1) near D™ 1 x [0,1] U D"~ x {0}. Hence [31] = 0Q(f) by defi-
nition of the boundary map in the homotopy exact sequence

5 .
7'1-71‘/211—1,71—1 - 7Tn—lo(n) l_#> 7"-71—10(277 - 1)
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This proves that [31] depends only on Q(f), and the map Q(f) — [B1] is sur-
jective because 9 is surjective onto K = ker(i4). O

Remark A.11. In Proposition A.10, the self-intersection index Iy takes values
in Z if n is even or n = 1 and Zs if n > 1 is odd. The kernel K is isomorphic
to Z for n even, 0 for n = 1,3,7, and Zy for n # 1,3,7 odd (this is essentially
proved in [60], see Appendix 5 of [42]).

Isotopies of embeddings. Finally, we briefly discuss isotopies, i.e. homo-
topies through embeddings.

Theorem A.12 (Haefliger [36]). Let M*, N™ be manifolds of dimensions k,
n, M closed, such that M is g-connected and N is (q — 1)-connected for some
q > 0. Suppose that n > 2k +2 —q and 2q < k+ 1. Then any two embeddings
M — N are isotopic.

The case ¢ = 0 is due to Whitney [64]. In the case ¢ = 1 we obtain

Corollary A.13. For k > 1 any two embeddings M* — N?**1 of a closed
connected k-manifold into a simply connected (2k + 1)-manifold are isotopic. In
particular, this holds for embeddings S* — R+ with k > 1.

Remark A.14. (1) The relative Smale invariant gives no obstruction to regular
homotopies of maps S¥ — R2?*+1 hecause it takes values in TEVok1,e = 0
(Lemma A.1).

(2) Corollary A.13 fails for k = 1: There are many non-isotopic knots S < R3.



Appendix B

The Thurston-Bennequin
invariant

The rotation invariant. Let (M,£) be a contact manifold and choose a
compatible almost complex structure J on £. Given an isotropic immersion f :
A — (M,§), the space df (T,A), p € A, is isotropic in (), dar) and thus totally
real in ({4, J). Hence d f : T, A — &4 () extends to a complex monomorphism
dpf @ C:TyA ®C — &;(p) defined by

dpf @ C(X +14Y) :=dpf - X + Jd,f - Y.

The homotopy class of df ®C in the space of complex monomorphisms TA®C —
¢ is invariant under isotropic regular homotopies of f. We call it the rotation
invariant of f and denote it by r(f).

The following h-principle states that the rotation invariant is the only invariant
of isotropic immersions. It was proved by Gromov in 1971 ([31], see also [32],
[18]).

Theorem B.1 (h-principle for isotropic immersions and embeddings). Let
(M?"+1€) be a contact manifold and A* a manifold, k < n.

(a) The rotation invariant defines a homotopy equivalence from isotropic im-
mersions A — M to complex monomorphisms TA ® C — £.

(b) For every continuous map f : A — M there exists a C°-small homotopy f; to
an isotropic embedding f1. If f is an embedding f; can be chosen to be a smooth
isotopy. If f is an isotropic immersion f; can be chosen to be a C°°-small
1sotropic regular homotopy.

(c) In the subcritical case k < n, the rotation invariant defines a homotopy
equivalence from isotropic embeddings A — M to complexr monomorphisms
TA ® C — & covering embeddings. Moreover, an isotropic regular homotopy
ft : A — M between isotropic embeddings fo, f1 can be deformed, through C*-
close isotropic regular homotopies with fized ends, to an isotropic isotopy.

203
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The rotation invariant for Legendrian spheres in R?"*!. Given a Leg-
endrian immersion f : S™ — (R?"T1 &), its Lagrangian projection Ppag o f :
S™ — R?" is a Lagrangian immersion with respect to the standard symplectic
form dp A dgq on R2™. Since the Lagrangian projection maps each contact hyper-
plane isomorphically onto R?”, the standard complex structure i on R?* = C"
induces via this projection a compatible almost complex structure J on &. The
class of df ® C in the space of complex isomorphisms 75" @ C — (&,J) can
thus be identified with the class of d(Prqg o f) ® C in the space of complex
isomorphisms 7T'S™ @ C — C". Picking Hermitian metrics on T'S™ ® C and
C™, we can reduce the space of complex isomorphisms to the space of unitary
isomorphisms U(T'S™ ® C,C™). On this space the group of continuous maps
S™ — U(n) acts freely and transitively by pointwise composition, so the com-
plex isomorphisms associated to two Legendrian immersions f, g : S — R2*+!
differ by a map S™ — U(n). We call the homotopy class of this map the relative
rotation tnvariant

7Z nodd,
0 mneven.

r(fa g) € 7TnUv(n) - {

Remark B.2. The rotation invariant r(f, g) of two Legendrian immersions f, g :
S™ — R27FL g related to their Smale invariant (£, g) by

Q(f,9) = ingr(f, 9),

where i, : U(n) — Va, , is the natural inclusion (viewing the columns of a
unitary matrix as a real n-frame).

Remark B.3. For n = 1 the rotation number r(f) is just the winding number
(i.e., the degree of the Gauss map) of the immersion Pr,, o f : S' — R%
It can also easily be computed from the front projection Pgpone o f which is
generically the oriented graph of a multivalued function with transverse self-
intersections and a finite number of standard cusps (see Figure [fig:???]). The
cusps correspond to vertical points of the Lagrangian projection, i.e., points
where Prqq4 o f is parallel to the p-axis. Thus the winding number of P44 o f
is given by

r(f) = %(#(up — cusps) — #(down — cusps))
(see Figure [fig:777]).

The Thurston-Bennequin invariant. Legendrian embeddings possess an
additional invariant, the Thurston-Bennequin invariant. It was defined by Ben-
nequin [5] in dimension 3 and generalized to higher dimensions by Tabach-
nikov [62].

Let A™ C (M?"1 ¢ = kera) be a closed orientable Legendrian submanifold.
Suppose first that the homology class [A] € H, (M) is trivial. Push A slightly
in the direction of the Reeb vector field to a submanifold A’ disjoint from A and
define the Thurston-Bennequin invariant as the linking number of A and A’,

th(A) == Ik(A, A').
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Here the linking number is defined as the algebraic intersection number Z - A’
of A’ with an (n + 1)-chain Z satisfying 0Z = A. (For the independence of
the choice of Z, suppose that Z is another (n + 1)-chain with 8Z = A. Then
the difference between the intersection numbers equals the intersection number
of A’ with the (n + 1)-cycle Z — Z. But the intersection number A’ - (Z — Z)
depends only on the homology classes [Z — Z] € H,41(M) and [A'] € H, (M),
so it vanishes because [A'] = [A] =0.)

Remark B.4. If the orientation of A is reversed, then the orientation of the (n+
1)-chain Z is also reversed. So the Thurston-Bennequin invariant is independent
of the orientation of A. If A is not orientable we can still define the Thurston-
Bennequin invariant as an integer mod 2.

If Ag, A; are two disjoint (not necessarily homologically trivial) Legendrian
submanifolds in (M, &) with [Ag] = [A1] € H, (M) we can define the relative
Thurston-Bennequin invariant

tb(Ao, Al) = lk(AO - Al, A6 — All),
where Al is obtained by pushing A; in the direction of the Reeb vector field.

The Thurston-Bennequin invariant for Legendrian embeddings in R?"*1,
Consider a closed orientable Legendrian submanifold A C R?"*! such that the
Lagrangian projection Pp.q(A) has only transverse self-intersections (this can
always be arranged by a generic perturbation).

Pick an orientation of A. To each self-intersection point ¢ of Ppag(A) we assign
a number I(c) = £1 as follows. Let a,b be the points on A with Ppa.(a) =
Prag(b) = c and z-coordinates z(a) > z(b). Set I(c) := +1 if the orientation
of Prag(ToA) @ Prag(TyA) (in this order!) agrees with the complex orientation
of C", and I(c) := —1 if not (Note that this definition does not depend on the
chosen orientation of A). Then

th(A) = I(e), (B.1)

where the sum is taken over all self-intersection points of the Lagrangian pro-
jection of A. To prove this formula, pick the (n + 1)-chain Z C R?*"*! to be
the cone over A through a point with very large negative z-coordinate and push
A slightly upwards in z-direction to an embedded submanifold A’. Then the
intersections of Z with A’ are in 1-1 correspondence with the 'undercrossings’ of
A, i.e. with the double points of Prag(A), and the sign of an intersection equals
the number I(c) of the corresponding double point c.

Lemma B.5. Let A C R?"*! be a closed orientable Legendrian submanifold.
Then

(a) The parity of tb(A) equals the self-intersection index of Prag(A) mod 2 (and
is therefore determined by the rotation invariant r(A)).

(b) If n is even, P
() = F ),
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Proof. Part (a) follows immediately from formula (B.1). For (b) note that if n
is even the index I(c) of a double point of Ppag(A) does not depend on the order
of the preimages a,b and their sum tb(A) = > _I(c) equals the self-intersection
index Iy of the immersion f = Prae : A — C". Now by Theorem A.8, Iy =
—2x(vy), where x(vy) is the Euler characteristic of the normal bundle of f.
Since f is Lagrangian, its normal bundle is isomorphic to its tangent bundle
TA. However, the orientation on the normal bundle induced by the complex
orientation of C" differes from the orientation of T'L by the sign (—1)"("~1/2 =
(—=1)"/2 (vecall that n is even). Thus x(vf) = (—=1)"/2x(A) and (b) follows. [

Remark B.6. For n = 1 the Thurston-Bennequin invariant can also be computed
from the front projection as

1
tb(A) = #(left — over — crossings) — #(right — over — crossings) — 5#(cusps).

This formula is easily derived by computing the rotation number of 9, with
respect to the normal framing coming from a Seifert surface (see e.g. [19]).

Stabilization. The following refinement of Proposition 5.25 describes how the
Thurston-Bennequin invariant can be changed by suitable Legendrian regular
homotopies.

Proposition B.7. Let Ay C (M?"T! ¢ = kera) be a closed orientable Leg-
endrian submanifold and k an integer. Suppose n > 1. Then the Legendrian
submanifold Ay C M and Legendrian reqular homotopy A; constructed in Propo-
sition 5.25 have the following additional properties:

(a) A1 coincides with Aoy outside a small ball and is smoothly isotopic to Ay.

(b) The relative Thurston-Bennequin invariant equals

0 if n is even,

th(A1, Ag) =
(A1, 80) {—Qk ifn > 1 1is odd.

Note that Part (b) is consistent with Lemma B.5.

We will later need the following consequence of Proposition B.7 for Legendrian
spheres. Let the Legendrian immersions A; be parametrized by f; : S™ — M.
A compatible almost complex structure J on £ and the Reeb vector field R,
induce normal framings Jdf; ® Ry : S” x RP T 2 TS R — TM along f;. Let
fi : A < M be the smooth isotopy provided by (a). Let By : S™ x R**1 — T'M
be any normal framing and extend it to normal framings (3; along ft We can
write Jdfy ® Ro = PBogo and Jdf1 & R, = (191 for unique elements gg, g : S™ —
O(n+1).

Corollary B.8. We have [g1] — [g0] € K, = ker[r,O(n + 1) — m,0]. For
n > 1, using the construction in Proposition B.7 we can arrange for [g1] — [go]
to be any given element in K, .
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Proof. Consider the loop of immersions following f; from and then f; backwards.
Define a path of normal framings along this loop as follows: Follow Jdf; & R,
from Jdfy & R, = Pogo to Jdfi ® Ry, = [1g1 and then B;g; backwards to
Bogi = (Bogo)(gs *g1)- Note that we can arrange for all the data to be fixed
outside a ball. So we can apply Proposition A.10 to this situation. It follows
that [g5 ' g1] = [91] — [g0] € K, can be made equal to any given element in K,, by
choosing the self-intersection index I; appropriately. But by Proposition B.7,
I;, can be arbitrarily prescribed for n > 1 (as an integer if n is odd and mod 2
if n is even). O

Arguing as in the proof of Proposition 5.25, Proposition B.7 follows from the
following refinement of Lemma 5.26.

Lemma B.9. The family of Legendrian immersions Ay C R?>"T1 t € [0,1],
constructed in Lemma 5.26 has the following additional properties:

(a) Ay is smoothly isotopic to Ag by an isotopy that is fized outside the branch
{z =0} of Ao.

(b) The relative Thurston-Bennequin invariant equals

0 if n is even,

tb(A1, Ag) = {2(1)n(n1)/2X({f >1}) ifnis odd.

Proof. Part (a) follows from Corollary A.13.

For (b), perturb f as in the proof of Lemma 5.26. Then the Thurston-Bennequin
invariant tb(t) := tb(A¢, Ag) changes precisely when tf has a critical point ¢
on level 1 for some tg € (0,1). Let I(gy) be the oriented intersection number
of the branches {z = 1} and {z = ¢, f(¢)} at go (in this order). I(go) is the
contribution of gy to tb(t) for ¢t < ty because then the branch {z = 1} passes
over {z =tf(q)}, compare formula (B.1). For ¢t > ¢y the branch {z = 1} passes
under {z = tf(q)}, so the contribution of gy to th(¢) equals the intersection
number in the opposite order, which is (—1)"1(go). Hence the change of tb(t)
at tg equals

0 n even.

Atblto) = {—2]((]0) n odd.

This proves tb(A1,Ag) = 0 if n is even. To compute I(go) for n odd, pick
coordinates near gg as in (c). Then the tangent spaces in R?" of the Lagrangian
projections of the branches {z = 1} and {z = ¢y f(q)} are given by

m={p1 = =p, =0},
T = {p; = —toq; for i < k,p; = +toq; for i > k+ 1}.

Again suppose that the basis (9, ...,0,,) represents the orientation of 7i.
Since the two branches of Ay are oppositely oriented, the orientation of 75 is
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then represented by the basis
—(0g, —t00py, .-+, 0q, +100p,)-
Hence the orientation of (1, 72) is represented by
—(Og1y++-+0q,,—0pys- -, +0p,),

which equals (—1)*+1#7("=1/2 times the complex orientation (9, , Op, ;- - - , Vg s Opy, )
of R?" = C". So

I(go) = (—1)imdsla0)¥lin(n=0/2 — 1, (g)

if n is odd, where I, (qo) is the local intersection index of L from (c). Summing
over all critical points above level 1 and using (¢), we find for n odd:

th(Ay, Ag) = =21 = —2(—1)"(= D2\ ({f > 1}).

O

The 3-dimensional case. The preceding proof fails for n = 1 because
1-dimensional manifold with boundary always has Euler characteristic £ > 0.
Therefore for n = 1 the local construction in Lemma B.9. allows us only to
decrease the Thurston-Bennequin invariant by multiples of 2. This failure to
increase the Thurston-Bennequin invariant is unavoidable in view of

Theorem B.10 (Bennequin’s inequality [5]). Fvery embedded Legendrian curve
A C R? satisfies
tb(A) + [r(A)] < x(%),

where ¥ is an embedded surface (Seifert surface) bounded by A in R3.

However, no analog of Bennequin’s inequality exists in overtwisted contact ma-
nifolds, and one can change the invariant tb arbitrarily.

[To be continued...|
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