1 Strategy

We prove the fundamental theorem of algebra, using only elementary techniques from calculus, point-set topology, and linear algebra; this proof apparently does not appear in the extensive literature on the subject [1], [2]. The exposition is essentially self-contained.

Theorem 1 (Fundamental Theorem of Algebra). Every non-constant polynomial with complex coefficients has a root in \(\mathbb{C} \).

This is the strategy of the proof. Let \(X_n \simeq \mathbb{C}^n \) be the space of degree \(n \) monic polynomials with complex coefficients, via the identification \((a_1, ..., a_n) \mapsto z^n + \sum_{i=1}^n a_i z^i\). Let \(D \subset X_n \) be the zero locus of the discriminant, and let \(R \subset X_n \setminus D \) be the set of polynomials with non-zero discriminant which have at least one complex root. We show:

1. \(X_n \setminus D \), the set of monic degree \(n \) polynomials with non-zero discriminant, is connected.

2. \(R \), the set of monic degree \(n \) polynomials with non-zero discriminant which have at least one root, is both open and closed in \(X_n \setminus D \). As \(R \) is nonempty it is thus equal to \(X_n \setminus D \), so every monic degree \(n \) polynomial with non-zero discriminant has a root.

3. By induction on \(n \), every polynomial with zero discriminant has a root.

2 Preliminaries

The following preliminary lemma is the only part of the argument that uses that the ground field is \(\mathbb{C} \), rather than \(\mathbb{R} \).

Lemma 1. Let \(V \subset \mathbb{C}^n \) be the zero locus of some polynomial \(p(x) = p(x_1, ..., x_n) \). Then \(\mathbb{C}^n \setminus V \) is path-connected, and thus connected.
Proof. Let \(y, z \in \mathbb{C}^n \setminus V \) be two points in the complement of \(V \). Consider the set \(S = \{ cy + (1 - c)z \mid c \in \mathbb{C} \} \subset \mathbb{C}^n \), which is a complex line connecting \(y \) and \(z \).
Then \(S \cap V \) is a finite set, as \(p(cy + (1 - c)z) \) is a polynomial in the single complex variable \(c \), and thus has at most finitely many zeros. In particular, \(S \setminus (S \cap V) \) is homeomorphic to the complex plane with finitely many points removed, and so is path connected. Thus there is a path in \(S \setminus (S \cap V) \) connecting \(y \) and \(z \). □

We will also need an easy lemma bounding the size of the roots of a monic polynomial in terms of its coefficients.

Lemma 2. Let \(\{ f_\alpha \} \) be a set of monic degree \(n \) polynomials whose coefficients all lie in some bounded region of \(\mathbb{C} \). Then there exists \(C > 0 \) such that if \(z \) is a zero of \(f_\alpha \) for some \(\alpha \), then \(| z | < C \).

Proof. This is immediate from the fact that
\[
\frac{f_\alpha(z)}{z^n} \to 1 \text{ as } |z| \to \infty
\]
uniformly in \(\alpha \). □

Finally, we introduce the resultant and discriminant. Let \(k \) be a field and let \(f, g \in k[x] \) be non-constant polynomials with coefficients in \(k \). Then there is a map
\[
\psi_{f,g} : k[x]/(f) \oplus k[x]/(g) \to k[x]/(fg)
\]
given by
\[
(a + (f), b + (g)) \mapsto ag + bf + (fg).
\]
By the chinese remainder theorem, this map is a \(k \)-vector space isomorphism if and only if \(\gcd(f, g) = 1 \). Define the resultant
\[
R_{f,g} = \det(\psi_{f,g}).
\]
Note that by the previous remark, \(R_{f,g} = 0 \) if and only if \(f, g \) have a common factor. Taking \(k = \mathbb{C}(a_0, a_1, \ldots, a_n, b_0, b_1, \ldots, b_m) \) with
\[
f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0, \quad g(x) = b_m x^m + b_{m-1} x^{m-1} + \cdots + b_0
\]
and choosing bases for \(k[x]/(f), k[x]/(g), k[x]/(fg) \) gives a formula for \(R_{f,g} \) as a polynomial in the coefficients of \(f, g \) for general polynomials \(f, g \) with complex coefficients.

Now let \(f \) be any polynomial of degree at least 2 with complex coefficients, and define the discriminant \(D_f = R_{f,f'} \), where \(f' \) is the derivative of \(f \). Note that \(D_f \) is a polynomial in the coefficients of \(f \). Furthermore, \(D_f = 0 \) if and only if \(f \) has a factor in common with its derivative.
3 The Proof

We now prove the fundamental theorem of algebra (Theorem 1).

Let $X_n \simeq \mathbb{C}^n$ be the space of degree n monic polynomials with complex coefficients, via the identification $(a_1, \ldots, a_n) \mapsto z^n + \sum_{i=1}^{n} a_i z^i$; we endow X_n with the analytic topology. Let $D \subset X_n, D := \{ f \in X_n \mid D_f = 0 \}$ be the set of polynomials f with discriminant 0. Namely, D consists of those polynomials which have a factor in common with their derivative. Note that D is a closed subset of X_n, as it is the zero set of a polynomial. Define $R \subset X_n \setminus D$, by

$$R = \{ f \in X_n \setminus D \mid \exists z \in \mathbb{C} \text{ such that } f(z) = 0 \}.$$

That is, R consists of those polynomials, with non-zero discriminant, which have a root in \mathbb{C}. Note that R is non-empty; for example, it contains $z^n - 1$.

We claim that R is open in $X_n \setminus D$, in the subspace topology. To see this, let $ev : \mathbb{C} \times (X_n \setminus D) \to \mathbb{C}$ be the evaluation map $(z, p) \mapsto p(z)$. Consider $f \in R$; by definition, f has a root t, so $ev(t, f) = 0$. Furthermore, $(\frac{\partial}{\partial t} ev)(t, f) = f'(t)$ is non-zero, as otherwise $(z - t)$ divides both f and f', and thus $D_f = 0$, which contradicts the fact that $f \notin D$.

Thus, by the implicit function theorem, there exists an open neighborhood $U \subset X_n \setminus D$ with $f \in U$, and a function $r : U \to \mathbb{C}$ such that $r(f) = t$ and $g(r(g)) = ev(r(g), g) = 0$ for all $g \in U$. That is, we have found a neighborhood U of f and a function on U parametrizing roots of polynomials in U; in particular, all of the polynomials in U have a root. Thus $U \subset R$, and so R is open.

Now, we claim R is closed in $X_n \setminus D$. Let $f_k \to f$ in $X_n \setminus D$, with $f_k \in R$ for all k; we wish to show that f has a root in \mathbb{C}. As each $f_k \in R$, there exists $z_k \in \mathbb{C}$ with $f_k(z_k) = 0$. By Lemma 2, the z_k are bounded, and so there exists a convergent subsequence $z_{k_n} \to z$. So replacing $\{f_j\}, \{z_j\}$ by subsequences, we may assume $z_j \to z$. We claim $f(z) = 0$, and thus $f \in R$. Indeed, we have

$$|f(z) - f_k(z_j)| \leq |f(z) - f(z_j)| + |f(z_j) - f_k(z_j)|. \quad (*)$$

Taking j, k large, we may make the right hand side of $(*)$ arbitrarily small, by the continuity of f and the fact that the f_k converge to f pointwise. Now taking $j = k$ large, $f_k(z_j) = 0$, so we may make $|f(z)|$ arbitrarily small. Thus $f(z) = 0$ as desired.

So R is both open and closed in $X_n \setminus D$. But by Lemma 1, $X_n \setminus D$ is connected, so $R = X_n \setminus D$. In particular, every polynomial of degree n with non-zero discriminant has a root.

It remains only to show that those degree n polynomials f with zero discriminant have a root. But such polynomials f have a factor g in common with their derivatives f'. The degree of g is less than that of f, and so we are done by induction on n, as the degree 1 case is trivial.
References
