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1. Introduction

Let K be a global field and let XK be a geometrically integral and separated K-scheme of finite type
(a “K-variety”). Let Σ be a finite non-empty set of places of K, and suppose we are given local points
xv ∈ XK(Kv) for each v ∈ Σ. It is natural to ask if we may be able to find x ∈ XK(K) that is arbitrarily
close to xv for the natural topology on XK(Kv) (arising from the topology on Kv) for all v ∈ Σ. That
is, is the image of the map XK(K) →

∏
v∈Σ XK(Kv) dense? In general the answer is no because XK(K)

may be empty. But there is a reasonable weakening of the question for which one does not see immediate
counterexamples: if K ′/K is a finite extension in which each place of Σ is totally split (i.e., K ′ ⊗K Kv is
a product of copies of Kv, so K ′/K is separable) then for each place v′ on K ′ over a place v ∈ Σ we get
a map XK(K ′) → XK(K ′

v′) = XK(Kv), and so we can ask if there exists some such K ′/K and a point
x′ ∈ XK(K ′) whose image in XK(Kv) for each place v′ on K ′ over v ∈ Σ is in a neighborhood of xv that
we specify in advance. This weaker kind of global approximation question turns out to have an affirmative
answer when the xv’s lie in the smooth locus Xsm

K , and this is a consequence of a stronger result that is
the main theorem of Moret-Bailly in [8]. We now formulate this main theorem, and then we show how it
provides an affirmative answer to the preceeding question (as well as a key result used by Taylor in [10]). In
§2ff. below we shall discuss Moret-Bailly’s proof.

The setup for Moret-Bailly’s theorem goes as follows. We fix a global field K as above and set B = Spec R
for R a ring of S-integers of K (with S a finite non-empty set of places of K that contains all of the
archimedean places). We also fix a non-empty finite set of places Σ of K that is a proper subset of S, which
is to say that Σ is non-empty and avoids the places coming from B but does not exhaust all places away from
B. (In particular, S needs to have at least two elements, so B = Z is not permitted.) This latter condition
is called incompleteness of Σ (with respect to B) in [8]. We also give ourselves the following geometric data:
a separated surjective map f : X → B of finite type with irreducible X and geometrically irreducible generic
fiber XK , as well as finite Galois extensions Lv/Kv for each v ∈ Σ and Gal(Lv/Kv)-stable non-empty open
subsets Ωv ⊆ Xsm

K (Lv) (in particular Xsm
K is non-empty, so XK is generically K-smooth). For example,

if XK is K-smooth then we can take Lv = Kv and Ωv = XK(Kv) for all v ∈ Σ if these latter sets are
non-empty. (In all interesting examples we have Lv = Kv, but for technical reasons related to preliminary
reduction steps in the main proof we have to allow the generality indicated above.) The main theorem of [8]
is:

Theorem 1.1 (Moret-Bailly). For data (X � B,Σ, {Lv}v∈Σ, {Ωv}v∈Σ) as above, there exists an irreducible
closed subset Y ↪→ X with Y finite over B such that YK ⊗K Lv is Lv-split for all v ∈ Σ and each of its
Lv-points lies in Ωv ⊆ Xsm

K (Lv).

Example 1.2. Suppose Xsm
K (Kv) is non-empty for all v ∈ Σ, and let Lv = Kv and Ωv = Xsm

K (Kv) for all
such v. Taking Y as in Theorem 1.1, the normalization Ỹ of the finite integral B-flat Yred is Spec R′ with R′

the normalization of R in the function field K ′ of Yred. Thus, K ′⊗K Kv is a product of copies of Kv for each
v ∈ Σ, so Σ is totally split in K ′. By choosing Ωv smaller, we can arrange that all Kv-points obtained in this
way lie in a prescribed region within Xsm

K (Kv). The proof of Theorem 1.1 will give no control whatsoever
on [K ′ : K] or on Galois-theoretic properties (such as whether or not the Galois closure of K ′/K is solvable
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over K). In fact, the proof of Theorem 1.1 rests on non-constructive compactness arguments, and it realizes
YK as an irreducible component of a Cartier divisor on a certain K-curve inside of XK .

Example 1.3. To indicate the crucial role of the incompleteness hypothesis on Σ in Theorem 1.1 (it will
be used in two completely different ways in the proof), consider the following example that violates this
assumption: take B = SpecZ, X = Gm, and Σ = {∞}. Also take L∞ = C as an extension of K∞ = R, and
Ω∞ = {t ∈ C× | |t| < 1}. If the conclusion of Theorem 1.1 were satisfied in this case then by the previous
example we would get a (totally real) number field K ′ and an element u ∈ Gm(OK′) = O×

K′ such that u has
all archimedean absolute values < 1. This contradicts the product formula for the integral unit u.

Remark 1.4. Let us now indicate the two ways in which the incompleteness of Σ with respect to B arises in
the proof of Theorem 1.1. Recall that B = Spec R with R the ring of S-integers of K, for S a non-empty
finite set of places of K containing the archimedean places, and that Σ is a proper non-empty subset of S.
The first role of incompleteness is the following consequence of the strong approximation theorem for the
additive group scheme Ga: the inclusion R → KΣ

def=
∏

v∈Σ Kv has dense image. To see this denseness,
we recall the usual formulation of strong approximation, namely that the inclusion of K into AK/Kv0 has
dense image for any place v0. (This quotient is just the restricted direct product of Kv’s over all places v
of K distinct from v0.) Likewise, K has dense image in AK/(

∏
v∈S−Σ Kv) since S − Σ is non-empty, so

by considering open product blocks given at places v 6∈ S by the local valuation ring Ov and picking open
factors arbitrarily at the places of Σ the intersection with K is given by members of R satisfying the specified
local conditions in the Kv’s for v ∈ Σ. This is exactly the denseness of R in KΣ.

The second consequence of incompleteness that we shall require is that the (typically non-Hausdorff!)
topological quotient group G = K×

Σ /R× is quasi-compact. (This is to be contrasted with K×
S /R× which

has a continuous surjective map onto R via log || · ||S , with compact kernel via the S-unit theorem.) To
see this quasi-compactness from the S-unit theorem, we argue as follows. Let H ⊆ G be the image of
the compact group (K×

S )||·||S=1/R× under the continuous projection K×
S /R× → K×

Σ /R×. Since G is the
topological quotient of K×

S /R× by the image of K×
S−Σ and the logarithm map log || · ||S from K×

S /R× onto
R is a topological quotient map, it follows that the topological quotient G/H is a continuous image of the
topological group R/image(log || · ||S−Σ) that is visibly quasi-compact (since S − Σ is non-empty). Hence,
G is a locally compact (usually not Hausdorff) topological group having a quasi-compact subgroup H for
which the quotient G/H is quasi-compact. It then follows easily (via the local compactness) that G must
be quasi-compact. (In fact, the local compactness can be avoided as input, but one then has to use more
subtle topological arguments.)

The work of Taylor [10] uses the following corollary of Theorem 1.1:

Corollary 1.5. Let XK be a geometically irreducible and separated K-scheme of finite type, and let Σ be a
finite non-empty set of places of K such that Xsm

K (Kv) 6= ∅ for all v ∈ Σ. Let KΣ ⊆ Ksep be the maximal
subextension in which Σ is totally split.

Then Xsm
K (KΣ) is Zariski-dense in XK in the sense that the set of closed points x ∈ XK for which Σ is

totally split in K(x) is Zariski-dense in XK , and for any non-empty open sets Uv ⊆ Xsm
K (Kv) for all v ∈ Σ

there exists a K-finite subextension K ′ ⊆ KΣ and a point ξ ∈ XK(K ′) whose image in XK(K ′
v′) = XK(Kv)

lies in Uv for all v′ on K ′ over any v ∈ Σ.

In fact, Taylor only uses the Zariski-denseness aspect. However, this will be deduced from the topological
denseness aspect.

Proof. The denseness aspect with respect to
∏

v∈Σ Xsm
K (Kv) = Xsm

K (KΣ) is immediate from Theorem 1.1 by
varying Ωv (with Lv = Kv for all v ∈ Σ). To see that this implies the Zariski-denseness, assume otherwise, so
there is a proper closed subset ZK ⊆ XK such that (ZK ∩Xsm

K )(Kv) = Xsm
K (Kv) for some v ∈ Σ (otherwise

take Uv = (XK − ZK)sm(Kv) for all such v). However, Xsm
K (Kv) is a non-empty Kv-analytic manifold with

constant dimension dim XK > 0 (positive since there is a proper closed subset) and ZK is the zero locus
of a non-zero sheaf of ideals, so (ZK ∩Xsm

K )(Kv) has empty interior in the positive-dimensional Xsm
K (Kv).

Hence, this overlap cannot equal Xsm
K (Kv) for any v ∈ Σ. �
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2. Reduction steps

We now begin with the proof of Theorem 1.1 by sketching some important preliminary reduction steps
(which are treated in detail in [8, §1-§2], though we give some explanations omitted from [8] below). Using
notation as in Theorem 1.1, we can assume that the irreducible X is also reduced, so it is integral and hence
flat over the Dedekind base B. In particular, if d = dim XK then d = dim Xb for all b ∈ B (note that all
Xb’s are non-empty).

There are two basic reduction steps: shrinking XK and increasing Σ (while correspondingly shrinking
B). To shrink XK , let UK ⊆ XK be a non-empty open subset and let ZK = (Xk − UK)red be the proper
closed complement. The closure Z of ZK in XK is B-flat (though some fibers Zb may vanish), so when Zb is
non-empty we have dim Zb = dim ZK < dim XK = dim Xb; this inequality also holds if Zb = ∅. Hence, the
open subset U = X − Z has Ub 6= ∅ for all b ∈ B. It is a largely mechanical procedure to check that if we
can solve the problem for U � B equipped with Σ, the same Lv’s, and the open loci Ωv ∩U(Lv) (which are
non-empty; why?) then the solution also works for the given data on X. Since U has K-fiber equal to the
initial choice of UK , this justifies that we may replace XK with any non-empty open subset. In particular,
since XK is generically smooth over K, by shrinking XK we now may and do assume XK is K-smooth and
quasi-projective (e.g., affine). It then follows from general principles of “smearing out from the generic fiber”
(also known as “denominator-chasing”) as developed exhaustively in [4, IV, §8–§12, §17–§18] that for some
dense open B0 ⊆ B the restriction of X over B0 is smooth and quasi-projective over B0. For this and other
reasons to be indicated shortly, we are now motivated to also want to shrink B. It must be emphasized that
we have to allow ourselves to throw an essentially arbitrary finite set of closed points out of B and into Σ in
what follows.

Let Σ0 ⊆ MaxSpec(R) be a finite set of closed points of B, and let B0 = B − Σ0 be the corresponding
affine Dedekind scheme of (S ∪Σ0)-integers of K with respect to which Σ∪Σ0 is incomplete. We want to be
able to work over B0 with the incomplete set Σ∪Σ0. To this end, we need to identify suitable choices of Lv

and Ωv ⊆ XK(Lv) (recall XK is now K-smooth) for v ∈ Σ0. Here we will see that unavoidability of allowing
Lv 6= Kv and Ωv 6= XK(Lv). If it were the case that X(OKv ) 6= ∅ for all v ∈ Σ0 (note that all such v are
non-archimedean!) then taking Lv = Kv and Ωv = X(OKv ) would suffice in the sense that any B0-finite
irreducible Y0 that “works” in X|B0 for such extra restrictions over Σ0 has irreducible closure Y in X that
is B-finite (due to the way we defined Ωv with an integrality condition for v ∈ Σ0 = B −B0!) But typically
even X(Kv) is empty for v ∈ Σ0. There is a way out: if for each v ∈ Σ0 there is a finite Galois extension
Lv/Kv such that X(OLv ) 6= ∅ then we can take Ωv = X(OLv ) (visibly Gal(Lv/Kv)-stable!) and the same
closure procedure still justifies the sufficiency of working over B0. But how are we to find such an Lv?

By expressing a separable closure Ksep
v as a directed union of finite Galois extensions of Kv, it suffices to

show that X(OKsep
v

) 6= ∅ for each v ∈ Σ0. Now clearly X(OKsep
v

) = X(OKv
) ∩XK(Ksep

v ) inside of XK(Kv)
for an algebraic closure Kv containing Ksep

v , and X(OKv
) is an open subset of X(Kv) (why?). Thus, to get

the desired non-emptiness we just have to show that XK(Ksep
v ) is a dense subset of X(Kv) and that X(OKv

)
is non-empty. To see the non-emptiness (which is not treated in detail in [8]), we use the slicing argument as
in the proof of [4, IV2, 17.16.2] as follows. Let x0 be a closed point in the dense open Cohen-Macaulay locus
of the closed fiber Xv over the closed point v ∈ B. (The Cohen-Macaulay locus of any scheme locally of finite
type over a field is open by excellence and contains all generic points, so it is dense too.) We pick a regular
sequence in the local ring at x0 on Xv and lift this to a sequence in the local ring at x0 on X; this lifted
sequence is regular and has B-flat zero scheme D by the local flatness criterion (since X is B-flat). This
zero scheme is quasi-finite at x0, so by Zariski’s Main Theorem and the henselian property of OKv

it follows
that D ⊗R OKv

contains a connected component that is finite flat over OKv
and so one of its irreducible

components with reduced structure is equal to OKv
(since Kv is algebraically closed). In this way we get an

OKv
-point of X.

As for the denseness of XK(Ksep
v ) in XK(Kv) for v ∈ Σ0, we may working Zariski-locally on the smooth

XK to get to the case where XK is étale over some affine space An
K over K. The resulting étale map

XK → An
K has split fibers over each Ksep

v -point of the target. The analytic inverse function theorem over
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the algebaically closed non-archimedean complete field K
∧
v (for which there is no annoyance of non-trivial

finite extensions) thereby shows that XK(K
∧
v ) → An

K(K
∧
v ) is a local homeomorphism. Hence, the denseness

problem is reduced to the case of affine n-space, and then even the affine line. This is just the statement that
Ksep

v is dense in Kv. Such denseness is obvious in characteristic 0, and in characteristic p > 0 we just have
to approximate roots to inseparable polynomials by roots to separable polynomials via slight deformation
of an inseparable polynomial to make it separable; see [8, Lemma 1.6.1] for details on this approximation
procedure.

Now we may shrink B (and increase Σ), so we can assume that f : X � B is smooth and quasi-projective.
If dim XK = 0 then XK = Spec K (why?) and so f is birational, separated, and étale, so it is an isomorphism
due to the normality of B (and Zariski’s Main Theorem). Thus, without loss of generality we may and do
focus on the more interesting case dim XK ≥ 1. If dim XK > 1 then one can use Bertini-style methods to
slice the problem down to the 1-dimensional case. It must be emphasized that the slicing process is not
entirely formal (especially in positive characteristic) because we need to keep track of how to modify the
Ωv’s during the slicing process. This in turn requires a lemma on denseness in XK(Lv) for points that are
algebraic over K; see [8, Lemme 2.1] for details.

The upshot of these reduction steps is that (using further shrinking of B and increasing of Σ) we may
suppose X is open in a projective flat B-scheme f : X → B whose fibers are geometrically integral of
dimension 1; this is obtained by smearing out from the regular connected compactification XK of XK

(which may not be smooth when char(K) > 0). The fibral condition ensures “OB = f∗(OX) universally”
in the usual sense via the theory of cohomology and base change for (higher) direct images of flat coherent
sheaves with respect to proper maps. We likewise have that dim H1(Xb,O) is the same for all b ∈ B, and
we denote it g since it is the arithmetic genus of the geometrically integral regular proper K-curve XK . By
more shrinking of B we can assume that the complement Z = (X −X)red is quasi-finite over B and hence
finite over B, with each of its connected components regular (and thus Dedekind). By shrinking XK some
more we can assume ZK 6= ∅, so the common degree

z
def= degK(ZK) = deg(Z/B)

is positive.

3. Picard and Hilbert schemes

The key idea behind the proof of Theorem 1.1 will be to make Y as an irreducible component of a well-
chosen relative effective Cartier divisor D ⊆ X (i.e., B-flat closed subscheme cut out by an invertible ideal
sheaf) that in turn will arise from a well-chosen invertible sheaf on X. In particular, a crucial aspect of the
construction will be the systematic use of certain moduli schemes that parameterize invertible sheaves (Picard
schemes) and flat closed subschemes (Hilbert schemes). Thus, we now quickly review some of Grothendieck’s
fundamental results concerning representability of Picard and Hilbert functors, focusing on aspects that are
peculiar to the case of relative dimension 1 (that is what we require). It should be noted that one can get
by (for the purposes of proving Theorem 1.1) with less machinery than we invoke in our discussion below,
but we prefer to discuss matters in their natural general setting.

Consider a morphism of schemes ϕ : X → T that is proper, flat, and finitely presented; for any T -scheme
T ′, let XT ′ denote X ×T T ′. The functor on T -schemes defined by T ′ 7→ Pic(XT ′) is generally not a sheaf
for the fppf topology, nor even for the Zariski topology, since line bundles given by pullback from the base T ′

are Zariski-locally trivial over T ′ but may not be globally trivial on XT ′ (so the locality axiom for sheaves
is not satisfied). In particular, this functor is not representable: there can be no “universal line bundle” on
X , which is to say a T -scheme P and an invertible sheaf L on XP such that for any T -scheme T ′ and
line bundle N on XT ′ there is a unique map T ′ → P such that pullback along XT ′ → XP carries L
isomorphically back to N . This problem can be rectified in two ways: somewhat brutally by sheafifying
the functor (thereby giving a functor whose points have unclear global meaning), or by introducing extra
rigidification to eliminate non-trivial automorphisms (so as to better localize the construction problem over
the base). We shall require both points of view, so first we recall the meaning of a rigificator:
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Example 3.1. Suppose that ϕ∗(OX ) = OT universally (e.g., this holds if ϕ has geometrically integral fibers,
by the usual formalism of cohomology and base change preceded by a preliminary reduction to the locally
noetherian case). Assume moreover that there is a closed subscheme Z ↪→ X that is finite locally free over
T with constant rank δ > 0; a typical example (but not one that will generally occur in cases of relevance to
us) is δ = 1, which is to say an element in X (T ) (i.e., a section to ϕ). Consider the refined functor PicX /T,Z

from T -schemes to abelian groups defined as follows: PicX /T,Z (T ′) is the group of isomorphism classes of
pairs (L , i) where L is an invertible sheaf on XT ′ and i : L |ZT ′ ' OZT ′ ; the notion of isomorphism between
such pairs is defined in the evident manner and the group structure is via tensor product.

The main point is that the extra data of i gets rid of non-trivial automorphisms. Indeed, first note
that any automorphism of L is multiplication by a global unit on XT ′ , or equivalently a global section of
ϕT ′∗(O×

XT ′
) = O×

T ′ (recall ϕ∗(OX ) = OT universally). Such a unit on T ′ must pull back to 1 on ZT ′ under
the compatibility condition with i, and so such a unit is trivial since ZT ′ → T ′ is a faithfully flat map. The
absence of non-trivial automorphisms implies (by descent theory for quasi-coherent sheaves [3, Ch. 6]) that
PicX /T,Z is a sheaf for the fppf topology on the category of T -schemes.

In general, we define the Picard functor PicX /T for X over T to be the fppf sheafification of the functor
T ′ 7→ Pic(XT ′). Due to the nature of the sheafification process, it is difficult to attach much meaning to
elements of PicX /T (T ′). There is always a map of groups Pic(XT ′) → PicX /T (T ′) that is functorial in T ′

but it is generally neither injective nor surjective. However, fppf-locally on T ′ an element of PicX /T (T ′) does
arise from a line bundle in this way. Moreover, if L is a line bundle on XT ′ and we are given Z ↪→ X as
above then by Zariski-localization on T ′ we can even arrange that the invertible sheaf L |ZT ′ is trivial. This
follows from:

Lemma 3.2. If S′ → S is a finite and finitely presented map of schemes and F is a locally free sheaf of
constant rank n on S′ then Zariski-locally over S it admits a trivialization.

Proof. By chasing through direct limits, we may suppose S = Spec(A) is local, so S′ = Spec(A′) is semi-
local. The sheaf F comes from a finite locally free A′-module M ′ with constant rank, so on the fiber over
the closed point of A this is a free module over the artin ring A′/mAA′. Lifting such a basis is then easily
seen to give a basis of M ′ over A′. �

We conclude that the morphism of fppf abelian sheaves PicX /T,Z → PicX /T is locally surjective on
sections and so is surjective. Though it is easier to work with the sheaf PicX /T,Z since its points have
concrete meaning, we will nonetheless find that PicX /T plays a crucial role in subsequent constructions. Of
course, to get beyond formalism of definitions one needs some real theorems, and for us the real theorems
concern representability of these functors. A fundamental result in this direction is:

Theorem 3.3 (Grothendieck). If X → T is projective (in the sense of admitting a closed T -immersion into
some PN

T ) and has geometrically integral fibers then PicX /T is representable by a countable disjoint union
of quasi-projective T -schemes.

Proof. This is sketched in [6], and is explained in more detail in [3, §8.2]. �

Remark 3.4. It is a rather annoying restriction to impose projectivity and geometric integrality hypotheses
on the morphism. To get beyond this case one has to work in the setting of algebraic spaces and give up
any hope (in general) that separatedness holds for the “representing” algebraic space. We will return to this
matter of the algebraic spaces near the end of the proof of Theorem 1.1 in the case of positive characteristic.
For the case of number fields, algebraic spaces are not necessary in the proof.

Let us write PicX /T to denote the T -group scheme representing PicX /T ; we again remind the reader
that the points of this group scheme have no easily-described global meaning in general. We will of course
apply this in the case of our projective curve X → B with geometrically integral fibers, but since points of
PicX/B(B) generally do not arise from line bundles on X we shall require a more refined group scheme to
get our hands on line bundles. The more refined group scheme we will use is a representing object PicX/B,Z

for PicX/B,Z , so let us first address the representability of this functor more generally:



6 BRIAN CONRAD

Corollary 3.5. Let ϕ : X → T be a proper, finitely presented, and flat map such that ϕ∗(OX ) = OT

universally. Let Z be a closed subscheme of X that is finite locally free over T with constant rank δ >
0. If PicX /T is representable by a T -group scheme PicX /T then PicX /T,Z is representable by a T -group
scheme PicX /T,Z . In such cases, the natural map of group schemes PicX /T,Z → PicX /T that forgets the
rigidification along Z is smooth and affine, and there is a short exact sequence of T -group schemes

(1) 1 → ResZ /T (Gm,Z )/Gm,T → PicX /T,Z → PicX /T → 1.

Since there is generally no universal line bundle over PicX /T , this theorem cannot be proved by “putting
more structure” onto a universal object. The construction instead will proceed by initially building (1) as
an exact sequence of fppf abelian sheaves, and then using descent techniques. It should be noted that the
leftmost (nontrivial) term in (1) represents the corresponding fppf sheaf quotient, and it is representable
by a smooth affine T -group because the Weil restriction ResZ /T (Gm,Z ) is finitely presented and affine (by
construction) and is T -smooth (by the functorial criterion for smoothness); such representability for this
sheaf quotient modulo the closed subgroup Gm,T follows from the general theory of relative tori in affine
group schemes; see [5, Exp. VIII, §5].

Proof. Consider the diagram of fppf abelian sheaves on the category of T -schemes given by

1 → Gm,T
α→ ResZ /T (Gm,Z )

β→ PicX /T,Z
γ→ PicX /T → 0,

where α on T ′-points is pullback of units on T ′ to units on ZT ′ , γ is induced by the map that forgets
rigidification (and then passes to the sheafification), and β sends a unit u on ZT ′ to the pair (OXT ′ , i) where
i : OZT ′ ' OZT ′ is multiplication by u. By working fppf-locally, this is clearly an exact sequence of sheaves.
Effectivity of descent for affine morphisms implies that an fppf-sheaf extension of a group scheme by an affine
fppf group scheme is necessarily representable; this is proved in [9]. Thus, we do get the representability of
PicX /T,Z . The functorial interpretation of γ and the fppf-local nature of points of PicX /T (as being induced
by line bundles) implies that γ is an fppf-torsor for the smooth affine T -group ResZ /T (Gm,Z )/Gm,T and so
is an fppf map that is moreover smooth and affine by descent theory. �

In our situation of interest, we have a smooth affine surjection of B-groups PicX/B,Z → PicX/B . The
functorial criterion for smoothness and the vanishing of coherent H2’s for curves implies that PicX/B,Z

is smooth over B [3, 8.4/2]. If S is a B-scheme and L is an invertible sheaf on XS then the function
s 7→ degXs

(Ls) is locally constant (due to local constancy of Euler characteristic in proper flat families); see
[3, 9.1]. Thus, we get natural decompositions into pairwise disjoint open subschemes

PicX/B =
∐
d∈Z

Picd
X/B

, PicX/B,Z =
∐
d∈Z

Picd
X/B,Z

where the dth piece classifies bundles with constant fibral degree d. In particular, Picd
X/B,Z

represents the
functor of isomorphism classes of pairs (L , i) where L has constant fibral degree d.

Each Picd is a torsor for the group scheme Pic0, and the geometric fibers of Pic0
X/B

are connected because

X → B has geometrically integral fibers of dimension 1 [3, 9.2/13]. The kernel in (1) has geometrically
connected fibers (since ResA/k(Gm,A) is an extension of a torus by a unipotent group for any finite local
algebra A over an algebraically closed field k), so Pic0

X/B,Z
likewise has geometrically connected fibers over

B. By Theorem 3.3 and the connectivity of B, both Pic0
X/B

and Pic0
X/B,Z

are therefore quasi-projective

B-schemes (especially they are finite type), and so likewise for Picd’s by Theorem 3.3.
The main idea behind the proof of Theorem 1.1 can now be formulated a bit more precisely than earlier. We

will use the group structure and geometry of PicX/B and PicX/B,Z to make a B-point (L , i) ∈ PicX/B,Z(B)
such that there is a section s ∈ L (X) satisfying i(s|Z) = 1 (with i : L |Z ' OZ). In particular, s is non-zero
on all fibers over B so D = divL (s) is a finite B-flat closed subscheme of X and it is disjoint from Z (since
i(s|Z) = 1). Hence, the B-finite D is supported in X = X − Z. The section s will be carefully chosen to
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ensure that D is Lv-split for all v ∈ Σ with all of its Lv-points in Ωv ⊆ X(Lv). Taking Y to be an irreducible
component of D will then settle the proof of Theorem 1.1.

To get our hands on the Picard schemes, we need to dominate them in a convenient way by certain Hilbert
schemes that classify relative effective divisors. (But beware that though we are ultimately interested in
making such relative divisors, it is really the line bundles that we largely work with in the construction:
a key step in one lemma will be the flexibility to change D without changing O(D). Hence, it is really
Picard schemes and not Hilbert schemes that will play the dominant role in the proof. They somehow
manage to hide the divisor information that is too difficult to find explicitly.) In fact, Grothendieck first
constructed Picard schemes out of Hilbert schemes, so the considerations that follow are rather natural
from the viewpoint of Grothendieck’s initial constructions. To avoid excessive terminology, we will restrict
our discussion of Hilbert schemes to the case of relative curves; the degree parameters below are really
to be viewed as constant polynomials, and in the case of higher relative dimension must be replaced with
higher-degree Hilbert polynomials (hence the name “Hilbert scheme”).

For d ≥ 1, consider the degree-d Hilbert functor Hilbd
X/B on the category of B-schemes that assigns to

each B-scheme S the set of closed subschemes D ↪→ XS that are finite locally free of constant rank d over
S. For example, if S = Spec k(b) for b ∈ B then Hilbd

X/B(S) is the set of effective Cartier divisors on Xb

with k(b)-degree d. We define the functor Hilbd
X/B

similarly. Since X → B is projective, it follows from a

theorem of Grothendieck [6] that Hilbd
X/B

is represented by a projective B-scheme Hilbd
X/B

. If we let

D ↪→ X ×B Hilbd
X/B

denote the universal relative effective Cartier divisor of degree d (over Hilbd
X/B

), then the closed set

D ∩ (Z ×B Hilbd
X/B

)

has closed image in Hilbd
X/B

whose geometric points are those effective Cartier divisors on geometric fibers

of X → B that meet Z. Hence, the open complement of this closed image in Hilbd
X/B

represents the functor
of D’s not meeting Z, which is to say supported in X − Z = X. That is, this open locus represents the
functor Hilbd

X/B , so we denote it Hilbd
X/B .

It should be noted that in the case of quasi-projective relative curves, the representability of the Hilbd

functors can be proved by more direct methods, bypassing Grothendieck’s general theory, by using dth
symmetric powers of the curve. These are explained (and the link with Hilbert functors worked out) in
[3, pp. 252–4] and the references therein. In [8] the language of symmetric powers is used instead of the
language of Hilbert schemes (but it is still necessary to prove that such symmetric powers really represent
Hilbert functors as above). Our interest in Hilbert schemes will be via the morphism

ϕd : Hilbd
X/B → Picd

X/B,Z

that on S-points (for a B-scheme S) assigns to any S-finite locally free (of rank d) closed subscheme D ↪→ XS

(which is also closed in XS , due to S-finiteness) the invertible sheaf OXS
(D) = I −1

D equipped with its
trivializing section 1 along the closed subscheme Z that is disjoint from D.

Example 3.6. We now work out geometric fibers of ϕd in a special case. Let Spec k → B be a geometric
point, and let D0 be an effective Cartier divisor of degree d on Xk supported in Xk. For simplicity, suppose
Xk is smooth. We consider OXk

(D0) as a k-point of Picd
X/B,Z

. The fiber over this under ϕd consists of

all effective Cartier divisors D ⊆ Xk linearly equivalent to D0 with D − D0 = div(h) where h|Zk
= 1.

(This latter condition uniquely determines h.) In other words, this is the fiber over 1 for the linear map
H0(Xk,O(D0)) → H0(Zk,OZk

) whose kernel is H0(Xk,O(D0−Zk)). Provided d ≥ 2g + z− 1, by Riemann–
Roch this linear map is surjective and so the fiber is a torsor for the kernel group H0(Xk,O(D0−Zk)). This
description of fibers as torsors for a vector group (when d ≥ 2g + z− 1) will be vastly generalized in Lemma
4.2 below.
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4. Three lemmas and a key theorem

We record three lemmas, referring to [8] for the proofs. The first is [8, Lemme 3.3]:

Lemma 4.1. For d ≥ 1 and v ∈ Σ, let Ω[d]
v ⊆ Hilbd

X/B(Kv) be the subset of degree-d effective divisors
on XKv

that are Lv-split with all points in Ωv ⊆ X(Lv). This is an open subset, and it is non-empty if
[Lv : Kv] = #Gal(Lv/Kv) divides d.

The idea behind the proof is to look at the universal relative effective divisor over the Hilbert scheme, and
to show first that Lv-splitting of its fiber over one Kv-point implies such splitting over all nearby Kv-points;
this is essentially a form of Krasner’s Lemma, and it gives the openness claim. As for the non-emptiness
when d is divisible by the order of the Galois group, this requires a Kv-rational construction, which is done
using a Galois-invariant sum of degree d (possible since Ωv is a non-empty Gal(Lv/Kv)-stable open subset
with d sufficiently divisible).

Next, using the standard formalism of cohomology and base change one can upgrade the torsor analysis
in Example 3.6 to a relative situation as in the following result (which is [8, Lemme 3.6]):

Lemma 4.2. Fix d ≥ 2g + z − 1, let Ld be the universal line bundle on X ×B Picd
X/B,Z

, and let πd be the

structure map to P d = Picd
X/B,Z

. Then πd∗(Ld(−ZP d)) is a vector bundle on P d with rank (d− z) + 1− g

whose formation commutes with any base change on P d, and ϕd is a Zariski-torsor for the additive group
associated to this vector bundle.

For the final lemma, we need some notation. If d ≥ 1, let W
[d]
v = ϕd(Ω

[d]
v ) ⊆ Picd

X/B,Z
(Kv). This is the

set of pairs (L , i) on XKv
where L comes from an effective Cartier divisor Dv ↪→ XKv

of degree d that is
Lv-split with all points in Ωv ⊆ X(Lv). If d ≥ 2g + z− 1 then by Lemmas 4.1 and 4.2 it follows that W

[d]
v is

an open subset of Picd
X/B,Z

(Kv), and by Lemma 4.1 if also [Lv : Kv]|d then this open subset is not empty.
The key role of group theory with Picard schemes is to allow us to change D with changing O(D), or

more specifically to move around in the fibers of ϕd (which are Zariski torsors for vector groups, and so have
lots of rational points). This group theory manifests itself in the following result [8, Lemme 3.7.2(ii)] that
will be used in the next section:

Lemma 4.3. If d, d′ ≥ 1 and d ≥ 2g + z then W
[d]
v W

[d′]
v ⊆ W

[d+d′]
v inside of PicX/B,Z(Kv).

The issue in the proof is to first pick effective étale divisors D and D′ on XKv inducing a given pair of
line bundles, and to then move D without changing O(D) to arrange that D does not meet D′. Indeed,
if D + D′ is not étale then we need some moving to find a suitable Lv-split representative divisor for
O(D + D′) = O(D) ⊗ O(D′). Considering D′ as fixed, the possible choices for D are members of a torsor
for a vector space over Kv, and those that are “bad” (in the sense of making D + D′ not be étale) occupy
torsors for certain linear subspaces. By taking d ≥ 2g + z we can ensure (by Riemann–Roch) that these
linear subspaces are proper, and so we can find lots of good choices for D.

Finally, let us state and prove the key theorem that reduces Theorem 1.1 to a construction problem with
line bundles (and not divisors). This latter problem will be solved by using topological group arguments in
point-groups of Picard varieties over completions of K.

Theorem 4.4. Assume there exists (L , i) ∈ Picd
X/B

(B) with d ≥ 2g + z − 1 such that (LKv , iKv ) ∈ W
[d]
v

for all v ∈ Σ. There exists s ∈ L (X) such that i(s|Z) = 1 and D = divL (s) ⊆ X induces a point in the
non-empty open subset Ω[d]

v ⊆ Hilbd
X/B(Kv) for all v ∈ Σ.

As we have seen earlier, under the conclusion of this theorem we can take any irreducible component of
D as the required Y in Theorem 1.1. In this way, the proof of Theorem 1.1 is shifted to the problem of
meeting the hypotheses in Theorem 4.4.

Proof. By Lemma 4.2, T = ϕ−1
d (L , i) is a Zariski torsor over B = Spec R for the projective R-module

M = H0(X,L (−Z)). Explicitly, points of T are sections of L (after base change) whose Z-restriction is
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carried to 1 by the Z-trivialization i. Hence, it suffices to prove that T (R) has dense image in
∏

v∈Σ T (Kv)
(as then the image meets the open subset

∏
v∈Σ W

[d]
v that is non-empty). But the torsor T is trivial because

it is classified by H1(B, M̃) = 0 (as B is affine), so T is B-isomorphic to the vector bundle associated to
M . Hence, our problem is to prove that the natural map M →

∏
v∈Σ(M ⊗R Kv) has dense image. But

M is a projective R-module so we have M ⊕ M ′ = Rn for some R-module M ′ and some n ≥ 1. In this
way, we can reduce the problem to the case of the R-module R. That is, we want R →

∏
v∈Σ Kv to have

dense image. This denseness follows from the incompletness of Σ with respect to B = Spec R and the strong
approximation for the additive group, as we explained in Remark 1.4. �

5. Arguments with non-Hausdorff topological groups

It remains to find a pair (L , i) satisfying the hypotheses in Theorem 4.4. Let L0 be an ample invertible
sheaf on X. Passing to a sufficiently high tensor power, we can assume that d

def= degXK
((L0)K) ≥ 2g + z

and that [Lv : Kv]|d for all v ∈ Σ. We can also likewise assume that there is a trivialization i0 : L0|Z ' OZ

because the Dedekind affine Z has finite class group for each of its connected components. The first two of
these three conditions ensure that W

[d]
v is a non-empty open subset of Picd

X/B,Z
(Kv) for all v ∈ Σ.

Consider L = L ⊗n
0 and i = ui⊗n

0 for a large n and a unit u on Z. We seek such n and u so that
(LKv , iKv ) ∈ W

[nd]
v for all v ∈ Σ. Since d ≥ 2g+z, Lemma 4.3 implies that (W [d]

v )n ⊆ W
[nd]
v in PicX/B,Z(Kv)

for all n ≥ 1. We let
p0 ∈ Picd

X/B,Z
(KΣ) =

∏
v∈Σ

Picd
X/B,Z

(Kv)

be the class of the tuple of pairs ((L0)Kv
, iKv

)v∈Σ. We are seeking a unit u on Z and a positive n so
that upn

0 lies in
∏

v∈Σ W
[nd]
v . We fix one point q0 in the non-empty subset

∏
v∈Σ W

[d]
v ⊆ Picd

X/B,Z
(KΣ), so

q−1
0 ·

∏
v∈Σ W

[d]
v is a neighborhood of the identity in the topological group Pic0

X/B,Z
(KΣ). It is enough to

find a unit u on Z and a positive integer n so that upn
0 q−n

0 lies in q−1
0 ·

∏
v∈Σ W

[d]
v because then

upn
0 ∈ qn−1

0 ·
∏
v∈Σ

W [d]
v ⊆

(∏
v∈Σ

W [d]
v

)(n−1)+1

⊆
∏
v∈Σ

W [nd]
v .

It therefore suffices to prove that the sequence {(p0q
−1
0 )n}n≥1 in the first-countable and locally compact (but

usually non-Hausdorff) topological group

Pic0
X/B,Z

(KΣ)/Gm(Z)

has 1 as an accumulation point. Now in any first-countable quasi-compact topological group any infinite
sequence has an accumulation point, so any sequence of the form {gn}n≥1 has the identity as an accumulation
point. Thus, for the quasi-projective K-group JZK

= Pic0
XK/K,ZK

, we want JZK
(KΣ)/Gm(Z) to be quasi-

compact (where units on Z are embedded via β as in (1)).
Define J = Pic0

XK/K
(so this is to be called a Jacobian if XK is K-smooth, as is the case for number

fields, but it should not be called a Jacobian otherwise). Passing to K-fibers on (1) gives an exact sequence
of smooth commutative K-groups

1 → ResZK/K(Gm,ZK
)/Gm,K → JZK

→ J → 1

with JZK
→ J a smooth morphism. Hence, for each v ∈ Σ we get an induced diagram of topological groups

1 → (ResZK/K(Gm,ZK
)/Gm,K)(Kv) → JZK

(Kv) → J(Kv)

with the initial map a closed embedding and (by the structure theorem for smooth morphisms and the invere
function theorem over Kv) the final map an open map (possibly not surjective). But open subgroups are
closed, and the left term is topologically isomorphic to Gm(ZKv

)/K×
v by Hilbert’s Theorem 90 (make sure
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you see why this is a homeomorphism, not just a group isomorphism). Taking the product over all v ∈ Σ,
we get a right exact sequence of topological groups

Gm(ZKΣ)/Gm(Z)K×
Σ → JZK

(KΣ)/Gm(Z) → G → 1

where G is a closed subgroup of J(KΣ) and the map to G is a quotient map.
Applying Remark 1.4 to each of the Dedekind connected components of the B-finite flat Z (and the

incomplete lifting of Σ to each such component), it follows that Gm(ZKΣ)/Gm(Z) is quasi-compact. Hence,
JZK

(KΣ) contains a quasi-compact subgroup modulo which the quotient is closed in J(KΣ). Since JZK
(KΣ)

is locally compact (but usually not Hausdorff!), it therefore suffices to prove that J(KΣ) =
∏

v∈Σ J(Kv) is
compact. This is a special case of:

Theorem 5.1. Let F be a local field and let C be a proper regular and geometrically integral F -curve. Let
J = Pic0

C/F . The Hausdorff topological group J(F ) is compact.

Proof. If C is F -smooth (e.g., if F has characteristic 0) then J is proper due to the valuative criterion, so
J(F ) is compact. (Briefly, this comes down to the fact that PN (F ) is compact, by inspection.) Hence, it
remains to treat the case of positive characteristic, or more generally when F is non-archimedean. Since C is
geometrically integral over F , hence generically smooth, there exists a finite separable extension F ′/F such
that C(F ′) is not empty. The curve CF ′ is regular since F → F ′ is étale and C is regular, and since F is
closed in F ′ it follows that J(F ) is closed in J(F ′) = Pic0

CF ′/F ′(F ′). Thus, it is harmless to replace F with
such an F ′, so we can and do assume C(F ) is not empty. In particular, by using rigidification along a choice
of such F -point ξ ∈ C(F ) we clearly have PicC/F = PicC/F,ξ, so now the functor represented by Pic0

C/F has
useful meaning (as classifying line bundles with fibral degree 0 and a trivialization along the section ξ).

At this point, in [8] Moret-Bailly invokes some results from [1, §8] concerning moduli-theoretic compact-
ification of Pic0. It seems more natural to use the integral structure theory for Pic0, so we now give such
an alternative method. (We are going to have to make essential use of algebraic spaces, so it should be
noted that in characteristic 0 the entire problem was solved already due to the equivalence of regularity and
smoothness for schemes locally of finite type over a field with characteristic 0.)

Let R = OF and let C be a regular proper R-scheme with F -fiber C. The existence of such a regular
proper model is a non-trivial fact in the theory of integral models of curves over Dedekind base schemes.
By the valuative criterion we have C (R) = C(F ) so if we let ξ now also denote the R-point associated to
ξ ∈ C(F ) then PicC /R = PicC /R,ξ. Since the residue field k of R is perfect (even finite), by using intersection
theory on the regular arithmetic surface C one finds (see [7, 9.1/24]) that H0(C0,O) = k, where C0 denotes
the closed fiber of π : C → S = Spec R. Hence, π∗(OC ) = OS universally (by cohomology and base change
formalism). This allows us to apply Artin’s work on Picard functors (as at the end of [2]) to conclude that
PicC /R = PicC /R,ξ is an algebraic space over Spec R; by the functorial criteria this algebraic space is smooth
(but it is not quasi-compact), and we warn that it is usually not separated. Let us write P to denote this
algebraic space.

Since the points of P have functorial meaning in terms of line bundles equipped with rigidification along
ξ, it is easy to see (by regularity of C ) that P (R) → P (F ) is surjective. Letting P [0] ⊆ P denote the open
subgroup kernel of the natural degree map deg : P → Z that forms fibral degree, the algebraic space group
P [0] is R-smooth with F -fiber Pic0

CF /F = J . The surjectivity of P (R) → P (F ) implies the surjectivity of
P [0](R) → P [0](F ) = J(F ). But usually P [0] is not separated, so let E be the closure of the identity section
in this algebraic space group. We have EF = Spec F since J is F -separated, and in general E is étale over
R. The quotient Q = P [0]/E then makes sense as a smooth and separated algebraic space group over R with
F -fiber QF = P

[0]
F = J . By separatedness, the surjective map Q(R) → Q(F ) = J(F ) is injective too, hence

bijective. More importantly, by using intersection on the regular arithmetic surface C one can show that Q
is finite type (i.e., quasi-compact); see [3, 9.5/8–11] for this latter issue.

Our problem is now intrinsic to Q, or more specifically is a special case of the following situation. Let
X be a finite type and separated algebraic space over R with F -fiber XF that is a scheme. We claim that
the subset X(R) ⊆ X(F ) = XF (F ) is a quasi-compact subset when X(F ) is given its natural topology (as
rational points of the locally finite type scheme XF over the topological field F ). Note that X(R) is a subset
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of X(F ) precisely because of the separatedness (valuative criterion). Letting f : X ′ � X be a finite type
and étale covering by a separated (e.g., affine) R-scheme, the map f is separated since X is separated. It
therefore follows from Zariski’s Main Theorem and the henselian property of R that X ′(R) → X(R) is a
surjection. Since X ′

F (F ) → XF (F ) is continuous, it is therefore enough to solve the problem for X ′ in the
role of X. That is, we can assume that X is a scheme. By working Zariski-locally we can assume X is affine,
and then even an affine space. Finally, we can assume X is the affine line. The problem in this case is to
show that R is a compact subset of F , and this is clear. �
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