
SERRE’S CONJECTURES

BRYDEN CAIS

1. Introduction

The goal of these notes is to provide an introduction to Serre’s conjecture concerning odd irreducible 2-
dimensional mod p Galois representations. The primary reference is Serre’s excellent paper [23]. We follow Serre’s
suggestion in that paper and work systematically with modular forms in the sense of Katz, and must therefore
modify Serre’s definitions of the weight of a Galois representation as in [9]. The first part of these notes gives an
overview of the algebro-geometric theory of modular forms: such a viewpoint is essential in order to prove results
later on down the road. Next, we explain the precise form of Serre’s conjecture specifying the level, weight, and
character of an odd irreducible mod p Galois representation and motivate this recipe with the deep theorems of
Deligne, Fontaine, Carayol and others describing the existence and properties of mod p representations associated
to modular forms. Finally, we give evidence—both theoretical and computational–for Serre’s conjecture. In partic-
ular, we treat the general case of icosahedral mod 2 Galois representations, and correct several mistakes in Mestre’s
original development [19] of these examples.

2. Modular forms

2.1. Elliptic curves.

Definition 2.1.1. For any scheme S, an elliptic curve π : E → S is a proper smooth (relative) curve with
geometrically connected fibers of genus 1, equipped with a section e:

E

π

��
S

e

]]

One shows [17, 2.1.2] that E/S has a unique structure of an S-group scheme with identity section e, and it is
commutative.

Remark 2.1.2. In the sequel, we will work with the more general notion of generalized elliptic curves. Roughly
speaking, a generalized elliptic curve E over a base S is a family of curves that are either elliptic curves in the usual
sense or “degenerate” elliptic curves (Néron polygons) such that the relative smooth locus Esm has the structure
of a commutative group scheme extending to an action on E such that the translation action by rational points on
geometric fibers rotates the polygon. For the precise definition, see [6, II 1.12].

For a positive integer N ≥ 1 and a generalized elliptic curve E/S, we let EN denote the kernel of multiplication
by N on Esm. This is a finitely presented flat S-group scheme that is moreover étale if and only if N is a unit in
Γ(S,OS), and it is finite if and only if the number of connected components of each nonsmooth geometric fiber of
Esm is a multiple of N . In such cases, EN is étale-locally isomorphic to (Z/NZ)2 if N is a unit on S.

For an elliptic curve E, define the OS-module

ωE/S := π∗Ω1
E/S .

This is an invertible sheaf on S whose formation commutes with base change on S and that is canonically dual
to R1π∗OE/S [17, 2.2]. By replacing Ω1

E/S with the relative dualizing sheaf in the sense of Grothendieck duality
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[4], one can also define a pushforward sheaf ωE/S for any generalized elliptic curve; it is again invertible and its
formation commutes with any base change. Concretely, ωE/S = e∗Ω1

E/S in general (with e ∈ Esm(S) the identity
section), though this latter definition is ad hoc.

For a generalized elliptic curve π : E → S there is a (possibly non-reduced) closed subscheme structure S∞ ↪→ S
on the closed set of s ∈ S such that Es is not smooth; the formation of S∞ commutes with any base change on S
(see [3, 2.1.7–2.1.13]). We call S∞ the scheme of non-smoothness for E → S.

Definition 2.1.3. We call E → S degenerate if S∞ = S.

2.2. Moduli of elliptic curves.

Definition 2.2.1. Let E/S be a generalized elliptic curve and N ≥ 1 an integer such that S is a Z[1/N ]-scheme.
By a Γ1(N)-structure α on E/S we mean an immersion of S-group schemes

α : µN ↪→ EN ⊆ Esm

whose associated inverse ideal sheaf on E is fiberwise ample; that is, the image meets every irreducible component
in each geometric fiber of E.

We remark that one could also make this definition using the group scheme Z/NZ rather than µN , and for
applications over SpecZ (rather than SpecZ[1/N ]) this turns out to be more fruitful.

Let R be any ring in which N is a unit. We form a category [Γ1(N)]R whose objects are pairs (E/S/R,α), where
E/S is a generalized elliptic curve over the R-scheme S, and α is a Γ1(N)-structure on E/S. The morphisms of
[Γ1(N)]R between two objects (E′/S′/R, α′) and (E/S/R,α) are cartesian squares

E′

��

// E

��
S′ // S

that are compatible with α, α′. For N > 4, Γ1(N)-structures have no nontrivial automorphisms.

Theorem 2.2.2. Suppose N > 4. The functor which assigns to each Z[1/N ]-scheme S the set of isomorphism
classes of pairs (E,α) consisting of a generalized elliptic curve E/S and a Γ1(N)-structure α on E/S is represented
by a smooth and proper curve X1(N) over SpecZ[1/N ] with geometrically connected fibers. The functor which
assigns to such S the set of isomorphism classes of elliptic curves equipped with Γ1(N)-structure is represented by
an affine open subscheme Y1(N) of X1(N) whose complement is Z[1/N ]-finite.

Proof. See [3], especially §4, or [6, IV, 3.5.1] together with [13, Prop. 2.1]. �

We remark that the complement of Y1(N) in X1(N), given its reduced structure, is a finite disjoint union of
schemes SpecZ[1/N, ζd] for various d|N (with some repetitions). This is the closed subscheme of cusps, denoted
cusps, and it coincides with the scheme of non-smoothness X1(N)∞ for the universal family over X1(N). After
base change to SpecZ[1/N, ζN ], the subscheme cusps “breaks up” into a disjoint union of sections.

Remark 2.2.3. Another way of stating Theorem 2.2.2 is that for N > 4 the category [Γ1(N)]Z[1/N ] has a final object

(E/X1(N), α).

The same holds over any Z[1/N ]-algebra R by base change.

2.3. Modular forms.

Definition 2.3.1. Let N ≥ 1 and k be integers and R any ring in which N is a unit. A modular form f of weight
k for Γ1(N), defined over R, is a rule that assigns to every object (E/S, α) of [Γ1(N)]R a section f(E/S, α) of ω⊗k

E/S

that is compatible with morphisms in [Γ1(N)]R. We denote the R-module of modular forms of weight k for Γ1(N)
by M(k,N)R.

Observe that M(0, N)R = R for N > 4 because X1(N)R → SpecR is smooth and proper with geometrically
connected fibers.

We need of course only define a modular form f as a rule on generalized elliptic curves E/S for affine S = SpecA.
In this situation, given a modular form f and any basis ω of ωE/A (which may be found by Zariski-localization of
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A), we obtain an element f(E/A,α)/ω⊗k ∈ A. We therefore see that a modular form as above is equivalent to
a rule f that assigns to every triple (E/A,α, ω) consisting of a generalized elliptic curve E over an R-algebra A,
a Γ1(N)-structure α on E/A, and a basis ω of ωE/A an element f(E/A,α, ω) ∈ A that is functorial in the triple
(E/A,α, ω) and is “homogenous of weight −k in ω” i.e. f(E/A,α, λω) = λ−kf(E/A,α, ω) for all λ ∈ A×. The key
here is that the line bundle on E whose pushforward defines ωE/S is canonically the pullback of ωE/S to E.

Let us show that this recovers the usual definition of a modular form over C. Recall that every elliptic curve
over C has the form Eτ = C/Λτ with Λτ = Z ⊕ Zτ for some τ ∈ C −R. After picking a primitive N th root of
unity ζ, we put a Γ1(N)-structure α on Eτ via

αζ : µN (C)→ 1
N

Λτ/Λτ

ζ 7→ 1
N
.

Two pairs (Eτ , α) and (Eτ ′ , α) with τ, τ ′ in the same connected component of C−R are isomorphic if and only if
τ ′ = γτ for some γ =

(
a b
c d

)
∈ Γ1(N), and the isomorphism is given by

(C/Λγτ , 1/N)→ (C/Λτ , 1/N)

z 7→ (cτ + d)z,

where z ∈ C. It follows that the isomorphism class of the triple (Eτ , αζ , dz) is precisely the set of triples(
Eγτ , αζ ,

1
(cτ+d)dz

)
for γ as above. Therefore,

f(Eτ , αζ , dz) = f

(
Eγτ , αζ ,

1
(cτ + d)

dz

)
= (cτ + d)−kf(Eγτ , αζ , dz)

for all γ ∈ Γ1(N). Defining F (τ) = f(Eτ , αζ , dz), we find that F must satisfy

F (γτ) = (cτ + d)kF (τ)

for all τ ∈ C −R and γ =
(

a b
c d

)
∈ Γ1(N), and F (τ) = F (−τ). Moreover, F is holomorphic on C −R because

f(Eτ , αζ , dz) · (dτ)⊗k is a section of the holomorphic “line bundle” of ωEτ / SpecC’s that arises from the universal
algebraic elliptic curve over the algebraic curve Y1(N)C. The condition of “holomorphicity at the cusps” on F
follows from the fact that f may be evaluated on generalized elliptic curves (we will say more about this shortly).
Using ζ = e2πi/N recovers the classical theory on the connected component of i =

√
−1 in C−R.

Proposition 2.3.2. Let N > 4 and k be integers and R a ring in which 1/N is a unit. Let (E → X1(N), α) be
the final object of [Γ1(N)]R, and set ω := ωE/X1(N). Then

M(k,N)R = H0(X1(N)R, ω
⊗k
R ).

Proof. This follows easily from Remark 2.2.3. �

Remark 2.3.3. We would of course like a similar description of M(k,N)R when N ≤ 4, but unfortunately the
functor of Theorem 2.2.2 is not representable for these values of N . Rather than resort to the language of stacks
(see [9] for such an approach), we describe M(k,N)R when N ≤ 4 and some integer n ≥ 3 relatively prime to N
is invertible in R (we may suppose this to be the case by working Zariski-locally on R) as follows. The moduli
scheme X(N ;n)R, classifies triples (E/S/R,α, β) where:

• E is a generalized elliptic curve over the R-scheme S,
• α is an embedding of S-group schemes

α : µN → EN

• β is an isomorphism of S-group schemes

β : (Z/nZ)2 ∼−→ Esm
n

• The relative effective Cartier divisor α+β is ample on geometric fibers of E over S; i.e. α(µN )+β((Z/nZ)2)
meets all irreducible components of E in all geometric fibers
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The scheme X(N ;n)R is smooth and proper over R, and there is a “universal generalized elliptic curve”

π : E → X(N ;n)R

with α, β as above that is a final object in the category of such triples. We define ω as before, and the group
Gn := GL2(Z/nZ) acts on the R-module H0(X(N ;n)R, ω

⊗k
R ). We define M(k,N)R as the Gn-invariant submodule:

M(k,N)R := H0(X(N ;n)R, ω
⊗k
R )Gn .

That this definition is naturally independent of n ∈ R× with (n,N) = 1 and recovers the preceding definition of
M(k,N)R when N > 4 must be checked; we omit it.

Definition 2.3.4. A cusp form of level N and weight k over R is a modular form over R that vanishes on each
degenerate generalized elliptic curve. Equivalently, for N > 4, a cusp form is a section of ω⊗k

R that vanishes along
the subscheme of cusps in X1(N)R. We denote the R-module of cusp forms for Γ1(N) of weight k over R by
S(N, k)R; it is a R-submodule of M(N, k)R. We will also refer to cusp forms as cuspidal modular forms over R.

Taking R = C, arguments with Serre’s GAGA Theorem and the analytic theory shows that this recovers the
classical analytic theory of cusp forms.

2.4. q-expansions. Over the base SpecZ[[q]] there is a distinguished generalized elliptic curve Tate(q) that becomes
an elliptic curve after the base change SpecZ((q)) → SpecZ[[q]] and has formal group canonically identified with
Ĝm over Z[[q]]. Its scheme of non-smoothness is cut out by the ideal (q), and it is a regular scheme. Let Tate(qn)reg

over Z[[q]] denote the minimal regular resolution of the base change Tate(qn) by Z[[q]] → Z[[q]] defined via q 7→ qn;
this is a generalized elliptic curve over Z[[q]]. Over Z((q)), Tate(qn)reg and Tate(qn) coincide. The Z[[q]]-module
ωTate(q)reg/Z[[q]] is equipped with a unique generator ωcan that pulls back to dt/t on the formal group Ĝm. For N > 4,
the formal completion of the Z[1/N ]-scheme X1(N) along each connected component of the scheme of cusps has the
form SpecZ[1/N, ζd][[q]] or SpecZ[1/N, ζd]+[[q]] for various d|N , over which the universal generalized elliptic curve
is Tate(qd′

)reg for some d′|(N/d), equipped with some Γ1(N)-structure α, and its scheme of non-smoothness is cut
out by the ideal (q). (In contrast, Tate(qd′

) over Z[[q]] has scheme of non-smoothness cut out by the ideal (qd′
).) We

may evaluate any modular form f for Γ1(N) of weight k over a Z[1/N ]-algebra R on the pair (Tate(qd′
)regR[ζd], αR[ζd])

to obtain a unique element fd′,α(q) ∈ Z[1/N ][[q]]⊗Z R[ζd] such that

f(Tate(qd′
)regR[ζd], αR[ζd]) = fd′,α(q) · ωcan

⊗k
R[ζd].

(We write R[ζd] to denote R ⊗Z Z[ζd].) We call the power series fd′,α(q) the q-expansion of f at the cusp cor-
responding to (d′, α). On the Z[1/N ][[q]]-scheme of Γ1(N)-structures on Tate(q) there is a connected component
SpecZ[1/N ][[q]] corresponding to the Γ1(N)-structure µN → Tate(q)sm (and the canonical realization of µN as
Ĝm[N ]). This gives rise to a canonical connected component SpecZ[1/N ] of the scheme of cusps; this cusp is
denoted ∞.

For N > 4, we may think of the power series fd′,α(q) as a description of the section f of ω⊗k in a formal
neighborhood of the corresponding connected component of the cusps in X1(N) [13, §2]. Over SpecC, it is a
nontrivial exercise using the construction of Tate(q) via formal schemes to check that this definition of q-expansion
at a cusp coincides with the one obtained from the analytic theory of modular forms (especially at ∞). One has
the so-called “q-expansion principle”:

Proposition 2.4.1 (cf. [15, 1.6.1,1.6.2], [13, Prop. 2.7]). Let N, k, and d be integers with d|N and N > 4. For
any Z[1/N ]-algebra R and any any (d′, α) as above, the map

H0(X1(N)R, ω
⊗k
R )→ R[ζd][[q]]

taking f to its q-expansion at (d′, α) is injective. The same holds under composition with projection from R[ζd] to
any R-algebra factor ring.

It follows (see [15, Corollary 1.6.2]) that for any Z[1/N ] sub-algebra R0 of R, a modular form f ∈ M(k,N)R

lies in the subspace M(k,N)R0 if and only if the q-expansion of f at ∞ is in R0[[q]].

Remark 2.4.2. By faithful flatness arguments, Definition 2.3.4 can be given using only elliptic curves as test objects
if we also demand that all q-expansions on Tate(qd′

)’s over R[ζd]((q)) as above lie in R[ζd][[q]].
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2.5. Base change. Let N > 4, k be integers, and R any Z[1/N ]-algebra, and R′ any R-algebra. Then there is an
obvious natural map

(2.1) H0(X1(N)R, ω
⊗k
R )⊗R R′ → H0(X1(N)R′ , ω⊗k

R′ )

Theorem 2.5.1. If k ≥ 2 then the map (2.1) is an isomorphism of R′-modules.

Proof. By consideration of lim−→ and Čech cohomology, we may assume R and R′ are noetherian, and then even local
(with R→ R′ a local map).

For the sake of clarity, we consider the following more general setup. Let (A,m, κ) and (A′,m′, κ′) be noetherian
local rings, with A′ a local A-algebra. Let X be a proper A-scheme, and let X ′ be the base extension of X to
SpecA′. We consider a coherent sheaf F on X that is flat over A, and denote by F ′ the pullback of F to X ′.
We denote the closed fibers of X,X ′ by X0, X ′

0, and the pullback of F ,F ′ to these schemes by F0,F ′
0. We claim

that to show that the natural map

φ : H0(X,F )⊗A A′ → H0(X,F ⊗A′)
is an isomorphism, it suffices to prove that H1(X0,F0) = 0. Indeed, suppose this is the case, so likewise (since κ′/κ
is flat) H1(X ′

0,F
′
0) ' κ′ ⊗κ H

1(X0,F0) = 0. Then the natural map H1(X,F ) ⊗ κ → H1(X0,F0) is surjective,
hence by [14, Theorem 12.11] (valid in the proper case by the same proof, due to cohomology of higher direct
images in the proper case) is an isomorphism. By NAK, we conclude that H1(X,F ) = 0. Therefore, H1(X,F )
is free, so by [14, Theorem 12.11] the map H0(X,F )⊗ κ→ H0(X0,F0) is surjective, hence an isomorphism. The
same holds over A′ and κ′. Since H−1(X0,F0) = 0, it follows that H0(X,F ) is A-flat, hence A-free. We then have
a commutative diagram

H0(X ′,F ′)⊗A′ κ′ // H0(X ′
0,F

′
0)

(A′ ⊗A H0(X,F ))⊗A′ κ′

φ⊗1

OO

// H0(X0,F0)⊗κ κ
′

OO

where the horizontal arrows are isomorphisms. As κ′/κ is flat, the right vertical arrow is an isomorphism, so we
conclude that φ⊗ 1 is an isomorphism, and then by NAK again that φ is an isomorphism.

Returning to our situation of interest, let us show that when k ≥ 2, we have H1(X1(N)κ, ω
⊗k
κ ) = 0 for any field

κ in which N is a unit. The Kodaira-Spencer map gives an isomorphism of line bundles [15, A1.3.17]

ω⊗2
κ ' Ω1

X1(N)κ/κ(cuspsκ),

so for k ≥ 2, we have

(2.2) degκ ω
⊗k
κ ≥ degκ Ω1

X1(N)κ/κ (cuspsκ) > deg Ω1
X1(N)κ/κ = 2g − 2,

where g is the genus of X1(N)κ and we have used the fact that cuspsκ is nonempty. On the other hand,
H1(X1(N)κ, ω

⊗k
κ ) has the same dimension as H0(X1(N)κ,Ω1

X1(N)κ/κ ⊗ ω
⊗(−k)
κ ) by Serre duality. This latter

space is 0 as
degκ ω

⊗(−k)
κ + degκ Ω1

X1(N)κ/κ < (2− 2g) + (2g − 2) = 0.
This completes the proof. �

Remark 2.5.2. When k = 1 this map need not be an isomorphism. We will give an explicit example of this in §2.7.

2.6. Hecke operators. For any integers N, k, and Z[1/N ]-algebra R, there exists a commutative ring TR of
endomorphisms of the R-module M(k,N)R generated by Hecke operators Tm and diamond operators 〈d〉 for d ∈
(Z/NZ)×. These operators are defined algebro-geometrically, using correspondences on X1(N) over Z[1/N ] when
N > 4 (and by the same “trick” of considering modular forms of level N ≤ 4 as certain invariant sections of ω⊗k

over X(N ;n) with n > 3 as in Remark 2.3.3), and one computes by using Tate curve families that they agree with
the usual Hecke and diamond operators in the classical setting with R = C. In particular, if am(f) denotes the
coefficient of qm in the q-expansion of a modular form f at the cusp ∞, then

(2.3) a1 (Tm(f)) = am(f).

The proof of Theorem 2.5.1 gives R ⊗Z[1/N ] TZ[1/N ] ' TR when k ≥ 2. We will denote by T the flat Z-algebra
generated by these operators inside TZ[1/N ]; by using a stronger theory over Z (not just Z[1/N ]) one sees that this
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ring is Z-finite. We refer the reader to [3, §4.5] for the construction and properties of the ring T. One may also
consult [13, §3] and [10] for a discussion of some of the subtleties involved.

Definition 2.6.1. Let N ≥ 1 and k be integers, R any ring in which N is a unit, and

ε : (Z/NZ)× → F
×
p

any character. An eigenform of type (N, k, ε) over R is an element f ∈M(k,N)R that is an eigenform for all Hecke
operators Tm, and such that the diamond operators 〈d〉 act on f via

〈d〉f = ε(d)f.

We moreover say that f is normalized if a1(f) = 1. Often the ring R will be implicit, and will not be mentioned.

2.7. Modular forms (mod p). Fix a prime p and let N ≥ 1 be any integer not divisible by p. By a modular form
(mod p), we mean an element of M(k,N)F for a field F of characteristic p. It follows from Theorem 2.5.1 that for
k ≥ 2, the space M(k,N)Fp is just the reduction mod p of M(k,N)Z[1/N ]. When k = 1 this is sometimes not, in
fact, the case:

Example 2.7.1. There is an important modular form A ∈ M(p − 1, 1)Fp called the Hasse invariant, which we
construct as follows. For an elliptic curve π : E → S with S a scheme of characteristic p, the relative Frobenius
morphism

E

π
��?

??
??

??
?

FE/S // E(p)

π(p)
}}{{

{{
{{

{{

S

gives an OS-linear pullback map on cohomology

(2.4) F ∗E/S : R1π
(p)
∗ OE(p) → R1π∗OE

which a calculation [14, 4.2.1] shows to be zero for only finitely many elliptic curves over Fp (the supersingular
ones). Dualizing, and using the canonical duality between R1π∗OE and ωE/S , we obtain an OS-linear map

ωE/S → ωE(p)/S .

As the formation of ωE/S is compatible with base change, we have ω(p)
E/S ' F

∗
SωE/S , (with FS : S → S the absolute

Frobenius map). For any line bundle L on an Fp-scheme S we have canonically F ∗SL ' L ⊗p, as may be checked
by an explicit calculation with trivializing data of the invertible sheaf L . Thus, we have an OS-linear morphism

ωE/S → ω⊗p
E/S ,

which we interpret as a map OS → ω
⊗(p−1)
E/S ; that is, as a section of ω⊗(p−1)

E/S . We define A to be the rule that
associates to any elliptic curve E/S this section. An explicit calculation [15, 2.0] on Tate(q)/Fp((q)) shows that
A(Tate(q)/Fp((q)), α, ωcan) = 1 for every α. Hence, by Remark 2.4.2, this is therefore a modular form of level 1
and weight p− 1 over Fp.

For p = 2, 3, we note that the Hasse invariant provides an example of a modular form over Fp that does not lift
to a modular form over Z(p) (and likewise over a p-adic localization of Z). Indeed, there are no nonzero modular
forms over C of weight less than 4 and level 1 (and hence none over Q or Q).

Define
M(N) :=

⊕
k≥0

M(k,N)Fp
;

it is a graded Fp-algebra. This has a descending homogenous filtration by the subspaces AiM(N)Fp
for i ≥ 0. We

denote by S(N) the Fp-subalgebra of M(N) with kth graded piece equal to S(k,N)Fp
for k > 0 and with degree

zero graded piece Fp.
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Definition 2.7.2. The filtration w(f) of an element f ∈ M(k,N)Fp
is the minimal weight k′ = k − i(p− 1) such

that f ∈ AiM(k′, N)Fp
. In words, when we view f as a section of ω⊗k

Fp
on X1(N)Fp

, the integer i ≤ k/(p − 1) is
taken as large as possible without exceeding the order of f at the supersingular points (at which the section A of
ω
⊗(p−1)

Fp
has simple zeros, by a deformation theory argument [17]).

Proposition 2.7.3. The kernel of the Fp-algebra homomorphism

(2.5) M(N)→ Fp[[q]]

that takes f ∈M(k,N)Fp
to its q-expansion at ∞ is the principal ideal (A− 1)M(N).

We first prove a general lemma.

Lemma 2.7.4. Let X be a proper normal connected scheme over a base ring R and L an ample line bundle on
X. Put S = ⊕n≥0H

0(X,L n) and let s be a global section of L k for some k > 0 that is a unit in R. If the section
s at least one simple zero then s− 1 generates a prime ideal in S.

Proof. Since L k is ample, the subset Xs of X where s generates L k is affine, and by Chapter 2, Lemma 5.14 of
[14], the natural map of graded rings

S[1/s]→
⊕
n∈Z

H0(Xs,L
n)

is an isomorphism. The closed subset V (s− 1) ⊂ SpecS obviously lies inside SpecS[1/s], and corresponds to the
subset Z := V (s − 1) ⊂ SpecH0(Xs,⊕n∈ZL n). Restricting to an open affine subset SpecA of Xs where L is
trivial, say with generator T , we identify H0(Xs,⊕n∈ZL n) with A[T, 1/T ] and the section s − 1 corresponds to
uT k − 1 for some unit u ∈ A×. Since k is a unit on the base, we see that Z is étale over SpecA, hence over Xs and
consequently over X as well. Since X is normal, Serre’s “R1 + S2” criterion implies that Z is normal.

We claim that Z is furthermore connected. Since Xs is irreducible, the various SpecA’s as above have nontrivial
intersections, so it is enough to show that the scheme SpecA[T, 1/T ]/(uT k − 1) ' SpecA[z]/(zk − u) is connected
for u ∈ A×. As we have seen, each connected component of SpecA[z]/(zk − u) is étale over SpecA, so contributes
at least one point to the generic fiber; whence we can check connectivity by verifying that it holds on the generic
fiber. We thus wish to show that zk − u ∈ A[z] is irreducible over the fraction field F of the normal domain A.
But the generic points of the zero scheme of s have codimension 1 by the Hauptidealsatz, and since X is normal
the local rings at such points are discrete valuation rings. By hypothesis, s has a simple zero, so the zero scheme
of s is cut out by a uniformizer in one of these local rings OX,x. Considering F as the fraction field of OX,x, the
element u ∈ F is a uniformizer of OX,x, whence zk − u is irreducible over F by Eisenstein’s criterion.

Since Z is therefore connected and normal, the ideal (s− 1)S is prime. �

Proof of proposition 2.7.3. If N > 4, we proceed as follows. Since ω is ample by the calculation (2.2), one has an
isomorphism

X1(N)Fp
' Proj

⊕
k≥0

H0(X1(N)Fp
, ω⊗k

Fp
),

and since X1(N)Fp
is a curve, we see that the graded algebra M(N) =

⊕
k≥0H

0(X1(N)Fp
, ω⊗k

Fp
) has Krull

dimension 2. It is clear that the ideal (A − 1)M(N) is in the kernel of the above map. The modular form
∆ ∈M(12, 1)Fp

⊆M(12, N)Fp
has q-expansion q+ . . . at ∞, so the image of the map (2.5) has dimension at least

1. Since A vanishes to order 1 at the supersingular points, the ideal (A− 1)M(N) is prime by Lemma 2.7.4, so for
dimension reasons the kernel of (2.5) cannot properly contain it and the proposition follows. For N ≤ 4, the same
proof will work after using the trick of Remark 2.3.3; we omit the details. �

By using other methods, there is a unique Fp-linear derivation

θ : M(N)→M(N)
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that increases degrees by p+ 1 and has the effect

q
d

dq
: Fp[[q]]→ Fp[[q]]∑
amq

m 7→
∑

mamq
m

on q-expansions at every cusp [16] (the proof herein carries over to our situation verbatim). Moreover, one checks
that θ preserves the sub-algebra S(N) and that for all primes ` (including ` = p)

(2.6) T`(θf) = `θ(T`f).

It follows from (2.6) that if f is a normalized eigenform of type (N, k, ε) with eigenvalues a` (i.e. T`f = a`f for all
`) then θf is an eigenform of type (N, k + p+ 1, ε) with eigenvalues `a`.

3. Two dimensional Galois representations

In this section, we recall some properties of continuous 2-dimensional (mod p) Galois representations that will
be essential for our later considerations. We fix a prime p and a continuous two-dimensional Galois representation
(ρ, V ) for the remainder of this section.

3.1. Artin conductor. Fix a prime ` (not necessarily distinct from p). Let Z be the integral closure of Z in a
fixed algebraic closure Q of Q. Choose a surjection Z→ F`, giving an extension of the `-adic valuation v` on Q to
Q; the Galois group GQ acts transitively on these. Recall that, associated to this choice, we have the decomposition
group D` ⊂ GQ. By definition, D` preserves the valuation v` on Q, and so extends uniquely to an automorphism
of Q` that moreover fixes Q` (as Q is dense in Q`). We then easily deduce the identification

D` ' G` := Gal(Q`/Q`),

and we may view the restriction of ρ to D` as a continuous homomorphism

ρ` : G` → GL(V ) ' GL2(Fp).

Recall [25, IV, §3] that one has a descending chain of subgroups

G` = G−1
` ⊇ G0

` ⊇ G`,1 ⊇ · · · ⊇ Gi
` · · · ,

where Gi
` is the ith ramification group in the upper numbering.

Denote by Vi the subspace of V fixed by ρ`(Gi
`), and define

n(`, ρ) :=
∑
i≥0

1
[ρ`(G0

`) : ρ`(Gi
`)]

dimV/Vi.(3.1)

Then it can be shown [25, VI,§2] that n(`, ρ) ≥ 0 is an integer depending only on `, ρ, V . Moreover, it is easy to
see that n(`, ρ) = 0 if and only if V0 = V (i.e. ρ is unramified at `) and n(`, ρ) = dimV/V0 if and only if V1 = V
(i.e. ρ is tamely ramified at `). Since ρ is continuous (in particular, unramified outside a finite set of primes) we
may make the following definition:

Definition 3.1.1. The conductor of ρ is the integer

N(ρ) :=
∏
` 6=p

`n(`,ρ).

It is clear from our discussion that, away from p, ρ is ramified at precisely those primes dividing N(ρ). Observe
that N(ρ) is the “prime to p” part of the Artin conductor as defined in characteristic zero.
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3.2. Structure of local Galois groups. As we will make a close study of the local representation ρp : Gp →
GL(V ) at p we first recall the structure of the group Gp. We proceed (slightly) more generally by recalling the
structure of GK := Gal(Ksep/K) for field K of characteristic 0, complete with respect to a (normalized) discrete
valuation, with residue field k of characteristic p > 0. Let Fq ⊂ ksep be the subfield of order q for each q = pm with
m ≥ 1.

One has the following tower of field extensions and corresponding Galois groups:

Ksep

Ip

GK

IKt

It

Kun

K

Here I is the inertia subgroup of GK and Ip is the largest pro-p subgroup of I, the so-called wild inertia subgroup.
One has the identification GK/I ' Gal(ksep/k). Notice that I C GK and Ip C GK since Kun/K and Kt/K are
Galois extensions, and that It = I/Ip is a pro-cyclic “prime to p” group (i.e. every finite discrete quotient of It is
cyclic with order prime to p). The normality of I and Ip in GK ensures that GK acts on I and Ip via conjugation,
and that this action descends to the quotient It = I/Ip. Since I/Ip is abelian, this action descends to an action of
GK/I ' Gal(ksep/k).

For a fixed choice of uniformizer π of Kun we have the explicit description

Kt = lim−→
p-n

Kun(π1/n).(3.2)

If k is finite then

Kun = lim−→
p-n

K(ζn).

We obtain an inverse system of maps

θn : Gal(Kt/Kun)→ µn(Kun) = µn(ksep)(3.3)

s 7→ s(π1/n)
π1/n

which yields the identification

(3.4) It = Gal(Kt/Kun) = lim←−
p-n

µn(Kun) = lim←−
p-n

µn(ksep);

moreover, a simple calculation given in [21, 2.2.2] shows this is an identification of Gal(ksep/k)-modules. For
q = pm, the group µq−1(ksep) is F×q , and as the partially ordered set of integers {pm− 1|m ≥ 1} is cofinal with the
set of positive integers prime to p (where both sets are ordered by divisibility), the maps θq−1 give an identification
of Gal(ksep/k)-modules

(3.5) It = lim←−
q

F×q

with surjective transition maps F×qm → F×q given by

ζ 7→ ζ(qm−1)/(q−1) = NmFqm /Fq
(ζ)

for m ≥ 1.
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3.3. The local representation at p. We now study more closely the local representation ρp. As above, we follow
[24] and proceed more generally by studying representations ρ : GK → GL(V ) of GK for K as before, with V a
2-dimensional vector space over an algebraically closed field k′ of characteristic p.

Proposition 3.3.1. Let V ss denote the semi-simplification of V as a GK-module (i.e., the direct sum of the
Jordan-Hölder constituents of V ). Then Ip acts trivially on V ss.

Proof. As we need only prove that Ip acts trivially on the direct summands of V ss, we reduce at once to the case
that V = V ss is simple. The continuity of ρ ensures that ρ kills an open (hence finite index) subgroup of GK , so
that ρ factors through a finite discrete quotient. As Ip is pro-p, the image ρ(Ip) is a finite p-group. Let W = V Ip

be the subspace on which Ip acts trivially. Since W is a p-torsion abelian group on which a finite p-group acts
continuously, we have W 6= 0 by elementary group theory (0 ∈W and the orbits in W have p-power size, so there
are at least p − 1 other singleton orbits). But Ip is a normal subgroup of GK , so W is a nontrivial GK-stable
subspace of V ; since V is simple by hypothesis, W = V and Ip acts trivially on V . �

By Proposition 3.3.1, It = I/Ip acts on V ss. The identification (3.4) shows that It is abelian, and hence (since
k′ is algebraically closed) that It acts on V ss via two (continuous) characters

(3.6) ϕ,ϕ′ : It → k′
×

We are thus motivated to understand the group Homcont

(
It, k

′×
)
.

Definition 3.3.2. Let φ : It → k′
× be any continuous character. We say φ is of level m if m is the smallest integer

for which there is a factorization

It ' lim←−m
F×pm

%%LLLLLLLLLL

φ // k′×

F×pm

>>||||||||

The continuity of φ ensures that such an m exists, and clearly the level of φ is a factor of any other such m.

There is a convenient set of generators for the group of characters of It of level m that we now describe.

Definition 3.3.3. Let k′ be an algebraically closed field of characteristic p > 0, and let K be as above. Let q = pm.
A fundamental character of It of level m with values in k′ is a character that is the composition of

θq−1 : It � µq−1(Kun) ' F×q

with an Fp-embedding of fields Fq ↪→ k′. Here, θq−1 is the map defined by (3.3). Clearly there are m fundamental
characters of level m with values in k′sep.

Example 3.3.4. Recall that the cyclotomic character χ : Gp → Aut(µp) ' F×p is the character giving the action of
Gp on the pth roots of unity; as Qp(ζp)/Qp is tamely ramified, χ gives a character of It. We claim χ is the unique
fundamental character of level 1 in this case (this is generally false for local fields with absolute ramification degree
greater than 1). Following Serre [24], for any α ∈ Q we define the one-dimensional Fp vector space

Vα = mα/m
+
α ,

where mα is the Zp-module of x ∈ Qp satisfying v(x) ≥ α and m+
α is the submodule consisting of those x ∈ mα

with v(x) > α. The space Vα is equipped with an action of Gp whose restriction to I is linear (as I is the kernel of
the surjection Gp � Gal(Fp/Fp)), hence given by a character ϕα : I → F

×
p that moreover kills Ip as F

×
p has trivial

p-torsion. Since p1/(p−1) is a basis of V1/(p−1), we find that ϕ1/(p−1) = θp−1 (as characters of It) by the definition
of θp−1. But the homomorphism µp → V1/(p−1) given by ζ 7→ ζ − 1 is an injective morphism of Galois-modules, so
the Galois action on µp is that of the action on V1/(p−1), whence the claim.

Let us return to our original situation of interest, where K = Qp, and k′ is an algebraic closure of Fp; we set
Gp = Gal(Qp/Qp).



SERRE’S CONJECTURES 11

Proposition 3.3.5. Let ϕ,ϕ′ be the characters giving the action of It on V ss as in (3.6). Then one of the following
two possibilities holds:

(1) ϕ,ϕ are of level one, and ϕp = ϕ and (ϕ′)p = ϕ′.
(2) ϕ,ϕ have level two, and ϕp = ϕ′ and (ϕ′)p = ϕ.

Proof. Because of the identification (3.5) of It and lim←−q
F×q as Gal(Fp/Fp)-modules, for any σ ∈ Gp lifting Frobp ∈

Gal(Fp/Fp) the conjugation action of σ on It is given by u 7→ up. It follows that the set {ϕ,ϕ′} is stable under the
p-th power map, as claimed. �

4. Galois representations arising from modular forms (mod p)

4.1. Some existence results. In order to motivate the precise form of Serre’s conjecture that we will state in
Section 5, we examine the properties of 2-dimensional (mod p) representations arising from modular forms (mod p).
We state several deep theorems due to Deligne, Fontaine, and Carayol without proof. Throughout this section, we
fix a cuspidal normalized eigenform f of type (N, k, ε) with p - N and eigenvalues a`.

Theorem 4.1.1 (Deligne). There exists a continuous, semi-simple Galois representation

ρf : Gal(Q/Q)→ GL2(Fp)

characterized by:
(1) The representation ρf is unramified at all primes ` - Np.
(2) The matrix ρf (Frob`) has characteristic polynomial x2 − a`x+ ε(`)χk−1(`).

Note in particular that det ρf = εχk−1 by the Cebotarev density theorem, so (det ρf )(−1) = ε(−1)χ(−1)k−1 =
−1, where we have used the fact that ε(−1) = (−1)k (since ε(−1)f = 〈−1〉f = (−1)kf and f 6= 0).

We remark that if f has weight one, then Af is a modular form of type (N, p, ε) with the same q-expansion as
f , since the Hasse invariant A has level 1 and weight p− 1. Thus, for the purpose of proving Theorem 4.1.1, it is
no loss of generality to suppose that k ≥ 2, whence there is a lift of f to an eigenform in characteristic 0 by the
Deligne–Serre lifting lemma [8, Lemme 6.11].

Proof. See [7] for the case N = 1 and [1] in general (using Hilbert modular forms). �

The weak form of Serre’s conjecture is a converse to Theorem 4.1.1, accounting for oddness.

Conjecture 4.1.2. For any continuous odd irreducible representation ρ : GQ → GL2(Fp), there exists a cuspidal
eigenform g such that ρg ' ρ.

Observe that this conjecture says nothing about the weight, level, or character of g.

4.2. Some local descriptions.

Theorem 4.2.1 (Deligne). Suppose k ≥ 2 and ap 6= 0. Then ρf,p is reducible, and up to conjugation in GL2(Fp),
we have

ρf,p =
(
χk−1λ(ε(p)/ap) ∗

0 λ(ap)

)
,

where λ(a) is the unramified character of Gp taking Frobp ∈ Gp/I to a, for any a ∈ F
×
p .

Proof. See [13, §12] for a proof when p ≥ k. The general case is treated in an unpublished letter from Deligne to
Serre. �

Theorem 4.2.2 (Fontaine). Suppose k ≥ 2 and ap = 0. Then ρf,p is irreducible, and up to conjugation

ρf

∣∣
I

=
(
ψ′

k−1 0
0 ψk−1

)
,

where ψ,ψ′ : It → F
×
p are the two fundamental characters of level 2 (viewed as characters of I via the natural

surjection I → I/Ip = It).

Proof. See [9, §6]. �
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Theorem 4.2.3 (Carayol). Let N(ρ) be as in Definition 3.1.1. Then N(ρf )|N .

Proof. See [2]. �

It follows from (2.6) and our discussion of the derivation θ : M(N)→ M(N) that θf has type (N, k + p+ 1, ε)
and eigenvalues `a`. Since the cyclotomic character χ satisfies χ(Frob`) ≡ `(mod p) for all ` 6= p, we see by the
Brauer-Nesbitt Theorem and the identity det ρf = χk−1ε that

ρθf = ρf ⊗ χ.
Concerning these “twists by χ,” one has the following theorem:

Theorem 4.2.4. There exist integers i, k′ with 0 ≤ i ≤ p− 1 and k′ ≤ p+ 1 and an eigenform g of type (N, k′, ε)
such that

ρf ' ρθig ' ρg ⊗ χi.

Proof. See [9, Theorem 3.4]. �

This last theorem is very important: up to twists by χ, we “only” need to consider modular forms (mod p) in
weight at most p+ 1.

5. Serre’s recipe

In this section, we fix an odd irreducible continuous 2-dimensional (mod p) Galois representation ρ : GQ →
GL(V ) ' GL(Fp).

5.1. Some definitions.

Definition 5.1.1. Let ρ be as above. We say that ρ is modular if there exists a cuspidal eigenform f with ρ ' ρf .
If f has level N , weight k, and character ε, we will say that ρ has type (N, k, ε).

Definition 5.1.2. If ρ is modular, then we say ρ has minimal type (N, k, ε) if ρ is modular of type (N, k, ε) and
whenever ρ is modular of type (N ′, k′, ε′) we have N ′ ≥ N and k′ ≥ k.

Let ρ be as above. Serre’s conjecture asserts that ρ is modular, and gives a recipe for determining a minimal
type (N, k, ε) of ρ. It is not a priori evident that a modular representation ρ has a minimal type. In this section,
we carefully state and try to motivate Serre’s formulae prescribing the minimal type (N, k, ε) of ρ. We follow [10],
and note that our definition of the minimal weight k(ρ) differs from Serre’s [23]; this amounts to the fact that we
deal with modular forms in the sense of Katz, as explained in Section 2, and not with the forms Serre considers,
which are by definition those forms obtained by reduction (mod p) (i.e. forms in the space M(k,N)Z ⊗Z Fp).

5.2. The level. Let ρ be as above, and let N(ρ) be as in Definition 3.1.1. By Theorem 4.2.3, if ρ is modular of
type (N, k, ε), then N(ρ)|N . If one were to be optimistic, then one would conjecture that the minimal level of ρ is
exactly N(ρ), and this is what Serre conjectures.

5.3. The character and k(mod p− 1). Associated to ρ we have the character

det ρ : GQ → F
×
p .

Since ρ is continuous, the image of det ρ is a finite subgroup of F
×
p . One can show [10, §1] that the character det ρ

has conductor dividing pN(ρ), and therefore may be interpreted as a character

(Z/pN(ρ)Z)× → F
×
p .

Since p - N(ρ), there is a canonical isomorphism

(5.1) (Z/pN(ρ)Z)× ' (Z/N(ρ)Z)× × (Z/pZ)×,

and we define the character ε(ρ) to be the restriction of det ρ to (Z/N(ρ)Z)×. Moreover, since the character group
Hom((Z/pZ)×,F×p ) is cyclic of order p − 1, generated by the cyclotomic character χ, the restriction of det ρ to
(Z/pZ)× is of the form χh for some h ∈ Z/(p− 1)Z. We define k(ρ)(mod p− 1) to be h+ 1.

These definitions are of course motivated by Theorem 4.1.1. When ρ is modular of type (N, k, ε), we have
det ρ = εχk−1, and the conductor of ρ divides pN . We interpret det ρ as a character (Z/pNZ)×, and we see
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easily that ε is the restriction of det ρ to (Z/NZ)× and χk−1 is the restriction to (Z/pZ)× under the canonical
isomorphism, so k ≡ k(ρ)(mod p− 1)

5.4. The weight. In this section, we give the recipe for the minimal weight k(ρ) of ρ.
Let ρ, V be as above, and let ρp, I, Ip, It be as in Section 3.2. We saw in 3.3 that It acts on V ss via two characters

ϕ,ϕ′ that by Proposition 3.3.5 have level 1 or 2. We let ψ,ψ′ denote the two fundamental characters of level 2, as
in Definition 3.3.3, and as usual χ is the cyclotomic character (i.e. the unique fundamental character of level 1).

Before we can define the integer k(ρ), we need to recall the notion of “finite at p”.

Definition 5.4.1. With ρ, V as above, we say that ρ is finite at p if there exists a finite flat group scheme G over
Zp equipped with an action by a finite field κ ⊆ Fp such that V ' Fp ⊗κ G (Qp). By Raynaud’s work [29], it is
equivalent to pick any descent of (ρ, V ) to a representation space over a finite field (which we may do by continuity)
and to demand that the underlying finite Galois-module is the Qp-fiber of a finite flat Zp-group.

Define the integer k(ρ) as follows:
(1) Suppose ϕ,ϕ′ have level 2. We claim that ρp is automatically irreducible. If this were not the case, V

would have a stable one-dimensional subspace, and the action on this subspace would be given by one of
the characters ϕ,ϕ′, which would therefore extend to a tame character of Gp. But the restriction of any
tame character of Gp to I takes values in F×p because any lift σ ∈ Gp of Frobp ∈ Gal(Fp/Fp) ' Gp/I acts
via conjugation on It as the pth-power map. This contradicts the hypothesis that ϕ,ϕ′ have level 2. It
follows that ρ is simple, so Ip acts trivially by Proposition 3.3.1. By normality, ρ

∣∣
I

is semisimple and we
have

ρp

∣∣
I

= ρ
∣∣
It

=
(
ϕ 0
0 ϕ′

)
.

We may uniquely write ϕ = ψaψ′
b and ϕ′ = ϕp = ψ′

a
ψb for 0 ≤ a, b ≤ p− 1. Observe that we cannot have

a = b, for in this case ϕ = (ψψ′)a = χa has level 1, contrary to our hypothesis. Thus, after exchanging
ϕ,ϕ′ if necessary, we can arrange that 0 ≤ a < b ≤ p− 1, and we define k(ρ) = 1 + pa+ b.

(2) Suppose that ϕ,ϕ′ are of level 1 and Ip acts trivially. Then

ρp

∣∣
I

= ρ
∣∣
It

=
(
χb 0
0 χa

)
for unique a, b with 0 ≤ a, b ≤ p− 2. We may interchange a, b to suppose 0 ≤ a ≤ b ≤ p− 2 and we define
k(ρ) = 1 + pa+ b.

(3) Suppose ϕ,ϕ′ have level 1 and Ip does not act trivially. Then the proof of Proposition 3.3.1 shows that
V Ip is a nontrivial, one-dimensional stable subspace of V . The action of Gp on V Ip and V/V Ip is then via
two characters φ2, φ1, and we have:

ρp =
(
φ2 ∗
0 φ1

)
.

We may write φ1 = χαε1 and φ2 = χβε2 for unique 0 ≤ α ≤ p − 2 and 1 ≤ β ≤ p − 1, and unramified
characters ε1, ε2. We then have

ρp

∣∣
I

=
(
χβ ∗
0 χα

)
.

Set a = min(α, β) and b = max(α, β).
(a) If β = α+1 (equivalently χβ−α = χ) and ρp⊗χ−α is not finite at p then set k(ρ) = 1+ pa+ b+ p− 1.
(b) Otherwise, set k(ρ) = 1 + pa+ b.

Remarks 5.4.2.
(1) Observe that in any case, we have k(ρ)− 1 ≡ a+ b(mod p− 1), and det ρp = χa+b, so this agrees with the

results of 5.3.
(2) We can motivate the definition of k(ρ) in the situation of (1) above by using Theorem 4.2.2 and Theorem

4.2.4. Supposing that we are in this situation, we have

ρp

∣∣
I

=
(
ψaψ′

b 0
0 ψbψ′

a

)
= χa

(
ψ′

b−a 0
0 ψb−a

)
,
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so this looks just like the twist by the cyclotomic character (as in Theorem 4.2.4) of a representation whose
restriction to I is of the form (

ψ′
k−1 0
0 ψk−1

)
,

with 2 ≤ b−a+1 = k ≤ p. Theorems 4.2.2 and 4.2.4 suggest that the weight of the untwisted representation
should be k = b− a+ 1, and therefore, by our discussion of the effect of θ on the weight, we should define
k(ρ) = b− a+ 1 + a(p+ 1) = 1 + pa+ b, as we have done.

(3) Similarly, in the situation of (2) above, we realize that ρp

∣∣
I

as a twist by χa of a representation whose
restriction to I has the form (

χk−1 0
0 1

)
,

where 1 ≤ k = b− a+ 1 ≤ p− 1. Theorems 4.2.1 and 4.2.4 then suggests that the weight of the untwisted
representation should be k, and hence (as above) we should define k(ρ) = b− a+ 1 + a(p+ 1) = 1 + pa+ b.

5.5. The condition of “finite at p”. We would like to give a purely Galois-theoretic interpretation of the
condition “finite at p.” To do this, we suppose we are in the situation of (3a). As ρp is continuous, the group
ρp(I) is the Galois group of a totally ramified finite extension K/Qun

p , and the group ρp(Ip) is the Galois group of
K/Kt, where Kt/Qun

p is the maximal tamely ramified subextension of K. The finite abelian group ρp(I)/ρp(Ip) =
Gal(Kt/Qun

p ), has a faithful representation (
χα+1 0

0 χα

)
,

so it has order p− 1. Since Kt ⊇ Qun
p (ζp), we conclude that Kt = Qun

p (ζp) and Gal(Kt/Qun
p ) ' (Z/pZ)×. We have

seen before that ρp(Ip) is an abelian p-group. Since χ is trivial on Ip, we see that ρp(Ip) is of the form(
1 ∗
0 1

)
,

and is therefore killed by p. Thus, ρp(Ip) is an abelian group of type (p, p, . . . , p). One easily computes that the
conjugation action of Gal(Kt/Qun

p ) = ρp(I)/ρp(Ip) on Gal(K/Kt) = ρp(I) is through the character χβ−α = χ.
Kummer theory permits us to conclude that

K = Kt(x
1/p
1 , x

1/p
2 , . . . , x1/p

m ), where pm = [K : Kt],

and xi ∈ (Qun
p )×/(Qun

p )×p
.

Definition 5.5.1. In the above situation, we say that ρp is peu ramifié if each xi can be taken to have valuation
0 (i.e. a unit in Zun

p ). Otherwise, we say that ρp is très ramifié.

By [9, Proposition 8.2], the representation ρp is peu ramifié if and only if ρ is finite at p.

We may now state the precise form of Serre’s conjecture:

Conjecture 5.5.2 (Serre). Let p be a prime and ρ : GQ → GL2(Fp) a continuous, irreducible odd representation.
Then there exists an eigenform f of type (N(ρ), k(ρ), ε(ρ)) such that ρ is isomorphic to ρf .

6. Examples

In this section we would like to give evidence for Serre’s conjecture.

6.1. Theoretical evidence. In this section, we will show how the following deep theorem of Langlands–Tunnell
can be used to prove Serre’s conjecture in some cases.

Theorem 6.1.1 (Langlands–Tunnell). Let ρ : GQ → GL2(C) be a continuous irreducible odd representation with
solvable image. Then ρ is equivalent to ρg for some eigenform g of weight one.

For a proof of this theorem, consult [18], [30], and [11].
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Example 6.1.2 (Dihedral representations). When the image of ρ is a dihedral group D2n with p - n, Conjecture
5.5.2 is known to be true [31]. The weak form of Serre’s conjecture (Conjecture 4.1.2) follows from Theorem 6.1.1,
but we will give the indications of a proof due to Hecke.

For any n, the group D2n can be embedded into GL2(C), so ρ gives rise to an odd Artin representation
ρ̃ : GQ → GL2(C). We claim that ρ̃ is induced from a character of Z/nZ. Indeed, view ρ̃ with a representation of
D2n. Under the identification of D2n with Z/nZ o Z/2Z the restriction of ρ̃ to Z/nZ is given by two characters,
ϕ,ϕ′, so after a suitable conjugation we have

ρ̃
∣∣
Z/nZ

=
(
ϕ 0
0 ϕ′

)
.

Since the action of Z/2Z on Z/nZ by conjugation is inversion, we find after an easy matrix calculation that ϕ′ = ϕ−1

and that ρ̃(Z/2Z) is generated by a matrix of the form(
0 u
v 0

)
;

we may therefore scale basis vectors to achieve u = v = 1. A simple calculation with the definition of the induced
representation IndD2n

Z/nZ ϕ shows that we have an isomorphism

IndD2n

Z/nZ ϕ ' ρ̃

as claimed, and one checks easily that ρ̃ is irreducible if and only if ϕ is nontrivial.
Since the image of ρ is dihedral, it corresponds to a Galois extension L/Q with L a Z/nZ-extension of a

quadratic field K/Q. The character ϕ of Gal(L/K) ' Z/nZ associated to ρ̃ as above can be viewed as a character
of OK-ideals via the Artin map. The theta function

g =
∑

I

ϕ(I)qNm I

is a cusp form of weight 1 (for ϕ nontrivial) and level |Disc(LGal(K/Q))|. One multiplies g by a suitable Eisenstein
series of weight 1 and level p to obtain a form f which, modulo p, is an eigenform and gives rise to ρ (cf. [5, 3.2.1]).

To obtain the full strength of Conjecture 5.5.2, one uses the weight and level-lowering techniques of Ribet,
Edixhoven, Diamond, Buzzard, etc. as in [31].

Example 6.1.3 (The case GL2(F3)). Suppose that ρ has image GL2(F3). Because of the existence of a section to the
natural surjection GL2(Z[

√
−2]) � GL2(F3) given by reduction modulo the prime above 3, one can lift ρ to an odd

Artin representation ρ̃ : GQ → GL2(C) with solvable image, as above. By Theorem 6.1.1, we can find an eigenform
f of weight one giving rise to ρ̃. By multiplying f by the Eisenstein series 6E1,χ, where χ is the quadratic Dirichlet
character (mod 3), we obtain a weight two form g ≡ f(mod 3). By [8, Lemma 6.11], there exists an eigenform g′

of weight 2 whose eigenvalues are congruent to those of f modulo (1 +
√
−2). One then uses the same weight and

level lowering theorems alluded to above to prove Conjecture 5.5.2 (at least when ρ is not exceptional, cf. [5]).

6.2. Computational evidence.

6.2.1. Representations associated to semi-stable elliptic curves over Q. Fix a prime p and let E/Q be a semi-stable
elliptic curve; that is, an elliptic curve having either good or multiplicative reduction everywhere. In this case, we
can determine explicitly the invariants N(ρ), k(ρ), ε(ρ) attached to the Galois representation ρ : GQ → GL(V ),
where V is the two dimensional Fp-vector space E[p](Q).

Theorem 6.2.1. Let E/Q and ρ be as above, and let ∆E be the minimal discriminant of E. Then

N(ρ) =
∏
` 6=p

p-ord`(∆E)

` k(ρ) =

{
2 if p| ordp(∆E)
p+ 1 otherwise

ε(ρ) = 1.

Proof. To handle N(ρ), we distinguish two cases: that of good reduction at ` (i.e. ord`(∆E) = 0), and that of
multiplicative reduction at `. In the first case, ρ is unramified at ` (this is the “easy” direction of NOS cf. [27,
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VII, Proposition 4.1]). In the second case, there is an unramified extension K of Q` such that E/K has split
multiplicative reduction. One then has an isomorphism of Gal(Q`/K)-modules

Q
×
` /q

Z ' E(Q`)

for some q ∈ K× with v`(q) > 0. Under this isomorphism, E[p] corresponds to the subgroup 〈ζp, q1/p〉. Since ` 6= p,
we conclude that the extension K(ζp, q1/p)/K is tamely ramified, and unramified if and only if p|v`(∆E) = v`(q).
Since K/Q` is unramified, our claim for N(ρ) follows.

To determine k(ρ), we analyze the local representation ρp. If ρ has good reduction at p, then the p-torsion in the
Néron model shows that ρp is finite at p, so k(ρ) = 2. Observe also that in this case ordp(∆E) = 0, so in particular
p| ordp(∆E). If ρ does not have good reduction at p, then by assumption it has multiplicative reduction at p, so
over an unramified extension K of Qp we have the exact sequence of Galois modules over K as above (using the
Tate curve):

0→ µp → E[p]→ Z/pZ→ 0,

so

ρp

∣∣
I
'

(
χ ∗
0 1

)
.

As before, we have an isomorphism of Gal(Qp/K)-modules

E[p](Qp) ' K(ζp, q1/p),

so by our considerations in 5.5, ρp is “peu ramifié” (hence finite at p) if and only if p|vp(q) = ordp(∆E). Appealing
to (3) of the definition of k(ρ), we see that that k(ρ) = 2 if p| ordp(∆E) and is p+ 1 otherwise.

To determine ε(ρ), we simply recall that det ρ = χ, since the Weil self pairing gives an isomorphism of Galois
modules

∧2E[p] ' µp.

�

Remark 6.2.2. We could generalize Theorem 6.2.1 as follows. For any elliptic curve E/Q, Ogg [20] (or see the more
general results of Saito [22]) gave a formula for the conductor of E (whose prime-to-p part is, in particular, equal
to the Artin conductor of the Galois representation on E[p] for any prime p). Let m` be the number of geometric
irreducible components (not counting multiplicities) of the reduction of the minimal Néron model of E at `. Then
Ogg showed that

n(`, ρ) = ord`(∆E) + 1−m`,

where n(`, ρ) is as in Definition 3.1.1. This enables us to compute N(ρ) for any elliptic curve E/Q. If we require
that E have multiplicative reduction at p, then we can use our methods above to compute k(ρ) as well.

Let us use Theorem 6.2.1 and Remark 6.2.2 to illustrate Serre’s conjecture in some concrete cases.

Example 6.2.3. Consider the elliptic curve E/Q with Weierstrass equation

y2 + xy + y = x3 + 1.

We compute that this model of E has discriminant ∆ = −32 · 71, and that E has split multiplicative reduction at
3 and nonsplit multiplicative reduction at 71. Let us consider the Galois representation ρ on E[3]. By Theorem
6.2.1, we have N(ρ) = 71, k(ρ) = 4, and ε(ρ) = 1. Using magma, we find a cuspidal eigenform of f =

∑
bnq

n level
71, weight 4 and trivial character, and we compare the q-coefficients of f to the traces of Frobenius elements a` on
E[3]:

` 2 3 5 6 11 13 17 19 23 29 31 37 41 43
b` 1 1 -16 -1 24 7 72 -153 -213 232 149 -203 -432 71
a` 1 1 2 2 0 -2 0 0 0 -2 -10 -6 0 -4

Observe that in all cases computed a` ≡ b`(mod 3) (note that we do not expect this for ` = 3).
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Remark 6.2.4. In fact, one can prove that the representations ρ and ρf are isomorphic by verifying that a` ≡
b`(mod 3) for finitely many `. Indeed, an effective version of the Chebotarev density theorem shows that for any
finite Galois extension K/Q, ramified at a finite set of primes S, the group Gal(K/Q) is generated by the conjugacy
classes of Frob` for finitely many ` 6∈ S. Under GRH, there exists an explicitly computable bound B, depending
only on [K : Q] and the primes in S, such that Gal(K/Q) is generated by the conjugacy classes of Frob` for
` < B not in S [26, §2.5]. As a consequence, one can prove (under GRH) that two continuous (mod p) Galois
representations are isomorphic by verifying a finite number of equalities (of traces of Frob`’s for ` as above). One
has the following theorem of Serre [26, §2.5 Théorèm 6]:

Theorem 6.2.5. Let K/Q be a finite Galois extension of degree n, unramified outside a finite set of primes S.
Under GRH, every conjugacy class of Gal(K/Q) contains some Frob` for

` ≤ 280n2(log n+
∑
q∈S

log q)2.

In the situation above, we may take n = #GL2(F3) = 48 and S = {3, 71} to obtain the bound B = 54989339.
It is likely that we could explicitly determine a much smaller bound, by analyzing the orders of various Frob`’s and
using the structure of GL2(F3), but we have not carried this out.

Example 6.2.6. Consider the elliptic curve E/Q with Weirstrass model

y2 + xy = x3 − x2 − 37x− 78.

Then E has discriminant ∆ = 73 and has additive reduction at 7. It follows from Remark 6.2.2 that E has
conductor N = 72. We consider the Galois representation ρ on E[2]. Theorem 6.2.1 gives N(ρ) = 72 and k(ρ) = 2.
The space of cuspforms of weight 2 for Γ0(49) is one-dimensional, so the modular curve X0(49) is an elliptic curve
and the unique cuspform f =

∑
bnq

n must be an eigenform. One can determine a Weirstrass model for X0(49)
using [12]

y2 − 2xy = x3 + 20x2 + 112x,

and we find a degree 2 isogeny X0(49)→ E given explicitly by

(x, y) 7→
(
x

4
+ 2 +

28
x
,−x

4
+
y

8
− 1− 14

y

x2

)
.

It follows that the traces a` are the Fourier coefficients b`.

Example 6.2.7. In this example, we make a detailed study of icosahedral mod 2 representations. To be precise, the
group PSL2(F4) = SL2(F4) acts on the 5 lines in F2

4, giving the identification

A5 ' SL2(F4) ⊆ GL2(F4),

and we consider Galois extensions K/Q that are the splitting fields of irreducible quintic polynomials, with Galois
group A5. Although we prefer to provide our own examples, we follow Mestre [19, §4] in spirit, and correct some
mistakes in his computations on our way.

First we prove a lemma giving a characterization of those quintic polynomials having Galois group A5 over
number fields.

Lemma 6.2.8. Let f ∈ OF [x] be a monic quintic polynomial over a number field F . Then the splitting field of f
over F has Galois group A5 if and only if the following three conditions are verified:

(1) The polynomial f is irreducible over F ,
(2) there exists a prime p of F prime to Disc(f) such that f(mod p) has exactly two roots in κ(p),
(3) the discriminant of f is a square in F×

Proof. Let G be the Galois group of f and identify G with a subgroup of S5. The first condition ensures that G
contains a 5-cycle and the second condition ensures that G contains a 3-cycle. Thus, G contains A5. The condition
on Disc(f) guarantees that G contains no 2-cycles, and hence must be A5. It is not hard to see that these conditions
are also necessary (using the Chebotarev Density Theorem to handle condition (2)). �
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Now fix a monic f ∈ Z[x] with splitting field K/Q having Galois group G ' A5, and let

ρ : G→ GL2(F4)

be the associated Galois representation. We let L be any fixed subfield of K of degree 5 over Q generated by
a root of f . Set Gal(K/L) = H ⊆ G; it is of index 5 and isomorphic to A4. We would like to determine the
invariants N(ρ), k(ρ), ε(ρ). To do this, we need to determine the ramification groups attached to the prime 2 and
those primes that ramify in K. Explicitly carrying this out may at first appear to be a daunting task: in theory we
must determine the splitting behavior of these primes in a degree 60 extension of Q—a formidable task, even for
advanced computer-algebra systems like magma. It turns out, however, that we can exploit the group-theoretic
properties of G = A5 to reduce to working only with the extension L/K of degree 5. More precisely:

Proposition 6.2.9. Let K/F be an A5-extension of number fields, p a prime of F , and let e, f be the ramification
degree and inertia degree of any prime in K over p. Let {ei}, {fi} be the corresponding degrees for the primes pi

over p in a subfield L of degree 5 over F . Then

e = lcmi ei f = lcmi fi.

Proof. Let D be any decomposition subgroup of a prime of K over p. Since D is solvable, it must be a proper
subgroup of the simple group A5. If the order of D is not 6 (i.e. D is not isomorphic to S3) then we claim there
exists a conjugation of D having trivial intersection with H. Indeed, viewing A5 as the group of permutations of
a 5-element set, one checks that every nontrivial proper subgroup of A5 of order prime to 5 that does not have
order 6 fixes at least one element of the set and at most two elements. We choose a conjugation D′ of D such that
the subgroup of D′ consisting of those elements having order prime to 5 fix distinct elements from that of H; as
H has no elements of order 5, this ensures that H ∩D′ = {1}. It follows that there is a prime q′ of K over p with
decomposition group D′ such that

e(q′|q′ ∩ L)f(q′|q′ ∩ L) = #H ∩D′ = 1,

and since K/L is Galois, we conclude that q′ ∩ L splits completely in K, and this gives our claim.
Now suppose D has order 6 and that no conjugate of D has trivial intersection with H (otherwise we would be

done already). The above argument produces two conjugations D′, D′′ of D with the property that #D′ ∩H = 2
and #D′′ ∩H = 3, so there are primes q′ and q′′ of K with decomposition groups D′ and D′′ respectively having
e(q′ ∩ L|p)f(q′ ∩ L|p) = 3 and e(q′′ ∩ L|p)f(q′′ ∩ L|p) = 2, and the claim follows. �

To compute N(ρ) we claim it is enough to know the orders of the ramification groups at ` for those ` that ramify
in K, which by Proposition 6.2.9 are exactly those primes that ramify in L; i.e. those ` dividing the discriminant
d := Disc(f). From the formula for N(ρ), we need only know the order of G`,i and the number dimV/V G`,i . But
dimV G`,i = 0 whenever ρ(G`,i) contains an element of order greater than 2 since such elements never have 1 as an
eigenvalue. Since we are only interested in ` > 2, considerations of the possibilities for the G`,i show that

dimV/V G`,i =


0 if #G`,i = 1
1 if #G`,i = 2
2 otherwise

.

Now if ` is tamely ramified (which is automatic if ` > 5) then #G`,0 = e (which we compute by determining the
splitting behavior of ` in L) and G`,i = {1} for i > 0. Using the results of [25, Exercise 3] and general properties
ramification groups, we find that if 5 is wildly ramified then the orders of the nontrivial ramification groups at 5
are

5, 5,
and if 3 is wildly ramified there are two possibilities:{

3, 3 if e = 3
6, 3, 3, 3 if e = 6

.

To determine k(ρ), we study the local representation ρ2 at 2. If 2 is unramified, then e = 1 and k(ρ) = 1. If
2 is tamely ramified, then e = 3, or 5; in either case it is not hard to see that the characters giving the action of
the tame quotient have level 2, and our normalizations of a, b in that case force k(ρ) = 2. Finally, if 2 is wildly
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ramified, then e = 2 or 4 (observe that e = 6 is not possible as the subgroup of order 2 is not normal in S3), and
we are in case (3) of the definition of k(ρ). If e = 4, then ρ is “très ramifié.” Indeed, in the notation of §5.5, we
see that ρ2(I2) = Z/2Z×Z/2Z is the Galois group of a totally ramified extension of Q2. By analyzing the finitely
many possibilities for such an extension (recall there are 7 distinct quadratic extensions of Q2) we see that in every
case it is très ramifié. In this situation we have k(ρ) = 3. Finally, if e = 2 then ρ2(I2) = Z/2Z corresponds to a
degree 2 ramified extension of Q2. We list all such extensions together with the valuation at 2 of the discriminant
and the ramification type:

F Q2(
√
−1) Q2(

√
−5) Q2(

√
2) Q2(

√
−2) Q2(

√
10) Q2(

√
−10)

ord2(Disc(F )) 4 4 8 8 8 8
Ramification Type peu peu très très très très

We therefore see that we can compute the ramification type by knowing the discriminant of the completion L2

of L at the unique ramified prime of L above 2. Summarizing this discussion, we have

k(ρ) =



1 if e = 1
2 if e = 3, 5
2 if e = 2 and Disc(L2) = (4)
3 if e = 4
3 if e = 2 and Disc(L2) = (8)

As for ε(ρ), we know by construction that ρ has image in SL2(F4), so det ◦ρ = 1 whence ε = 1.
Once we have computed N(ρ), k(ρ), we need to compute the a` := Tr(ρ(Frob`)). In order to do this, we observe

that the trace of an element of SL2(F4) up to automorphisms of F4/F2 depends only on its order, and hence only
on the corresponding f (the inertial degree of ` in K). Indeed, the possible orders of elements in SL2(F4) are
2, 3, 5. If an element has order 2, it must have characteristic polynomial x2 − 1 = (x − 1)2 and so has trace 0.
Similarly, every nontrivial element of order 3 has characteristic polynomial x2 + x+ 1 and so has trace 1. Finally,
the nontrivial elements of order 5 have characteristic polynomial a degree 2 monic polynomial over F4 dividing
x4 + x3 + x2 + x+ 1, and the unique two such polynomials are Gal(F4/F2)-conjuagte as claimed. Therefore,

a` =


0 if ord(Frob`) = 1 or 2
1 if ord(Frob`) = 3
ω or ω2 if ord(Frob`) = 5

,

where ω, ω2 are the distinct roots of x2 + x+ 1 in F4. In practice, we invoke the Chebotarev density theorem and
compute enough a` that are either 1 or 0 to single out a unique cuspidal eigenform of the prescribed level and
weight with the given Hecke eigenvalues. It is likely that one could gain a refined understanding of the relationships
between the various Frob`’s of order 5 to determine exactly when the corresponding a`’s are nontrivially Gal(F4/F2)-
conjugate.

We now give an explicit example. Let

f = x5 + 2x3 − 4x2 − 2x+ 4.

Then f is irreducible, d := Disc(f) = (24 · 73)2, and f(mod 7) has exactly two roots in F7, so if K denotes the
splitting field of f then Lemma 6.2.8 shows that G := Gal(K/Q) ' A5. Letting L be the subfield of K given by
adjoining a root of f to Q, we readily compute the following factorizations:

(2) = p1p
4
2 (73) = p1p

2
2p

2
3,

so by our considerations we have
N(ρ) = 73 k(ρ) = 3.

We compute the a` for ` 6= 2, 73 up to Gal(F4/F2)-conjugacy as indicated above in the following table:
` 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71
a` ω, ω2 ω, ω2 1 ω, ω2 ω, ω2 1 1 ω, ω2 1 0 1 0 1 1 1 0 ω, ω2 1 ω, ω2

We now appeal to the Modular Forms Database [28] to find a cuspidal eigenform of level 73 and weight 3 with
matching eigenvalues. As the database lacks data for weight 3 at this level, we use the fact that the Hasse invariant
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A is a modular form of weight 1 and level 1 over F2 with q-expansion 1 at ∞ to search instead for a form of weight
4 with these eigenvalues.

We find a unique normalized cuspidal eigenform over a field of degree 7 over Q of type (73, 4, 1) whose reduction
mod 2 is the form

f = q + ωq3 + ω2q5 + q7 + ωq9 + ωq11 + ωq13 + q15 + q17 + q19 + ωq21 + ω2q23 + ω2q25

+ q27 + q29 + ω2q33 + ω2q35 + q37 + ω2q39 + q43 + q45 + q47 + ωq51 + q53 + q55

+ ωq57 + ω2q61 + ωq63 + q65 + q67 + q69 + ωq71 + · · · .

Observe that the Hecke eigenvalues are the a` up to Gal(F4/F2)-conjugacy, at least in the range we have considered.
Of course, one has to prove that this f is divisible by A to justify the conjecture, but this is hopeless to detect from
q-expansions alone.

Let us remark that in Mestre’s computations [19, §4.2], he studies the polynomial

P (x) = x5 − 10x3 + 2x2 + 19x− 6

and claims that the associated Galois representation ρ has Serre invariants N(ρ) = 887 and k(ρ) = 2; in fact, the
local representation at 2 is not finite at 2, so we must have k(ρ) = 3 (or using Serre’s original definition as in [23],
k(ρ) = 4). Moreover, we observe that Mestre incorrectly computes the dimension of M(2, 887)F2 (he gives 73 while
the true value is 75) and incorrectly factors P (x)(mod 887).

Let us conclude this example by giving a table of polynomials having Galois group A5 and the corresponding
values of N(ρ), k(ρ).

N(ρ) k(ρ)
x5 − 10x3 − 4x2 + 13x− 12 193 3
x5 − 6x3 − 12x2 − 10x− 4 172 3
x5 − 2x3 − 2x2 + 3x+ 2 292 3
x5 + x3 − 5x2 − 4x− 7 353 2
x5 + 2x3 − 4x2 + 6x− 4 67 3
x5 + 2x3 − 2x2 − x+ 2 52 · 11 3
x5 + 3x3 + 6x2 + 2x+ 1 653 1
x5 + 6x3 − 12x2 + 2x− 4 5 · 149 3
x5 + 6x3 − 7x− 8 292 3

We leave it to the interested reader to compute the a` in each case and find a normalized cuspidal eigenform of
the prescribed weight and level with the same Hecke eigenvalues.
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[19] J-F. Mestre, La méthode des graphes. Exemples et applications, Taniguchi Symp., Kyoto (1986), 217–242.
[20] A.P. Ogg, Elliptic curves and wild ramification, Amer. J. of Math. 89 No. 1 (1967), 1–21.

[21] K. Ribet and W. Stein, Lectures on Serre’s conjectures, Arithmetic algebraic geometry, IAS/Park City Math. Ser. 9 (2001).

[22] T. Saito, Conductor, discriminant, and the Noether formula of arithmetic surfaces, Duke Math. J. 57 No. 1 (1988) 151–173.

[23] J-P. Serre, Sur les représentations modulaires de degré 2 de Gal(Q/Q), Duke Math. J. 54 No. 1 (1987), 179–230.
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