SERRE’S CONSTRUCTION

3/15/05, Hui Xue

In this note we will describe Serre’s tensor construction with the aim of applying it to abelian varieties
with CM.

1. THE CONSTRUCTION

In this note R always denotes a commutative algebra (with unit), and M denotes a finite projective
R-module. We let A denote an R-module scheme over S. Also, if X — S and T — S are S-schemes, Xp
denotes the T-scheme X xgT.

Proposition 1.1. The functor
T - M ®g A(T) = Homg(M"V, A(T))

on S-schemes is represented by an R-module scheme over S, denoted by M ®r A. Here MY is the dual
Hompg(M,R) of M.

Proof. First if M = R" is a free R-module, then it is clear that M ®r A = A™. For general M, as MV is
finite projective, we choose a finite presentation of MV:

R™ - R" > MY — 0.

The functor Homg(MV, A) is the kernel of the induced morphism from Hompg(R", A) = A™ to
Hompg(R™,A) = A™, so it is representable. It is obvious that M ® g A carries a natural R-module structure
as a functor. d

Lemma 1.2. For T — S, we have a natural isomorphism (M g A)r = M ®gr Ar as R-module schemes
over T.

Proof. For any T-scheme X one has
(M®grA)7r(X) =M Q®rHomg(X,A) = M ®r (Ar(X)),
which proves the claim. |

It is obvious that for two finite projective R-modules M and N we have a natural isomorphism of
R-module schemes

(1.1) (M®N)®r A= (MogA) x (N ®g A).

Proposition 1.3. The following properties of A — S are preserved by the tensor construction: locally
finite type, quasi-compactness, locally finite presentation, separatedness, properness, smoothness, flatness,

and geometric connectedness of fibers.
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Proof. Preservation of the properties of being locally finite type, quasi-compact, or locally of finite presen-
tation are clear by construction, so we only show the preservation of the last five properties.
Suppose A is separated over S. For any valuation ring V over S, the map

Homg (Spec V, A) — Homg(Spec Qv, A)

is injective, where Qv is the quotient ring of V. The map is still injective when tensoring with the flat
R-module M, so M ®g A is proper over S. The case of properness goes similarly.

For flatness we use the following argument of Serre. As M ®g A is a direct factor of the S-flat scheme
A™, it suffices to check that if X and Y are S-schemes with Y(S) nonempty and X xgY is S-flat, then
X is S-flat. We may assume that S = Spec D is local and that both X = Spec B and Y = SpecC are
affine. Thus, we get two ring extensions D — B and D — C with B ®p C flat over D. Since D — C has
a section we have a splitting C = D @ I as R-modules. Thus, B is a direct D-module summand of the flat
D-module B®p C.

Let A be smooth over S, so M ® g A — S is also locally of finite presentation. Thus, we only need
to check the following functorial criterion: if Ty C T is a closed subscheme of an affine scheme T over S,
defined by an ideal I on T with I? = 0, then

(1.2) (M ®r A)(T) = (M @r A)(To)

is surjective. But the map A(T) — A(Tp) is surjective, so (1.2) is surjective as well (as it is obtained via
the right exact functor M®).
The geometric connectedness property for fibers is obvious, since M ®pg A is a direct factor A™. a

We conclude that if A/S is an abelian scheme, then M ®pg A is also an abelian scheme. Furthermore we
have the following result on the /-adic Tate modules of A.

Theorem 1. If Ty(A) is the Tate module of A then M @ Te(A) = Ty(M Qg A).
Proof. Tt suffices to establish the fact for finite levels, namely one needs to show the natural isomorphism
M @ (A["]) = (M @r A)[€"]

as group schemes.
For any S-scheme T', one has an exact sequence
0 — A["[(T) = A(T) 5 AT).
Tensoring with the flat R-module M we get an exact sequence
0 M &g A[l"(T) - M ®r AT) S M o AT),
which implies that M ®g (A[f"]) = (M Qg A)[£"]. O
Lemma 1.4. Assume that Endg s(A, A) = R. The natural map
M — Hompg,s(S, M ®g A)

is an isomorphism of R-modules.



Proof. When M is a free R-module the statement is clear. In general let M & N = R"™, so one has

~

R™ Homp s(A, A™)

M®N —— Homp s(A, M ®g A) ® Hompg s(A, N ®gr A)

Thus, the lower horizontal map is also an isomorphism, so its direct summand is as well. a

2. CLASSICAL THEORY

Now we relate the abstract tensor construction with the classical construction over the complex field C.
In this section A is a complex abelian variety with CM by the maximal order R = O in F, where F' is a
CM field. Let M be a projective R-module. We will be interested in the case that M is a fractional ideal
of F, but for some preliminary proofs it is convenient not to restrict to the case of rank 1.

Suppose A = V/A is the canonical uniformization of A, so both V' and A are equipped with R-action
(which is C-linear on V).

Lemma 2.1. The R®7C-module M ®grV is a finite dimensional C-vector space, and M Qg A is naturally

a lattice in it.

Proof. The claim is obvious if M is a free R-module. In general, M is a direct summand of a free one,
namely, M @ N = R"™ for some N. Therefore the corresponding decomposition (M ®r A) ® (N ®r A)
proves the claim. O

By Lemma 2.1 we can form a new Lie group, A’ = (M ®g V)/(M ®gr A). By identifying To(G) with
ker(G(Cle]) — G(C)) for any Lie group G over C, we have by R-flatness of M that M gV = M ®@gTo(A)
is naturally isomorphic to To(M ®g A).

Proposition 2.2. The exponential map
M@rV =To(MorA) ZB M or A
has the kernel equal to M ®g A, so A' is isomorphic to M Qg A.

Proof. The claim is clear if M is free. For general M one has the following commutative diagram

exp

T()(A") = T()(R" ®R V) An

i i

exp s bex
(MeN)@rV —2 Pl @p A) @ (N g A)

As Ker(exp) = Ker(expnm) @ Ker(expn), we have M ® g A = Ker(expy). O

Corollary 2.3. The set CM(OF) of isomorphism classes of complex abelian varieties with CM by Op and
a fixed CM type ® is a principal homogeneous space under Pic(Op) via the Serre operation A — aQp, A.

Proof. Tt is known that all such complex abelian varieties are of the form (R®qg F')s/a, where a is a nonzero
integral ideal of Op. By Proposition 2.2 this is a ® 0, A with A = (R®q F)s/Or. By Lemma 1.4 we have

Homeo, c(a ® A,b ® A) = a™'b.
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In particular, a ®p, A is an abelian variety with CM by Or and CM type ®. Also, a ®, A is Op-linearly
isomorphic to b ® A over C if and only if a~'b has a generator as an Op-module, which is to say that it is
trivial in Pic(OF). O

3. FROBENIUS LIFTING

Let (A,12) be an abelian variety with CM by OF of type ® over a number field K C C, where 2 : O —
Endg (A) denotes the Op-action on A. Thus, K contains the reflex field E of the CM type ®. Let Q C C
be the algebraic closure of Q. Now we take 0 € Gal(Q/E) and choose L/E a finite Galois extension
inside Q containing K, such that all geometric morphisms between Ay and A are defined over L. By

L/K

Chebotarev one can choose a prime ‘B of O, such that o|p = (the Artin symbol) and A has

good reduction at P. We write k = OL/P and let ¢ = #Ok/p with p = Og NP, so o reduces to the
arithmetic g-Frobenius on k.

As Ap, and AJ are Op-linearly isogenous over L (since they have the same CM type and so are Op-
linearly isogenous over C), they both have good reduction at 8. We write (A,1) and (A7,17) to denote the
Néron models of (4,7) and (A7,17) over Spec O, o respectively. We write (4, 7) to be denote the reduction
of (A,2) at P.

Lemma 3.1. The reduction map
HomL((ALJ Z), (A%:'LG)) = HomOL,q}((Aa Z)a (‘AUJ ZU)) - Homk((Aai)a (A(q),z(q)))
is an isomorphism.

Proof. By Proposition 2.2, there is an Op-linear isomorphism A = a ®o, AL over L for some fractional
F-ideal a (strictly speaking, such an isomorphism is built over C, but it descends to L by our choice of L).
Therefore, the Néron model A7 (over Or, ) of A is given by the abelian scheme a ®p, A. Lemma 1.4
applied over Or, s and k gives the following commutative diagram

(3.1) Homo, . ((A,1), (A7,17)) — Homy,((4,7), (A@,7(®))
A |
id
a a
which concludes the proof. d

Corollary 3.2. The relative Frobenius map Fy: A — A over k can be lifted into Homop, ,, (A, A7)
= Homp (AL, A9) uniquely.

Proof. We only need to notice that Fyp € Homy((4,7), (A@,7(9))), which is to say Fy is Op-linear: this is
clear due to the definition of 79 and the universal functoriality of relative Frobenius morphisms. O



