
MODULI OF ELLIPTIC CURVES

JAMES PARSON

1. Introduction

The purpose of these notes is to provide a quick introduction to the moduli of elliptic curves. There
are many excellent and thorough references on the subject, ranging from the slightly archaic [Igu59] and
[Shi94] to the more difficult [KM85] and [DR73]. Brian’s forthcoming book on the Ramanujan conjecture
also covers some of this material and includes a careful comparison of the transcendental and algebraic
theories. In order to read Mazur’s paper [Maz78], it is not necessary to consider many of the subtle issues
of the subject; indeed, all we will need to understand for the time being is how to construct good arithmetic
models of Y1(N)/C, X1(N)/C, and the associated modular correspondences over Z[1/N ].

In order to have a concrete example or two to keep in mind, let us start by recalling the Tate normal
form that was introduced in Bryden’s lecture. He discussed it in the following context: let K be a field and
let E/K be an elliptic curve. Fix a point P ∈ E(K) such that P does not have order 1, 2, or 3. Bryden
explained that there is a unique isomorphism of the pair (E/K,P ) to a pair (E(b, c)/K, (0, 0)), where b and
c are in K and E(b, c) is given by the Weierstrass equation

E(b, c) : y2 + (1 − c)xy − by = x3 − bx2.

For future reference, let me note that the discriminant of this Weierstrass cubic is

∆(b, c) = (1 − c)4b3 − (1 − c)3b3 − 8(1 − c)2b4 + 36(1 − c)b4 − 27b4 + 16b5.

Conversely, for any (b, c) ∈ K2 such that ∆(b, c) ∈ K×, the pair (E(b, c), (0, 0)) is an elliptic curve with a
point not of order 1, 2, or 3. In other words, the set of isomorphism classes of such pairs (E,P ) has been
put in bijection with {(b, c) : ∆(b, c) ∈ K×}, the set of K-points of A2 − {∆ = 0}, by means of the Tate-
normal-curve construction. Note, moreover, that these bijections for variable K are functorial in injections
of fields K → K ′. An informal (for now) way to describe these properties of E(b, c) is to say that the pair
(E(b, c), (0, 0)) over A2 − {∆ = 0} is the universal pair of an elliptic curve and a point not of order 1, 2, or
3.

In fact, the results of the previous paragraph can be improved, replacing the field K (or rather Spec(K))
with an arbitrary scheme S throughout. To be precise, consider pairs (E/S, P ), where E/S is an elliptic
curve (i.e. an abelian scheme of relative dimension 1) and P ∈ E(S) a section such that the image of
P in each geometric fiber of E/S does not have order 1, 2, or 3. Then there are b, c ∈ Γ(S,OS) and
a unique isomorphism of (E/S, P ) with (E(b, c)/S, (0, 0)); conversely, for any b, c ∈ Γ(S,OS) such that
∆(b, c) ∈ Γ(S,OS)×, the pair (E(b, c)/S, (0, 0)) is an elliptic curve with a section not of order 1, 2, or 3 in
any geometric fiber. The justification for this claim is in §9.

As in Bryden’s discussion, the Tate normal form can be used to study the particular case, say, when the
point P has exact order 5. The addition law provides the following universal formulas:

[1]P = (0, 0) [−1]P = (0, b)

[2]P = (b, bc) [−2]P = (b, 0)

[3]P = (c, b− c) [−3]P = (c, c2)

Consequently, the point P has exact order 5 (or, equivalently, [−2]P = [3]P ) if and only if b = c. In other
words, for any pair (E/K,P ) consisting of an elliptic curve and a point P of exact order 5 in E(K), there
is a unique isomorphism to a pair (E(b, b), (0, 0)) for some b ∈ K such that ∆(b, b) = b5(b2 − 11b− 1) ∈ K×;
conversely, for any such b, the pair (E(b, b), (0, 0)) is an elliptic curve with a point of exact order 5. As with
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E(b, c) above, these results can be strengthened to hold when Spec(K) is replaced by a scheme S. Once
again, the details can be found in §9.

For comparison, it may be helpful to keep the exact-order-4 case in mind as well: the point P has exact
order 4 if and only if c = 0, and so the universal curve is E(b, 0) over A1 − {∆(b, 0) = 0}. (Note that
∆(b, 0) = b4(1 + 16b).)

Before continuing, let us pluck a bit of fruit:

Proposition 1.1. Let R be a discrete valuation ring with quotient field K and residue field k of characteristic

6= 5. Let E/K be an elliptic curve with potentially good reduction and P ∈ E(K) be a point of exact order

5. Then E/K has good reduction.

Proof. By the above discussion applied to (E/K,P ), there is a unique b ∈ K with ∆(b, b) ∈ K× such that
(E/K,P ) = (E(b, b), (0, 0)). In order to see that E/K has good reduction, it would suffice to see that b ∈ R
and ∆(b, b) ∈ R×, since then (E(b, b), (0, 0)) would define an elliptic curve over Spec(R) extending E/K.

To say that E/K has potentially good reduction means that there is a finite separable extension K ′/K
such that E/K ′ has good reduction; in other words, if R′ is the integral closure of R in K ′, then E/K ′

extends to an elliptic curve E/R′. Since K ′/K is separable, the ring R′ is a semi-local Dedekind domain,
and so the point P ∈ E(K) ⊂ E(K ′) extends to a section P ∈ E(R′), as E/R′ is proper. Letting k′

be any quotient of R′ that is a field, we see that the image of P in E(k′) must have exact order 5, since
ker(E(R′) → E(k′)) contains no 5-torsion, as the characteristic of k′ is not 5.

Because the pair (E/K ′, P ) extends to a similar structure overR′, it must be that b ∈ R′ and ∆(b, b) ∈ R′×.
It follows from R′ ∩K = R that b ∈ R and ∆(b, b) ∈ R×, as desired. �

One can have a bit of fun with the formulas, using them to find interesting curves with small conductor.
For instance, in the N = 5 case, one can look for the choices of integer b that make ∆(b, b) = b5(b2−11b−1)
as simple as possible, setting, say, b5 = 1 or b2−11b−1 = −1. These choices give E(1, 1) : y2−y = x3−x with
discriminant ∆(1, 1) = −11 and E(11, 11) : y2−10xy−11y = x3−11x2 with discriminant ∆(11, 11) = −115,
which are known to be isomorphic to the curves J1(11) and J0(11). (This fact is proved below in §8.) In the
case N = 4, one chooses b = 1 to make ∆(b, 0) = b4(1 + 16b) simple and finds E(1, 0) : y2 +xy− y = x3 −x2

with ∆(1, 0) = 17, which is known to be isogeneous to J0(17) (but this curve is not J0(17), since the
component group of the modulo-17 fiber of the Néron model of J0(17) is known to have four components,
whereas the same fiber of the Néron model of E(1, 0) is connected). Choosing b = −1 gives the nice curve
E(−1, 0) : y2 + xy + y = x3 + x2 with ∆(−1, 0) = −15, which is isogeneous to J0(15).

2. Digression on representable functors

The essential fact about elliptic curves with a 5-torsion point sketched in the above paragraphs is that for
any scheme S, there is a bijection between, on the one hand, isomorphism classes of pairs (E,P ) of an elliptic
curve E/S and a section P of exact order 5 in all geometric fibers and, on the other hand, the S-points of
the affine scheme Y = Spec(Z[T, 1/∆(T, T )]). These bijections are moreover functorial in maps S → S′ of
schemes. (The reader may be tempted to restrict to Z[1/5]-schemes, but this is unnecessary for the moment.
An application of working over Z can be found in §8.) All of this can be stated succinctly by saying that
there is a natural isomorphism between the contravariant functor F : (Schemes) → (Sets) defined by

F (S) = {(E,P ) : E/S is an elliptic curve, P ∈ E(S) has exact order 5 in all geometric fibers}/ ≈
and the contravariant functor of S-points of Y .

In general, if F is a contravaraint functor from a category A to a category B, one says that F is repre-

sentable if there is an object Y of A and a natural isomorphism i : Hom(·, Y ) ⇒ F ; one then says that (Y, i)
represents F—it is important to keep track of the natural isomorphism i, of course, and not just Y . Yoneda’s
lemma, which is a bit of psychologically helpful category-theory formalism, tells us that if (Y, i) and (Y ′, i′)
both represent F , there is a unique isomorphism f : Y → Y ′ such that i′ ◦ f = i. (Explicitly, the map f
corresponds to i′−1(i(idY )).) This fact is what we use to pin down the arithmetic models of modular curves,
at least of Y1(N) and X1(N) for N ≥ 4: they will be described as objects representing certain functors,
which determines them up to unique isomorphism.
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In the concrete case above of elliptic curves and 5-torsion points, the representability of the functor F is
established by means of the universal object (E(T, T ), (0, 0)): for any scheme S and morphism S → Y , one
can pull back the object (E(T, T ), (0, 0)) to give a similar structure over S; one then proves that the induced
map Y (S) → F (S) is a bijection. This picture is a general aspect of representable functors: returning to
the general situation of F : A → B, one obtains for any object Y and y ∈ F (Y ) a natural transformation
i : Y ⇒ F given by pulling back y along any S-valued point S → Y , just as in the concrete case. If
this natural transformation is a natural isomorphism, then (Y, i) represents F , and the pair (Y, y) can be
understood as a universal structure for the functor F . Conversely, if (Y, i) represents F , then there is a
y ∈ F (Y ) giving rise to i as above (i.e. a y such that (Y, y) is a universal structure); one may take y to be
i(idY ) ∈ F (Y ), because f = idY ◦f for any f : S → Y .

The conclusion of the previous paragraph is that in place of the pair (Y, i), one could just as well take the
equivalent data (Y, y): to have a universal structure (Y, y) for the functor F is the same as to represent F .
This universal-structure picture is generally the way that representability will be used in what follows.

3. The curves Y1(N) in general

With the above terminology in mind, we turn to the curves Y1(N) in general (or at least for N ≥ 4).
The functor that will be used to describe the arithmetic model of Y1(N) is FN : (Schemes/Z[1/N]) → (Sets)
defined by

FN (S) = {(E,P ) : E/S is an elliptic curve, P ∈ E(S) has exact order N in all geometric fibers}/ ≈ .

In §9, the following is proved

Proposition 3.1. For N ≥ 4, the functor FN is represented by a scheme Y1(N)/ Spec(Z[1/N ]) and its

universal elliptic curve with section of exact order N .

The functor FN could certainly be defined on arbitrary schemes and as such would even be representable,
but the object that represents the extended functor is not all of what one would want to call Y1(N)/ Spec(Z),
which is why the domain is restricted to Z[1/N ]-schemes. (This behavior is discussed in more detail in §5.) It
is quite important to identify Y1(N)(C) (with its analytic topology) with the Riemann surface Γ1(N)\H; the
construction of such an identification will not be discussed here. The argument starts with the Weierstrass
elliptic curve

Y 2 = X3 + g4(τ)X + g6(τ)

over H, which is relatively algebraic in that it is defined by polynomial equations whose coefficients are
holomorphic functions on H—the coefficients are even modular forms. From this beginning, one must be
somewhat careful to prove the claim, but nothing too serious is involved.

Before discussing the properties of Y1(N), let us see briefly why F1 is not representable. The set F1(S)
is simply the isomorphism classes of elliptic curves over S. The twisting construction shows that the map
F1(Spec(Q)) → F1(Spec(C)) is not injective; if, however, F1 were a representable functor, it would have
to be injective. The source of the twisting, which obstructs representability, is the existence of non-trivial
automorphisms of elliptic curves ([−1], for example); more generally, functors that classify isomorphism
classes of objects tend not to be representable when those objects have non-trivial automorphisms, since
such automorphisms often allow one to construct twists. The reader should consider how the existence of
appropriate twists shows similarly that F2 and F3 are not representable.

Here is the main fact one can prove about Y1(N) without introducing X1(N):

Proposition 3.2. Y1(N)/Z[1/N ] is smooth and of pure relative dimension 1.

Proof. The smoothness, at least, seems impossible to check from the construction using Tate normal form
discussed below. Both properties can be verified easily by studying the functor FN , and the work is left
to the reader: the smoothness follows from the functorial criterion for smoothness, which is verified easily
in this case; similarly, one can compute that the tangent spaces at points in the geometric fibers are 1-
dimensional. �
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The proposition makes it reasonable to call Y1(N) a curve over Z[1/N ] and even an arithmetic model of
Y1(N)/C. The next natural question to ask about Y1(N)/Z[1/N ] would be whether the geometric fibers are
connected. Granting the claim above that Y1(N)(C) is the Riemann surface Γ1(N)\H, it follows that all
characteristic-0 fibers have this property. In order to see connectedness for all geometric fibers over Z[1/N ],
though, it seems necessary to construct a good compactification X1(N)/Z[1/N ], as described in the next
section. With this compactification available, the connectedness follows from the Stein factorization and the
connectedness of characteristic-0 geometric fibers.

Incidentally, by the same argument as in the N = 5 case, one deduces the following:

Proposition 3.3. Let R be a discrete valuation ring with residue characteristic not dividing N ≥ 4. Let K
be its quotient field. Let E/K be an elliptic curve, P ∈ E(K) be a point of exact order N , and suppose that

E/K has potentially good reduction. Then E/K has good reduction.

The proposition can also be proved using the criterion of Néron-Ogg-Shafarevich without introducing
moduli spaces.

4. The compactification X1(5)

I know two general methods for constructing arithmetic models of the compactifications of modular
curves. The first method is Igusa’s (cf. [Igu59] and [KM85]): it is based on the fact that the j-invariant
construction gives a map Y1(N) → A1

Z[1/N ]. The target is compactified by A1 →֒ P1, and X1(N) is defined

as the normalization of P1
Z[1/N ] in the fraction field of Y1(N)/Q. One studies the behavior of X1(N) over the

section ∞ of P1 by using degenerating families of elliptic curves. This construction is somewhat unsatisfying,
since although Y1(N) is constructed to represent a moduli problem, the scheme X1(N) does not appear as
any sort of parameter space.

The second method is that of [DR73], which produces a moduli functor on Z[1/N ]-schemes (like FN in §3)
represented by a proper, smooth curve X1(N)/Z[1/N ]. In order to get a sense for what this moduli functor
might be, let us return to the example of Y1(5). This curve has been realized as Spec Z[1/5, T, 1/∆(T, T )],
which is an open subscheme of A1/Z[1/5]; the compactification X1(5) ought to be P1/Z[1/5]. Keep in mind
that ∆(T, T ) = T 5(T 2 − 11T − 1), and so one can think of the compactification as filling in the sections of
P1 at 0, ∞, and over Spec(Z[1/5, T ]/(T 2 − 11T − 1)).

Let us see how the universal structure (E(T, T ), (0, 0)) degenerates over the complement of Y1(5). First
note that the Weierstrass cubic E(T, T ) has fibers that are either smooth or nodal over all of Spec(Z[1/5, T ]).
(Concretely, for any field K of characteristic 6= 5 and b ∈ K, the curve E(b, b) is either a nodal cubic
or smooth.) Moreover, over Spec(Z[1/5, T, 1/T ]), the section (0, 0) of E(T, T ) lies in the smooth locus.
(Concretely, with K, b as above, if b ∈ K×, then (0, 0) is a smooth point of E(b, b).) Furthermore, this
section has exact order 5 in each geometric fiber, using the standard extension of the group law to the
smooth locus (cf. [DR73]).

These last observations suggest a generalized moduli problem G5 : (Schemes/Z[1/5]) → (Sets) with
G5(S) = isomorphism classes of (E/S,O, P ), where E/S is proper and flat with fibers that are either
smooth genus-1 curves or nodal cubics, where O,P ∈ Esm(S) are sections in the smooth locus of E/S, and
where, making Esm/S a group scheme using O as the identity section, the section P has exact order 5 in all
geometric fibers. One can check (using the same technique as in §9) that G5 is represented by Spec(Z[1/5, T ])
with universal family (E(T, T ), O, (0, 0)). (Here O is the section at infinity of the Weierstrass cubic E(T, T ).)
This scheme is a partial compactification of Y1(5), but it is still missing the two cusps 0 and ∞.

As noted above, the family E(T, T ) extends to a family of elliptic curves and nodal cubics over all of
SpecZ[1/5, T ], but at T = 0 the section (0, 0) degenerates into the singular locus. (Concretely, for any field
K, the curve

E(0, 0) : y2 + xy = x3
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is a nodal cubic with singularity at (0, 0).) As for ∞, one can extend the family E(T, T ) over A1 to a family
over P1 as follows: let T ′ = 1/T , so that, working over Spec(Z[1/5, T, 1/T ]), one has

E(T, T ) : y2 +

(

1 − 1

T ′

)

xy − 1

T ′
y = x3 − 1

T ′
x2.

Making a standard (u, r, s, t) change of variables with u = T ′ and r = s = t = 0 (which sends the section
(0, 0) to the section (0, 0)) gives a new Weierstrass equation

y2 + (T ′ − 1)xy − T ′2y = x3 − T ′x2,

which determines a curve isomorphic to E(T, T ) (over Spec(Z[1/5, T, 1/T ]). This curve evidently extends
over Z[1/5, T ′], and by gluing this curve and E(T, T ), we get a curve C over P1/Z[1/5] (with section
(0, 0)). Setting T ′ = 0 above, we see that the curve degenerates into a nodal cubic at T ′ = 0 (i.e. T =
∞), and that the section (0, 0) degenerates to the singularity, just as at T = 0. (Note, incidentally, that
(C/P1

Z[1/5], O, (0, 0)) is an abstract Weierstrass curve that does not have a global Weierstrass equation.)

Before continuing the analysis of the degeneration at 0 and ∞, let us give an application of what has
come so far:

Proposition 4.1. Let R be a discrete valuation ring of residue characteristic not dividing 5. Let K be the

quotient field of R. Let E/K be an elliptic curve and P ∈ E(K) be a point of exact order 5. Then E/K has

stable—i.e. good or multiplicative— reduction.

Proof. The pair (E/K,P ) gives an element of

Y1(5)(K) ⊂ X1(5)(K) = X1(5)(R).

Pulling back the family (C, (0, 0)) over X1(5) to Spec(R) gives a model of E/K with special fiber either an
elliptic curve or a nodal cubic. �

Returning to the analysis of the degenerations at 0 and ∞, note that the fibers of (C, (0, 0)) over the
sections 0 and ∞ are isomorphic. (Look at the equations.) This means that (C, (0, 0)) cannot be the
universal family for any reasonable moduli problem. To get a hint for how this structure should be refined,
consider Y1(5)/Q. One can ask what the minimal regular model of E(T, T ) is at T = 0 over X1(5)/Q. Tate’s
algorithm tells us that since E(T, T ) has semi-stable reduction at T = 0 and ∆(T, T ) has a zero of order 5
at T = 0, the geometric fiber of this model at T = 0 is a pentagon whose sides are P1’s. Such a structure
is called a 5-gon in [DR73]; the analogous term for a nodal cubic is a 1-gon. In general, a d-gon over an
algebraically closed field is anything isomorphic to a loop of P1’s obtained by gluing ∞ in one copy of P1

to 0 in the next copy.
Continuing the analysis of the degeneration of E(T, T ) at T = 0, consider the extension of the sections

O and P = (0, 0) to the minimal regular model. They necessarily factor through the smooth locus by
regularity. (This fact is explained in Brian’s notes.) In [DR73] it is proved that there is a unique extension
of the group structure on E(T, T )/Y1(5) (still over Q) to the smooth locus of the minimal regular model at
T = 0; moreover, one sees easily that P must have exact order 5 in the fiber at 0. (The situation is parallel
at ∞.) In sum, this analysis points to the moduli problem considered in [DR73] to define X1(5): elliptic
curves are allowed to degenerate either to 1-gons (as over T 2 − 11T − 1), or to 5-gons (as over T = 0,∞),
and the section P extends to a section (of exact order 5) of the smooth locus of the degenerating family. A
precise statement will be given in the next section.

The most important features of X1(5) to keep in mind are:

1. X1(5)/Z[1/5] is proper and smooth with connected geometric fibers.
2. The locus in X1(5) over which the fibers of the universal family are not smooth is a relative Cartier divisor
and is (finite) étale over Z[1/5]. This divisor is called the cuspidal locus.
3. The complement of the cuspidal locus is Y1(5).
4. The cuspidal locus is a disjoint union of two packets of cusps. In one packet, all the cusps (i.e. sections
of the cuspidal locus) are defined over Z[1/5]; in the other packet, the sections are defined over the degree-2

(where 2 = (5− 1)/2) étale cover Spec(Z[1/5, T ]/(T 2 − 11T − 1) = Spec(Z[1/5, (1 +
√

5)/2]. Note here that
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Q((1 +
√

5)/2) is the maximal totally real subfield of Q(ζ5), where ζ5 is a primitive fifth root of unity. The
first packet parameterizes 5-gons and the second parameterizes 1-gons.

The first three properties are common to all X1(N) (for N ≥ 5), and the division of cusps into two packets
holds for X1(N) with N ≥ 5 prime. (The division into packets is slightly more complicated for composite N :
there is one packet for each positive divisor d of N , and it contains φ(d)φ(N/d)/2 cusps, i.e. each geometric
fiber over Spec(Z[1/N ]) contains φ(d)φ(N/d)/2 points.)

Finally, note that the case of N = 4 differs from the N = 5 case. The reader should analyze the
degenerations of the the universal curve over Y1(4)/Q to see that the analogue of Proposition 4.1 does not
hold. In fact, the moduli problem of [DR73] for compactifying Y1(4) is not representable; automorphisms
(or rather the twists derived from them) provide an obstruction as in the case of Y1(1) discussed in §3.

5. The compactifications X1(N) in general

For a thorough discussion of the moduli problem used to describe X1(N)/Z[1/N ], one should consult
[DR73]. One considers objects E/S of the following sort, called generalized elliptic curves:

1. E/S is proper, finitely presented, and flat with connected (but perhaps not smooth and not irreducible)
geometric fibers.
2. The geometric fibers of E/S are either smooth genus-1 curves or d-gons.
3. The scheme Esm/S is given the structure of a group scheme.
4. There is an action Esm × E → E extending the group multiplication on Esm.
5. This multiplication action induces cyclic permutations (rotations) on the irreducible components of d-gon
geometric fibers.

For the level structure, one considers pairs (E/S, P ) of a generalized elliptic curve E/S and a section
P ∈ Esm(S) such that in each geometric fiber, P has exact order N and the multiples of P meet each
connected component. These conditions on P imply that the d-gon fibers of E/S must have d|N . Another
useful way to describe a section P satisfying the conditions is to give a closed immersion (and group-scheme
homomorphism) Z/NZ → Esm/S so that the underlying closed subscheme is an S-ample relative Cartier
divisor on E.

The functor HN : (Schemes/Z[1/N]) → (Sets) of isomorphism classes of such pairs (E,P ) is represented
by a proper, smooth curve X1(N)/Z[1/N ]. The smoothness is checked using the functorial criterion and the
deformation theory of generalized elliptic curves; related considerations allow one to compute the tangent
spaces of the geometric fibers. Properness (checked using the valuative criterion) is a consequence of the
stable reduction theorem for elliptic curves and a bit of work with minimal regular models of elliptic curves
over discretely valued fields.

The locus of non-smooth fibers for the universal family is a relative Cartier divisor in X1(N) over Z[1/N ]
and is called the cuspidal locus. It is finite étale over Z[1/N ] and is denoted Cusps1(N). The complement
of the cuspidal locus is the open subscheme Y1(N). Using the transcendental uniformization of Y1(N)(C)
(and the Stein factorization of X1(N)/Z[1/N ]), one sees that the geometric fibers of X1(N)/Z[1/N ] are
connected.

For N prime, Cusps1(N)/Z[1/N ] behaves as in the N = 5 case above. There are two packets of cusps,
corresponding to the 1-gon and N -gon degenerations. Since Cusps1(N)/Z[1/N ] is étale, to describe the
structure of this scheme, it suffices to describe the Galois set Cusps1(N)(Q). This set has N − 1 elements,
split into the two (Galois-stable) packets of size (N −1)/2. The Galois action on the N -gon packet is trivial,
i.e. the N -gon cusps are defined over Q. The group Gal(Q/Q) acts transitively on the points of the 1-gon

packet; this action factors through Gal(Q(ζN )
+
/Q), where Q(ζN )

+
is the maximal totally real subfield of

the N th cyclotomic field. The reader should check this description by computing the isomorphism classes
of d-gons with N -level structure (over Q) that occur in the moduli problem above, along with the action
of Gal(Q/Q) on these isomorphism classes. (It may help to look at the first few sections of [DR73].) For
N > 5 that is not prime, the cusps fall into packets parameterizing d-gons for each positive d|N .
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The reader should also consider the moduli problem above for X1(4) and see how an extra automorphism
(and hence twists) provides an obstruction for representability. (The problem occurs with 2-gons and explains
the type of the degeneration of E(T, 0) over Y1(4) at 1/T = 0.)

Exactly as in the N = 5 case, one deduces the following:

Proposition 5.1. Let N ≥ 5 be an integer and let R be a discrete valuation ring with residue characteristic

not dividing N . Let K be the quotient field of R and E/K be an elliptic curve. Suppose there is a point

P ∈ E(K) of exact order N . Then E/K has stable—i.e. good or multiplicative— reduction.

As noted above, the proposition fails for N = 4: although an E/K with a rational 4-torsion point and
potentially good reduction must have good reduction, there are such curves with potentially multiplicative
but unstable reduction (and the degeneration of E(T, 0) at 1/T = 0 provides an example).

5.1. What happens to X1(N) at primes dividing N . In the above discussion, the behavior of X1(N)
over Z[1/N ] has been considered. I do not want to address in detail what happens over primes dividing
N , but it may be valuable for the reader to have a sense of the new phenomena, as they are important in
[Maz77] and many other places. Consider a pair (E,P ) consisting of an elliptic curve over a number field K
with a point P of exact order N . For a finite place v of K prime to N , if E has good reduction modulo v,
then P extends to a section of exact order N of E/Ov. The situation for other v is different in that there
are two ways (E,P ) can degenerate: either E can have bad reduction at v or, if E has good reduction and
v|N then P can have bad reduction, in that the reduction of P in E(kv) does not have exact order N . This
second sort of degeneration certainly occurs if E has supersingular reduction at v.

The model of Y1(N) over Z obtained from Tate normal form as in §§1-2 excludes both of these sorts of
degenerations in the fibers over primes p dividing N . Consequently, the map of this model to A1 given by
the j-invariant is not finite, since the fibers over the supersingular points are empty. (In the concrete case
of N = 5, the reader will observe that if K is a field of characteristic 5 then none of the curves E(b, b)
with ∆(b, b) ∈ K× is supersingular.) It is a delicate matter to find a moduli problem extending the elliptic-
curve-with-section-of-exact-order-N problem that defines, say, a curve Y1(N)/Z finite over the j-line. The
reader can find the appropriate problem in [KM85]. One should note that in characteristic dividing N ,
the Tate-normal-form model of Y1(N) is missing entire irreducible components of the (correct) Katz-Mazur
model of Y1(N). These missing components may also be non-reduced. For instance, if N is prime, there
are two components: a dense open in one is provided by the Tate-normal-form model, and the other is
non-reduced with multiplicity (N − 1)/2; these two components cross at the supersingular points. In terms
of degenerations, the points of the non-reduced component come by reduction of pairs (E,P ) where E has
good reduction and P reduces to the identity. Keeping the assumption that N is prime, one find that (the
Katz-Mazur model of) Y0(N) has two reduced components in its modulo-N fiber. These components are
rational curves and cross each other at supersingular points. In both cases, the schemes are regular away from
the supersingular crossing points, and the singularities at these crossing points can be analyzed explicitly
(with considerable effort, if one wants to find the minimal regular model).

Non-smooth fibers are a general phenomenon among modular curves over Z. Without worrying about the
precise structures mentioned in the previous paragraph, one can get a sense for this as follows: for simplicity,
let N = p ≥ 5 be a prime. Suppose that there is a proper flat model X1(p)/Zp that is modular in the sense
that the j-invariant map extends to j : X1(p) → P1 over Zp. Then any point in the special (geometric)
fiber of X1(p) with supersingular j-invariant must be a singular point of this fiber. Indeed, if not, then by
Hensel’s lemma such a point would lift to a section of X1(p) over OK , where K/Qp is unramified, i.e. there
would be an elliptic curve E/K with supersingular reduction and a K-point of exact order p. In particular,
the action of Gal(K/K) on the p-torsion would be reducible, but this is impossible since it is known that in
this situation (e < p− 1), the inertia group acts irreducibly on the p-torsion. (This fact is proved in [Ser72]
and also follows from the more general [Ray74].) Note, incidentally, that X1(5)/Z[1/5] does extend to a
smooth scheme over Z (viz P1/Z), but that this extension cannot be modular in the sense indicated above.
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6. Modular correspondences

In the Mazur-style theory of modular curves, there are three principal sorts of modular correspondences:
diamond operators, Atkin-Lehner involutions, and Hecke correspondences. (The Atkin-Lehner involutions
are also often called Fricke involutions.) Having the modular curves Y1(N)/Z[1/N ] and X1(N)/Z[1/N ], one
has two choices of how to handle them. One can define all of the correspondences directly over Z[1/N ], which
requires a bit of care, or one can define things, say, over Q and extend to Z[1/N ] as needed using, for instance,
the Néron mapping property. The first approach is more satisfying, but the second has the advantage that one
may generally work with Y1(N)/Q in place of X1(N). For instance, to define an automorphism of X1(N)/Q,
it suffices to give an automorphism of its function field (or of Y1(N)/Q, which ensures the automorphism
preserves the cuspidal divisor). I will follow this easy birational approach, inviting the reader to look up or
think out how to handle things working directly over Z[1/N ]. (One can use a similar birational approach,
but the schemes involved are 2-dimensional instead of 1-dimensional, necessitating more care.)

6.1. Diamond operators. The diamond operators are the easiest to define: let N ≥ 4 be an integer. For
any a ∈ (Z/NZ)×, one has an automorphism 〈a〉 of Y1(N)/Z[1/N ]; on S-points for any S/Z[1/N ], the
automorphism 〈a〉 acts by sending (E,P ) to (E, [a]P ). For N ≥ 5, the moduli problem of [DR73] allows
one to extend this modular definition to give an automorphism of X1(N). Note that 〈−1〉 acts trivially
since (E,P ) is isomorphic to (E, [−1]P ) by multiplication by −1. (The automorphism [−1] extends to the
generalized elliptic curves E/S used in the moduli problem defining X1(N).) One must remember, though,
that in the theory of modular forms, the operator 〈−1〉 does not act trivially. Since a generic elliptic curve
(what do I mean by that?) has no automorphisms other than [1] and [−1], the diamond operators act
faithfully through the quotient (Z/NZ)×/± 1 on X1(N)/Z[1/N ].

Note finally that since the diamond operators have a modular definition on all of X1(N), they preserve
the grouping of cusps into packets of d-gons described above. If N is prime, by looking at the modular
description of the cusps, one sees furthermore that cusps in each packet are permuted transitively by the
diamond operators.

As an example, one can check using the multiplication formulas in §1 that in the N = 5 case (when there
is only one non-trivial diamond operator) that 〈−2〉 acts by T 7→ −1/T on Y1(5) with the coordinate T used
above. Note that, in accordance with the general picture, this action switches the two cusps 0 and ∞, which
make up the 5-gon packet, and it switches the two 1-gon cusps, whose locus is T 2 − 11T − 1 = 0.

6.2. Atkin-Lehner involutions. Let T be a Z[1/N ]-scheme and ζ ∈ Γ(T,OT ) a primitive N th root of
unity. Associated to ζ, there is an involution wζ of Y1(N)/T that is defined as follows. On S-points for S a
T -scheme, this involution acts by sending (E,P ) to (E/ 〈P 〉 , P ′ mod 〈P 〉), where P ′ is an N -torsion section
of E such that (P, P ′)N = ζ and where (·, ·)N denotes the Weil pairing on E[N ]. One can make the choice of
P ′ over an étale cover of S, and the image of P ′ in E/ 〈P 〉 is defined over S and independent of the choice.
Let us note that over C, with a suitable choice of ζ ∈ C depending on one’s favored normalizations, the
action of wζ is induced by τ 7→ −1/Nτ on H under the uniformization of Y1(N)(C).

This modular construction cannot be extended to X1(N). Taking T = Spec(Q(ζN )), though, one gets
an automorphism of the function field of X1(N)/T that fixes Y1(N)/T . Consequently, one finds an auto-
morphism of X1(N)/Q(ζN ) that stabilizes (but may not—and does not—fix pointwise) the cuspidal divisor.
One can also make a slightly fancier birational argument in the universal case T = Z[1/N, ζN ] to see that
wζ extends to an automorphism of X1(N)/Z[1/N, ζN ].

From the modular definition, one finds the following functional equations

wζ ◦ 〈a〉 =
〈

a−1
〉

wζ

wζa ◦ wζ = 〈a〉 .

As a consequence of these relations one sees that the group of automorphisms of X1(N)/T generated by
the diamond operators and Atkin-Lehner involutions is a split extension of Z/2Z by the group of diamond
operators, where the action of Z/2Z on the normal subgroup is by x 7→ x−1.
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The action of an Atkin-Lehner involution wζ on the cusps is more complicated than the action of the
diamond operators since there is no modular definition outside of Y1(N). It can be computed using degener-
ating families near each cusp; the Tate curve (which is not discussed here) provides particularly nice choices
of families for such computations (but any family degenerating to a cusp will do). In particular, one can
show that for N prime, an operator wζ switches the 1-gon and N -gon packets of cusps, as the reader should
check. (For N not prime, one ought to define more Atkin-Lehner involutions, one for each square-free divisor
of N . The group generated by all of these extra Atkin-Lehner involutions and the diamond operators acts
transitively on the cusps precisely when N is square free.)

6.3. Hecke correspondences. The Hecke correspondences are the geometric manifestations of the Hecke
operators. The classical theory of Hecke correspondences goes back to Fricke and Klein (making it odd
perhaps for me to call them Hecke correspondences). A fairly complete discussion of their formalism can be
found in Chapter 7 of [Shi94], among other places.

Recall that an isogeny φ : E → E′ of elliptic curves over a scheme S is a faithfully flat (finite) homomor-
phism of S-group schemes. The standard example of an isogeny is the map [n] : E → E′ for any integer
n 6= 0. (Why is this map an isogeny?) The group scheme ker(φ) is finite and flat over S. Its rank, a locally
constant function on S, is called the degree of the isogeny; if the rank is a constant n, then φ is said to
be an n-isogeny. If (E,P ) and (E′, P ′) are pairs of an elliptic curve and section over a base S, an isogeny

φ : (E,P ) → (E′, P ′) is an isogeny φ : E → E′ such that φ(P ) = P ′. There is an evident notion of isomorphy
between such structures φ.

Let n ≥ 1 be an integer and fix N ≥ 4. The Hecke correspondence of level n (for Y1(N)) is a scheme
Isogn /Z[1/Nn] whose S-points are the isomorphism classes of isogenies φ : (E,P ) → (E′, P ′) over S of
constant degree n. There are two projections π1, π2 : Isogn → Y1(N) over Z[1/Nn], defined on S-points as
the source and target of the n-isogeny, respectively.

I will not prove the existence of the scheme Isogn for general n but will restrict myself to n = p, a prime
number. The construction comes in two steps. First, let (Eu, Pu) be the universal pair over Y1(N)/Z[1/Np].
Consider the scheme Eu[p], which is a finite étale cover of Y1(N). The S-points of Eu[p] parameterize
isomorphism classes of triples (E,PN , Pp), where E/S is an elliptic curve, PN is a section of exact order N ,
and Pp is a p-torsion section. If (p,N) = 1, let Z be open subscheme of Eu[p] obtained by removing the
zero section; if p|N , let Z be the complement in Eu[p] of the sections [aN/p]Pu for all integers a. Then the
S-points of Z parameterize isomorphism classes of triples (E,PN , Pp), where E/S is an elliptic curve, PN is
a section of exact order N , and Pp is a section of exact order p that is not a multiple of PN in any geometric
fiber.

One can equally well describe the structures parameterized by Z by giving data

(φ : (E,PN ) → (E′, P ′

N ), ψ : Z/pZ → ker(φ)),

where E,E′ are elliptic curves over S with sections P, P ′ of exact order N ; φ is an isogeny from (E,PN )
to (E′, P ′

N ); and ψ is an isomorphism from Z/pZ to ker(φ). To translate between the two pictures, take

E′ = E/ 〈Pp〉, P ′

N = PN mod Pp, and ψ(1) = Pp. From this point of view, Z is quite close to the desired
Isogp, but it carries the extra information of ψ.

The second step in the construction is to remove the extra data of ψ. To this end, we consider an action of
G = (Z/pZ)× on Z that is quite similar to the diamond operators defined above. Namely, for a ∈ (Z/pZ)×,
define 〈a〉 acting on Z by the rule (φ, ψ) 7→ (φ, aψ) on S-points. This action is free in the sense that its graph
G × Z → Z × Z (products over Z[1/Np]) is a closed immersion. To get Isogp, one forms the quotient of Z
by the action of G. One can find the general properties of free quotients in [Ray67], from which it follows
that this quotient is the desired Isogp.

Note that as with the Atkin-Lehner involutions, there is no direct modular construction of the compactified
Hecke correspondences Isogn over X1(N). One can produce such a compactification over Q as before by
considering function fields. The behavior over the cusps can be determined using degenerating families and
(when expressed in terms of the Tate curve) is related to the classical formulas for the action of Hecke
operators on q-expansions.
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The geometric theory of these Hecke correspondences can be carried several steps further. For example,
the composition of isogenies yields

Isogn ×Y1(N) Isogm → Isognm,

since degree of isogenies is multiplicative under composition. Naturally, the product is taken over the source
arrow in the first factor and the target arrow in the second factor. These product structures are then related
to the composition of Hecke operators.

Another important development of this geometric theory is the study of Isogp /Y1(N) over Z[1/N ] (in
place of Z[1/Np]). The above construction of Isogp no longer applies, since the kernel of a p-isogeny over a
field of characteristic p need not be étale. A slightly fancier argument along the same lines does still produce
Isogp. It is often sufficient to study the simpler subscheme parameterizing p-isogenies φ : (E,PN ) → (E′, P ′

N )
over Z[1/N ]-schemes such that the characteristic-p geometric fibers of E and E′ are ordinary elliptic curves;
this scheme Isog0

p is the scheme of ordinary p-isogenies. The map Isog0
p → Isogp is an open immersion

with dense image in all geometric fibers over Z[1/N ]. (Prove this fact.) For a p-isogeny φ : E → E′ of
ordinary elliptic curves over a separably closed field, ker(φ) is either isomorphic to Z/pZ or µp; in the second

case, φ is isomorphic to the Frobenius isogeny of E, and in the first case, its dual φ∨ is isomorphic to the
Frobenius isogeny. As a consequence of this dichotomy, Isog0

p /Fp is the disjoint union of the open subschemes
parameterizing these two types of p-isogenies. (If φ : (E,P ) → (E′, P ′) is a p-isogeny over a scheme S, then
the locus in S over which the finite, flat ker(φ) is étale is open. If p is locally nilpotent on S, then the open
loci where ker(φ) and its Cartier dual, ker(φ∨), are étale are disjoint; in the ordinary case, the union of
these loci is S.) The µp locus projects isomorphically onto Y1(N)/Fp via its source arrow, and, dually, the
Z/pZ locus projects isomorphically onto Y1(N)/Fp via the target morphism. The other two morphisms are

finite flat of degree p. This picture of the structure of Isog0
p is known as the Kronecker (or Eichler-Shimura)

congruence relation. (The geometric description is due to Shimura.) One should contrast the decomposition
of Isogp /Fp into two irreducible components with the irreducibility of Isogp /C.

6.4. Action on modular forms. The above three types of modular correspondences all can be viewed
in the form (say over K = Q or Q(ζN ) for the Atkin-Lehner involutions) of a pair of finite (flat) maps
π1, π2 : M → X where X is a proper modular curve and M is another (not necessarily geometrically
connected) curve over K. In the first two cases, M is simply the graph of a diamond-operator automorphism
or of an Atkin-Lehner involution, and in the third case, M is the scheme Isogn.

Given such a set-up, or more generally a pair of finite maps π1 : M → X1, π2 : M → X2 with M,X1, X2

curves over a field, one can construct a maps H1(X2) → H1(X1) and H1(X1) → H1(X2), where H1 is any
reasonable functor that behaves like a degree-1 cohomology and H1 is any reasonable functor that behaves
like a degree-1 homology. The simplest case is when M is the graph of a morphism X1 → X2, in which case
the maps just come from the functoriality. More generally, to produce H1(X2) → H1(X1), one composes
the pullback map H1(X2) → H1(M) with a trace map H1(M) → H1(X1). (The existence of such a trace
map is implicit in the requirement that the functors be “reasonable.”)

The universal construction of this sort is Jac(X), the Jacobian of X . Classically, the Jacobian has a
dual nature: it can viewed contravariantly (as classifying line bundles) or covariantly (as classifying cycles of
degree 0). The contravariant functoriality is often called (by number theorists, at least) Picard functoriality

and the covariant functoriality is often called Albanese functoriality. When viewed contravariantly, Jac(X)
should be considered as a manifestation of H1(X) (or really of H1(X,Z(1))), and when viewed covariantly,
of H1(X,Z). To keep these two functorialities straight, one typically uses a notation (·)∗ for Albanese
(homological) and (·)∗ for Picard (cohomological). In [Maz78], Mazur generally considers the Albanese
functoriality, thinking of Jacobians as homology. With this picture in mind, we obtain from the modular
correspondences above automorphisms 〈a〉

∗
of J1(N)/Q from the diamond operators, automorphisms (wζ)∗

of J1(N)/Q(ζN ) from the Atkin-Lehner involutions, and endomorphisms (Tn)∗ : J1(N) → J1(N) over Q

from the Hecke correspondences Isogn. The notation J1(N) is standard shorthand for Jac(X1(N)), and in
general one indicates Jacobians of proper modular curves by replacing the X in the notation with a J .
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Although it is not a complete cohomology theory, the space of 1-forms of the first kind satisfies the
necessary formalism to construct a cohomological functoriality of the sort described above:

1. One has automorphisms of H0(X1(N)/Q,Ω1
X1(N)/Q) coming from the diamond operators,

2. automorphisms of H0(X1(N)/Q(ζN ),Ω1
X1(N)/Q(ζN )) coming from the Atkin-Lehner involutions,

3. and endomorphisms T ∗

n of H0(X1(N)/Q,Ω1
X1(N)/Q) coming from the Hecke correspondences.

Working over C, the space H0(X1(N)/C,Ω1
X1(N)/C) can be identified with the weight-2 cusp forms on

Γ1(N). (Keep in mind that holomorphic and algebraic 1-forms of the first kind on a proper smooth curve
over C are the same thing. This can be seen in various fairly elementary ways, or, to use a sledgehammer,
simply by invoking Serre’s GAGA.) In fact, these geometrically defined endomorphisms of the weight-2 cusp
forms (with a suitable choice of N th root of unity in C for the Atkin-Lehner involutions) agree with the
classical operators described in [Shi94].

Note that the 1-forms of the first kind onX1(N) can be recovered from J1(N) by the classical identification
of invariant differentials on Jac(X) with the 1-forms on the first kind on X . Furthermore if we use this
identification to define endomorphisms of H0(X1(N)/K,Ω1

X1(N)/K) by functoriality from the (Albanese)

endomorphisms (Tn)∗ (etc.) of Jac(X1(N)), we get the same endomorphisms as in the direct definition
immediately above.

7. The curves Y0(N) and X0(N)

In addition to the curves Y1(N) and X1(N) discussed above, it is useful to have arithmetic models of the
curves Y0(N) and X0(N).

7.1. Coarse moduli spaces and Y0(N). One might hope to define the curve Y0(N)/Z[1/N ] as a scheme
representing the functor whose S-points classify pairs (E,C), where E/S is an elliptic curve and C is a
cyclic subgroup of E/S of order N ; this second condition should be taken to mean that C/S is a finite,
flat subgroup scheme of E/S and that étale locally on S, the group scheme C is isomorphic to Z/NZ. For

instance, if S = Spec(K) for a field K with a separable closure Ks, then to give such a C/S is equivalent to
giving a Gal(Ks/K)-stable subgroup of E[N ](Ks) that is cyclic of order N . Unfortunately, this functor is
not representable: the problem is that any such pair (E,C) has an automorphism, namely [−1]; the presence
of this automorphism allows one to construct twists, which provides an obstruction to representability.
Instead, we define Y0(N) to be the quotient of Y1(N)/Z[1/N ] by the group G of diamond operators. Recall
the universal mapping property of quotients: if G acts on X , then we say that X → X ′ is a quotient of X
by G if for any morphism f : X → T that is invariant under G, we have a unique factorization X → X ′ → T
of f through X ′. Evidently such a quotient X ′ is determined up to unique isomorphism compatible with
X → X ′.

Even though Y0(N) and X0(N) are not moduli schemes classifying pairs (E,C) as above, they are quite
closely related to this moduli problem. Let us consider only Y0(N)—everything carries through to X0(N) if
one considers generalized elliptic curves as in [DR73]. Before discussing Y0(N) in particular, we consider a
few more issues related to representability of functors. Let F : (Schemes/T) → (Sets) be a functor. Recall
that a pair (Y, i) of a T -scheme Y and a natural transformation i : F ⇒ Y is said to represent F if for each
T -scheme S, the map i : F (S) → Y (S) is a bijection. (In §2 the natural transformation i would have been
denoted i−1. This should not cause much confusion; it should also be evident that there is some justification
for the switch in notation.) To understand Y0(N), we consider the following pair of weaker conditions:

1. For S = Spec(k) with k an algebraically closed field, i : F (S) → Y (S) is a bijection.
2. For any scheme Y ′ and natural transformation i′ : F ⇒ Y ′, there is a unique morphism f : Y → Y ′ such
that f ◦ i = i′. Informally, Y is the closest approximation to F in the category of schemes over T .

If (Y, i) satisfies these two conditions we say (in non-standard terminology) that Y coarsely represents

F ; if F is a moduli functor for some structure, then we say that (Y, i) is a coarse moduli scheme for that
structure. Evidently (by the second condition) such a coarse moduli scheme (Y, i) is determined up to unique
isomorphism compatible with i. One must be more careful with coarse moduli schemes than with schemes
actually representing moduli functors (called fine moduli schemes): for instance, it is obvious that if (Y, i)
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represents a functor F on S-schemes, then for any S′ → S, the pair (Y ×S S
′, i) represents F restricted to

S′-schemes, but the analogous property does not generally hold for coarse moduli schemes; to put it in a
phrase “formation of coarse moduli schemes does not generally commute with base change.”

The scheme Y0(N)/Z[1/N ] can be viewed as a coarse moduli space for the problem of classifying pairs
(E,C), where E/S is an elliptic curve and C is a cyclic subgroup scheme of order N . To make sense of this, it
is first necessary to construct a natural transformation i : F ⇒ Y0(N), where F is the functor whose S-points
are isomorphism classes of such pairs. Given (E,C), for any étale S′/S and isomorphism ψ : Z/NZ → C/S′,

one gets an S′-valued point of Y1(N) and hence of Y0(N) via the quotient map. For any two choices ψ, ψ′ of
isomorphism of S′, there is finite Zariski-open cover (Ui) of S′ such that ψ = [a] ◦ψ′ for some a ∈ (Z/NZ)×

on each Ui. Consequently, the S′-point of Y0(N) is independent of the choice of ψ. Therefore, by étale
descent, the collection of S′-points Y0(N) associated to (E,C) over S comes from a (unique) S-point. (By
definition of “cyclic subgroup scheme” collection of such S′ is an étale cover of S.) The reader can check
that this construction provides a natural transformation i : F ⇒ Y0(N). To check that (Y0(N), i) is a coarse
moduli scheme, the conditions 1. and 2. above must be verified.

The first condition is a general property of quotients (of quasi-projective schemes) by finite groups: one
knows that for k an algebraically closed field, Y0(N)(k) = (G\Y1(N))(k) = G\(Y1(N)(k)), where G is the
group of diamond operators. Evidently G\(Y1(N)(k)) is F (Spec(k)). To check the second condition, suppose
we are given a scheme Y ′/Z[1/N ] and a natural transformation i′ : F ⇒ Y ′. There is an evident natural
transformation Y1(N) ⇒ F , and so we have a morphism Y1(N) → Y ′. Looking at S-points for all Z[1/N ]-
schemes S, it is clear that this morphism is invariant under the action of group G of diamond operators;
hence it factors uniquely as Y1(N) → G\Y1(N) = Y0(N) → Y ′. A review of how i : F ⇒ Y0(N) was defined
shows that this factorization transforms i into i′, as required. Evidently there is a general principle lurking
behind this discussion, which we will not investigate further; it may be helpful to note, though, that if G
acts on a scheme X and the quotient S = G\Y exists, then S coarsely represents the functor G\Hom(·, Y ).

It is sometimes helpful to reinterpret F (S) as the isomorphism classes of cyclic N -isogenies E → E′ of
elliptic curves over S. One is thus inclined to view Y0(N) as (a piece of) the Hecke correspondence of level
N over Y1(1)×Y1(1), but in the present discussion such structures have been excluded. As with Y0(N), one
can interpret Y1(N) with N = 1, 2, 3 as a coarse moduli space, which gives solid sense to this inclination.

7.2. Properties of Y0(N)/Z[1/N ] and X0(N)/Z[1/N ]. In the appendix of [KM85], the authors prove that
for a smooth Y/Z[1/N ] of pure relative dimension 1, the quotient by the action of a finite group is again
smooth over Z[1/N ]. Consequently, X0(N)/Z[1/N ] and Y0(N)/Z[1/N ] are smooth curves (with connected
geometric fibers); furthermore, X0(N)/Z[1/N ] is proper and Y0(N) is an (affine) open in X0(N). As with
Y1(N), one can show that Y0(N)(C) with its structure of a complex manifold is Γ0(N)\H. The complement
of Y0(N) in X0(N) is a relative Cartier divisor over Z[1/N ], which is étale. It is called the cuspidal locus.

From the discussion of the previous section, we see that Y0(N)(Q) is the set of isomorphism classes of
(E,C), where E/Q is an elliptic curve and C ⊂ E(Q) is a cyclic subgroup of order N ; the same is true
for X0(N)(Q) with the appropriate generalized moduli problem. Consequently, the set Y0(N)(Q), which
is the Galois invariants of Y0(N)(Q), has an interpretation in terms of elliptic curves. Keep in mind that
F (Q) → Y0(N)(Q) is not injective: two pairs (E,C) and (E′, C′) in F (Q) define the same point in Y0(N)(Q)
if and only if they are isomorphic over Q, i.e. if they are twists of each other.

One might ask, on the other hand, whether F (Q) → Y0(N)(Q) is surjective, i.e. whether each point in
Y0(N)(Q) is represented by a pair (E,C) of an elliptic curve E/Q and a cyclic subgroup C ⊂ E(Q) that is
Galois stable. This is, in fact, true and proved in [DR73] IV-3 by a Galois-cohomology computation. The
same result holds for K-points, where K is any field of characteristic prime to N . Along these lines, it
may be helpful to consider Y0(N)(K), where K is a field of characteristic prime to N , as parameterizing
elliptic curves E/K whose modulo-N Galois representation factors through the group of upper triangular
matrices. (That statement is a bit sloppy.) Similarly one can consider Y1(N)(K) as parameterizing E/K
whose modulo-N Galois representation factors through upper triangular matrices with 1 in the left corner.

The cusps of X0(N) and their fields of rationality can be determined by using the description of the cusps
of X1(N) in §5. In particular, if N is prime, there are two cusps, each corresponding to a packet of cusps
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on X1(N). Both cusps are rational over Q. The 1-gon cusp is usually denoted ∞ and the N -gon cusp 0, on
account of the appearance of these cusps in the H-uniformization of Y0(N)(C).

7.3. Modular correspondences. Naturally, there are no diamond operators acting on Y0(N) or X0(N).
There is an Atkin-Lehner involution, which can be understood either by viewing Y0(N) as a coarse moduli
scheme or as a quotient of Y1(N). In the coarse-moduli-scheme picture, for any Z[1/N ]-scheme S, we have
the involution w(S) : (E,C) 7→ (E/C,E[N ]/C) of the set F (S) considered above. If we consider F (S) to be
isomorphism classes of cyclic N -isogenies φ : E → E′, this involution exchanges φ and its dual φ∨ : E′ → E.
The various involutions w(S) are functorial in S and so define a natural isomorphism w : F ⇒ F . One has,
therefore, a second coarse moduli space (Y0(N), i◦w) for F and so a unique isomorphism w : Y0(N) → Y0(N)
satisfying w ◦ i = i ◦ w. This automorphism is the Atkin-Lehner involution. Alternatively, one can obtain
this w by considering the Atkin-Lehner involutions wζ on Y1(N). The commutation relations between these
involutions and diamond operators show that these involutions induce a single common involution on Y0(N),
defined over Q (or Z[1/N ]). For our purposes, it suffices to extend w to an automorphism of X0(N)/Q
stabilizing the cusps, which is effortless since w acts on the function field of X0(N)/Q and stabilizes Y0(N).
As in the case of X1(N), it is possible to analyze the action of w on the cusps; in particular, for N a prime,
w switches the cusps 0 and ∞.

As for the Hecke correspondences, one can construct a scheme Isogn /Z[1/N ] (indeed, a smooth curve)
with two projections to Y0(N) by taking the quotient of the n-isogeny scheme for Y1(N) by the natural
action of the diamond operators. This quotient scheme can be interpreted as a coarse moduli space; the
details are left to the reader. As above, we extend Isogn to the proper, smooth curve over Q with the same
function field. This curve then admits two (finite) projections to X0(N)/Q, which allow one to construct
the Hecke endomorphism (Tn)∗ of J0(N)/Q = Jac(X0(N)).

8. A closer look at X0(11) and X1(11)

Finally, we can have a bit of fun, working out equations for X0(11) and X1(11) and a few properties of
these curves and their Jacobians. Everyone should know these two examples well, if for no other reason
than that their Jacobians are two of the three elliptic curves over Q with the smallest possible conductor,
N = 11. The method is a bit sneaky and does not provide equations for the universal elliptic curve over
X1(11), which one may want. It is possible, of course, to work out the equations using Tate normal form,
although the computation is rather involved (cf. [Con95]). To begin with, we have the following:

Proposition 8.1. Let E/Q be an elliptic curve with good reduction outside of a single prime p. Suppose

that E(Q) contains a point of exact order 5. Then p = 11 and E = E(1, 1) = E(−1,−1) or E = E(11, 11) =
E(−1/11,−1/11).

Proof. Let E/Z[1/p] be the Néron model (=minimal Weierstrass model, if you prefer) of E. Note that by
[Sil86] Chapter VII, Theorem 3.4 (“specialization principle”), the point P ∈ E(Q) reduces to point of exact
order 5 in each geometric fiber of E/Z[1/p]. (If we were working with N = 4 in place of N = 5, there could be
trouble here, since the specialization principle does not apply to the 4-torsion). Consequently, (E/Z[1/p], P )
is isomorphic to (E(b, b), (0, 0)), for some b ∈ Z[1/p]× = ±pZ such that ∆(b, b) = b5(b2 − 11b− 1) ∈ Z[1/p]×.
Note here that we are using the universal property of (E(b, b), (0, 0)) over Z and not just over Z[1/5].

By replacing P with 2P , if necessary, we may assume that b ∈ Z (and so ∆(b, b) ∈ Z). (The diamond
operator acts by b 7→ −1/b.) We must have either b = ±1 or p|b. In the first case, we have E = E(1, 1) =
E(−1,−1); therefore, ∆(b, b) = −11, and so p = 11. In the second case, we have both b2 − 11b − 1 ≡ −1
(mod p) and b2 − 11b − 1 = ±pn for some n ≥ 0; and so either b2 − 11b − 1 = −1 (i.e. b = 11) or
b2 − 11b− 1 = 1 and p = 2. There are no roots to b2 − 11b− 2 = 0 in Z, and so we must in fact have p = 11
and E = E(11, 11). �

To put this proposition into perspective, note that if E/Q is an elliptic curve with good reduction at 2,
then E(Q) can contain no non-trivial l-torsion for any prime l > 5, as follows by applying the Weil bound
to the reduction modulo 2. If E/Q has good reduction outside of 2, then the Weil bounds for the modulo-3
reduction show that E cannot have non-trivial l-torsion for any prime l > 7; we saw above that l = 5 is
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impossible, and one can check that l = 7 is also impossible. (To check the l = 7 case, one can use Tate
normal form as in l = 5 case—see [Con95], page 278 for the formulas.) In summary, if E/Q is an elliptic
curve with bad reduction at only one place, it can have only non-trivial 2-power, 3-power, or 5-power torsion,
and the above proposition describes the 5-power torsion case.

8.1. Properties of X0(11) and X1(11). Now let us summarize some facts about X0(11)/Q and X1(11)/Q.
First, both curves are proper, smooth, connected, and of genus 1 (cf. [Shi94] for genus formulas based on the
map to the j-line) and extend to proper, smooth curves over Z[1/11]. All the geometric fibers have genus 1.
There is a canonical map π : X1(11) → X0(11) (even over Z[1/11]), given by the realization of X0(11) as the
quotient of X1(11) by the action of the diamond operators. This map is an étale (Galois) covering of degree
5, as follows from the fact that the geometric fibers of X1(11) and X0(11) over Z[1/11] are all of genus 1.

The curve X0(11) has two cusps, both rational over Q, usually called 0 and ∞, and which correspond
to 11-gons and 1-gons, respectively. The curve X1(11) has two packets of cusps, the five 11-gon cusps in
X1(11)(Q), and the packet of five 1-gon cusps in X1(11)(Q(ζ11)

+). These two packets are the fibers of π
over 0 and ∞, respectively.

The map π induces a homomorphism φ : J1(11)/Q → J0(11)/Q. (Since X0(11) and X1(11) are genus-1
curves with rational points, they can be identified with their Jacobians, but it is probably clearer to consider
these are distinct objects. To see why, note, for instance, that the diamond operators act trivially on J1(11).)
This map is a degree-5 isogeny, since it comes from the unramified Galois cover π. For any (rational) cusp
c in the 11-gon packet of X1(11), we have π(c) = 0. Therefore the points [c′] − [c] ∈ J1(11)(Q) (where c, c′

run over the N -gon cusps of X1(11)) all map to the identity in J0(11)(Q). Since X1(11) has genus 1, if we
fix one such cusp c0, the five differences [c0] − [c] are distinct. We conclude that ker(φ) is a constant group
scheme over Q (isomorphic to Z/5Z) and that ker(φ)(Q) consists of the points [c′]− [c] where c, c′ run over

the 11-gon cusps. (The points [c0] − [c] for a fixed c0 give a list of these five points without redundancies.)
The Weil pairing on J1(11)[5] gives an identification of J1(11)[5]/ ker(φ) with µ5. Consequently, we know

that J0(11)[5] contains a subgroup scheme isomorphic to µ5, viz the image of J1(11)[5]. (If you do not like
group schemes, it is quite sufficient to think about Galois modules, since we are working over Q at this
point.) This subgroup scheme is usually called the Shimura subgroup of J0(11). By general properties of
isogenies of elliptic curves, it can also be considered as the kernel of the dual isogeny φ∨ : J0(11) → J1(11).

Consider the point [0] − [∞] ∈ J0(11)(Q). One knows from the analytic theory of modular forms (more
precisely, from the transformation formulas for Dedekind’s η function) that (∆(z)/∆(11z))1/2 is a rational
function on X0(11)/C. Its divisor is 5[0]−5[∞], and so the point [0]− [∞] ∈ J0(11)(Q) has order dividing 5.
It can not be trivial, since X0(11) does not have genus 0, and so it must have exact order 5. (It is possible
to complete this step without invoking such analytic theory, if one develops the algebraic theory of modular
forms.) The constant subgroup scheme generated by [0] − [∞] is usually called the cuspidal subgroup of
J0(11). Together with the Shimura subgroup, it gives a splitting (over Q) J0(11)[5] = Z/5Z⊕µ5, which can
be understood either in terms of group schemes or Galois modules.

We deduce from the proposition that J0(11) is either E(1, 1) or E(11, 11) and the same for J1(11). In
fact:

Proposition 8.2. We have J0(11)/Z[1/11] = E(11, 11) = E(−1/11,−1/11) and J1(11)/Z[1/11] = E(1, 1).

Proof. Note that it suffices to check that J0(11)/Q = E(11, 11) and J1(11)/Q = E(1, 1), since the models
over Z[1/11] are the Néron models (or minimal Weierstrass models, if you prefer) of the Q-fibers.

Let us see that J0(11) and J1(11) are not isomorphic or even twists of each other. If, in fact, the two
curves were isomorphic (over any extension of Q), then the degree-5 isogeny J1(11) → J0(11) would exhibit
a complex multiplication. Any elliptic curve over Q with (potential) complex multiplication has potentially
good reduction everywhere, but both E(1, 1) and E(11, 11) have multiplicative reduction at p = 11 and so
can not have (potential) complex multiplication.

It remains, therefore, to show J0(11)/Q 6= E(1, 1). Recall that E(1, 1) is described by the Weierstrass
equation y2 − y = x3 − x2. Considering this equation over Z11, one gets a closed subscheme E(1, 1) of
P2/Z11, flat over Z11 and with a section (at infinity) passing through its smooth locus; its generic fiber is
an elliptic curve, and the special fiber is a nodal cubic. Note moreover that as an abstract scheme, it is
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regular, since even at the singular point (0, 0) of the special fiber, the defining equation is not in the square
of the maximal ideal. Consequently, any section of E(1, 1) over Z11 must pass through the smooth locus of
the special fiber. Consider, in particular, E(1, 1)[5](Q11) = E(1, 1)sm[5](Z11). Since 5 and 11 are coprime,
the reduction map on 5-torsion is injective, and so we get E(1, 1)[5](Q11) ⊂ E(1, 1)sm[5](F11). The group
structure on Esm/Z11 makes the special fiber a torus, so that #E(1, 1)sm[5](F11) ≤ 5. On the other hand,
J0(11)[5](Q11) = Z/5Z⊕ µ5(Q11), which has order 25, and so J0(11)/Q 6= E(1, 1). �

From the above identification of (J0(11), [0] − [∞]) with (E(11, 11), (0, 0)) or (E(−1/11,−1/11), (0, 0))
(and the analysis of degenerations in §4), we see that the cuspidal subgroup does not reduce to the identity
component of the Néron model at 5. In fact, since ∆(11, 11) = −115, one knows that this fiber of the Néron
model has exactly 5 components; the reduction of the cuspidal subgroup gives a splitting of the component
group. Going back to X0(11), one deduces that its minimal regular model over Z has a 5-gon fiber at p = 11.

As for J1(11) = E(1, 1), we see that all the fibers of its Néron model over Z are connected. If we
identify J1(11)/Q and X1(11)/Q by the choice of a rational cusp, then E(1, 1)/Z is the minimal regular
model of X1(11)/Q. Note that this discussion provides us with an explicit example of something Brian
warned us about in his notes: the morphism X1(11)/Q11 → X0(11)/Q11 does not extend to a morphism of
minimal regular models over Z11. (Of course the corresponding morphism of Néron models of J1(11)/Q11

and J0(11)/Q11 does extend, but it is not surjective on component groups of the special fibers.)

8.2. Rational points. Recall that Bryden undertook some tricky computations in his talk to show that
the only rational points on X1(11)/Q are the cusps. The information gleaned above about J1(11) and its
reductions is quite enough to perform a simple 5-descent, using flat cohomology to understand the bad
places, in the style of [MT74] (cf. [Maz72] for a thorough discussion of the method). From the 5-descent, one
deduces that the rank of J1(11)(Q) (and of J0(11)(Q)) is zero, and even that the Tate-Shafarevich group has
no five torsion. More generally, Mazur proves in [Maz72] that any elliptic curve E/Q with prime conductor
p (i.e. good reduction outside of p and stable reduction at p) and non-trivial l-torsion in E(Q) has rank
zero.

Granting that the ranks of J1(11)(Q) and J0(11)(Q) are zero, let us see that each has exactly five rational
points. Reducing modulo 2 and using the Weil bound, one sees that the prime-to-2 part of each group has
order ≤ 5. Similarly, reducing modulo 3 shows that the prime-to-3 part has order ≤ 8. The combination
of these two bounds and the existence of a point of order 5 in both cases shows that the group of rational
points has order exactly 5. In particular, identifying X1(11) with J1(11) by the choice of a rational cusp,
one sees that the only rational points on X1(11) are the cusps, i.e. that there are no elliptic curves over Q

with rational points of exact order 11.
For contrast, let us give a proof of this fact (still using rank= 0) based on Mazur’s arguments in [Maz78].

This technique works whenever X0(p) has genus ≥ 1, where such games with Weil bounds are generally not
sufficient.

Lemma 8.3. Let E/Q be an elliptic curve and P ∈ E(Q) be a point of exact order 11. Then (E,P ) has

good reduction outside of p = 2, 11.

Proof. Let p 6= 2, 11 be a prime. The pair (E,P ) determines y ∈ Y0(11)(Q) ⊂ X0(11)(Qp) = X0(11)(Zp).
To begin we want to see y ∈ Y0(11)(Zp), i.e. that the reduction of y modulo p is not a cuspidal point in
X0(11)(Fp). Suppose on the contrary that y reduces to a cusp. By applying the Atkin-Lehner involution,
we may assume y reduces to the cusp ∞.

Now consider the identification of X0(11)/Q with J0(11)/Q taking ∞ to the identity for the group law.
This identification extends to an isomorphism ofX0(11)/Z[1/11] and the Néron model of J0(11)/Z[1/11] that
takes the section ∞ to the identity. As stated above—and this is the crucial point—the rank of J0(11)/Q
is zero, and so [∞] − [y] ∈ J0(11)(Q) is a non-zero torsion point. (Note, incidentally, that this hypothetical
torsion point may have order divisible by p as far as we know.) Since p 6= 2, its reduction in J0(11)(Fp) is not
the identity, by the specialization principle (cf. [Sil86] Chapter VII, Theorem 3.4). Making the identification
with X0(11), this contradicts our assumption that y reduces to ∞.
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Consider the point x ∈ Y1(11)(Qp) determined by (E,P ). By the above discussion, it maps to a point
in Y0(11)(Zp) ⊂ Y0(11)(Qp) under the projection π : Y1(11) → Y0(11). Since this projection is a finite (and
hence proper) map, the valuative criterion tells us that x ∈ Y1(11)(Zp). Consequently, (E,P ) extends to an
elliptic curve with section of exact order 11 over Zp, which is what was to be proved. �

Let x ∈ X1(11)(Q) and suppose x is not a cusp. Then x corresponds to a pair (E,P ) consisting of an
elliptic curve over Q and a point of exact order 11, and by the lemma, (E,P ) has good reduction at all
p 6= 2, 11. In particular, we can reduce modulo 3 to find an elliptic curve E/F3 with a point of exact order

11; consequently, #E(F3) ≥ 11, but the Weil bound assures #E(F3) ≤ 3 + 1 + 2
√

3 < 8, and so no such x
can exist.

Finally, using the isogeny φ∨ : J0(11) → J1(11), one can find all the rational points of J0(11) and hence
of X0(11). Any rational point must map to one of the five points in J1(11)(Q). The fibers are torsors
under ker(φ∨) = µ5, the Shimura subgroup. Each fiber contains a rational point, an element of the cuspidal
subgroup, and so the fibers (as Galois sets) are all µ5 and thus contain exactly one rational point. In
conclusion, J0(11)(Q) = the cuspidal subgroup.

8.3. Summary. Let us summarize the properties of J = J0(11)/Q that we have found:

1. J has good reduction outside of 11
2. J has multiplicative reduction at 11. The modulo-11 fiber of the Néron model has five components.
3. The point [0]− [∞] ∈ J(Q) generates a subgroup of order 5, the cuspidal subgroup. The reduction of the
cuspidal subgroup modulo 11 generates the component group of the modulo-11 fiber of the Néron model.
4. The kernel of the isogeny φ∨ : J0(11) → J1(11) is isomorphic to µ5 and is called the Shimura subgroup.
5. The torsion subgroup of J(Q) is the cuspidal subgroup.
6. The rank of J(Q) is zero.

In [Maz77], Mazur proves generalizations of all of these statements for J0(N) with N a prime, whenever
this abelian variety has positive dimension. Evidently, N replaces 11 in the above list. The number 5 must be
replaced by the numerator n of (N−1)/12. In (4.), one considers the maximal étale extension X2(N)/X0(N)
contained in X1(N)/X0(N); the cover X2(N) → X0(N) is cyclic Galois of degree n, as can be checked by
computing the ramification of X1(N)/X0(N). The corresponding kernel of J0(N) → J2(N) is called the
Shimura subgroup of J0(N); it is again isomorphic to µn. Finally, in (5.), it is rarely true that J0(N)(Q)
has rank zero, but Mazur produces a quotient abelian variety, the Eisenstein quotient, which does have rank
0. The proof that the rank is 0 is a collection of infinite l-descents, where l runs over the prime divisors of
n. (For l odd, one can make a simple descent generalizing the simple 5-descent that can be used for J0(11)
and J1(11).) The L-function of the Eisenstein quotient does not vanish at 1, and so Mazur’s descent can be
considered a verification of a case of the rank part of the Birch-Swinnerton-Dyer conjecture. This much of
Mazur’s paper has been superseded by more recent results using Euler systems, another descent technique.

There are a couple of loose ends to tie up:

1. There is one more elliptic curve of conductor 11 that comes out of the above discussion, namely the
quotient J ′ of J0(11) by its cuspidal subgroup. The image of the Shimura subgroup provides a copy of µ5 in
J ′, and the only rational point on J ′ is the identity. One immediately obtains the µ5 version of Proposition
8.1: the only elliptic curves over Q with good reduction outside of a single prime p that contain a copy of
µ5 are J0(11) and J ′.
2. As proved above, the curve X0(11) has five rational points. Two are the cusps 0 and ∞. The remaining
three points can be identified: the abelian variety J0(121) decomposes (up to isogeny) as J0(11)2, the “old
part,” and a 4-dimensional “new part.” The new part is isogenous to a product of four elliptic curves. One
is the (isogeny class of the) (−11)-twist of J0(11). The other three factors admit rational 11-isogenies. One
is an elliptic curve E with potential complex multiplication by Z[(1 +

√
−11)/2]; it is 11-isogenous to its

(−11)-twist. The other two factors are (the isogeny class of) an elliptic curve E′ and (the isogeny class of)
its (−11)-twist. The three anomalous rational points of X0(11) correspond to E, E′, and the quotient of E′

by its rational cyclic subgroup of order 11. (Twisting a pair (E,C) does not change the associated point
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on X0(11).) I checked the non-evident claims above using the Eichler-Shimura construction and the online
tables of William Stein. Perhaps one ought to be able to verify such things without tables.

9. Appendix: some representability results

Before proving the main representability results, let us recall a few basic facts.

9.1. Weierstrass equations. Let E/S be an elliptic curve (i.e. an abelian scheme of relative dimension
1). The sheaf f∗Ω

1
E/S of global invariant differentials on E/S is locally free. If ω is a generating section of

this sheaf (which, of course, need not exist globally on S) and S is affine, one can associate (by the usual
procedure) a Weierstrass equation for E/S, well-defined up to an (r, s, t) transformation, where r, s, t,∈
Γ(S,OS). If one allows a change ω = uω′ for u ∈ Γ(S,OS)×, then the Weierstrass equation is well-
defined up to a (u, r, s, t) transformation. Conversely, if E/S is defined by a Weierstrass equation (with
a1, . . . , a6 ∈ Γ(S,OS), then

ω =
dx

2y + a1x+ a3

is a generator of f∗Ω
1
E/S . Consequently, the existence of a Weierstrass equation (over affine S) is equivalent

to the existence of a generating section of f∗Ω
1
E/S .

9.2. Sheaves on (Schemes). The various functors F : (Schemes) → (Sets) that we want to represent have
an additional useful property that can be established a priori. Let F be any such functor. We say that F is
a Zariski sheaf of sets on (Schemes), if for each scheme S, the restriction of F to the (Zariski) open sets of
S is a sheaf. The simplest example of a Zariski sheaf of sets is a representable functor F (S) = Hom(S, Y );
the sheaf property encodes the standard facts about gluing morphisms of schemes.

This property is easy to check in our situation: the master functor is defined by

F (S) = {(E,P ) : E/S is an elliptic curve, P ∈ E(S) not of order 1, 2, or 3 in any geometric fiber}/ ≈ .

Any such pair (E,P ) has no automorphisms—in other words, if (E,P ) and (E′, P ′) are isomorphic, there
is a unique isomorphism between them: the structure of the automorphisms of E/S is known (cf. [Del75]),
and one sees that the only cases in which σP = P for an automorphism σ occur when P has order 1, 2, or 3.

Now consider an open cover {Ui} of S. If x, x′ ∈ F (S) corresponding to (E,P ) and (E′, P ′) restrict to the
same elements of F (Ui) for each i, then the isomorphisms of (E,P )|Ui and (E′, P ′)|Ui glue together to give a
global isomorphism since over each Ui there is a unique choice of isomorphism. Similarly, if one has elements
xi ∈ F (Ui) with agreement for each pair (i, j) of the restrictions in F (Ui ∩Uj), then any corresponding local
structures (Ei, Pi) on Ui glue to give a global (E,P ) on S by the uniqueness of isomorphisms.

9.3. Representability. Let F : (Schemes) → (Sets) be the functor defined in the previous paragraph. Here
is the master result:

Theorem 9.1. The functor F is represented by the scheme Y = Spec(Z[B,C,∆(B,C)−1 ] with universal

pair (E(B,C), (0, 0)).

Proof. As in the general discussion of representable functors, the pair (E(B,C), (0, 0)) over Y defines a
natural transformation Y ⇒ F . We want to see that this natural transformation is in fact a natural
isomorphism.

First let us check that for each scheme S, the map Y (S) → F (S) is injective. Let us unwind what this
injectivity means: a morphism S → Y is defined by giving b, c ∈ Γ(S,OS) such that ∆(b, c) ∈ Γ(S,OS)×. To
say that two elements of Y (S) corresponding to (b, c) and (b′, c′) determine the same element of F (S) is to
say that (E(b, c), (0, 0)) and (E(b′, c′), (0, 0)) are isomorphic over S. Any such isomorphism must come from
a (u, r, s, t)-type transformation of the Weierstrass equations, but, as in §1, there are no such transformations
unless b = b′ and c = c′.

Since Y and F are known to be a Zariski sheaves of sets, to finish the proof that each map Y (S) → F (S)
is an isomorphism, it suffices to see that for each scheme S, the map Y |S → F |S of the restrictions of Y and
F to open sets in S is a surjective map of sheaves. In other words, we must see that for any x ∈ F (S), there
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is a Zariski open cover {Ui} of S such that for each i, the element x|Ui ∈ F (Ui) is the image of something
in Y (Ui). It suffices, therefore, to prove that any (E,P )/S that has a Weierstrass equation (which can be
arranged Zariski-locally) is isomorphic to some (E(b, c), (0, 0)).

For an (E,P ) with a Weierstrass equation, one can choose a (u, r, s, t) transformation to put (E,P ) in the
form (E(b, c), (0, 0)) exactly as in Bryden’s talk. In brief, one translates P to (0, 0) (using r and t), makes
y = 0 the tangent line at P (using s), and makes a u-transformation to arrange a2 = a3. To perform these
three steps one must know (in order) that P does not have order 1, 2, or 3. �

Using the universal pair (E(B,C), (0, 0)) above, one can prove other representability results. For instance,
for an integer N ≥ 4, let YN → Y be the pullback of the diagonal of E(B,C) ×Y E(B,C) under the map
O× [N ](0, 0) (where O is the identity section of E(B,C)). Then YN with the restriction of (E(B,C), (0, 0))
evidently classifies pairs (E,P ), where E/S is an elliptic curve and P ∈ E(S) is not of order 1, 2, or 3 in any
geometric fiber and satisfies [N ]P = O. (To be precise, the natural transformation Y ⇒ F maps YN (S) to
the subset of classes of (E,P ) in F (S) satisfying [N ]P = O.) Taking the complement of Yd in YN , where d
runs over proper divisors of N (with the pullback of (E(B,C), (0, 0))) then gives an object representing the
functor FN defined in §3 (with the domain extended to all schemes, in fact), proving Proposition 3.1.

Concretely, this proof of representability gives the following recipe for constructing Y1(N): write down
the Tate-normal-form curve and compute [d](0, 0) for all divisors d of N . Each condition [d](0, 0) = O
provides an algebraic relation between B and C. The curve Y1(N) is obtained by imposing the condition
[N ](0, 0) = O and excluding the conditions [d](0, 0) = O for all proper divisors d of N . (Recall that
[1](0, 0) = O, [2](0, 0) = O, and [3](0, 0) = O are excluded by construction.) If N is prime, for instance, there
are no conditions to exclude.

10. Exercises

10.1. An alternative construction of X1(N). Work out the following alternative compactification of
Y1(N)/Z[1/N ] for N ≥ 5 prime. The motivation is the observation that for N prime, the two packets of
cusps, 1-gons and N -gons, are switched by Atkin-Lehner involutions.

1. Using Weierstrass equations as in the previous section, construct a scheme Y ∗ representing the functor on
Z[1/N ]-schemes S whose S-points are the isomorphism classes of triples (E/S,O, P ) where E/S is proper,
finitely presented, and flat with each geometric fiber either an elliptic curve or a nodal cubic; O and P are
sections of Esm/S, the smooth locus; and P has exact order N in Esm/S, where Esm is given the structure of
a group scheme with identity section O in the usual way. Note that the usual definition of diamond operators
〈a〉 applies to give an action of (Z/NZ)× as automorphisms of Y ∗.
2. Working over Z[1/N, ζN ], define a scheme Xa for each a ∈ (Z/NZ)× by gluing two copies of Y ∗ along
Y1(N) ⊂ Y ∗ using the Atkin-Lehner involution wζa

N
.

3. Verify that Xa/Z[1/N, ζN ] is proper by using the valuative criterion.
4. Using the diamond operators, construct a coherent system of isomorphisms among the Xa/Z[1/N, ζN ].
These isomorphisms provide (effective) descent data on the Xa from Z[1/N, ζN ] to Z[1/N ] and hence a
compactification X1(N)/Z[1/N ] of Y1(N)/Z[1/N ].
5. Check any basic property of X1(N)/Z[1/N ] (e.g. smoothness) that occurs to you.

10.2. Miscellaneous. Here are a few more exercises culled from the above exposition.

1. Compute the minimal Weierstrass model of E(T, 0) over Q[T, 1/∆(T, 0)] at T = 0, T = −1/16, and
1/T = 0. Note that there is additive reduction at one of these places, in contrast with the degeneration of
the universal curve over Y1(5) (and, for that matter, Y1(N) for N > 5) worked out in §4.
2. Look up the functorial criterion for smoothness and use it to verify that Y1(N)/Z[1/N ] is smooth.
3. Using the theory of Weierstrass equations for relative elliptic curves outlined above, construct a rel-
ative j-invariant: for each E/S an elliptic curve, produce j(E/S) ∈ Γ(S,OS) functorial in E/S such
that if S = Spec(C), then j(E/S) is the classical j-invariant. (You must unwind how the usual j ∈
Z[a1, a2, a3, a4, a6,∆

−1], which is an invariant for the action of the algebraic group of (u, r, s, t)-transformations,
provides a solution—the unique solution— to the problem.)
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4. The previous exercise defines a natural transformation from the functor whose S-points are isomorphism
classes of elliptic curves over S to the functor of S-points of A1. Prove that A1/Z is the coarse moduli
scheme for this moduli functor. Prove the same fact about A1/T and the moduli of elliptic curves over
T -schemes S, where T is any base scheme. The concrete version of the problem is to show that the ring of
invariants of R[a1, a2, a3, a4, a6,∆

−1] under the algebraic group of (u, r, s, t) transformations is R[j], where
R is any commutative ring. You should be able to do this for R = Z (or, just as well, for R = C) at least.
5. For N prime, check the description of Cusps1(N)/Z[1/N ] given in §5 by using the modular description.
6. Prove that [n] : E → E is an isogeny for E/S an elliptic curve and n 6= 0 an integer.
7. Prove the existence of the schemes Isogn discussed in §6. It may help to consider the refined problem of
constructing a scheme over Z[1/N ] parameterizing isogenies φ : (E,P ) → (E′, P ′) such that ker(φ) is locally
isomorphic to a product of cyclic groups of order n1, . . . , nr with n1 × . . .× nr = n.
8. (a) Let E be an elliptic curve over a field K (possibly of non-zero characteristic). Prove that there are
finitely many N -isogenies with source E for any positive integer N .
(b) On the other hand, let E be a supersingular elliptic curve over Fp. Show that there are infinitely many
p-isogenies with source E × E.
(c) Prove that Isog0

p /Fp is dense in Isogp /Fp. It would suffice to show that any p-isogeny can be deformed
to an ordinary p-isogeny. (You may find this a bit tricky.)
9. Prove the relation (Tp)∗ = F + F∨ in End(J0(N)/Fp) using a suitable version of the Kronecker(-Eichler-
Shimura) congruence relation. Here N ≥ 5 is an integer, and p is a prime that does not divide N . The
endomorphism F is Frobenius, and F∨ is the dual of Frobenius with respect to the canonical principal
polarization. It may be helpful to look at a discussion a correspondences on curves and Jacobians (cf.
[Shi94] or [Mil86]).
9. Explain how to construct a rational point on X0(11) using the elliptic curve E/C with complex multipli-
cation by Z[(1+

√
−11)/2]. (Note that there is only one such curve up to isomorphism since the class number

of Q(
√
−11) is 1.) More generally, explain how to construct a rational point on X0(N), if N ≡ 3 (mod 4)

is prime and the class number of Q(
√
−N) is 1. Consequently, the class-number-1 problem is contained in

the problem of determining the rational points on the curves X0(N).
10. Use the methods of [MT74] to perform simple 5-descents on E(1, 1) and E(11, 11) and simple 4- or
2-descents (your choice) on E(1, 0) and E(−1, 0) (all of this over Q). What are the ranks of these elliptic
curves? It may be helpful to use the structure of the bad reduction in each case. If you can not figure this
out, take a look at [Maz72].
11. By any means you can (using tables, for example), verify the claims about X0(11)(Q) and J0(121) made
at the end of §8.
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