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1. Introduction

The purpose of these notes is to illustrate the descent technique used in [Maz72] and [Maz77] to bound
the rank of abelian varieties A/Q; this method is used in [Maz77] to prove that the Eisenstein quotient of
J0(N)/Q (where N is a prime number) has rank 0. We begin with a brief review of the standard method of
descent. We then explain how fppf cohomology can be used following this model to prove our main result
(Theorem 3.1); an easy corollary is that an elliptic curve E/Q has rank 0, if it has a non-zero torsion point of
order prime to N , good reduction outside a prime N , and multiplicative reduction at N . Finally, the last two
sections of the notes provide some examples of abelian varieties to which the theorem applies, constructed
using Tate normal form and modular curves.

2. Review of Descent

Before we get to Mazur’s methods, let us review the classical descent procedure in cohomological terms,
following [Sil86], Chapter X. Let A/K be an abelian variety, where K is a number field, and let n be a
non-zero rational integer. One has the following exact sequence over K (of algebraic groups, group schemes,
étale sheaves, fppf sheaves, etc.):

0 → A[n] → A
n
−→ A → 0.

From this short exact sequence, one derives the long exact sequence in Galois cohomology, out of which one
extracts

(1) 0 → A(K)/nA(K) → H1(K, A[n]) → H1(K, A)[n] → 0.

This sequence is not immediately useful because the two cohomology groups that appear are infinite. One
observes, however, that one may replace these cohomology groups with subgroups determined by certain
local conditions: for any place v of K, one can consider the restriction map H1(K, A[n]) → H1(Kv, A[n]).
One has the local analogue of (1) for each place v of K:

(2) 0 → A(Kv)/nA(Kv) → H1(Kv, A[n]) → H1(Kv, A)[n] → 0.

Write Lv for the image of A(Kv)/nA(Kv) in H1(Kv, A[n]). The subgroup of classes in H1(K, A[n]) that

restrict to elements of Lv for each v is called the n-Selmer group, Sel(n)(A/K). Evidently the image of

A(K)/nA(K) lands in Sel(n)(A/K), since restriction maps are compatible with coboundary maps.
To prove the weak Mordell-Weil theorem (viz that A(K)/nA(K) is finite) it remains only to show that

Sel(n)(A/K) is finite. The key to this finiteness is that for any finite place v of K that is prime to n and
where A has good reduction, the subgroup Lv ⊂ H1(Kv, A[n]) is precisely the subgroup of all unramified

cohomology classes. (Recall that for a local Galois module M , a class in H1(Kv, M) is unramified, if it is
split by an unramified extension of Kv.) It is a general fact in Galois cohomology that if M is a discrete,
finite Gal(K/K)-module, then the subgroup of classes in H1(K, M) that are unramified outside a fixed finite
set of places S is finite.

Having refined the middle term of (1), we turn to the rightmost term: consider H1(K, A). The subgroup
X(A/K) of classes that restrict to the identity in H1(Kv, A) for all places v of K is called the Tate-Shafarevich

group. If v is a finite place where A/K has good reduction, then the identity is the only unramified class

in H1(Kv, A). Note, however, that the general finiteness fact used above to show that Sel(n)(A/K) is finite
does not apply to X(A/K); nonetheless, it is conjectured to be a finite group. The exact sequences (1) and
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(2) show that the image of Sel(n)(A/K) in H1(K, A) is precisely X(A/K)[n], which is therefore finite. We
now have the refined n-descent exact sequence

(3) 0 → A(K)/nA(K) → Sel(n)(A/K) → X(A/K)[n] → 0,

in which all three terms are known to be finite. It is possible to compute Sel(n)(A/K), but one cannot easily
determine if a given class in the Selmer group maps to 0 in X(A/K)[n]. The general method to answer such
a question involves iterating the descent procedure (“second descent,” etc.).

2.1. A simple bound on the rank. Here is a simple example of how the theoretical considerations above
can be used to get a bound on ranks. Let E/K be an elliptic curve and suppose that E(K) contains the full
2-torsion. Then as group schemes (or as Galois modules)

E[2] = Z/2Z× Z/2Z = µ2 × µ2;

consequently, we have

H1(K, E[2]) = K×/(K×)2 × K×/(K×)2.

Let S be a finite set of places of K containing the infinite places, places over 2, and the places of bad

reduction for E. Then Sel(2)(E/K) is contained in the group of classes in H1(K, E[2]) that are unramified
outside of S. Explicitly, this is a sum of two copies of K(S, 2), the group of all classes in K×/(K×)2 with

even valuation at places outside S. In particular, if K = Q, then the order of Sel(2)(E/Q) is bounded by
22#S; since E(Q)/2E(Q) injects into the Selmer group, we conclude that the rank ρ of E/Q is bounded by
2#S − 2. Note that in producing this upper bound on the rank, we threw away all information at ramified
primes (viz 2,∞, and the primes of bad reduction).

Mazur’s bounds in [Maz72] and [Maz77] are similar in spirit but use fppf cohomology to get better
estimates on the order of Selmer groups. For instance, if one applied the above Galois-cohomology bound
to an elliptic curve E/Q with prime conductor N 6= 2 and full 2-torsion in E(Q), then one would get ρ ≤ 4;
Mazur’s method yields ρ = 0.

2.2. Reformulation using étale cohomology. In order to make the relation between Mazur’s bounds
and the classical descent as clear as possible, let us recast some of the classical picture in terms of étale
cohomology. Consider an abelian variety A/Q and let A be its Néron model over Z. We will study p-descent
on A for p a prime. Choose N ∈ Z so that A has good reduction outside of primes dividing N and so
that p|N . Then A/Z[1/N ] is an abelian scheme and [p] : A → A is étale (and surjective) over Z[1/N ].
Consequently, we have an exact sequence of étale sheaves on Spec(Z[1/N ]):

0 → A[p] → A
p
−→ A → 0.

From the long exact cohomology sequence, one extracts

0 → A(Z[1/N ])/pA(Z[1/N ]) → H1
ét(Z[1/N ],A[p]) → H1

ét(Z[1/N ],A)[p] → 0.

The first term is simply A(Q)/pA(Q) by the Néron mapping property. The second and third terms can be
interpreted classically: H1

ét(Z[1/N ],A[p]) is naturally the group of classes in H1(Q, A[p]) that are unramified
away from N and ∞; similarly H1

ét(Z[1/N ],A) consists of classes in H1(Q, A) that are unramified (and hence
split) away from N and ∞. Concretely, this exact sequence from étale cohomology yields upper bounds on
the Selmer group by imposing the condition “unramified” on classes at the primes not dividing N and no
conditions at infinity and at primes dividing N . Mazur’s approach is to replace the étale cohomology over
Z[1/N ] with fppf cohomology over Z, imposing conditions at all finite places to obtain a better estimate on
the size of the Selmer group.

3. Mazur’s fppf descent

In this section, we give a typical example of using the fppf site on Spec(Z) to bound ranks. The theorem
below is adapted for application to the Eisenstein quotients of modular Jacobians; refinements for elliptic
curves can be found in §9 of [Maz72]. The notation and terminology below follow §I.1 of [Maz77]. Fix a
prime number N and a second, distinct prime p. Here is the main result:
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Theorem 3.1. Let A/Q be an abelian variety with good reduction outside of N and purely toric reduction

at N . Suppose moreover that A[p] is admissible, where A/Z is the Néron model. Then A/Q has rank 0.

For the definition of admissible, see §I.1 of [Maz77]. Before we start the proof, note that the hypotheses
and the conclusion depend only on A/Q up to Q-isogeny. For admissibility, one can use the Brauer-Nesbitt

theorem, which shows that the factors in a composition series of the Galois module A[p](Q) depend only
on the Galois representation on Vp(A/Q) and hence only on A/Q up to isogeny. One can find the isogeny
properties of the two hypotheses on the reduction of A/Q in [BLR90].

Proof. Before we begin to study A, let us replace it with A × A∨. It suffices, of course, to prove that the
rank of (A ×A∨)(Q) is 0. Since the hypotheses of the theorem depend only on A/Q up to isogeny, they are
satisfied by A∨

/Q and hence also by A×A∨ over Q. The advantage of this adjustment is that we can assume

that A[p]/Z[1/N ] is its own Cartier dual, which is used below to compute α. There are several variants on
this trick that one could use in its place.

Let A0
/Z be the (fiberwise) identity component of A/Z, which is the open subgroup of A/Z obtained by

removing the non-identity components of the fiber over (N). The semi-abelian reduction hypothesis ensures
that the multiplication-by-p map [p] : A0 → A0 is surjective (and flat by the “miracle flatness theorem”),
and so we have the following exact sequence of fppf sheaves on Spec(Z):

0 → A0[p] → A0 p
−→ A0 → 0.

Passing to the long exact sequence in fppf cohomology over Z, one extracts the short exact sequence

0 → A0(Z)/pA0(Z) → H1
fppf(Z,A0[p]) → H1

fppf(Z,A0)[p] → 0.

As in [Maz77], let hi = logp #Hi
fppf(Z,A0[p]). Note that A0(Z) has finite index in A(Z) = A(Q), and

so A0(Z) is isomorphic to Zρ ⊕ T , where ρ is the rank of A/Q and T is a finite abelian group. Therefore,

A0(Z)/pA0(Z) is isomorphic to (Z/pZ)ρ+h0

; consequently, we have ρ+h0 ≤ h1, or, equivalently, ρ ≤ h1−h0.
The group scheme A0[p] is admissible by assumption, and so by [Maz77] Proposition 1.7, we have h1−h0 ≤

δ − α, where δ (defect) and α (additive part) are as defined on page 47 of [Maz77]. These invariants are
easy to compute: since A0

/FN
is a torus, A0

/FN
[p] has rank pg, where dim(A) = g, and so δ = 2g − g = g. To

evaluate α, it suffices to recall that A0[p]/Z[1/N ] = A[p]/Z[1/N ] is its own Cartier dual (because of the trick
at the start of the proof); from this self-duality, it follows that the number of Z/pZ’s in a composition series

is the same as the number of µp’s, and so (recalling admissibility) α = 2g/2 = g. Consequently, we have
ρ ≤ δ − α = g − g = 0, and the theorem is proved. �

We have the following immediate corollary of the theorem:

Corollary 3.2. Let E/Q be an elliptic curve with good reduction outside of N and multiplicative reduction

at N . If E/Q has a non-zero torsion point of order prime to N , then it has rank 0.

Proof. Choose a prime p 6= N so that E/Q has a non-zero p-torsion point P . Then the Galois module E[p](Q)
contains Z/pZ as a sub-Galois module (with generator P ). The Weil pairing identifies the quotient Galois
module with µp, and so E [p] is admissible (see page 47 of [Maz77]). Now the theorem applies to show E/Q

has rank 0. Note, incidentally, that the trick at the beginning of the proof of the theorem is unnecessary in
this case, since the scheme-theoretic Weil pairing identifies E [p]/Z[1/N ] with its Cartier dual. For computing
α, it suffices, in fact, to check the geometric fiber at p, where one can even use the standard Weil pairing
discussed in [Mum70] to complete the argument. �

4. Tate-normal-form examples

Using the special forms for elliptic curves that Bryden and I discussed last term (and which are also used
in [Kub76] and [Con95]), one can produce a few nice examples to which the corollary applies. My method
for finding good parameters in the equations below was to find discriminants that match curves I know exist
from the theory of modular Jacobians. (As I explained in my notes from last term, it is not too difficult
to identify examples produced by this method with those coming from modular curves. Of course by fancy
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theorems, one knows that such identifications can be made in general.) By the corollary, the following elliptic
curves (presented in Weierstrass form) have rank 0 over Q:

y2 + 2xy + 19y = x3, ∆ = −193, where (0, 0) is 3-torsion;

y2 + 10xy + 37y = x3, ∆ = 373, where (0, 0) is 3-torsion;

y2 + xy − y = x3 − x2, ∆ = 17, where (0, 0) is 4-torsion;

y2 − y = x3 − x2, ∆ = −11, where (0, 0) is 5-torsion;

y2 − 10xy − 11y = x3 − 11x2, ∆ = −115, where (0, 0) is 5-torsion.

The results of [Maz72] apply to some cases of additive reduction and to some cases when there are several
places of bad reduction; most of the examples of elliptic curves over Q with one or two places of bad reduction
and non-zero torsion points can be checked readily to have rank 0 using the bounds there.

5. Modular-curves examples

This section applies Theorem 3.1 to factors of Jacobians of modular curves. As I discussed in my notes
last term, there is a proper, smooth model of X0(N) over Z[1/N ]; one concludes from this, using the relative
theory of Pic0, that J0(N)/Q has good reduction away from N . Later this term, we will study the geometry
of a modular model of X0(N) over Z, which has singularities in its fiber over (N). One can analyze these
singularities using modular techniques; the ultimate conclusion is that J0(N)/Q has purely toric reduction
at N . (One can compute the component group and character group of the bad fiber as well.) Recall that in
my notes from last term, I checked this fact directly for J0(11)/Q by finding an explicit Weierstrass equation
(using Tate normal form and the cusps). In the following, I will analyze the torsion of quotients of J0(N)/Q

following [Maz77].

5.1. Three special cases. Before turning to the general case, we consider three special cases, namely
J0(N)/Q with N = 11, 17, 19. These are the three cases where J0(N) (for N prime) is an elliptic curve. (If one
drops the condition that N be prime, one finds elliptic curves for N = 11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36,
and 49.) By the above paragraph, we know that these J0(N)/Q have good reduction outside of N and
multiplicative reduction at N . We produce a non-zero torsion point (of order prime to N) on each, which
shows that they all have rank 0 over Q.

Recall that X0(N)/Q has two cusps, both Q-rational, usually called 0 and ∞. In modular terms, 0 is
the N -gon cusp, and ∞ is the 1-gon cusp. We consider the point c = [0] − [∞] ∈ J0(N)(Q). Since X0(N)
does not have genus 0, we know c 6= 0. Furthermore, since ∆(q)/∆(qN ), which is a rational function on
X0(N)/C, has divisor (N − 1)([0]− [∞]), the point c has order dividing N − 1. In particular, it is a non-zero
torsion point of order prime to N on J0(N)/Q. The existence of this torsion point allows us to apply the
corollary and thus to conclude that J0(N)/Q has rank 0 for N = 11, 17, 19. (It is no accident, of course, that
these N show up in the discriminants of the Tate-normal-form examples. The prime 37 occurs among those
examples, since the Eisenstein quotient of the 2-dimensional J0(37)/Q is an elliptic curve.)

5.2. The general case. Now consider the general case of J0(N)/Q for a prime N such that X0(N) does
not have genus 0. The analysis of the previous paragraph applies to show that c = [0] − [∞] is a non-zero
(rational) torsion point of order dividing N − 1. One can say a bit more about it: since the Atkin-Lehner
involution wN switches 0 and ∞, we have wNc = −c. Furthermore, it is easy to see that for primes l 6= N ,
one has Tl[0] = (l + 1)[0] and Tl[∞] = (l + 1)[∞], and so Tlc = (l + 1)c. Consequently, the Hecke algebra T

(which is generated by the Tl and wN = −UN) acts on c via its Eisenstein quotient; indeed, the Eisenstein
ideal of T is generated by the relations wN = −1 and Tl = l + 1 for all primes l 6= N . Since c has order
dividing N−1, we see that there is an Eisenstein prime ideal of T, i.e. a prime ideal containing the Eisenstein
ideal, with residue characteristic prime to N . (If one prefers, it is possible to construct such a prime ideal
by the dual technique of analyzing the normalized Eisenstein series on Γ0(N).)

As Brian explained in his introductory lecture (using the Eichler-Shimura construction), the existence
of such a prime ideal of T with residue characteristic p 6= N implies the existence of a non-trivial isogeny
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factor A/Q of J0(N)/Q such that A[p]/Z is admissible. This factor A/Q therefore satisfies the hypotheses of
Theorem 3.1 and so has rank 0 over Q.
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