REDUCTION OF MODULAR JACOBIANS AT THE BAD PRIME

SREEKAR M. SHASTRY

ABsTrACT. The goal of these notes is to show that J° ® I}, is a torus and to
describe the action of Frobenius on it, where J is the Néron model over Z of
the modular Jacobian Jo(p)g-

1. INTEGRAL MODELS OF MODULAR CURVES

1.1 Let MO(N)Z[l/N] be the “compactified coarse moduli scheme” associated
to the problem of classifying pairs (E,C) where E is an elliptic curve over a
Z[1/N]-scheme and C is a cyclic étale subgroup scheme of order N. It is a smooth
proper curve over Z[1/N] with geometrically connected fibers. One knows that
My(1) ~ P}, is “the j-line.” There is a natural map Mo(N)znn——Mo(1)z1/n
gotten by forgetting the cyclic subgroup. We define My(N)z to be the normalization
of My(1) in Mo(N)z1/n7- Now we define Xo(V) to be the minimal regular proper
model of My(N) over Z—it is the unique scheme which is regular, proper, and
flat over Z with generic fiber My(N)g such that for any other regular and proper
scheme € flat over Z with generic fiber My(N)q, the birational map C—— Xy (V)
is a morphism; cf. [4]. See Figure 1. We will not need Xo(N) in the sequel.

Henceforth, we take N to be a prime number p. We have the following description
of My(p):

1.2 THEOREM. (a) My(p) is smooth over Z away from the supersingular points
in characteristic p.

(b) My(p)g_ is the union of two copies of My(1)p = IPIle crossing transversally
at the supersiﬁgular points. Hence My(p) has semi-stable reduction at p.

(c) Let x = j(E) be a supersingular point in My(1)(IF,). Then x on the first copy
of My(1)g is glued to 2(P) on the second copy. In fact, if we let w be the involution
(E,C) — (E/C,E[p|/C), ® : My(1) = Mo (p) be E — (E,ker(F : E — E®)), and
¢ be the contraction map (E,C) + ¢(E) that forgets C and contracts into nodal
cubics (=1-gons) those geometric fibers of E which are n—gons (n > 1), we have

e
<

with ® and w® closed immersions whose images are the two irreducible components
of MO (p) Fp-

Mo(1)g
>
Mo(p)r,
Mo(1)g

Mo(1)g
Mo(1)g
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M0(11)1F11 XO(II)FH

Mo (29)Fsy X0(29)ma

FIGURE 1. Special fibers of integral models and their minimal reg-
ular proper models.

(d) Let x = j(E) € My(p)(IF,) be a supersingular point (in fact all such are
rational over IF 2 ; see [9], 12.5.4), and put k := %#AutE. Then Xo(p)r, is obtained
by gluing copies of My(1)F, at corresponding supersingular points as above, and
then replacing a crossing by k — 1 projective lines.

(e) The arithmetic genus of My(p)r, is

#{supersingular z € Mo (1)(F,)} — 1.

See [5], pp. 144-148.

2. REVIEW OF THE RELATIVE PICARD FUNCTOR

2.1 Fix 7: X——5. Let
PiCX/S = Rl’iT*Gm

with respect to the fppf topology on S. It is the sheafification of the functor
Px /s which associates to an S—scheme T' the group HY(T, 0F). More concretely,
if 7: X——S is proper, flat, finitely presented, has geometrically connected
fibers, and we are given a section & : S——X then Picx,s(T') is the set of iso-
morphism classes of pairs (£, ) such that . is an invertible sheaf on X7 and
A Op—— (e x idr)*.Z is an isomorphism; A is called a rigidification. The rigid-
ification has the effects of killing invertible sheaves coming from 7" and eliminating
automorphisms. It turns out that the set of isomorphism classes of such pairs
(&, \) is then equal to Pic(Xt)/Pic(T). See [3], p. 204.
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2.2 By 2.4(b) below, if X is a proper scheme over a field k then Picx is rep-
resented by a countable disjoint union of quasi—projective k—schemes; the identity
component of this k—group is denoted Picg( Ik It is geometrically connected.

For a general base S, we define the relative identity component Picg( /s C Picx/s
to be the subfunctor whose T—points are those £ € PICX/S( ) such that for all s € S
and all geometric points £ — 7' whose image is s, & € Pch Ji(s) k(D))

If S is a proper and flat curve over a field k, then Pic% /i consists of all elements
of Picx/, whose restriction to every irreducible component of X ® k has degree
zero. See [3], p. 239.

The preceeding is a variant of a general definition of identity components for a
smooth S—group scheme G: G is defined to be the open subscheme J .4 GY. See
[EGA IV; 15.6.5].

Before proceeding, let’s give the

2.3 DEFINITION. A semi-stable curve of genus g over S is a proper, flat, and
finitely presented morphism f: X——S such that

(i) The fibres X5 over geometric points 5 of S are reduced, connected, and one—
dimensional,

(ii) Xz has only ordinary double points as singularities, and

(ii}) b (Xs, Ox,) = g.

The importance of such curves in the theory of moduli is due to the “semi-stable
reduction theorem” which we will not state here. See the article by Abbes in [1]
for a relatively accessible treatment.

2.4 Concerning the representability of Picx,s we state only what we’ll need later
on as

THEOREM. (a) If f : X——S is a smooth projective curve with geometrically
connected fibers, then Picy,g is represented by a separated scheme, and moreover
PICX/S is an abelian scheme.

(b) If X is proper over a field k then Picx /H is represented by a countable d1SJo1nt
union of quasi—projective k—schemes. If X is a proper curve over k, then PICX/k is
a smooth k—group scheme.

(c) If X is a semi-stable curve over S then Pic% /s 1s represented by a smooth
and separated S—scheme which is, moreover, semi-abelian (i.e. all of its fibers are
extensions of affine tori by abelian varieties).

(d) If p > 3 is a prime then Pic?\/lo (»)/2 18 represented by a smooth and separated
group scheme over 7.

These are special cases of results due to Grothendieck, Murre—QOort, Deligne, and
Raynaud, respectively. See [3], p. 210, p. 211, p. 232, p. 259, p. 288. For (d), also
see [12]. In 4.2, we will prove the semi—abelian assertion of (c) as we will need the
finer information that the proof provides.

2.5 REMARK. When X is a proper curve over a field k, so that Picg(/s is
represented by a smooth group scheme, it will also be called the Jacobian of X.

2.6 Finally, let’s recall Weil’s restriction of scalars functor. Let f: T——S be
a morphism of schemes. For a T—scheme X, we define f.X = Resy/sX to be the
functor on S—schemes

Ul—)X(U XST).
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A suitable adjunction formula tells us that there is a natural morphism of functors
X%RQST/S(XT) .

We pass over in silence all questions concerning representability. See [3], Ch. 7, §6.
However, let’s mention that if k'/k is a finite Galois extension of fields then for a
k'-scheme X, Res /X is the Galois descent of the k'~scheme

I xe.,

ceGal(k' /k)

with respect to the evident descent data.

3. COMPARISON OF THE PICARD SCHEME OF Mj(p) AND THE NERON MODEL OF
THE JACOBIAN Jy(p)g

3.1 Fix the following notations:

p > 3 a prime number

Jo(p)g the Jacobian of My(p)g

P .= PiCMo(p)/Z

PO = PiC(J)WO(p)/Z

d the Néron model over Z of Jo(p)g
90 its identity component.

The Néron mapping property gives us a unique morphism ¢ : P°——3° which
extends the identity map on generic fibers. The following theorem reduces the
study of H?Fp to the study of Plgp.

3.2 THEOREM. The map c is an isomorphism.

PrROOF. The statement is obvious over Z[1/p] as My(p) is a smooth proper
curve over Z[1/p]. Hence, by “chasing denominators” [EGA IV3 8.10.5] we may
work over Z,. By 1.2(b) and 4.2, PIBP is a semi-abelian variety. Now use the
following proposition. O

3.3 PROPOSITION. Let R be a discrete valuation ring with field of fractions K
and residue field k. Let Ax be an abelian variety with Néron model A and let B be
a smooth and separated R—group with generic fiber Ax. Assume that By, is a semi—
abelian variety. Then the canonical morphism B——— A is an open immersion and
is an isomorphism on identity components.

For the proof see [3], p. 182.

4. THE TORIC PART OF THE JACOBIAN OF A SEMI-STABLE CURVE

4.1 Given a semi-stable curve X over a field k, write S for the set of non—smooth
points of X ® k and I for the set of irreducible components of X ® k. Define a
graph I'(X) with I as the set of vertices and S as the set of edges: a singular point
s lying on the irreducible components X;, X; (i = j is allowed) defines an edge in
the graph. It is a general fact in the theory of semi—stable curves that all s € S are
rational over a separable extension of k.

4.2 PROPOSITION. Let X be a semi—stable curve over a field k with normalization
7 X——X . Then Pic% /k 1s canonically an extension of an abelian variety by a
torus:

1 T Pic%/,——Pic%

/k*ﬂ.
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Furthermore, the rank of T equals the first Betti number of the graph I'(X).
ProoFr. Let X = |JX; be a decomposition of X into irreducibles, so the nor-
malization is

Then Picg? . 1s an abelian variety over k since the )Z'Z are proper and smooth.
We have the exact sequence of sheaves on Xg;

(1) IHGm/XHW*Gm/)?HQHI.

Write Sy for the finite set of singular points of X as a k—curve, so that 2 is
supported on Si. Fix x € Si. Naively, one expects that the pullback of (1) along
Spec k(x)——X would give rise to the sequence on (Spec k(x))st

1—— Gy — Resp@)/n(e) G X Resp@y k(o) G —— 2, —— 1
where Z, 7' are the two points of X lying over z (see 4.3). Proceeding formally, we
have that k(z) = k(Z) = k(Z") by [6], p- 184, so that this sequence is just

2) 1 G 2@, X G 2, 1.

Let f: X——Speck be the structure map. Then we have that
[+ 2 ~ H Resg(z)/xGm
€Sy

is a k-torus of rank Y [k(z) : k] = #S. This isomorphism is not canonical as it
depends on an ordering of the points {Z,z'} for each = € Sy.
Apply f« to (1) and consider the resulting sequence of higher direct images:

1—— fiGpyx —— G 5 ——— .2 )

Lle*Gm/X —— (R f)mG,, g — R f.2 — -

Now note that:—

(a) f«Gpyx = Gy since X is proper and geometrically connected.

(b) R!'f.2 = 0 since the support of 2 is zero dimensional.

(c) (R f.)m. G,, g = Picg, by the conjunction of the Leray spectral sequence
and the fact that if f : X'——— X is any finite morphism and .% is an abelian sheaf
on X¢; then Rif,.Z =0Vi>1 [6], p. 32.

Hence we may rewrite the above as

(3) IHGm/k*)f*W*Gm/f( f*e@ T 1
1 T Pic% Picg?/k*ﬂ,

where we have restricted to the identity component. Thus T', being a quotient of a
torus, is a torus.

For the second assertion of the proposition, we claim that by extending scalars
to ks, the exact sequence (3) becomes

(4) 1— G — [[CGn— [[ G — T —1
i€l z€S
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As Pic commutes with base change, the only point to be checked is that we may
still label the product on the left by I. This will be the case if (X)g, = (Xg,)™,
i.e. if normalization commutes with étale base change. This is so by [EGA IV,
18.12.15).

By (4), the rank of T'is #5 — #I + 1 = #edges — #vertices + 1. This is the first
Betti number of I'(X) by elementary topology. O

4.3 REMARK. The above proof is incomplete. The reason is as follows. Suppose
we have a morphism f:Y——X and a commutative group scheme Gx over X.
As usual, we obtain a group scheme Gy := G xx Y on Y. Hence, by means of their
functors of points, we obtain abelian sheaves again denoted Gx,Gy on Xg, Yat,
respectively. On the other hand, we also have the abelian sheaf f*Gx on Ye. There
is a canonical morphism ¢ : f*Gx——Gy . It is not in general an isomorphism.
However, it is an isomorphism if either f or Gx is étale, neither of which is the case
in the above proof. For example, the sheaf G := G,,, on (Spec C)¢; is isomorphic to
the constant sheaf C* on (Spec C)g. If f : Spec C(t)——Spec C is the obvious
map, then f*G is isomorphic to the constant sheaf C* on (Spec C©(t))es. This is of
course not the same as Gy, on (Spec C(t))s. See [11], pp. 68-69.

To repair the proof of 4.2, consider the divisor D := Epesk P supported on the
singular locus and let 7 : D——X be the inclusion. Then, for any scheme S over
k, one considers the following variant of (1):

IHGm/XsH(WS)*Gm/XSH(Z‘S)*Gm/DSHI‘

One must then show that (is).G,,/p, coincides on Sg; with the points of a torus,
compatibly as S varies through (schemes/k). We will not do this. For the details,
see the notes in the margin on page 246 of Professor Conrad’s copy of [3].

4.4 Apply X( ) := Homp_gp( -, Gim) to the exact sequence (2) to obtain

1 7 (z) 7.8+ Z 1

where Z'(z) := X(Z2;) and B, is the (two element) set of analytic branches of X
at z. Then (4) becomes

0—X(T) —PZ) —Pz2—7—0
z€S i€l

where the middle arrow sends a branch to the irreducible component containing it.
The Galois action on X(T") coincides with the action induced by the natural Galois
actions on the sets S, I, and the B, for x € S.

In particular, just as the proof of 4.2 shows that there is a Galois—equivariant
isomorphism

(5) Ty, ~ HY(I'(X),7Z) @ G,

we also have

compatibly with Galois actions.
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4.5 Explicitly in the case of the curve My(p)r,, it follows from 1.2(a) that its
Jacobian is a torus, and in fact the proof of 4.2 shows that

Py~ H Resy, (2)/r, Gm /Gm

IES]FP

where the G,, is diagonally embedded. Moreover, the restrictions of scalars are
from at worst quadratic extensions by 1.2(d).

5. THE ACTION OF FROBENIUS

5.1 Let S be a scheme of characteristic p, i.e. the canonical map S——SpecZ
factors through SpecF,. Let F : S——S be the absolute Frobenius morphism.
It is defined to be the identity on the underlying topological space and the p—th
power on Os. Let X be a scheme over S. We define the relative Frobenius Fx/g,
as well as X(P)_ by the diagram

F r
s x () P

Ve I

S—>

For z € X, we also write z(®) for Fx/s(x).

5.2 Let X and X' be proper curves over a field k of characteristic p. For a mor-
phism f: X—— X' over k, write Pic(f) for the induced map Pch,/kHPch/k
Also, we write Fpjc/y for the relative Frobenius on Pch Ik

5.3 PROPOSITION. Let X be a generically smooth, geometrically connected, and
proper curve over a field k of characteristic p. Then

Fpic/k o Pic(Fxi) = [p]

on (PICX/k)(p) Pch(,,)/k

PROOF. We may assume without loss that k = k (cf. [5] 1.7.4). As Picg(/k is
smooth it suffices to check the identity on k—points (the k—points are dense; [3] p.
42). We use the fact that every invertible sheaf .2 on X has the form &x (D) for
a Cartier divisor D such that supp(D) is contained in the smooth locus X3™ of X
(see the discussion after Theorem 7, p. 258 of [3]).

Let .# be an invertible sheaf on X (P) of degree zero on each irreducible compo-
nent. We may assume by additivity that £ is of the form Ox (zy (p) :v(()p )) where
2P 2P € X®)(k) actually lie in the smooth locus of a common 1rreducible com-
ponent C® of X@),

Let iy, : C’sm*ﬂ’lcxﬂ» be the k—morphism z — Ox (z — xo). Since C*™ is
irreducible and i,,(z¢) = 0, i,, factors through Pch/k

Before proceeding any further, let’s note that



8 SREEKAR M. SHASTRY

(a) i = igfi)), i.e. the following diagram commutes
0

(Pick /)"

(iwo)(m
(Csm)(P)

im(()p) 0
PICX(P)/k

For the proof, we have that
i () c P [2P) — CU(()p)]
]
(imo)(”) 2P —s pr* [x — zo)

where pr is as in 5.1. But pr*[z] = [z()] so that [z(P) — CU(()p)] = pr*[z — xo], as
claimed.

(b) Since raising to the p—th power commutes with any ring map we have the
commutativity of

X%Y

Fx/k J/FY/k

X W vy (p)

for any morphism of f: X——Y of schemes of characteristic p.
Returning to the proof of the proposition, we have

(FPic/k o PiC(FX/k))(czﬂ) = FPic/k( )*(/k(g))
= Fpic/k(Ox (Fx )i (Fx/k(71) — Fx/k(20))))

Now using the fact that Fx/, is finite flat and purely inseparable of degree p over
the smooth locus, the last term above equals Fpic i (0x (p(71 —0))). Then we have

Fpic/k(Ox (p(z1 — 20))) = [Pl © Fpic/kiz, (T1)
= [Pl od 0 (Fx/k(21))

=[plo izgp>(w§p))

_ é’x(xﬁ”) _ 1.(()?))@1’
= @op
as required. a

5.4 Put X := My(p)r,. Then by 1.2, I'(X) has two vertices and an edge for
each geometric supersingular point. See Figure 2.
The following is Theorem A.1.(a) of [10].
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FIGURE 2. I'(Mo(p)F,)-

5.5 THEOREM. Fpjc/p, = —pw.
ProoF. If we could show that Pic(Fx/p,) = —w then Fpi./p, o (~w) = p by

5.3. The theorem would follow since w is an involution.

C

Let E be an ordinary elliptic curve over I, so that E[p] ~ Z/pZ x p, and put
=ker(Fgp, : E — E®). C is the unique connected subgroup of E of order p; it

is isomorphic to p,. Also, Fr, induces an isomorphism E/C' ~ E®) and E[p]/C
is étale. See [5], p. 27. Hence w®(E) = w(E,C) = (E/C, E[p]/C) ~ (E®,C") for
some étale C' < E®). It now follows from 1.2(c) that w exchanges the vertices of

I(

X) and sends an edge « to the edge z(?).
On the other hand, Fx/p, fixes the vertices and sends an edge = to the edge

z(P). We are done by (5). O

6

[7

[9
10

[11

(12]

REFERENCES

] Courbes semi-stables et groupe fondamental en géométrie algébrique, volume 187 of Progress
in Mathematics. Birkhduser Verlag, Basel, 2000.

] Armand Borel. Linear algebraic groups, volume 126 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1991.

] Siegfried Bosch, Werner Liitkebohmert, and Michel Raynaud. Néron models, volume 21 of
Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Springer-Verlag, Berlin, 1990.

] Brian Conrad. Minimal Models for Elliptic Curves. Unpublished.

| P. Deligne and M. Rapoport. Les schémas de modules de courbes elliptiques. In Modular

functions of one wvariable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp,

1972), pages 143-316. Lecture Notes in Math., Vol. 349. Springer, Berlin, 1973.

Eberhard Freitag and Reinhardt Kiehl. Etale cohomology and the Weil conjecture, volume 13

of Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Springer-Verlag, Berlin, 1988.

Alexandre Grothendieck. Eléments de géométrie algébrique. IV. Etude locale des schémas et

des morphismes de schémas. Troisieme partie. Inst. Hautes Etudes Sci. Publ. Math., (28):255,

1966.

Alexandre Grothendieck. Eléments de géométrie algébrique. IV. Etude locale des schémas

et des morphismes de schémas. Quatrieme partie. Inst. Hautes Etudes Sci. Publ. Math.,

(32):361, 1967.

Nicholas M. Katz and Barry Mazur. Arithmetic moduli of elliptic curves, volume 108 of

Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1985.

] Barry Mazur. Modular curves and the Eisenstein ideal. Inst. Hautes Etudes Sci. Publ. Math.,
(47):33-186 (1978), 1977.

| James S. Milne. Etale cohomology, volume 33 of Princeton Mathematical Series. Princeton

University Press, Princeton, N.J., 1980.

Michel Raynaud. Jacobienne des courbes modulaires et opérateurs de Hecke. Astérisque,

(196-197):9-25 (1992), 1991.



