REDUCTION OF MODULAR JACOBIANS AT THE BAD PRIME

SREEKAR M. SHAISTRY

Abstract. The goal of these notes is to show that $\mathcal{P} \otimes \mathbb{F}_p$ is a torus and to describe the action of Frobenius on it, where β is the Néron model over \mathbb{Z} of the modular Jacobian $J_0(p)_{\mathbb{Q}}$.

1. Integral Models of Modular Curves

1.1 Let $M_0(N)_{\mathbb{Z}[1/N]}$ be the “compactified coarse moduli scheme” associated to the problem of classifying pairs (E,C) where E is an elliptic curve over a $\mathbb{Z}[1/N]$-scheme and C is a cyclic étale subgroup scheme of order N. It is a smooth proper curve over $\mathbb{Z}[1/N]$ with geometrically connected fibers. One knows that $M_0(1) \cong \mathbb{P}^1_{\mathbb{Z}}$ is “the j-line.” There is a natural map $M_0(N)_{\mathbb{Z}[1/N]} \to M_0(1)_{\mathbb{Z}[1/N]}$ gotten by forgetting the cyclic subgroup. We define $M_0(N)_{\mathbb{Z}}$ to be the normalization of $M_0(1)$ in $M_0(N)_{\mathbb{Z}[1/N]}$. Now we define $X_0(N)$ to be the minimal regular proper model of $M_0(N)$ over \mathbb{Z}—it is the unique scheme which is regular, proper, and flat over \mathbb{Z} with generic fiber $M_0(N)_{\mathbb{Q}}$, such that for any other regular and proper scheme \mathcal{C} flat over \mathbb{Z} with generic fiber $M_0(N)_{\mathbb{Q}}$, the birational map $\mathcal{C} \to X_0(N)$ is a morphism; cf. [4]. See Figure 1. We will not need $X_0(N)$ in the sequel.

Henceforth we take N to be a prime number p. We have the following description of $M_0(p)$:

1.2 Theorem. (a) $M_0(p)$ is smooth over \mathbb{Z} away from the supersingular points in characteristic p.

(b) $M_0(p)_{\mathbb{F}_p}$ is the union of two copies of $M_0(1)_{\mathbb{F}_p} = \mathbb{P}^1_{\mathbb{F}_p}$ crossing transversally at the supersingular points. Hence $M_0(p)$ has semi-stable reduction at p.

(c) Let $x = j(E)$ be a supersingular point in $M_0(1)_{\mathbb{F}_p}$. Then x on the first copy of $M_0(1)_{\mathbb{F}_p}$ is glued to x^p on the second copy. In fact, if we let w be the involution $(E,C) \mapsto (E/C, C[p]/C)$, $\Phi : M_0(1) \to M_0(p)$ be $E \mapsto (E, \ker(F : E \to E^p))$, and c be the contraction map $(E,C) \mapsto c(E)$ that forgets C and contracts into nodal cubics ($\neq 1$-gons) those geometric fibers of E which are n-gons ($n > 1$), we have

\[
\begin{array}{ccc}
M_0(1)_{\mathbb{F}_p} & \Phi & M_0(1)_{\mathbb{F}_p} \\
\downarrow \quad \downarrow & \quad \downarrow & \quad \downarrow \\
M_0(p)_{\mathbb{F}_p} & \quad w\Phi & \quad M_0(p)_{\mathbb{F}_p} \\
\leftarrow \quad \downarrow c & \quad \downarrow \quad \downarrow c w & \quad \rightarrow \\
M_0(1)_{\mathbb{F}_p} & \quad M_0(1)_{\mathbb{F}_p} & \\
\end{array}
\]

with Φ and $w\Phi$ closed immersions whose images are the two irreducible components of $M_0(p)_{\mathbb{F}_p}$.

1
(d) Let $x = j(E) \in M_0(p)(\overline{\mathbb{F}}_p)$ be a supersingular point (in fact all such are rational over \mathbb{F}_{p^2}; see [9], 12.5.4), and put $k := \frac{1}{2} \# \text{Aut} E$. Then $X_0(p)_{\mathbb{F}_p}$ is obtained by gluing copies of $M_0(1)_{\mathbb{F}_p}$ at corresponding supersingular points as above, and then replacing a crossing by $k - 1$ projective lines.

(e) The arithmetic genus of $M_0(p)_{\mathbb{F}_p}$ is

$$\# \{\text{supersingular } x \in M_0(1)(\overline{\mathbb{F}}_p)\} - 1.$$

See [5], pp. 144–148.

2. Review of the relative Picard functor

2.1 Fix $\pi : X \longrightarrow S$. Let

$$\text{Pic}_{X/S} := R^1\pi_*\mathcal{O}_X$$

with respect to the fppf topology on S. It is the sheafification of the functor $P_{X/S}$ which associates to an S-scheme T the group $H^1(T, \mathcal{O}_X^\times)$. More concretely, if $\pi : X \longrightarrow S$ is proper, flat, finitely presented, has geometrically connected fibers, and we are given a section $\varepsilon : S \longrightarrow X$ then $\text{Pic}_{X/S}(T)$ is the set of isomorphism classes of pairs (\mathcal{L}, λ) such that \mathcal{L} is an invertible sheaf on X_T and $\lambda : \mathcal{O}_T \longrightarrow (\varepsilon \times \text{id}_T)^*\mathcal{L}$ is an isomorphism; λ is called a rigidification. The rigidification has the effects of killing invertible sheaves coming from T and eliminating automorphisms. It turns out that the set of isomorphism classes of such pairs (\mathcal{L}, λ) is then equal to $\text{Pic}(X_T)/\text{Pic}(T)$. See [3], p. 204.
2.2 By 2.4(b) below, if X is a proper scheme over a field k then Pic_X/k is represented by a countable disjoint union of quasi-projective k-schemes; the identity component of this k-group is denoted Pic^0_X/k. It is geometrically connected.

For a general base S, we define the relative identity component $\text{Pic}^0_{X/S} \subset \text{Pic}_X/S$ to be the subfunctor whose T-points are those $\xi \in \text{Pic}_X/S(T)$ such that for all $s \in S$ and all geometric points $t \to T$ whose image is s, $\xi_s \in \text{Pic}^0_{X_s/k(s)}(k(t))$.

If S is a proper and flat curve over a field k, then $\text{Pic}^0_{X/k}$ consists of all elements of $\text{Pic}_{X/k}$ whose restriction to every irreducible component of $X \otimes k$ has degree zero. See [EGA IV$_3$ 15.6.5].

The preceding is a variant of a general definition of identity components for a smooth S-group scheme G: G^0 is defined to be the open subscheme $\bigcup_{s \in S} G^0_s$. See [EGA IV$_3$ 15.6.5].

Before proceeding, let's give the

2.3 DEFINITION. A semi-stable curve of genus g over S is a proper, flat, and finitely presented morphism $f : X \longrightarrow S$ such that

(i) The fibres X_s over geometric points s of S are reduced, connected, and one-dimensional,

(ii) X_s has only ordinary double points as singularities, and

(iii) $h^1(X_s, \mathcal{O}_{X_s}) = g$.

The importance of such curves in the theory of moduli is due to the "semi-stable reduction theorem" which we will not state here. See the article by Abbes in [1] for a relatively accessible treatment.

2.4 Concerning the representability of Pic_X/S we state only what we'll need later on as

THEOREM. (a) If $f : X \longrightarrow S$ is a smooth projective curve with geometrically connected fibers, then Pic_X/S is represented by a separated scheme, and moreover $\text{Pic}^0_{X/S}$ is an abelian scheme.

(b) If X is proper over a field k then $\text{Pic}_{X/k}$ is represented by a countable disjoint union of quasi-projective k-schemes. If X is a proper curve over k, then $\text{Pic}^0_{X/k}$ is a smooth k-group scheme.

(c) If X is a semi-stable curve over S then $\text{Pic}^0_{X/S}$ is represented by a smooth and separated S-scheme which is, moreover, semi-abelian (i.e. all of its fibers are extensions of affine tori by abelian varieties).

(d) If $p > 3$ is a prime then $\text{Pic}^0_{\text{Mod}(p)/\mathbb{Z}}$ is represented by a smooth and separated group scheme over \mathbb{Z}.

These are special cases of results due to Grothendieck, Murre--Oort, Deligne, and Raynaud, respectively. See [3], p. 210, p. 211, p. 232, p. 259, p. 288. For (d), also see [12]. In 4.2, we will prove the semi-abelian assertion of (c) as we will need the finer information that the proof provides.

2.5 REMARK. When X is a proper curve over a field k, so that $\text{Pic}^0_{X/S}$ is represented by a smooth group scheme, it will also be called the Jacobian of X.

2.6 Finally, let's recall Weil's restriction of scalars functor. Let $f : T \longrightarrow S$ be a morphism of schemes. For a T-scheme X, we define $f_* X = \text{Res}_{T/S} X$ to be the functor on S-schemes

$$U \mapsto X(U \times_S T).$$
A suitable adjunction formula tells us that there is a natural morphism of functors

$$X \longrightarrow \text{Res}_{T/S}(X_T).$$

We pass over in silence all questions concerning representability. See [3], Ch. 7, §6. However, let’s mention that if k'/k is a finite Galois extension of fields then for a k'-scheme X, $\text{Res}_{k'/k}X$ is the Galois descent of the k'-scheme

$$\prod_{\sigma \in \text{Gal}(k'/k)} X \otimes_{k} k',$$

with respect to the evident descent data.

3. **Comparison of the Picard Scheme of $M_0(p)$ and the Néron Model of the Jacobian $J_0(p)_\mathbb{Q}$**

3.1 Fix the following notations:

- $p > 3$ a prime number
- $J_0(p)_\mathbb{Q}$ the Jacobian of $M_0(p)_\mathbb{Q}$
- $P := \text{Pic}^0(M_0(p)/\mathbb{Z})$
- $P^0 := \text{Pic}^0(M_0(p)/\mathbb{Z})$
- \mathcal{J} the Néron model over \mathbb{Z} of $J_0(p)_\mathbb{Q}$
- \mathcal{J}^0 its identity component.

The Néron mapping property gives us a unique morphism $c : P^0 \longrightarrow \mathcal{J}^0$ which extends the identity map on generic fibers. The following theorem reduces the study of $P^0_{\mathbb{F}_p}$ to the study of $\mathcal{J}^0_{\mathbb{F}_p}$.

3.2 Theorem. *The map c is an isomorphism.*

Proof. The statement is obvious over $\mathbb{Z}[1/p]$ as $M_0(p)$ is a smooth proper curve over $\mathbb{Z}[1/p]$. Hence, by “chasing denominators” [EGA IV$_3$, 8.10.5] we may work over \mathbb{Z}_p. By 1.2(b) and 4.2, $P^0_{\mathbb{F}_p}$ is a semi-abelian variety. Now use the following proposition. \qed

3.3 Proposition. *Let R be a discrete valuation ring with field of fractions K and residue field k. Let A_K be an abelian variety with Néron model A and let B be a smooth and separated R-group with generic fiber A_K. Assume that B_k is a semi-abelian variety. Then the canonical morphism $B \longrightarrow A$ is an open immersion and is an isomorphism on identity components.*

For the proof see [3], p. 182.

4. **The Toric Part of the Jacobian of a Semi-Stable Curve**

4.1 Given a semi-stable curve X over a field k, write S for the set of non-smooth points of $X \otimes \overline{k}$ and I for the set of irreducible components of $X \otimes \overline{k}$. Define a graph $\Gamma(X)$ with I as the set of vertices and S as the set of edges: a singular point s lying on the irreducible components X_i, X_j ($i = j$ is allowed) defines an edge in the graph. It is a general fact in the theory of semi-stable curves that all $s \in S$ are rational over a separable extension of k.

4.2 Proposition. *Let X be a semi-stable curve over a field k with normalization $\pi : \hat{X} \longrightarrow X$. Then $\text{Pic}^0_{\hat{X}/k}$ is canonically an extension of an abelian variety by a torus:

$$1 \longrightarrow T \longrightarrow \text{Pic}^0_{\hat{X}/k} \longrightarrow \text{Pic}^0_X \longrightarrow 1.$$*
Furthermore, the rank of T equals the first Betti number of the graph $\Gamma(X)$.

Proof. Let $X = \bigcup X_i$ be a decomposition of X into irreducibles, so the normalization is

$$\hat{X} = \coprod \hat{X}_i \xrightarrow{\pi} X.$$

Then $\text{Pic}^0_{\hat{X}/k}$ is an abelian variety over k since the \hat{X}_i are proper and smooth.

We have the exact sequence of sheaves on X_{et}

$$1 \longrightarrow G_m/X \longrightarrow \pi_* G_m/\hat{X} \longrightarrow \mathcal{O} \longrightarrow 1.$$

(1) Write S_k for the finite set of singular points of X as a k-curve, so that \mathcal{O} is supported on S_k. Fix $x \in S_k$. Naively, one expects that the pullback of (1) along $\text{Spec} k(x) \longrightarrow X$ would give rise to the sequence on $(\text{Spec} k(x))_k$

$$1 \longrightarrow G_m \longrightarrow \text{Res}_{k(\hat{x})/k(x)} G_m \times \text{Res}_{k(\hat{x}')/k(x)} G_m \longrightarrow \mathcal{O}_x \longrightarrow 1$$

where \hat{x}, \hat{x}' are the two points of \hat{X} lying over x (see 4.3). Proceeding formally, we have that $k(x) = k(\hat{x}) = k(\hat{x}')$ by [6], p. 184, so that this sequence is just

$$1 \longrightarrow G_m \longrightarrow \text{Res}_{k(\hat{x})/k(x)} G_m \times G_m \longrightarrow \mathcal{O}_x \longrightarrow 1.$$

(2) Let $f : X \longrightarrow \text{Spec} k$ be the structure map. Then we have that

$$f_* \mathcal{O} \cong \prod_{x \in S_k} \text{Res}_{k(x)/k} G_m$$

is a k-torus of rank $\sum [k(x) : k] = \# S$. This isomorphism is not canonical as it depends on an ordering of the points $\{\hat{x}, \hat{x}'\}$ for each $x \in S_k$.

Apply f_* to (1) and consider the resulting sequence of higher direct images:

$$1 \longrightarrow f_* G_m/X \longrightarrow f_* \pi_* G_m/\hat{X} \longrightarrow f_* \mathcal{O} \longrightarrow \cdots$$

$$\longrightarrow R^1 f_* G_m/X \longrightarrow (R^1 f_*) \pi_* G_m/\hat{X} \longrightarrow R^1 f_* \mathcal{O} \longrightarrow \cdots$$

Now note that:

(a) $f_* G_m/X = G_m/k$ since X is proper and geometrically connected.

(b) $R^1 f_* \mathcal{O} = 0$ since the support of \mathcal{O} is zero dimensional.

(c) $(R^1 f_*) \pi_* G_m/\hat{X} = \text{Pic}^0_{\hat{X}/k}$ by the conjunction of the Leray spectral sequence and the fact that if $f : X' \longrightarrow X$ is any finite morphism and \mathcal{F} is an abelian sheaf on X_0, then $R^i f_* \mathcal{F} = 0 \forall i \geq 1$ [6], p. 32.

Hence we may rewrite the above as

$$1 \longrightarrow G_m/k \longrightarrow f_* \pi_* G_m/\hat{X} \longrightarrow f_* \mathcal{O} \longrightarrow T \longrightarrow 1$$

$$1 \longrightarrow T \longrightarrow \text{Pic}^0_{\hat{X}/k} \longrightarrow \text{Pic}^0_{\hat{X}/k} \longrightarrow 1,$$

where we have restricted to the identity component. Thus T, being a quotient of a torus, is a torus.

For the second assertion of the proposition, we claim that by extending scalars to k_S, the exact sequence (3) becomes

$$1 \longrightarrow G_m \longrightarrow \prod_{i \in I} G_m \longrightarrow \prod_{x \in S} G_m \longrightarrow 1$$

(4)
As Pic commutes with base change, the only point to be checked is that we may still label the product on the left by \(I \). This will be the case if \((\tilde{X})_{\mathit{et}} = (X_{\mathit{et}})^{\sim}\), i.e. if normalization commutes with \(\mathit{et} \) base change. This is so by [EGA IV, \(18.12.15 \)].

By (4), the rank of \(T \) is \#\(S - \#I + 1 = \#\text{edges} - \#\text{vertices} + 1 \). This is the first Betti number of \(\Gamma(X) \) by elementary topology.

4.3 REMARK. The above proof is incomplete. The reason is as follows. Suppose we have a morphism \(f : Y \rightarrow X \) and a commutative group scheme \(G_X \) over \(X \).

As usual, we obtain a group scheme \(G_Y := G \times_X Y \) on \(Y \). Hence, by means of their functors of points, we obtain abelian sheaves again denoted \(G_X, G_Y \) on \(X_{\mathit{et}}, Y_{\mathit{et}} \), respectively. On the other hand, we also have the abelian sheaf \(f^*G_X \) on \(Y_{\mathit{et}} \). There is a canonical morphism \(\phi : f^*G_X \rightarrow G_Y \). It is not in general an isomorphism. However, it is an isomorphism if either \(f \) or \(G_X \) is \(\mathit{et} \), neither of which is the case in the above proof. For example, the sheaf \(G := \mathbb{G}_m \) on \((\text{Spec } \mathbb{C})_{\mathit{et}} \) is isomorphic to the constant sheaf \(\mathbb{G}_m^{\infty} \) on \((\text{Spec } \mathbb{C})_{\mathit{et}} \). If \(f : (\text{Spec } \mathbb{C}(t))_{\mathit{et}} \rightarrow (\text{Spec } \mathbb{C})_{\mathit{et}} \) is the obvious map, then \(f^*G \) is isomorphic to the constant sheaf \(\mathbb{G}_m^{\infty} \) on \((\text{Spec } \mathbb{C}(t))_{\mathit{et}} \). This is of course not the same as \(\mathbb{G}_m \) on \((\text{Spec } \mathbb{C}(t))_{\mathit{et}} \). See [11], pp. 68-69.

To repair the proof of 4.2, consider the divisor \(D := \sum_{P \in S_{\mathit{et}}} P \) supported on the singular locus and let \(i : D \rightarrow X \) be the inclusion. Then, for any scheme \(S \) over \(k \), one considers the following variant of (1):

\[
1 \rightarrow \mathbb{G}_m / X_S \rightarrow (\pi_S)^{\ast} \mathbb{G}_m / \tilde{X}_S \rightarrow (i_S)^{\ast} \mathbb{G}_m / D_S \rightarrow 1.
\]

One must then show that \((i_S)^{\ast} \mathbb{G}_m / D_S \) coincides with \(S_{\mathit{et}} \) with the points of a torus, compatibly as \(S \) varies through \((\text{schemes}/k) \). We will not do this. For the details, see the notes in the margin on page 246 of Professor Conrad’s copy of [3].

4.4 Apply \(X(\cdot) := \text{Hom}_{\text{grp}}(\cdot, \mathbb{G}_m) \) to the exact sequence (2) to obtain

\[
1 \rightarrow \mathbb{Z}'(x) \rightarrow \mathbb{Z}^B \rightarrow \mathbb{Z} \rightarrow 1
\]

where \(\mathbb{Z}'(x) := X(\mathbb{Z}_x) \) and \(B_x \) is the (two element) set of analytic branches of \(X \) at \(x \). Then (4) becomes

\[
0 \rightarrow X(T) \rightarrow \bigoplus_{x \in S} \mathbb{Z}'(x) \rightarrow \bigoplus_{i \in I} \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow 0
\]

where the middle arrow sends a branch to the irreducible component containing it. The Galois action on \(X(T) \) coincides with the action induced by the natural Galois actions on the sets \(S, I \), and the \(B_x \) for \(x \in S \).

In particular, just as the proof of 4.2 shows that there is a Galois-equivariant isomorphism

\[
T_{\mathit{ks}} \simeq H^1(\Gamma(X), \mathbb{Z}) \otimes \mathbb{G}_m,
\]

we also have

\[
X(T) \simeq H_1(\Gamma(X), \mathbb{Z})
\]

compatibly with Galois actions.
4.5 Explicitly in the case of the curve $M_0(p)_{\mathbb{F}_p}$, it follows from 1.2(a) that its Jacobian is a torus, and in fact the proof of 4.2 shows that
\[
F_{\mathbb{F}_p}^0 \simeq \left(\prod_{x \in S_{\mathbb{F}_p}} \operatorname{Res}_{\mathbb{F}_p(x)/\mathbb{F}_p} G_m \right) / G_m
\]
where the G_m is diagonally embedded. Moreover, the restrictions of scalars are from at worst quadratic extensions by 1.2(d).

5. The action of Frobenius

5.1 Let S be a scheme of characteristic p, i.e. the canonical map $S \rightarrow \operatorname{Spec} \mathbb{Z}$ factors through $\operatorname{Spec} \mathbb{F}_p$. Let $F : S \rightarrow S$ be the absolute Frobenius morphism. It is defined to be the identity on the underlying topological space and the p-th power on \mathcal{O}_S. Let X be a scheme over S. We define the relative Frobenius $F_{X/S}$, as well as $X^{(p)}$, by the diagram

\[
\begin{array}{ccc}
X & \xrightarrow{F_{X/S}} & X^{(p)} \\
\downarrow & \downarrow & \downarrow \\
S & \rightarrow & S
\end{array}
\]

For $x \in X$, we also write $x^{(p)}$ for $F_{X/S}(x)$.

5.2 Let X and X' be proper curves over a field k of characteristic p. For a morphism $f : X \rightarrow X'$ over k, write $\operatorname{Pic}(f)$ for the induced map $\operatorname{Pic}_{X'/k}^0 \rightarrow \operatorname{Pic}_{X/k}^0$. Also, we write $F_{\mathbb{F}_p/k}$ for the relative Frobenius on $\operatorname{Pic}_{X/k}^0$.

5.3 Proposition. Let X be a generically smooth, geometrically connected, and proper curve over a field k of characteristic p. Then
\[
F_{\mathbb{F}_p/k} \circ \operatorname{Pic}(F_{X/k}) = [p]
\]
on $\operatorname{Pic}_{X/k}^0$.

Proof. We may assume without loss that $k = \mathbb{F}_p$ (cf. [5] 1.7.4). As $\operatorname{Pic}_{X/k}^0$ is smooth it suffices to check the identity on k-points (the k-points are dense; [3] p. 42). We use the fact that every invertible sheaf \mathcal{L} on X has the form $\mathcal{O}_X(D)$ for a Cartier divisor D such that $\operatorname{supp}(D)$ is contained in the smooth locus X^{sm} of X (see the discussion after Theorem 7, p. 258 of [3]).

Let \mathcal{L} be an invertible sheaf on $X^{(p)}$ of degree zero on each irreducible component. We may assume by additivity that \mathcal{L} is of the form $\mathcal{O}_X(x_0^{(p)} - x_1^{(p)})$ where $x_0^{(p)}, x_1^{(p)} \in X^{(p)}(k)$ actually lie in the smooth locus of a common irreducible component $C^{(p)}$ of $X^{(p)}$.

Let $\iota_{x_0} : C^{\text{sm}} \rightarrow \operatorname{Pic}_{X/k}$ be the k-morphism $x \mapsto \mathcal{O}_X(x - x_0)$. Since C^{sm} is irreducible and $\iota_{x_0}(x_0) = 0$, ι_{x_0} factors through $\operatorname{Pic}_{X/k}^0$.

Before proceeding any further, let's note that
(a) $i_{x_0}^{(p)} = i_{x_0}^{(p)}$, i.e. the following diagram commutes

For the proof, we have that

$$i_{x_0}^{(p)} : x^{(p)} \mapsto [x^{(p)} - x_0^{(p)}]$$

$$(i_{x_0})^{(p)} : x \mapsto \text{pr}^*[x - x_0]$$

where \text{pr} is as in 5.1. But $\text{pr}^*[x] = [x^{(p)}]$ so that $[x^{(p)} - x_0^{(p)}] = \text{pr}^*[x - x_0]$, as claimed.

(b) Since raising to the p-th power commutes with any ring map we have the commutativity of

$$
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\text{F_{X/k}} & & \text{F_{Y/k}} \\
X^{(p)} & \xrightarrow{f^{(p)}} & Y^{(p)}
\end{array}
$$

for any morphism of $f : X \longrightarrow Y$ of schemes of characteristic p.

Returning to the proof of the proposition, we have

$$(\text{Fic}_{k/k} \circ \text{Pic}(F_{X/k}))(\mathcal{L}) = \text{Fic}_{k/k}(\text{Pic}^*(F_{X/k}^{(p)}(\mathcal{L})))$$

$$= \text{Fic}_{k/k}(\mathcal{O}_X(F_{X/k}^{(p)}(F_{X/k}(x) - F_{X/k}(x_0))))$$

Now using the fact that $F_{X/k}$ is finite flat and purely inseparable of degree p over the smooth locus, the last term above equals $\text{Fic}_{k/k}(\mathcal{O}_X(p(x_1 - x_0)))$. Then we have

$$F_{\text{Pic}_{k/k}}(\mathcal{O}_X(p(x_1 - x_0))) = [p] \circ F_{\text{Pic}_{k/k}}(\mathcal{O}_X(x_1))$$

$$= [p] \circ F_{\text{Pic}_{k/k}}(F_{X/k}(x_1))$$

$$= [p] \circ i_{x_0}^{(p)}(x_1^{(p)})$$

$$= \mathcal{O}_X(x_1^{(p)} - x_0^{(p)})^{\otimes p}$$

as required. \hfill \Box

5.4 Put $X := M_0(p)_{F_{\mu}}$. Then by 1.2, $\Gamma(X)$ has two vertices and an edge for each geometric supersingular point. See Figure 2.

The following is Theorem A.1.1(a) of [10].
\textbf{5.5 Theorem.} $F_{\overline{F}_p}/F_p = -wp$.

\textit{Proof.} If we could show that $\text{Pic}(F_{\overline{F}_p}) = -w$ then $F_{\overline{F}_p}/F_p \circ (-w) = p$ by 5.3. The theorem would follow since w is an involution.

Let E be an ordinary elliptic curve over \overline{F}_p, so that $E[p] \simeq \mathbb{Z}/p\mathbb{Z} \times \mu_p$, and put $C := \ker(F_{\overline{F}_p}/E \rightarrow E^{(\psi)})$. C is the unique connected subgroup of E of order p; it is isomorphic to μ_p. Also, $F_{\overline{F}_p}/E$ induces an isomorphism $E/C \simeq E^{(\psi)}$ and $E[p]/C$ is étale. See [5], p. 27. Hence $w(E) = w(E, C) = (E/C, E[p]/C) \simeq (E^{(\psi)}, C')$ for some étale $C' \subset E^{(\psi)}$. It now follows from 1.2(c) that w exchanges the vertices of $\Gamma(X)$ and sends an edge x to the edge $x^{(\psi)}$. On the other hand, $F_{\overline{F}_p}/E$ fixes the vertices and sends an edge x to the edge $x^{(\psi)}$. We are done by (5). \hfill \square

\textbf{References}

